
RUFCO: A Deep Learning Framework to Postprocess Subseasonal

Precipitation Accumulation Forecasts

ROCHELLE P. WORSNOP ,a MICHAEL SCHEUERER,b THOMAS M. HAMILL,c TIMOTHY A. SMITH,a

AND JAKOB SCHLÖRd

a NOAA/Physical Sciences Laboratory, Boulder, Colorado
b Norwegian Computing Center, Oslo, Norway
c TheWeather Company, Boulder, Colorado

d Machine Learning in Climate Science, University of Tübingen, Tübingen, Germany
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ABSTRACT: Postprocessing is a critical step in attaining calibrated and reliable probabilistic forecast output from numer-
ical weather prediction models. A novel deep learning framework is proposed to postprocess 20 years of 7- and 14-day pre-
cipitation accumulation reforecasts from the Global Ensemble Forecast System at subseasonal time scales (week 1, week 2,
and combined weeks 3–4 forecasts) over the contiguous United States. The network builds upon previous studies and is a
combination of three parallel-trained components suitable for subseasonal prediction. The first is a ResUnet architecture
which learns nonlinear relationships between binned observed precipitation and input images of weather and geographical
variables. The second conditions the network to the month-of-year via a feature-wise linear modulation (FiLM) layer. The
third helps the network learn when to revert the forecast to that of climatology. The RUFCO (named for its components
ResUnet, FiLM, and Climatological-Offramp) forecasts are compared against raw and climatological forecasts as well
as those from a state-of-the-art distributional regression postprocessing model, “censored, shifted gamma distribution
(CSGD),” and a simple bias-corrected model. At week 1, every method exhibited a competitive advantage over climato-
logical forecasts. At week 2, RUFCO generated forecasts with statistically significant improvement over climatology at
82%–94% of the domain, beating CSGD’s coverage of 76%–90% of the grid points. At week 3, RUFCO’s skillful coverage
was 65%–85%, while CSGDs dropped to only 12%–37%. At the longer lead times, RUFCO achieved the highest domain-
averaged skill scores across seasons. However, the network tends to “smooth” forecast skill, making it less competitive
with CSGD in limited areas with strongly spatially varying biases.

SIGNIFICANCE STATEMENT: Precipitation accumulation forecasts 1, 2, and 3–4 weeks in advance are increas-
ingly in-demand for a variety of decision-making applications around hydrologic forecasting, flood and drought aware-
ness, and wildfire preparedness. However, raw forecasts from numerical weather prediction systems have errors that
hinder skill. Postprocessing methods remove those errors and provide more reliable and skillful forecasts. We show
that a new neural network technique is an effective and competitive postprocessing tool compared to more traditional
techniques.

KEYWORDS: Forecast verification/skill; Probabilistic Quantitative Precipitation Forecasting (PQPF); Probability
forecasts/models/distribution; Postprocessing; Deep learning; Neural networks

1. Introduction

Forecasting at subseasonal time scales (typically between 2
weeks and 3 months ahead) is one of the latest prediction
frontiers. Multiple projects and corresponding databases such
as the subseasonal to seasonal (S2S) prediction project (Vitart
et al. 2017) and subseasonal experiment (SubX; Pegion et al.
2019) were generated with the sole purpose of accelerating re-
search to improve operational S2S forecasts. Regarding accu-
mulated precipitation, which is the focus of this study, these

forecasts are critical for assessing food security (Breeden et al.
2022), managing water resources (Yuan et al. 2014), evaluating
the severity of ongoing and building droughts (Pendergrass et al.
2020; Hoell et al. 2020), and identifying locations and times with
wildfire risk (White et al. 2017; Abatzoglou et al. 2023).

Numerical weather prediction (NWP) models generally
produce skillful midlatitude forecasts ;7–10 days ahead
(Zhang et al. 2019), albeit with more skill for variables like
surface temperature (Hamill et al. 2004; DelSole et al. 2017)
and for accumulations over longer durations and larger areas
(Roberts 2008; Roberts and Lean 2008). At subseasonal time
scales, the chaotic growth of model errors (Lorenz 1969;
Slingo and Palmer 2011) limits the information provided by
the initial conditions. Even more, the predictability associated
with slowly varying boundary conditions (e.g., sea surface
temperatures, soil moisture, and sea ice) does not provide sub-
stantive predictability enhancement until longer, seasonal time
scales (Vitart 2004; Merryfield et al. 2020). Because subseasonal
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forecast applications often are desired for relatively short aggre-
gations (i.e., daily, 1 week, or 2 weeks) and because they bridge
this gap of predictability between weather and climate scales,
they notoriously suffer from a lack of skill.

The aforementioned model errors may manifest as system-
atic biases and ensemble dispersion errors. These have many
causes, including limited model resolution, biases in the initial
and boundary conditions, and inaccurate representations of
subgrid-scale processes associated with the use of parameteri-
zation schemes. Statistical postprocessing techniques can cor-
rect these errors within the raw subseasonal forecasts so that
every forecast, at every location, is as skillful and reliable (i.e.,
probabilities will be more consistent with the observed rela-
tive frequencies) as possible. Machine learning (ML) methods
are a natural extension of statistical postprocessing tools
(Rasp and Lerch 2018; Haupt et al. 2021; Vannitsem et al.
2021, and references therein). The appeal is their ability to
model highly nonlinear relationships among a suite of predic-
tors and the predictand(s) and their flexibility to seamlessly
incorporate a variety of data types. While some deep learning
approaches do assume a predictive distribution a priori and
use networks to learn their parameters (Rasp and Lerch 2018;
Ghazvinian et al. 2021; Ghazvinian et al. 2022; Chapman et al.
2022; Hu et al. 2023), most require no assumption about the
predictive distribution of the variable.

Currently, only a few studies have applied neural networks
(NNs) for precipitation postprocessing at subseasonal time
scales. Scheuerer et al. (2020), referred to as S20 hereafter,
first demonstrated the use of two NN-based models to post-
process week 2-, 3-, and 4-forecasts of accumulated precipi-
tation over California (CA) during the cool season using
Integrated Forecasting System (IFS) reforecasts from the
European Centre for Medium-Range Weather Forecasts
(ECMWF). Fan et al. (2023) used a multilayer perceptron
to postprocess the National Oceanic and Atmospheric Ad-
ministration (NOAA)’s Climate Forecast System (CFS;
Saha et al. 2014) week 3–4 forecasts of precipitation and a
2-m temperature (t2m). Horat and Lerch (2024) used varia-
tions of convolutional neural networks to postprocess com-
bined weeks 3–4 and weeks 5–6 and global IFS tercile forecasts
of t2m and precipitation.

Here, we propose a deep learning architecture that lever-
ages decades of NOAA Global Ensemble Forecast System
(GEFSv12) reforecasts to postprocess subseasonal ensemble
precipitation forecasts over the contiguous United States
(CONUS) for each season. Zhou et al. (2022) showed that
GEFSv12’s CONUS-wide skill drops below that of climatology
by day 16 lead times for precipitation amounts .1 mm day21

and by day 11 for events over 20 mm day21. These findings mo-
tivate the need for postprocessing to improve the quality of the
forecasts so that they are more skillful than a simple climato-
logical forecast.

Our postprocessing algorithm builds upon the ResUnet
(Zhang et al. 2018) to account for intricacies of subseasonal
prediction (see section 3c). The scope of this paper is to intro-
duce and demonstrate the skill of the new network using a
simple set of inputs (i.e., forecasted pressure and moisture
variables, geographic variables, and time-of-year embeddings)

with the objective of improving subseasonal 7- and 14-day ac-
cumulated precipitation outlooks for NOAA’s Climate Pre-
diction Center.

Section 2 describes the reforecasts and gridded observation
data as well as the data-splitting and cross-validation strate-
gies used to train and evaluate the postprocessing models.
Section 3 outlines the new ResUnet, feature-wise linear mod-
ulation (FiLM), and Climatological-Offramp (RUFCO) net-
work, and section 4 explains the conventional benchmark
postprocessing method. Section 5 discusses RUFCO’s hyper-
parameter tuning strategy. Probabilistic verification metrics
are discussed in section 6, while section 7 details the results,
including a sensitivity experiment of the FiLM component.
Finally, sections 8 and 9 include an example forecast outlook
and summary, respectively.

2. Data

a. Reforecasts

Training neural networks typically requires large datasets
to learn complex tasks. Therefore, we use the 20-yr GEFSv12
reforecasts (Guan et al. 2022; Hamill et al. 2022; Amazon
Web Services 2023) which are forecasts retrospectively gener-
ated from a consistent model version of GEFSv12. GEFSv12
is a global atmospheric model ran operationally at NOAA’s
National Centers for Environmental Prediction for lead times
up to 35 days. GEFSv12 was implemented in September 2020
after demonstrating its improved performance over previous
versions, including for forecasts of precipitation. Details about
the model configuration, including the cloud microphysics, ra-
diation, and convection schemes, are given in Zhou et al.
(2022), Guan et al. (2022), and Hamill et al. (2023).

The reforecasts use the same model system as the real-time
forecasts, but their ensemble size and initialization dates are
more limited. We retrieved reforecasts for dates between
1 January 2000–31 December 2019 that were initialized at
0000 UTC and executed to 129 days lead, with data output at
6-h increments. The reforecasts were initialized once per
week (i.e., a total of 1040 dates) and included 11 ensemble
members. Data for the first 10 days were available at a 0.258
rectilinear grid spacing; we upscaled to 0.58 with the conserva-
tive regridding algorithm (Jones 1999), which is suitable for
remapping spatially sparse variables, via the xESMF Python-
based regridding library (Zhuang et al. 2023). Data for leads
101 days were already available at a 0.58 grid spacing.

We retrieved data for a spatial domain surrounding
CONUS from 1348 to 658W longitude and 238 to 538N latitude
for each of the weather-predictor variables: precipitation accu-
mulation, total column water (TCW), and geopotential height
at 500-hPa (Z500). The domain has a total of 139 3 61 (8479)
grid points. Precipitation totals at each grid point were then
summed over 7 days for week-1 and week-2 forecasts and over
14 days for the combined week-3 and week-4 forecasts. We accu-
mulated precipitation amounts starting at 1200 UTC to be consis-
tent with the start of the accumulation period of the observed
dataset (see section 2b). Therefore, a week-1 forecast included
precipitation that fell between 12- and 180-h (0.5–7.5 days) lead
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times, a week-2 forecast included 180–348-h (7.5–14.5 days) lead
times, and the combined weeks-3 and -4 forecasts included hours
348–684-h (14.5–28.5 days) lead times. TCW and Z500 were av-
eraged over the same 7 or 14 days and were selected as predic-
tors given their representation of the larger-scale patterns
associated with precipitation.

b. Gridded precipitation analyses

The GEFSv12 reforecasts are calibrated and verified with
gridded precipitation analyses upscaled from the Parameter-
Elevation Regressions on Independent Slopes Model (PRISM;
Daly et al. 1997) precipitation dataset. PRISM data are avail-
able over land as 24-h accumulations starting at 1200 UTC for
years 1981–2019. We again apply conservative regridding to
upscale and match PRISM’s original 4-km rectilinear grid to
the 0.58 grid of the reforecasts (a total of 3371 CONUS grid
points) and accumulate over 7- and 14-day periods for each
grid point.

c. Data-splitting strategy

For fair evaluation and comparison of the various postprocess-
ing methods presented below, the data of forecast-observation
pairs need to be split into two independent datasets. One set will
be used to train the algorithms and is referred to in the paper as
the “training” set and the other set, called the “test” set, will only
be used for final evaluation to assess the methods’ performance
on unseen data. We maximized the use of the data by imple-
menting the splits in a leave-some-out cross-validation procedure
described below. For the benchmark postprocessing algorithm
(censored, shifted gamma distribution (CSGD); discussed in
section 4), we fit a model separately for each month. Therefore,
we leave 1 month and year combination out to make up the
test dataset. A particular month’s data from the remaining
19 years serve as the training dataset (more details in section 4).
The process cycles through all months and years so that eventu-
ally every month and year are evaluated.

The splitting strategy (visualized in Fig. SA1 in the online
supplemental material) of the new neural-network-based
method (RUFCO; discussed in section 3) is different from
CSGD’s in two ways. First, an entire year serves as the test set
for reasons described in section 3 rather than just 1 month.
The training set includes data from all months in the remain-
ing 19 years. Second, neural networks require a third split of
the data for hyperparameter tuning (see section 5). This third
set is a subset of the training set. The procedures to define
that subset and to tune the hyperparameters are discussed in
section 5 and in section A of the supplemental.

3. Deep neural network for categorical probability
predictions

a. Target variable

The target variable of the neural network is a vector that
specifies the probability of the precipitation amount falling
into each m 1 1 precipitation bins. S20 found that forecast
performance was not sensitive to the number of bins and the
number mostly translated to either fewer parameters for a

network to learn when fewer bins were used or a smoother in-
terpolation between bins in the case of more bins. Therefore,
following S20, we set m 5 19 and use the same binning
scheme as S20 for their postprocessing networks for CA cool-
season precipitation. Specifically, let Bi represent the ith bin
that is bounded by [bi21, bi] for i e {0, … , m}. The boundary
values are determined by first constructing an observed
PRISM climatological distribution of 7- or 14-day accumula-
tions specific to each location and day-of-year. Here, for each
location, we pool together accumulated observations from all
downloaded years (1981–2019) within a 630-day window cen-
tered around each date of interest.

The first bin B0 has a climatological probability of occur-
rence denoted by 1 2 popcl, where popcl represents the
climatological probability of nonnegligible precipitation
accumulation (.0.254 mm; 0.01 in.). The remaining bins
B1, B2, … , Bm are defined by quantiles of the climatologi-
cal distribution sampled at probability levels qcl,i 5 (1 2

popcl) 1 popcl(i/m) for i e {1, … , m}. By definition, all but
the first (i.e., negligible precipitation) bin for a particular
location and day-of-year have equal climatological proba-
bilities of occurrence. This partition scheme helps ensure
relatively balanced bins of accumulated precipitation
amounts no matter the location or time-of-year. This struc-
ture is ideal for the NN’s task to simultaneously predict the
likelihood of category assignments across the large domain
for any date. Figure 1 shows examples of percentiles of the
climatological distribution (blue dots) and associated 20
bin partitions (black lines) for locations along a west–east
transect over CONUS through 39.58N.

b. Input variables

We use the ensembles of raw accumulated precipitation,
TCW, and Z500 from GEFSv12 in addition to geographic var-
iables (latitude, longitude, and elevation) to correct for spa-
tial-dependent precipitation biases. We first smooth each of
the raw forecast variables using a neighborhood-smoothing
procedure described for the CSGD method in section 3a
of S20. Then, for each of the smoothed variables, we calcu-
late an extreme forecast index (EFI; Zsótér 2006). The EFI
quantifies the departure of the raw ensemble forecast distri-
bution from the cumulative distribution function (CDF)
of its own model climatology. A detailed description of the
formulation that we used to calculate the EFI is found in
appendix A of S20.

The input fields for our neural network are images of the
EFI-transformed weather variables, latitude, longitude, and
elevation. While the EFI values are inherently defined be-
tween [21, 1], we use a min–max normalization to rescale the
remaining inputs between 21 and 1. In addition to the input
fields, we include scalar values to condition our network on.
These include the one-hot encoded vector of the month-of-
year and the logarithm of the climatological probabilities, de-
tailed in sections 3c(2) and 3c(3), respectively.

During preliminary analysis, we also tried using the normal-
ized ensemble mean, standard deviation, and the 10th and
90th quantiles of the ensembles as inputs to the network. The
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EFI typically showed lower training loss values in fewer
epochs (not shown), so we opted to use EFI as the predictors.
Figure 2 shows example inputs to the RUFCO model for a
heavy-precipitation event in January 2014 during a North
American cold wave.

c. RUFCO network architecture

The new postprocessing NN is made up of three components
that are trained in parallel: 1) a residual U-Net (ResUnet)
(Zhang et al. 2018) to learn nonlinear relationships between
predictors and observed precipitation bins, 2) a FiLM layer
(Perez et al. 2017) to help the network condition the prediction
based on the month-of-year, and 3) a “climatological off-ramp”
to help the network revert toward climatology when necessary.
Each component is described below, and the overall network
shown in Fig. 3 is referred to as the RUFCO model. Table A1
in appendix defines each operation within Fig. 3.

1) RESUNET COMPONENT

The ResUnet is a network that combines the advantages of
U-Nets (Ronneberger et al. 2015; Long et al. 2015) and resid-
ual learning networks (He et al. 2016) to improve model train-
ing and prediction of semantic segmentation “pixel-level”
classification tasks. These tasks entail the simultaneous pre-
diction of the most likely category for each pixel in an image
rather than predicting a category assignment for the whole
image. Thus, this type of network is suitable for our task of si-
multaneously predicting the probability of each grid box fall-
ing within one of many possible precipitation bins.

U-Net is a type of encoder–decoder convolutional network
that has been used for a broad range of meteorological-forecast-
ing applications (Chapman et al. 2022; Hu et al. 2023; Badrinath
et al. 2023; Lagerquist et al. 2023; Horat and Lerch 2024) that
want to leverage spatial dependencies within the data. The archi-
tecture consists of repeated building “blocks” that are made up
of sequential mathematical operations including convolutions,

batch normalization (Ioffe and Szegedy 2015), and nonlinear ac-
tivation functions (Zeiler et al. 2013; Hara et al. 2015). The en-
coder blocks learn and extract complex features using “filters”
(often called channels) applied across the input images. The re-
sult is distilled contextual “feature maps.” In our network, the
number of learned filters increases by a factor of 2 for each new
level of the U-Net. This increase in parameters is offset by de-
creasing the dimensionality of the feature maps by a factor of 2
via max pooling operations (Boureau et al. 2010; Zafar et al.
2022). The decoder side performs opposing blocks of operations
from the encoder side. Between each decoder block, we use
upsampling (a simple doubling of rows and columns) fol-
lowed by a convolutional layer to increase the dimensional-
ity and to reconstruct fine-scale detail within the learned
feature maps. A “bridge” containing one block connects
the symmetric encoder–decoder at the lowest level, thus
giving it a U shape. Lastly, skip connections are used be-
tween the encoder and decoder sides within each level of
the ResUnet.

A ResUnet’s (Zhang et al. 2018) structure improves train-
ing and performance by using “residual [connection] blocks”
(ResBlocks) instead of basic convolutional blocks. These
blocks propagate information from the block’s input to the
block’s output. A clear distinction between skip and residual
connections is that skip connections propagate information
by bypassing many layers and operations, while residual con-
nections typically propagate information more locally within
the network.

The ordering of convolutional layers, batch normalization,
and activation functions within a block can vary. We use a
block combination inspired by ResNet34 (He et al. 2016)
where two convolutional layers are each followed by a batch
normalization layer and then a nonlinear activation function.
Then, a residual connection is used to add the block’s input
directly to the result before a final nonlinear activation func-
tion is performed. We add a dropout layer (Srivastava et al.
2014) after the block to further help in regularizing the model.

FIG. 1. Example bin boundaries (black) that define the 20 precipitation accumulation catego-
ries predicted by the RUFCO network. Categories are based on the 1981–2019 observed PRISM
climatology specific to each grid point and day of the year. Boundaries are shown for (top)
15 Jan and (bottom) 15 Jul for grid points along a west–east transect over CONUS at 39.58N lati-
tude. Equidistant percentiles from 1 to 99 of the climatological distribution are shown by the
blue dots.
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We use zero padding so that the output images are the same
size as the input images. A schematic of the ResUnet architec-
ture used in our study is illustrated in Fig. 3 (circles 1, 3, and 5).

2) FILM COMPONENT: CONDITIONING THE NETWORK

ON THE MONTH-OF-YEAR

To enable the network to learn variations in forecast skill
based on the month-of-year, we added a FiLM (Perez et al.
2017) layer, which is a general-purpose conditioning method
that has achieved state-of-the-art performance in computer vision
tasks. In our implementation, the FiLM layer modulates each

pixel of intermediate feature maps within the ResUnet’s
top-level ResBlocks. The FiLM layer applies a linear affine
transformation that can scale the output (e.g., increasing or
decreasing each pixel’s weight) based on what the network
learns about observed precipitation given the month of
the year. Specifically, coefficients gi,c and bi,c of the FiLM
Eq. (1) scale intermediate feature maps Fi,c, where i and c are
the ith sample and the cth feature map within the ResBlock,
respectively:

FiLM 5 gi,cFi,c 1 bi,c: (1)

a d

b e

g h

c f

Precipitation EFI

Scaled elevation

Z500 EFI

Scaled longitude

Observed precipitation category

C
ategory/bin

January

TCW EFI

Scaled latitude

FIG. 2. Example of (a)–(g) input variables to the RUFCO model and the flattened (h) predictand (i.e., the actual
predictand is a one-hot encoded array filled with ones in the observed category and 0s in the remaining 19 categories
for each grid point). (a)–(f) Image inputs are described in section 3b; the (g) one-hot encoded month-of-year vector is
described in section 3c(2). The scaled images represent the week-1 (for days 1–8 Jan 2014) predictors and observed ac-
cumulated precipitation for a cold wave event starting on 1 Jan 2014.
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The FiLM coefficients are learned by a “dense” network called
a “FiLM generator function” as shown in Fig. 3 (circles 2 and 4
and the corresponding green-outlined components) that is
trained end to end with the other components. Placement of
the FiLM layers was guided by ablation studies in Perez et al.
(2017). Their findings indicate that the best performance is
found when FiLM layers are placed within the ResBlock.

Since the output of the ResBlock has N number of feature
maps, both of the FiLM coefficients also need to have N val-
ues. In this way, the FiLM layer can modulate each of the fea-
ture maps independently based on the month of year. This is
achieved by setting the last linear layer of the FiLM generator
network to haveN 3 2 neurons, which are then split in half so
that the first N/2 learned values are assigned to g and the last
N/2 are assigned to b. The input to the FiLM generator is a
one-hot encoded array with 12 columns for each training sam-
ple where a one indicates the month of the year and zeros in-
dicate the remaining months of the year (see Fig. 2g).

The advantage of the FiLM conditioning approach is that it is
a scalable and computationally efficient (Perez et al. 2017) way

to incorporate scalar predictors into image-based networks. Only
two new parameters are needed to condition each feature map
no matter the size of the predictor images (e.g., small regional
versus large global images). The FiLM generator itself does cre-
ate parameters depending on its complexity. To reduce the num-
ber of additional parameters, we only learn the FiLM generator
and the FiLM coefficients once (on the encoder side) and then
reuse those coefficients on the decoder side. This is feasible
because each level of the encoder and decoder sides of our
ResUnet has the same sized feature maps. This implementa-
tion differs from that of Perez et al. (2017) who learned new
FiLM generators and coefficients for each ResBlock.

3) CLIMATOLOGICAL OFFRAMP COMPONENT: NETWORK

ADJUSTMENTS TOWARD CLIMATOLOGICAL

PROBABILITIES

With increasing lead time, the amount of useful information
that the predictors can provide decreases and reliable subseaso-
nal forecasts tend to converge toward climatological forecasts.
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FIG. 3. (top left) Schematic of the RUFCO architecture used in this study as well as example input images and (middle right) the fore-
casted categorical probability outputs. All operations are performed in order from 1 to 6 as indicated by black-outlined circles. Circles 1, 3,
and 5 represent the input variables (see Fig. 2) and the general “ResUnet” component of the network. Circles 2 and 4 represent the FiLM
layer applied to the output (indicated by green asterisks) of intermediate layers within the top level of the ResUnet. Circle 6 indicates the
climatological off-ramp component. Rectangles and thick arrows indicate sequential mathematical operations except for the yellow-
highlighted rectangles, which represent inputs to the three main components of the overall network. Table A1 in appendix defines each
operation. Numbers upstream (downstream) of the operations correspond to the spatial size of images input (output) to that layer as well
as the number of channels/filters input (output) to the layer. Rectangles without a new size retain the size of the prior-listed size. Bolded
values within the schematic indicate values that were tuned. All tuned values shown in this schematic are from one optimized model,
which had 3 levels/blocks. The entire network is trained in parallel. A clickable figure may be rotated and enlarged online for enhanced
readability.
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To help the network learn to revert toward climatology, we in-
clude a “climatological offramp” by adding the logarithms of
climatological probabilities (as calculated in section 3a) for each
bin to the output of the FiLM-ed ResUnet (see Fig. 3, circle 6).
This idea was introduced in S20 and does not require any addi-
tional parameters for the network to learn. For more details, we
point interested readers to section 3b of S20.

d. Loss function

The network learns its parameters by minimizing the modi-
fied categorical cross-entropy score (MCCES) introduced by
S20:

L 0, …,m(p, y) 52log ∑
m

i50
yipi

( )
, (2)

where p 5 (p0, … , pm) is a vector of forecasted probabilities
associated with each of them1 1 categories. Let y5 (y0, … , ym)
be the one-hot encoded vector where ones represent the ob-
served category assignment and zeros fill the remaining 19
categories.

MCCES generalizes the standard categorical cross-entropy
score (CCES) to include the rare scenario where an observa-
tion falls into more than one bin. Ambiguous category assign-
ment is a result of limited precision associated with observed,
gridded precipitation datasets and the small spacing between
climatological quantiles used to define the categories. In most
cases, the assignment is unambiguous and the MCCES re-
duces to the CCES.

e. Interpolation between categories

Once the network has been trained and forecasted proba-
bilities have been assigned for each precipitation bin, we gen-
erate a full predictive CDF F by interpolating between the
bins. We follow the interpolation procedures in S20 who
found that first transforming the categorical probabilities to
H(x) 5 2log[1 2 F(x)] enabled a simple linear interpolation
between bins and a linear extrapolation to values outside of
the bins. With the full predictive CDF, we then estimated the
probability of exceedance of various climatological thresholds
for use in the verification metrics discussed in section 6.

4. Benchmark postprocessing technique (CSGD)

To evaluate the performance of the RUFCO method in the
context of established postprocessing techniques, we use the
CSGD method (Scheuerer and Hamill 2015; Ghazvinian et al.
2021), which is a state-of-the-art method that has generated
skillful and reliable quantitative precipitation forecasts in sev-
eral studies (e.g., Scheuerer and Hamill 2015; Zhang et al.
2017; Worsnop et al. 2021), even at subseasonal scales (S20).
The CSGD method is a parametric, distributional regression
technique; it assumes a prescribed distribution family and fits
a regression model for the different distribution parameters
to a training set of forecast-observation pairs. The specific dis-
tribution family used therein, the CSGD, is a modified gamma
distribution that allows one to capture characteristics of pre-
cipitation such as right skewness and positive probabilities of

exactly zero precipitation. The employed regression equations
appropriately permit increases in spread with precipitation
magnitude (Scheuerer and Hamill 2015).

The CSGD method is typically fitted separately for each
grid point and each month or season to account for varying
geographical or seasonal biases of the raw forecasts. We im-
plement nearly the same local CSGD fitting procedure and re-
gression equations that S20 used to postprocess cool-season
precipitation accumulations over CA. In the present study, we
generate forecasts year-round, so we fit a predictive CSGD
for each month of the year. Therefore, the test set for the
CSGD method consists of accumulations from all reforecast
dates in a particular month for a particular year. The training
set consists of accumulations from all available reforecast
dates within a 91-day window surrounding the 15th of that
month but only for the remaining 19 years.

Like S20, we also opted to use ad hoc regression parame-
ters at very dry locations instead of fitting data to the CSGD
model. This was done to avoid poor performance caused by
overfitting in regions and at times of year when there were
few nonzero accumulations in the training dataset. For more
details about the ad hoc adjustments, the CSGD method, and
specific implementation used in this paper, we point the
reader to section 3a of S20.

Limitations to the CSGD method are that its relationship
between the predictor and predictand is inflexible and its
grid-point-specific approach does not use potentially valuable
spatial information from other parts of the domain. Therefore,
we use it as a benchmark to evaluate if the proposed network’s
more flexible and convolutional approach can circumvent
these limitations and produce better performance.

5. Hyperparameter tuning

Several decisions related to the architecture, learning and
optimization, and regularization of the network are not learned
by the network itself and therefore need to be set a priori by
the implementer. Supplemental A outlines the cross-validated
hyperparameter (HP) tuning approach and software that we
employed to select optimal HPs (listed in Table A2 of the
appendix). Fifty different combinations of HPs were tested
for each of the 20 different networks, one network for each
of the 20 left-out-(test)years. The best combination (based
on criteria in supplemental A) was used to tune and train the
final “optimized model.” Figure A1 and associated discussion
detail the tuning results and provide insights into which parame-
ters RUFCO are most sensitive to. Networks were tuned and
trained separately for each lead time.

6. Probabilistic verification metrics

Precipitation outlooks are typically presented as probabilis-
tic forecasts of categorical departures from normal. For weeks
3–4, our partners at NOAA’s Climate Prediction Center
(CPC) only issue two-category outlooks for below- and
above-normal events where “normal” is defined as the 50th
percentile of the observed climatological distribution. CPC uses
the median instead of the mean (like they use for weeks 3–4
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outlooks of temperature) because it gives a better representation
of the central tendency/split of the precipitation distribution;
precipitation distributions are typically heavy tailed so that ob-
served amounts most often fall on the dry side of the mean.
Probabilities of exceeding the terciles (33rd and 67th percentiles)
and 85th percentile of climatology are also of interest for pre-
cipitation forecasting. Therefore, we use all of these percen-
tiles [0.333, 0.50, 0.667, 0.85] to calculate ranked probability
skill scores [RPSSs; Epstein 1969; Murphy 1971; Wilks 2011,
Eq. (8.52)] to quantify the calibration and sharpness of the
raw, CSGD- and RUFCO-based probabilistic forecasts. We
also construct reliability diagrams (RDs; Wilks 2011, chapter
8.4.4) and the corresponding Brier skill scores [BSSs; Wilks
2011, Eq. (8.37)] for exceedances of tercile events (0.333 and
0.667). As an additional postprocessing comparison, we cal-
culate the same verification metrics for what we refer to as a
simple “bias-corrected” forecast. For this forecast, the thresh-
old percentiles are determined from the raw model climato-
logical distribution instead of from the observed climatology.
For example, a bias-corrected forecast for the above-normal
events will be based on the probability of the raw forecast en-
semble exceeding the 66.7th percentile of the raw model cli-
matology. Therefore, the bias-corrected forecast is not a direct
adjustment to the raw forecast but rather achieves inherent bias
correction by adjusting the exceedance threshold values based
on the raw model’s own climatology.

A reference forecast is required to calculate skill scores for
the raw forecast and for each of the three postprocessing
methods. We construct a climatological forecast to serve as
the shared benchmark. The climatological forecast, separately
for each grid point, is made up of observed accumulations
for years 2000–19 except for the year associated with the
date of interest (i.e., the left-out test year). The dates in-
cluded are those that fall within 630 days centered around
the date of interest for which there were both observations
and forecasts available. BSS or RPSS values of 1.0 indicate
the largest possible improvement compared to the climato-
logical forecast; values of 0.0 indicate the same skill as
climatology, and negative values indicate worse skill than
climatology.

7. FiLM sensitivity experiment and verification of the
probabilistic forecasts

a. FiLM sensitivity

The FiLM layer herein helps the network learn the season-
ality of precipitation accumulation. We demonstrate this ef-
fect by tuning and training two new networks, one with and
one without the FiLM layers. To isolate the FiLM’s ability to
condition a network, in this case on the month-of-year, we
run this sensitivity experiment without the climatological off-
ramp (i.e., the same architecture as in Fig. 3 but without the
sixth component). This is done because the FiLM’s impact is
likely to be somewhat masked, especially at longer lead times
when the network is more likely to lean on the climatological
offramp. We focus results for this experiment on lower tercile
events (#33.3rd percentile) in winter and summer months

since these seasons demonstrate strong seasonality across
CONUS. Figure 4 shows that the inclusion of the FiLM layer
can change the forecast probability of precipitation being in
the lower tercile by 25% or more. The FiLM increases the
probability of precipitation being in the lower tercile in re-
gions that are typically dry for the time of year (i.e., the
FiLMed network produces forecasts that are more likely to
be dry in the central United States during the winter and the
western United States in the summer). Conversely, the FiLM
layer modulates forecast probabilities so that it is more likely
to be wetter in the western United States in the winter and
central and southeast United States in the summer, which is
consistent with precipitation patterns during these seasons.
While there are some exceptions (red-shaded areas in Fig. 4),
these changes in probability translate to improved Brier
scores (blue-shaded areas), with the most improvement occur-
ring in regions with at least a 5% change in the probability of
the lower-tercile event. Similar conditioning effects are found
for upper-tercile events (Fig. SC1).

b. Reliability of forecasts for above- and below-normal
events: lead-time variations in forecast reliability in
winter and summer

We demonstrate the reliability of forecasts issued for a
range of forecast probabilities by showing RDs (Figs. 5 and 6)
for precipitation events falling within the lower (#33.3rd) and
upper (.66.7th) percentiles of climatology. We generated
confidence intervals around the reliability estimates via boot-
strapping by random resampling, with replacement, of the fore-
cast-observation pairs within the pooled time dimension (20 test
years, 3 months) 5000 times. Using the resampled distributions,
we calculated a bootstrapped distribution of observed relative
frequencies for each forecast probability bin and then plotted
the confidence interval between the 5th and 95th percentiles.

The RDs, inset histograms, and corresponding BSS in Figs. 5
and 6 reveal several characteristics of the different forecast
methods for winter and summer:

• Relative to the postprocessed forecasts, the raw forecast
ensemble is sharp; many forecasts (as seen in the inset his-
tograms) are issued near 0% or 100% forecast probability
of falling below the 33.3rd or exceeding the 66.7th percen-
tiles of climatology. However, the large departure below
the diagonal 1–1 line indicates that the raw forecasts lack
reliability and are overconfident, especially for forecasts is-
sued with high probability at longer lead times. Even more,
the resolution of the raw forecasts is poor as seen by the
relatively gentle slope of the black line compared to the
1–1 line; the raw forecast is not able to strongly discern dif-
ferent observed outcomes even when the issued forecast
probabilities are substantially different. The resolution is
especially poor at weeks 3–4 as indicated by the nearly flat
black line, which means that the raw forecast is not able to
issue reliable forecasts when forecasted probabilities are
much smaller or larger than the climatological expectation.

• The simple bias-corrected forecast has slightly better reli-
ability and BSS (solid gray in Figs. 5 and 6) than the raw
forecast at all lead times, but the improvement is limited.

ART I F I C I AL I N TELL IGENCE FOR THE EARTH SY S TEMS VOLUME 38

Brought to you by NOAA Library | Unauthenticated | Downloaded 03/28/25 07:05 PM UTC



Like the raw forecasts, the bias-corrected forecasts have
negative BSS in JJA at week 2 and for both seasons at
weeks 3–4 and still suffer from poor resolution. This indi-
cates that a more sophisticated postprocessing method is
needed to generate reliable forecasts.

• The CSGD and RUFCO postprocessing methods improve
the reliability and BSS at all lead times and for both sea-
sons. In the winter, the RUFCO and CSGD BSSs for both
event types indicate an approximate 41%, 10%, and 3%
improvement over a climatological forecast for week 1,
week 2, and week 3–4 lead times, respectively. Summer
shows less of an improvement compared to DJF, with val-
ues of 29%, 6%, and 2% for those lead times. The two
methods generally have comparable near-perfect reliabil-
ity for upper-tercile events in both seasons for week 1 and
week 2. The RUFCO model, compared to CSGD, shows su-
perior reliability for lower-tercile events at week 2, espe-
cially for JJA, likely a result of CSGD’s difficulty fitting the
parametric distribution or estimating the ad hoc parameters
at really dry locations (see section 4). Unlike the raw and
bias-corrected forecasts, the sophisticated postprocessing
methods, particularly for the summer, are able to generate
reliable forecasts at weeks 3–4 even for probabilities that
differ from the climatological expectation.

• These RDs indicate that both the CSGD and new RUFCO
model are able to produce relatively reliable forecasts at all
lead times during the winter and summer. RDs for the
spring and fall are provided (Figs. SD1–2) and show similar
characteristics to that of winter and summer.

c. Seasonality and regionality of ranked probability skill
scores for each lead time

Aggregate statistics in the form of CONUS-wide RPSSs for
each season and lead time (Table 1) are presented. RPSSs ac-
count for all four threshold exceedances (0.333rd, 0.50th,
0.667th, and 0.85th percentiles) and quantify the combined
calibration and sharpness of the forecasts compared to that of
a climatological forecast.

By week 2, the raw forecast is worse than climatology in all
but the winter months. The bias-corrected forecast, on aver-
age, provides a 1%–6% improvement over climatology at
week 2 during fall through spring but is no longer advantageous
during the summer. Conversely, the CSGD andRUFCOmethods
are skillful at week 2 during all seasons and provide a 6%–10% im-
provement over climatology, with the highest gains coming from
the RUFCO model during winter and spring. RPSSs for
weeks 3 and 4 show a similar result, except that the amount of
improvement over climatology is reduced to 2%–3%, again

FIG. 4. Differences in forecast probabilities (a)–(f) and Brier scores (1–6) for lower-tercile precipitation events between networks tuned
and trained with and without the FiLM layer. Differences are averages from data initialized in December–February (DJF) or June–
August (JJA) and all test years. Three lead times (week 1, week 2, and combined weeks 3 and 4) are shown. Implications of the color
shading are written underneath the colorbars.
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FIG. 5. RDs, BSSs, and inset relative frequency of occurrence histograms for forecasts of 7- or 14-day
precipitation accumulations #33.3rd percentile of climatology. Data were pooled over the CONUS do-
main, 20 test years, and for forecasts initialized in (a)–(c) DJF or (d)–(f) JJA. Forecasts generated from
the raw (black), bias-corrected (gray), CSGD (blue), and RUFCO (red) models valid at (a) and (d) week 1,
(b) and (e) week 2, and (c) and (f) weeks 3 and 4 are shown. A line marker for each probability bin was
only plotted if the probability bin contained at least 30 samples. Perfectly reliable forecasts exhibit a 1–1
relationship (gray, dashed line) between the forecast probability and the observed relative frequency.
Confidence intervals (vertical lines) represent the 5th and 95th percentiles of a 5000-sample bootstrapped
distribution with replacement (see section 7b). More details about diagram calculations are available in
supplemental B.
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FIG. 6. As in Fig. 5, but for forecasts of 7- or 14-day precipitation accumulations.66.7th percentile of climatology.

WOR S NO P E T A L . 11OCTOBER 2024

Brought to you by NOAA Library | Unauthenticated | Downloaded 03/28/25 07:05 PM UTC



with the highest gain coming from the RUFCO model. In ag-
gregate, the RUFCO method outperforms the other methods
in its ability to generate forecasts that perform better than a
climatological forecast.

We next present maps of RPSSs (Figs. 7–9) at each grid
point to show how the skill varies for each forecast method,
season, and lead time across different regions of the CONUS
domain. We only plot grid points that have a statistically sig-
nificant improvement in RPS compared to those of the refer-
ence climatological forecast. The significance of improvement
was calculated separately for each grid point, using a one-
sided, paired t test (motivated by suggestions in Hamill 1999).
Following S20, we first accounted for serial correlation that
may exist between the samples of RPS differences by applying
modifications to the variance used in the denominator of the
test statistic [Eq. (2.15) of Jones 1975 and described further in
S20]. Test multiplicity was accounted for by controlling the
false discovery rate (FDR; Benjamini and Hochberg 1995) at
aFDR 5 0.1, following the implementation around Eq. (5.37)
of Wilks (2011).

Ghazvinian et al. (2022) reported the annual-average raw
GEFS skill for varying magnitudes of 24-h precipitation events
for various subweek lead times across CONUS. Our week-1
results are largely consistent with theirs in that the greatest
relative skill occurs within the western United States, espe-
cially along the Pacific Coast, and the lowest relative skill
occurs within the Northern Great Plains and southern tier
of the United States, especially over Florida. Here, we subdi-
vide the skill performance into seasons (Fig. 7) which shows
that the high performance along the western United States
mostly stems from cool-season events when precipitation is of-
ten a result of large-scale flow interacting with complex terrain
(e.g., atmospheric rivers). These types of large-scale events are
more explicitly resolved by the model than more convective-
scale systems that rely on subgrid-scale parameterization
schemes (Hill et al. 2023). This latter point supports the result

that low annual-averaged skill mostly stems from the summer
months. Gray regions indicating no raw improvement over a
climatological forecast are seen over central and southern
California and other small regions along the west. This may
be due to global models’ tendency to overproduce light precip-
itation (Hamill and Whitaker 2006; Sun et al. 2007; Stephens
et al. 2010) and the fact that a climatological forecast of little
to no rain is likely hard to beat in these exceptionally dry re-
gions. Florida also shows no improvement by the raw model
and that may be a result of GEFSv12’s relatively coarse reso-
lution and inability to resolve regular afternoon thunderstorms
and seabreezes.

In general, regions with a relatively high (low) skill in the
raw forecast also exhibited relatively high (low) skill in the
postprocessed forecasts (bottom three rows in Figs. 7–9). At
week 1, the CSGD (third row in Fig. 7) and RUFCO (last row
in Fig. 7) methods generally produced a more expansive im-
provement across the domain compared to the raw and simple
bias correction methods (first and second rows in Fig. 7)
during all seasons. This is demonstrated by the sparsity in
the bias-corrected model’s skill (row 2 Fig. 7) along the
southeastern states in the cool seasons and in the interior
West in the summer.

Interestingly, the bias-corrected and CSGD forecasts over
the mountains in California produced more skillful forecasts
than those generated with the new RUFCO model during the
fall and winter. This may indicate that a more grid-point-
specific method is beneficial in this region, at week 1, rather
than using a convolutional approach that leverages neighbor-
ing grid points in the form of 3 3 3 or 5 3 5 kernels to inform
predictions. Since the raw skill is already relatively high in this
region at week 1, additional information from grid points with
dissimilar bias characteristics seems to degrade the relation-
ship between the predictors and predictand. This result over the
California mountains is consistent with a study from Ghazvinian
et al. (2022) who found that a quantile-mapping postprocessing
approach trained with a limited set of similar grid points outper-
formed, over the Sierra Nevada mountains, a dense neural net-
work, which was trained on data pooled across all grid points
within CONUS.

During the summer, the CSGD and RUFCO methods are
the only ones that generate an improvement over climatologi-
cal forecasts over California. Recall that the CSGD method
does not fit any model at particularly dry locations and instead
applies ad hoc distribution parameters appropriate for dry lo-
cations (see section 4). This algorithm characteristic helps
avoid overfitting and seems to be a big advantage, at week 1,
over California during the summer compared to the raw and
simple bias-corrected models. The FiLM layer’s representa-
tion of seasonality and the use of the climatological off-ramp
are likely the sources of good performance in these regions
within the RUFCOmodel.

As expected, week 2 reveals a drastic drop in skill in the
raw and postprocessed forecasts (Fig. 8) across all seasons.
However, the difference between the simple bias-corrected
forecasts and the more sophisticated CSGD and RUFCO
methods is more pronounced compared to week 1. A dark
purple region over the southwest United States sticks out in

TABLE 1. Skill (RPSS) averaged over the entire CONUS domain,
each season, and all 20 test years. RPSSs were calculated using the
corresponding observed climatological forecasts as the benchmark
forecast. Bold values indicate the best-performing forecast method
for each season and lead time.

SON DJF MAM JJA

Week 1
Raw ensemble 0.348 0.321 0.228 0.181
Bias corrected 0.376 0.392 0.318 0.227
CSGD 0.392 0.410 0.348 0.285
RUFCO 0.397 0.408 0.351 0.290

Week 2
Raw ensemble 20.003 0.010 20.035 20.044
Bias corrected 0.010 0.058 0.023 20.010
CSGD 0.058 0.098 0.077 0.056
RUFCO 0.070 0.103 0.086 0.060

Weeks 3 and 4
Raw ensemble 20.100 20.118 20.137 20.109
Bias corrected 20.073 20.046 20.063 20.061
CSGD 0.008 0.022 0.014 0.019
RUFCO 0.022 0.034 0.024 0.022
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all of the summer forecast methods, which is likely related to
unearthed predictability of the North American Monsoon
(Prein et al. 2022). The CSGD’s grid-point-specific method
produces more high-skilled regions than RUFCO (e.g., north-
ern California into Oregon); however, during all seasons, the
number of statistically significant skilled grid points is greater
for the RUFCO forecasts compared to any of the other fore-
casts (Table 2). Since displacement errors tend to increase
with lead time, the inclusion of additional grid points to in-
form prediction may be more beneficial than single grid
points. Another likely source for improved skill in the
RUFCO model, especially over the western and southwest
United States, is that the RUFCO model uses predictor im-
ages that expand beyond the CONUS domain (see Fig. 2). Es-
sentially, the inclusion of the expanded domain (including
over Mexico and the Pacific Ocean) may help the RUFCO
model to better learn any shared covariability and/or sources
of predictability that exists over the expanded regions, which
can be applied to the CONUS grid points.

For the combined weeks 3–4 lead time, forecast skill re-
duces substantially for all methods. The raw model has no

improved skill over a climatological forecast. In fact, the
raw and bias-corrected forecasts exhibit negative skill com-
pared to climatology over most of the United States (not
shown).

The biggest differences between the bias-corrected, CSGD,
and RUFCO methods appear at this lead time for all seasons.
Aside from a few grid points in the bias-corrected forecasts
(second row in Fig. 9), the CSGD (third row in Fig. 9) and
RUFCO (fourth row in Fig. 9) forecasts are the only ones that
show significant skill improvements compared to climatology
across the domain. Compared to the CSGD, the RUFCO
model again shows consistent skill across a broader area of
the domain and across all seasons. The RUFCO model gen-
erates approximately 69%, 85%, 65%, and 65% statistically
significant grid points in fall, winter, spring, and summer, re-
spectively (Table 2), compared to just 12%, 33%, 16%, and
37% produced by the CSGD model for those respective
seasons.

However, some of the RUFCO’s expanded skill appears to
come at the expense of pinpoint regions of relatively high skill
that are seen in the CSGD maps but not in the RUFCO maps

FIG. 7. Skill (RPSS) averaged over all 20 test years for week-1 forecasts (raw, bias-corrected, CSGD, and RUFCO) initialized in four
meteorological seasons (a)–(d) September–November (SON), (e)–(h) DJF, (i)–(l) March–May (MAM), and (m)–(p) JJA. Colored and
white shading within CONUS indicate grid boxes where the RPSS is a significant improvement over the benchmark climatological forecast
at the aFDR 5 0.1 level. Gray shading indicates grid boxes where the improvement was not significant.
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(e.g., red and orange areas over Texas and New Mexico in
winter, yellow areas over southeast Oregon, west Montana,
and central Florida peninsula in winter and orange areas over
the Colorado–NewMexico border in spring and summer).

The most intriguing difference between the CSGD and
RUFCO forecast performances is in winter. In addition to
RUFCO’s increased number of statistically significant grid
points across the whole domain, the relatively high-skilled re-
gion fully surrounding the tripoint of California, Nevada, and
Arizona and the southern extent of the Colorado River is more
pronounced in the RUFCO forecasts than in the CSGD. This
region encompasses Lake Mead, a critical reservoir that sup-
plies surrounding states and Mexico with water; having skillful
subseasonal forecasts in this region could be a big advantage of
the RUFCO model for resource management. This relatively
“high-skill” region is analogous to patterns found in an attribu-
tion study (Sun et al. 2022) of the skill of subseasonal monthly
precipitation forecasts over North America. That study showed
a strikingly similar area encompassing the southwest United
States and northern Mexico, which had high predictability at-
tributable to surface boundary conditions. The framework of
RUFCO, compared to CSGD, appears to have a greater ability
to unearth the covariability and/or predictable signal associated

with these physically based background states that exist at
weeks 3–4. This is likely, in part, to the inclusion of the ex-
panded domain that the network learns through convolutions.

8. Case study of probabilistic categorical outlooks

Aforementioned results have shown that the RUFCO
model generally produces competitive calibration and reliabil-
ity across all seasons compared to traditional approaches, but
does the network produce spatially realistic outlooks? We an-
swer this question by providing example week-2 outlooks for
an atmospheric river event that took place in January 2019
along the western United States. Figure 10 displays probabilistic
forecasts of each method falling within the lower and upper
terciles of the observed climatology as well as the observed
precipitation amounts and the verified tercile assignment.
The RUFCO outlook, on par with CSGD, provides physically
realistic and relatively smooth probabilities that are expected
at subseasonal lead times. This example shows a case where
the RUFCO model well captured the higher probabilities of
above-normal precipitation associated with the atmospheric river
better than the CSGD forecast. All methods predicted the below-
normal event in the south-central United States, but they missed

FIG. 8. As in Fig. 7, but for week 2. Note that the magnitude of the colorbar is consistent with Fig. 7 to illustrate the drop in skill from
week 1 to week 2.
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the upper-tercile event (green shading in Fig. 10e stretching from
southeastern Texas into Maine). RUFCO issued lower proba-
bilities of a below-normal event in this region than the CSGD
did, indicating it was less overconfident about the likelihood of

a below-normal event. Readers should keep in mind that we
found that the RUFCO model on average has RPSSs that are
marginally higher across a wider area than the CSGD, so it is
possible that any single case may perform worse. To help

FIG. 9. As in Figs. 7 and 8, but for combined weeks 3 and 4. Note that the magnitude of the colorbar has changed from that used in Figs. 7 and
8. The raw forecasts at this lead time had no grid boxes with significant improvement over climatology (i.e., all areas are shaded gray).

TABLE 2. Number (and percentage) of CONUS grid points with statistically significant improvement over a climatological forecast.
Bold values indicate the method(s) with the greatest number of statistically significant grid points for each lead time and season.

SON DJF MAM JJA

Week 1
Raw ensemble 3318 (98.43%) 3125 (92.70%) 3001 (89.02%) 2914 (86.44%)
Bias corrected 3368 (99.91%) 3371 (100%) 3366 (99.85%) 3238 (96.05%)
CSGD 3369 (99.94%) 3371 (100%) 3370 (99.97%) 3362 (99.73%)
RUFCO 3369 (99.94%) 3371 (100%) 3365 (99.82%) 3351 (99.41%)

Week 2
Raw ensemble 207 (6.14%) 1157 (34.32%) 360 (10.68%) 202 (5.99%)
Bias corrected 288 (8.54%) 1727 (51.23%) 717 (21.23%) 364 (10.80%)
CSGD 2648 (78.55%) 2938 (87.16%) 3027 (89.80%) 2553 (75.73%)
RUFCO 3067 (90.98%) 3154 (93.56%) 3178 (94.27%) 2776 (82.35%)

Weeks 3 and 4
Raw ensemble 0 (0%) 1 (0.03%) 0 (0%) 0 (0%)
Bias corrected 0 (0%) 27 (0.80%) 1 (0.03%) 11 (0.33%)
CSGD 417 (12.37%) 1128 (33.46%) 538 (15.96%) 1232 (36.55%)
RUFCO 2336 (69.30%) 2849 (84.51%) 2196 (65.14%) 2197 (65.17%)
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identify impactful cases for future research, NOAA’s Physical
Sciences Laboratory is running the RUFCO model experimen-
tally in near–real time.

9. Summary and discussion

Three methods are presented to postprocess probabilistic
forecasts of the subseasonal precipitation accumulation output
from the Global Ensemble Forecast System: 1) a simple bias-
corrected forecast achieved by adjusting exceedance thresholds
based on the raw model’s own climatology, 2) a parametric and
established distributional regression-type model (CSGD), and
3) a new nonparametric, deep learning framework (RUFCO)
consisting of three unique components tailored for effective
subseasonal prediction.

RUFCO’s first component is a ResUnet, which uses several
layers of convolutions, nonlinear activation functions, and di-
mensionality reduction operations to predict probabilities of
precipitation falling into precipitation bins. The second is the

“FiLM layer” which conditions the network on the month of
the year, allowing one network to be used for the entire year. A
sensitivity experiment showcased the FiLM’s ability to learn
and condition a network on the month of the year, which re-
sulted in improved Brier scores in regions that exhibit strong
seasonality in precipitation amounts. The final component is the
climatological off-ramp which was first demonstrated by S20
and ultimately helps the network revert toward climatological
probabilities as forecast skill drops to zero. Another unique
aspect of the RUFCO model compared to most traditional
postprocessing algorithms is its ability to train one model
and make predictions simultaneously across all grid points
rather than having to train a separate corrective model for
each grid point.

We demonstrated that the RUFCO model is an effective
and competitive postprocessing algorithm. Its inputs included
transformed versions of the raw ensembles of accumulated
precipitation, geopotential height at 500 hPa, and total col-
umn water as well as geographic and temporal predictors

FIG. 10. (a)–(c) Week 2 probabilistic above-normal (AN; green shading) and below-normal (BN; brown shading)
categorical outlooks for RUFCO, CSGD, and raw forecasts initialized on 9 Jan 2019 and valid for dates between 16
and 23 Jan 2019. (d) The verified observed precipitation amount and (e) the above- or below-normal category that
the verifying observation belonged to. CSGD and RUFCO forecasts are based on their respective algorithms trained
on data from years 2000–18. Figures of the threshold amounts are provided in supplemental E.
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(latitude, longitude, elevation, and month of the year). Reli-
ability diagrams of above- and below-normal events during
winter and summer were on par with the CSGD method and
showed nearly perfect reliability for weeks 1 and 2 except for the
CSGD which issued overconfident forecasts at week 2 in the
summer months. Reliability was greatly improved for weeks
3–4 compared to the raw and bias-corrected forecasts.

At week 1, all of the postprocessing methods showed an
overall improvement to the raw forecast and therefore would
be valid postprocessing options. However, there were some
notable trade-offs of each method. The CSGD and RUFCO
models were the only methods that produced skillful week-1
forecasts over California during summer, with the best perfor-
mance coming from the CSGD method. This is likely a result
of its prescription of defined distribution parameters at super-
dry locations rather than (over) fitting a distribution. Even
with the overall competitive performance, the RUFCO model
failed to produce the highest skillful week-1 forecasts over
some mountainous regions in the West. This result is likely
due to the learning process of the network, which learns con-
volutions for the whole domain. In regions with strong region-
ally specific biases, learned convolutions (filters) seem to be a
disadvantage compared to the grid-point-specific techniques.

Conversely, the approach of the RUFCO model became an
advantage at week 2 and weeks 3–4. It is at these lead times
that the RUFCO model is most differentiated from the other
methods in terms of the number of grid points that exhibit sta-
tistically significant improvements over climatology. At week
2, RUFCO generated a statistically significant coverage across
82%–94% of the grid points. CSGD generated forecasts that
had statistically significant improvements compared to clima-
tology across only 76%–90% of the domain. The disparity is
even larger at weeks 3 and 4; RUFCO produced 65%–85%,
while CSGD produced 12%–37% statistically significant grid
points. The ease of the RUFCO model to learn from a do-
main that expands beyond the target CONUS domain is likely
a contributing factor to its improved performance across the
United States, especially along the western and southwestern
United States.

We performed extensive hyperparameter tuning and stud-
ied which parameters the model is most sensitive to. Some of
these insights may be relevant for ResUnet-based postpro-
cessing approaches beyond the specific application studied
here.

Lastly, the architecture of the RUFCO framework can be
easily extended to add more image predictors such as atmo-
spheric stability, which may help improve performance for con-
vective precipitation events. We hypothesize that incorporating
the FiLM layer into each level of the ResUnet may provide
even stronger network conditioning to the FiLM predictors.
This may be a worthwhile venture for applications using data
with higher signal-to-noise ratios and/or larger training datasets
to avoid overfitting. The FiLM component also offers ample
possibilities to condition the network on climate indices or
principal components related to the Madden–Julian oscillation
(MJO), North Atlantic Oscillation (NAO), El Niño–Southern
Oscillation (ENSO), and sudden stratospheric warming (SSW),
which are known contributors of subseasonal midlatitude

predictability (Vitart et al. 2012; Hoell et al. 2016; Lang et al.
2020; Merryfield et al. 2020). Additionally, association with cer-
tain weather regimes or flow-dependent states can result in
more skillful precipitation forecasts (Moore 2023; Lee et al.
2023), even at subseasonal scales (DelSole et al. 2017). Future
studies will explore the benefits of explicitly incorporating
these additional predictors, which the flexibility of the pro-
posed architecture affords.
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APPENDIX

RUFCO Architecture and Hyperparameter Tuning

a. Architecture

Table A1 describes each of the operations performed
within the RUFCO network as illustrated in Fig. 3.

b. Tuning results

The number of times each candidate HP value in Table A2
was selected as the optimal choice for use in each of the 20 op-
timized networks is illustrated in the bar charts in Fig. A1. Two
main findings are that the model is only sensitive to some HP
values and that the optimal choice can vary with lead time. For
each lead time, the networks preferred a smaller number of
batches. A smaller number of batches translates to passing the
network a larger sample size to train and update weights within
an epoch. Smaller batch sizes typically result in noisy optimiza-
tion, which can be overall beneficial for the generalization of
the model. However, given the low signal-to-noise ratio inher-
ent in subseasonal forecasts, larger batch sizes may have been
preferred to avoid additional stochasticity during training.

Nearly all optimized models had a learning rate in a nar-
row range between 0.001 and 0.01, with weeks 1 and 2 hav-
ing a preference toward the higher end of that range. The
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network was sensitive to the number of residual blocks,
number of filters learned in the first residual block, convo-
lution kernel size, and dropout rate. For week 1 and week
2, the largest number of filters tested (32) was preferred.
Week-3 and -4 lead times were evenly split on either 16 or
32 filters. The smallest number of filters (8) was only se-
lected once across all optimized networks and lead times,
indicating a clear preference for more filters to learn com-
plex features within the data. Generally fewer blocks (2)
were needed to learn features in the data for week 1 com-
pared to that of week 2 and weeks 3 and 4, which mostly
used four blocks. A larger kernel size (5 3 5 vs 3 3 3) was
the optimal choice for week 2 and weeks 3 and 4, while ei-
ther kernel size is suitable for week 1. Finally, the smallest
dropout rates were selected for week 1, with 0.3 being the
most frequently used dropout rate. Optimal rates for week
2 and weeks 3 and 4 varied but were generally higher than
those selected for week 1. Since dropout layers help the
network prevent overfitting, smaller (larger) rates at week 1

(week 2 and weeks 3 and 4) may indicate that the network
had fewer (more) issues with overfitting. The networks
were not as sensitive to the choice of nodes in the individ-
ual FiLM layers, but we found that the total number of no-
des within the FiLM’s dense layers ranged from 200 to 300
(out of a possible range of 160–420) in the majority of the
networks (not shown), indicating a robustness of the number of
FiLM neurons across lead times. This result may be in part a
consequence of the inclusion of an L1 regularization parameter
within the FiLM generator, which can help reduce overfitting
in the event of too many parameters. Week 2 and weeks 3 and
4 overall had larger L1 values than week 1, indicating that
more regularization was needed for the longer lead times.

It is likely that more optimal networks can be attained by tun-
ing over a larger pool of candidate HPs. However, we believe
that the sensitivity analysis performed in this study provides
valuable insight into lead-time dependencies of the HPs and re-
veals which HPs could be leveraged even more to potentially
gain greater performance (e.g., increasing the number of filters).

TABLE A1. Abbreviations and corresponding descriptions of elements of the RUFCO network shown in Fig. 3. “Specified” refers to
a defined input into the parentheses.

Abbreviation Description

Conv (kernel size), N filters 2D convolution performed with “same” padding, stride 5 1, and specified kernel size and
N number of filters

ReLU Rectified linear unit activation function
Linear Linear activation function
Softmax Softmax activation function
BN Batch normalization
Dropout (rate) Dropout layer with specified dropout rate
MaxPool (pool size) 2D MaxPooling with “same” padding, stride 5 2, and specified pool size
Upsamp (size) 2D upsampling performed with specified size
Dense, N-neurons Dense layer with a specified N-number of neurons
FiLM equation Final equation output from the FiLM generator [refer to section 3c(2)]
res. connec. Residual connection [refer to section 3c(1)]
Log clim. probabilities Natural logarithm of the climatological forecast probabilities for each bin [refer to section 3c(3)]

TABLE A2. HPs and their candidate values sampled by Optuna (Akiba et al. 2019) to optimize the RUFCO network (see Fig. 3).
The nfilm is 12 and corresponds to the size of the one-hot encoded month vector input to the FiLM layer. The ncl is 20 and
corresponds to the number of classes/bins. The batch size is determined by dividing the training dataset by the number of batches.

HP Candidate values

Number of batches [10, 20, 30]
Learning rate [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05]
Number of nodes input to the FiLM layer [nfilm*5, nfilm*10, nfilm*15]
Number of nodes in the FiLM hidden layer [ncl*3, ncl*5, ncl*10]
L1 regularization in FiLM layers [0.000 001, 0.000 01, 0.0001, 0.001, 0.01]
Number of ResBlocks [2, 3, 4]
Number of filters in the first ResBlock [8, 16, 32]
(Convolution) kernel size [3 3 3, 5 3 5]
Dropout rate [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
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