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ABSTRACT: Prediction of severe convective storms at time scales of 2–4 weeks is of interest to forecasters and stake-
holders due to their impacts on life and property. Prediction of severe convective storms on this time scale is challenging,
since the large-scale weather patterns that drive this activity begin to lose dynamic predictability beyond week 1. Previous
work related to severe convective storms on the subseasonal time scale has mostly focused on observed relationships with
teleconnections. The skill of numerical weather prediction forecasts of convective-related variables has been comparatively
less explored. In this study over the United States, a forecast evaluation of variables relevant in the prediction of severe
convective storms is conducted using Global Ensemble Forecast System, version 12, reforecasts at lead times of up to
4 weeks. We find that kinematic and thermodynamic fields are predicted with skill out to week 3 in some cases, while com-
posite parameters struggle to achieve meaningful skill into week 2. Additionally, using a novel method of weekly summa-
tions of daily maximum composite parameters, we suggest that the aggregation of certain variables may assist in providing
additional predictability beyond week 1. These results should serve as a reference for forecast skill for the relevant fields
and help inform the development of convective forecasting tools at time scales beyond current operational products.

SIGNIFICANCE STATEMENT: Prediction of severe weather beyond 1 week in advance is of interest to stakehold-
ers given their impacts on life and property. In this study, we evaluate 20 years of forecast data generated by a numeri-
cal model ensemble to determine whether variables relevant in severe weather forecasts can be predicted in weeks 2–4.
The variables with the best skill measures generally represent large-scale weather patterns that are more predictable on
longer time scales, although some manipulation of other severe weather parameters yielded additional results. We sug-
gest that the results found in this study can inform future work that assesses the predictability of severe weather in
weeks 2–4 using more complex methods such as machine learning.
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1. Introduction

Severe convective storms (SCSs) and their hazards including
tornadoes, damaging convective wind gusts, and large hail rep-
resent a significant threat to life and property across the contig-
uous United States (CONUS), with an estimated $10 billion in
insured losses each year (Smith and Katz 2013). Given these so-
cietal impacts, skillful subseasonal (defined here as weeks 2–4)
prediction of SCSs could benefit emergency managers, the agri-
cultural sector, the reinsurance industry, and other stakeholders
(Craig et al. 2021). However, subseasonal prediction of SCSs is
challenging, as variables (shear and instability) relevant in SCS
forecasts}such as those considered in Storm Prediction Center
(SPC) convective outlooks (Hitchens and Brooks 2014; Herman
et al. 2018) that extend to day 8}tend to lose meaningful pre-
dictive skill at the subseasonal time scale. At a more basic level,
the intrinsic predictability of an individual SCS is confined to
much shorter time scales than a week (Lorenz 1969; Melhauser
and Zhang 2012; Markowski 2020).

The current body of the literature assessing SCSs on the
subseasonal time scale primarily focuses on statistical links be-
tween observed climate teleconnection indices and SCS activ-
ity. The Madden–Julian oscillation (MJO) (Madden and
Julian 1972; Wheeler and Hendon 2004; Zhang 2005; Kiladis
et al. 2014; Tseng et al. 2018) has been identified as a potential
source of predictability for SCS activity during boreal spring,
given the role of its extratropical response in modulating the
North Pacific jet (NPJ) and resulting downstream impacts
over North America (Tseng et al. 2018; Winters 2021). As
part of support for the Extended-Range Tornado Activity
Forecast (ERTAF) project (Gensini et al. 2020) and using the
MJO and state of global atmospheric angular momentum
(Gensini and Marinaro 2016; Gensini and Allen 2018; Moore
et al. 2018; Moore and McGuire 2020), a successful subseaso-
nal prediction of an extended episode of SCSs in the second
half of May 2019 was made (Gensini et al. 2019). Further
works by Barrett and Gensini (2013), Barrett and Henley
(2015), Baggett et al. (2018), and Miller et al. (2022) have
elaborated on the influence of the MJO on tornado and hail
activity across the CONUS, with varying results that are de-
pendent on the choice of MJO indices and measure of SCS ac-
tivity used (Tippett 2018).
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While climate oscillations and teleconnections have been
examined for their influence on SCSs, studies to determine
predictability within operational numerical weather predic-
tion (NWP) models have been comparatively fewer. Gensini
and Tippett (2019) used National Centers for Environmental
Prediction (NCEP) day 1–15 Global Ensemble Forecast Sys-
tem, version 10 (GEFSv10), data and found that daily tornado
and hail activity relative to thresholds could be forecast with
skill compared to climatology out to day 9 and day 12, respec-
tively. However, only two severe weather seasons were cap-
tured in their analysis and the only variable used as a predictor
was the daily maximum supercell composite parameter (SCP).
Additionally, they did not evaluate the intrinsic skill of the SCP
within the model. Wang et al. (2021) built a statistical–dynamical
hybrid model using the SCP from GEFS hindcasts and known
relationships with SCS frequency. They found that low skill
was obtained during week 2 by applying their model to higher-
resolution data, while skill improved when applying area averag-
ing to their environmental fields. Additionally, applying a singular
value decomposition to the covariance between weekly storm
reports and SCP improved forecast skill. However, it was
only tested for a short period during 2019 and the inclusion
of damaging winds in their severe weather reports introduces
further uncertainties due to substantial changes over time in
reporting methods.

The study of Lepore et al. (2018) using Climate Forecast
System, version 2 (CFSv2), forecasts (Saha et al. 2014) found
that much of the monthly skill for convective available poten-
tial energy (CAPE), convective precipitation, and storm-
relative helicity (SRH) was concentrated within the first
2 weeks of the extended forecast, which corresponds to when
dynamical predictability within global models still exists. The
CFSv2 was also used in the seasonal prediction of tornadoes
using large-scale variability described in Lee et al. (2021) and
in the visualization of midrange SCS environments presented
by Carbin et al. (2016), although limitations of the model itself
create difficulties in its use for predicting extreme events on
these time scales. Carbin et al. (2016) documented that run-
to-run differences were substantial beyond week 1 for their
SCP aggregations. Notably, Lee et al. (2021) did not evaluate
the intrinsic skill or covariability of the parameters (low-level
vertical wind shear and instability) chosen from the CFSv2 in
their forecasting method and used a different background cli-
matology from a separate reanalysis to create anomalies.
Broadly, the lack of skill evaluation of raw output variables is
a common theme in previous studies attempting to use prox-
ies to forecast severe weather at longer leads.

Given that planetary-scale climate teleconnections are un-
able to explain a large portion of variability in SCS activity
(Moore et al. 2018), promising work in recent years has also
been conducted surrounding synoptic weather regimes (WRs)
favorable for SCSs. By using K-means clustering, Miller et al.
(2020) yielded five dominant WRs in reanalysis data during
the month of May in 500-hPa geopotential height across the
CONUS. A large percentage (75%) of SCS outbreak days
within their study occurred during persistent WRs where a
western mid- and upper-level thermal trough was present and
where the magnitude and spatial coverage of instability- and

shear-related variables increase relative to climatology. Sub-
sequent analysis utilizing a hybrid prediction model blending
European Centre for Medium-Range Weather Forecasts
(ECMWF) data and information about the WRs for weekly
SCS activity yielded skillful forecasts relative to climatology out
to week 3. Despite these results, Miller et al. (2020) only assessed
1 month of the year and also highlighted that they did not evalu-
ate the predictive skill of the ECMWF, which would impact the
skill of this approach. Subsequently, a promising approach of
using machine learning techniques has been implemented in
short- and medium-range SCS forecasts (Hill et al. 2020,
2023), which has yielded results comparable to SPC outlooks
for these time scales. However, such machine learning methods
are also limited by the skill of the model forecast parameters
that are used as inputs.

In line with improving knowledge of extended range NWP
for a variety of weather phenomena, reforecast datasets have
become a powerful tool for examining longer climatologies of
model prediction (Hamill et al. 2006). NCEP’s GEFS refore-
casts (Hamill et al. 2013)}hereby referred to as GEFSR}

have been used for a variety of applications including precipi-
tation forecasting (Hamill et al. 2008; Baxter et al. 2014;
Herman and Schumacher 2016; Guan et al. 2022), evapotrans-
piration and drought (Shah and Mishra 2015, 2016; Mo and
Plettenmaier 2020; Talib et al. 2021), and even aviation haz-
ards (Verlinden and Bright 2017). However, SCS prediction
using GEFSR or other reforecast data has not been exten-
sively researched, despite climatologies of model reanalysis be-
ing established from the observational perspective (Taszarek
et al. 2020; Li et al. 2020). With the release of the updated
GEFSR, version 12 (GEFSRv12) as documented in Zhou et al.
(2022), evaluating forecast climatology for a state-of-the-art
NWP ensemble could provide additional clues into expanding
the predictability window for SCSs beyond current operational
capabilities.

The GEFSv12 has shown documented improvements in
both its reforecast (Guan et al. 2022) and reanalysis (Hamill
et al. 2022) products, including lessening of its temperature
biases near the surface, although snow cover still presents a
challenge. Guan et al. (2022) additionally documented that
Northern Hemisphere 500-hPa heights exhibited better skill
via anomaly correlations during weeks 1–2 than previous iter-
ations of the GEFS, while additionally improving precipita-
tion and MJO forecasts. However, most variables relevant for
SCS forecasting were not evaluated in their work. A notable
recent application of the GEFSv12 toward SCS forecasting
was conducted by Miller and Gensini (2023), who found rela-
tionships between the skill of ensemble forecasts in the ex-
tended range and global sea surface temperature patterns,
wave activity flux, blocking regimes, and MJO activity. Low-
skill forecasts for SCS days were characterized by synoptic
features in 500-hPa heights propagating too quickly compared
to observations. Atmospheric blocking regimes over the
North Pacific contributed to these errors. Overall, Miller and
Gensini (2023) provided a promising first look at “predicting
skill” in the GEFSv12 for SCS events, although the intrinsic
skill of variables outside of 500-hPa heights was not explored.
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As a general assessment, the deterministic limit for midlati-
tude weather predictability is roughly 10 days (Zhang et al.
2019; Miller and Gensini 2023) and is certainly shorter for
more localized phenomena such as SCSs. However, relaxing
time and space constraints on forecast verification may yield
additional skill at longer lead times (Buizza and Leutbecher
2015). Probabilistic verification methods may additionally be
more useful for end users of subseasonal forecasts (Manrique-
Suñén et al. 2020).

With the above considerations in mind, this study seeks to
establish baseline skill (Goutham et al. 2022) of variables rele-
vant to subseasonal SCS forecasting within GEFSRv12. Such
explicit skill evaluation has been mostly absent from the pre-
vious work (Gensini and Tippett 2019; Lee et al. 2021) and
can help inform the choice of predictors when considering
proxies for SCS activity. We will relax time and space con-
straints for forecast verification as we do not intend to fore-
cast for subdaily time frames at subseasonal time scales. This
is primarily due to potential timing differences of pertinent
features between ensemble members and observations due to
error growth in subseasonal forecasts. Both probabilistic and
deterministic methods are employed to assess the quality of
the reforecasts. While regional focuses are possible among cli-
matology, we emphasize that the primary goal of this study is
to address the above questions on a CONUS-wide basis first.

2. Data and methods

a. Reforecast and observational data

Twenty years of GEFSRv12 data from 2000 to 2019 are
used in this study, with a mixed temporal resolution of 3 hours
for the first 10 days and 6 h for the remainder of the 35-day
forecasts. The study domain is centered on the CONUS and
spans 208–508N latitude and 1408–558W longitude. For the
purposes of this study, only 6-hourly increments are factored
into mean calculations, to maintain consistency between re-
forecasts and reanalysis. Reforecasts out to 35 days are avail-
able once per week, initialized at 0000 UTC, during this time
span with 11 forecast members, while reforecasts out to
16 days are available daily with only five members. For the pur-
poses of this work, only the weekly 35-day forecasts are used to
evaluate forecast skill during weeks 2–4. For the 20 years of
data, this corresponds to 1028 total forecasts after removing
15 forecast cycles that contained missing data. All near-surface
and pressure level data up to 700 hPa are horizontally re-
gridded from its 0.258 latitude–longitude grid spacing to 0.58
using bilinear interpolation via the xESMF package in Python
(Zhuang et al. 2022). Data above 700 hPa are kept at its
available 0.58 grid spacing (Guan et al. 2022). Additionally,
daily means for all variables are constructed from 1200 to
1200 UTC from the original 6-hourly data, in order to match
the report periods for SPC local storm reports (LSRs). Ob-
servational atmospheric fields are derived from GEFSv12
reanalysis over the same 20-yr period. The reanalysis data
are regridded and temporally averaged similarly to the re-
forecast data, in order to provide direct comparison in sub-
sequent verification metrics.

While assessing daily means and maxima of quantities rele-
vant in SCS forecasting is helpful, it may not be sufficient to
do so at the subseasonal time scale, where the prediction of
key features in an ensemble mean may become difficult due
to timing differences (Gensini and Tippett 2019; Manrique-
Suñén et al. 2020). With the objective of reducing the impact
of timing differences for higher frequency variability at the
daily scale (Li and Stechmann 2018; Guan et al. 2022), we
compute 7-day forward-running means from the reanalysis
and reforecast variables and compare them to the daily means
to assess how expanding the temporal window impacts skill.
However, these weekly averages come at the sacrifice of fore-
cast resolution and sharpness, potentially smoothing over im-
portant features. For the purposes of both deterministic and
probabilistic verification scores, we select a set of 16 rele-
vant quantities comprising three kinematic/mass-related
variables, four thermodynamic variables, five individual
convective parameters, and four composite convective pa-
rameters that are listed below. The shorthand names for
these variables in parentheses are used hereafter in the
manuscript text.

• Kinematic/mass variables: 500-hPa geopotential height
(z500; gpm), 250-hPa zonal wind (u250; m s21), and 850-hPa
meridional wind (v850; m s21).

• Thermodynamic variables: 850-hPa specific humidity (q850;
g kg21), 2-m temperature (t2m; K), 2-m specific humidity
(q2m; g kg21), and 700-hPa temperature (t700; K).

• Individual convective parameters: surface-based CAPE
(SBCAPE; J kg21), 0–3-km AGL SRH (m2 s22), 0–6-km
bulk wind shear (BS06; m s21), 0–1-km BS (BS01; m s21),
and surface-based convective inhibition (SBCIN; J kg21).

• Composite convective parameters: Fixed-layer SCP (SCP-
fixed), fixed-layer significant tornado parameter (STP-
fixed), the SHERB parameter (Sherburn and Parker 2014)
using effective BS (SHERBE), and the product of 0–6-km
BS and most unstable CAPE (CAPE–SHEAR).

As convective parameters}and particularly composite se-
vere parameters such as STP (Thompson et al. 2003; Grams
et al. 2012)}frequently register zero values due to their in-
herent climatologies (e.g., instability during the wintertime)
or are muted due to their strong diurnal cycles (e.g., instability
with daytime heating) when generating a daily or longer
mean value, we instead use daily maxima or minima in the
1200 to 1200 UTC window for these quantities. Daily maxima
are used for SBCAPE, SCP-fixed, STP-fixed, SHERBE, and
CAPE–SHEAR, while daily minima are used for SBCIN.
However, this alone may not be sufficient to capture vari-
ability over longer time scales for composite SCS parame-
ters (Gensini and De Guenni 2019). Therefore, weekly sums
of daily maximum SCP-fixed, STP-fixed, SHERBE, and
CAPE–SHEAR analogous to the Craven–Brooks signifi-
cant severe parameter (Craven and Brooks 2004) are com-
puted to examine aggregated SCS indices in the GEFS
reforecast data against reanalysis. Equations for the com-
posite convective parameters used in this study are given in
the appendix.
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b. Forecast evaluation metrics

A variety of forecast verification techniques are used in this
study to gauge the skill of the GEFSRv12 in identifying pat-
terns in variables relevant for SCS forecasting. Deterministic
measures include anomaly correlation coefficients (ACCs),
root-mean-square errors (RMSEs), and ensemble consistency
diagrams (Eckel and Mass 2005; Clark et al. 2010) to assess
the relationship of ensemble variance and mean-square error.
When computing seasonal delineations, we use reforecasts
initialized within the given season, add verification dates that
are within the given season, and remove verification dates
that are in the following season. For example, March–May
(MAM) reforecast verification dates extend into June at the
end of the season and the forecast initialization dates at the
beginning of the season are in February. In this case, the for-
mer is removed and the latter is added to computations of
skill metrics, when applicable. Anomalies for all verification
metrics are computed by subtracting the centered 31-day run-
ning mean (the mean on May 1 would be from 15 April to
15 May) climatology derived from reanalysis from the daily
reanalysis or reforecast data. This is performed prior to any
further temporal averaging. Subsequently, the daily anomalies
are either kept as is for daily verification metrics or smoothed
using the forward-running window mentioned above for the
weekly verification metrics.

While deterministic skill scores can give a general overview
as to the performance of a model, they do not necessarily cap-
ture the likelihood of a “skilled” forecast verification. Particu-
larly at longer lead times when ensemble spread increases,
timing differences of key features may be significant and re-
sult in time-ensemble means trending toward climatology.
Probabilistic skill scores offer a more comprehensive assess-
ment of performance for ensemble forecasts (Weigel et al.
2007; Wilks 2011; Manrique-Suñén et al. 2020). Probabilistic
metrics used in this study include rank histograms (Hamill
2001), receiver operator characteristic (ROC) curves (Mason
1982), reliability diagrams (Hamill 1997; Bröcker and Smith
2007), and Brier skill scores or ranked probability skill scores
(BSSs or RPSSs) measured against model climatology (Epstein
1969; Weigel et al. 2007; Wilks 2011; Gensini and Tippett 2019;
Manrique-Suñén et al. 2020). In this study, rank histograms are
composed of 12 ranks, grouping 11 ensemble members and
one observation from reanalysis. The ROC curves represent
the relationship between the true-positive rate (TPR) and false-
positive rate (FPR) of the ensemble. Area under the ROC
curve (AUC) is calculated using the trapezoidal integration
method. Meanwhile, the RPSS quantifies how well an ensemble
is performing at predicting probability distribution, usually split
into categorical bins, against a reference (usually climatology)
forecast. The BSS is a special case of the RPSS where there is a
binary set of outcomes (yes or no). Finally, the reliability dia-
gram is simply the relationship between predicted probabilities
of a given outcome (e.g., SCP exceeding a given threshold) and
the observed true frequency of the outcome.

For the necessity of a reference (climatological) model skill in
probabilistic skill scores, Manrique-Suñén et al. (2020) empha-
sized the importance of carefully choosing the lead-dependent

climatology computation for subseasonal forecasts. Addi-
tional consideration of the underlying climatology is war-
ranted (Hamill and Juras 2006), especially given the
difference in the temporal scale between subseasonal and
SCS phenomena. We opt to use a running-window monthly
climatology to increase the sample size, similar to the third
approach in Manrique-Suñén et al. (2020). Therefore, given
the weekly temporal spacing between reforecasts, the
targeted reforecast is chosen in addition to two reforecast
initializations on either side of the targeted reforecast to
compute the climatology. With 11 ensemble members and
20 years of reforecasts, this increases the sample size to
5 forecasts 3 11 ensemble members 3 20 years 5 1100 at
each lead time and grid point for the reforecast climatology.
Using a similar rolling window, the observational reference
yields a sample size of 5 observations 3 20 years 5 100 at
each grid point. Both the actual forecast and lead-dependent
climatology are then compared to the corresponding reanaly-
sis and ranked probability (or Brier) scores are calculated,
followed by the appropriate probabilistic skill score. All sig-
nificance testing when applied is conducted at the 95% confi-
dence level using bootstrapping with 5000 repetitions and
independently at each grid point, unless otherwise indicated.
Random selections in the bootstrap tests are not selected
from specific time periods unless seasonal metrics are tested.
Equations for select forecast verification metrics are pre-
sented in the appendix.

3. Results

a. Deterministic skill evaluation

Prior to conducting analysis on probabilistic forecasts using
the ensemble members, it is beneficial to establish baseline cli-
matological skill scores of the ensemble mean via determinis-
tic measures. Two of the most popular deterministic metrics
for forecast evaluation are the ACC and RMSE of the fore-
cast compared to observations (Murphy and Epstein 1989;
Joliffe and Stephenson 2012). Climatological ensemble mean
anomaly correlation coefficients for the 16 selected variables
relative to the reanalysis anomalies are presented in Fig. 1
across the CONUS domain and all seasons. These anomaly
correlation coefficients are calculated for daily and 7-day
(weekly) rolling means.

In Fig. 1a, the daily ensemble mean z500 anomaly has aver-
age ACC above the synoptic skill threshold (0.6) extending to
roughly 9 days and climatological skill extending to 11 days
(Guan et al. 2022; Miller and Gensini 2023), while weekly en-
semble mean z500 extends the threshold for climatological
skill (0.5) by around 1 day. This extension of forecast skill by
temporally averaging fields has been documented in previous
work (van Straaten et al. 2020) and extends to the remainder
of the variables in Fig. 1. Shorter windows of skill are gener-
ally depicted for fields that are within the lower troposphere,
particularly moisture-related variables. Various issues includ-
ing boundary layer parameterization (Cohen et al. 2017;
Hu et al. 2022) and timing of frontal passages may play roles in
limiting predictability in the lower troposphere. Guan et al. (2022)
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documented warm t2m biases during the warm season and cool
t2m biases in the cool season}although substantially reduced
from previous iterations of the GEFS}in their study that evalu-
ated GEFSR, which may subsequently affect other thermody-
namic fields such as SBCAPE.

As expected, given compounding errors with fields that in-
corporate multiple variables, both circulation and thermody-
namic variables alone have higher ACC on average extending
to longer lead times than composite SCS parameters. Non-
composite severe parameters show varying results, with BS06
and BS01 (Figs. 1j,k) mimicking the comparison between
mid- and lower-tropospheric circulation variables, which is
expected given the influence of the governing circulation pat-
terns on vertical wind shear magnitude. Composite or verti-
cally integrated SCS parameters show negligible skill beyond
week 1 on average (Figs. 1h,i,l,m–p), in agreement with previ-
ous SCS studies (Gensini and Tippett 2019; Wang et al. 2021).
In particular, both temporal averages of SBCIN decrease be-
low synoptic-level skill using ACC before week 2. Weekly av-
eraging extends climatological-level mean skill for SRH and
SBCIN into week 2. Even prior to further analysis, this
casts some degree of doubt in the fidelity of GEFSR in

representing the likelihood of SCSs in the extended range, as
convective inhibition can often make or break a potential
SCS day. Composite parameters such as STP-fixed (Fig. 1n)
that contain convective inhibition as a factor are likely to
struggle when evaluated through deterministic metrics. Other
quantities including t700 (Fig. 1g) that may be relevant for in-
hibition strength have a higher ACC compared to SBCIN.
However, composite parameters such as STP-fixed (Fig. 1n)
that contain convective inhibition as a factor are likely to
struggle when evaluated through deterministic metrics.

While the bulk statistical means of the ACC provide a rea-
sonable expectation for the skill of the ensemble mean, the
25th and 75th percentiles are also plotted to give bearish and
bullish estimates. The latter can be considered comprising
“forecasts of opportunity” (Gensini et al. 2019; Mariotti et al.
2020; Miller and Gensini 2023) where higher skill than aver-
age is obtained, although low spread must also equate with
low error, which is evaluated in Fig. 3. For several variables
including z500 (Fig. 1a) and t2m (Fig. 1e), this 75th percentile
ACC extends climatological-level skill into week 3 for weekly
means. However, even when considering the 75th percentile,
composite convective parameters struggle to yield meaningful

FIG. 1. Twenty-year climatological ensemble mean ACC for (a) z500, (b) u250, (c) v850, (d) q850, (e) t2m, (f) q2m, (g) t700,
(h) SBCAPE, (i) SRH, (j) BS06, (k) BS01, (l) SBCIN, (m) SCP-fixed, (n) STP-fixed, (o) SHERBE, and (p) CAPE–SHEAR. The solid
lines represent the mean, while the shaded regions represent the range between the 25th and 75th percentile ACC at each forecast lead.
The blue lines represent the daily means (or maxima/minima), and the gray lines represent the 7-day centered rolling means (of daily
means or maxima/minima). The horizontal solid black lines represent the thresholds for synoptic skill (0.6), climatological skill (0.5), and
zero skill (0).
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forecasts beyond the middle of week 2 via ACC. Additionally,
computing rolling averages of already smoothed daily maxes
and means removes a considerable amount of information for
parameters designed for forecasting rare events such as STP
(van Straaten et al. 2020).

Figure 2 depicts the climatological RMSE for the 16 se-
lected variables. The benefits of temporal generalization for
deterministic verification are evident in several fields}partic-
ularly q850 (Fig. 2d)}where there is little-to-no overlap be-
tween the interquartile ranges for each temporal window.
As expected, the saturation of errors also occurs at a longer
lead for weekly means. However, for vertically integrated
fields}such as SBCAPE and SBCIN (Figs. 2h,l)}along with
composite parameters, this delineation is less clear. The
SHERBE parameter (Fig. 2o) seems to yield better results for
ACC and RMSE when a weekly mean is applied, which
makes sense given its product consisting solely of 0–3-km and
700–500-hPa lapse rates and 0–3-km bulk wind shear, rather
than encompassing vertically integrated quantities such as
CAPE and CIN. Climatological RMSE thresholds are not
shown in Fig. 2 in the interest of highlighting the differences
between temporal averaging.

While not shown for brevity, seasonal cycles for both deter-
ministic metrics generally follow those suggested by work in
different regions (Büeler et al. 2021), where forecast skill is
maximized during boreal winter and minimized during

summer and early fall as the synoptic forcing from the mid-
latitude jet stream that provides additional predictability
(Gensini et al. 2020; Winters 2021) weakens over the CONUS.
During spring, mean and 75th percentile daily z500 ACC drops
below key thresholds by 9–10-day and 13–14-day lead, respec-
tively. This supports the exploratory work of Miller et al. (2020)
using z500 WRs to predict SCSs beyond week 1 and the identifi-
cation of forecasts of opportunity in Miller and Gensini (2023).
Weekly averaging increases these by 1–2 days in the mean and
2–3 days at the 75th percentile.

In an 11-member ensemble, it is expected that underdisper-
sion may be an issue, especially at shorter lead times. Ensem-
ble consistency diagrams (Wang and Bishop 2003; Eckel and
Mass 2005; Clark et al. 2010) describe the spread–skill rela-
tionship and dispersion of ensemble forecasts. For a well-
dispersed ensemble, the relationship between ensemble variance
and mean-square error should be close to 1:1. In Fig. 3, en-
semble consistency is plotted as a function of lead time for
daily mean variables. For kinematic and circulation fields, en-
semble spread becomes a better predictor of mean error with
time and r2 values generally range from 0.3 to 0.6, indicating
low to moderate variability explained. Temperature fields
show similar temporal trends, but moisture fields suggest the
opposite, particularly q2m (Fig. 3f). Forecasts in week 1 and
week 2 also tend to be underdispersive, with the scatter
skewed left of perfect consistency in a vertically oriented

FIG. 2. As in Fig. 1, but for climatological RMSE.
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plume (Clark et al. 2010). The behavior for SBCAPE (Fig. 3h)
is inconsistent between forecast weeks, where overly dispersed
forecasts in week 1 shift toward underdispersion by weeks 3
and 4. Meanwhile, SCP-fixed and STP-fixed (Figs. 3m,n) fore-
casts are generally overdispersed, especially during week 2.
Similar results are found for the other temporal averages
tested (not shown).

While the deterministic measures above suggest that kine-
matic, mass, and thermodynamic fields important in forecast-
ing SCSs can be represented with fidelity out to at least week
2 in the GEFSRv12, they do not directly describe biases that
may impact representation. Moreover, probabilistic measures
capture generalized outcomes such as tercile verification,

which may give a better indication of skill especially at longer
lead times (Manrique-Suñén et al. 2020)}when timing differ-
ences affect deterministic metrics.

b. Probabilistic skill evaluation

As a complementary piece to ensemble consistency, rank
histograms (Hamill 2001; Clark et al. 2010) describe the dis-
persion and biases of the ensemble compared to observations.
For the purposes of this study, rank histograms for week 2 are
evaluated, as the postweek 1 deterministic metrics yield the
more promising results during this forecast lead as opposed to
weeks 3 and 4. Weeks 3 and 4 exhibit very similar, yet slightly

FIG. 3. Variables are as in Figs. 1 and 2, but for the relationship of ensemble variance and mean-square error calculated from daily
means or maxima/minima. The scatter color indicates the week of the forecast lead, and the diagonal black line indicates a 1:1 relationship.
Coefficients of determination r2 for each week are indicated in the subplot legends.
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muted, biases as those found for week 2 (not shown) and
overall ensemble dispersion is generally greater, as expected.
Rank histograms for daily mean variables at week 2 for all
seasons are presented in Fig. 4.

Examining kinematic fields at week 2 lead, the GEFSRv12
shows a reasonable amount of dispersion among ensemble
members, with relatively flat rank histograms. There is a ten-
dency toward underdispersion with upper-tropospheric fields
such as u250 (Fig. 4b). Systematic biases are generally mini-
mal, aside from a slight negative bias in u250. For thermody-
namic fields, while forecasts for moisture are well dispersed
and biases are weak, there is a cool bias evident in t2m
(Fig. 4e) and a slight warm bias evident in t700 (Fig. 4g). The
former supports the findings of Guan et al. (2022) and may
impact the vertical profile and representation of parameters
such as CAPE, CIN, and their derivatives. SBCAPE (Fig. 4h)
does indeed have a modest low bias at week 2, while SBCIN
(Fig. 4l) shows relatively little systematic bias in its rankings.
SRH (Fig. 4i), BS06 (Fig. 4j), SCP-fixed (Fig. 4m), and STP-
fixed (Fig. 4n) are generally well dispersed with minimal biases,
while CAPE–SHEAR (Fig. 4p) and SHERBE (Fig. 4o) have
slight low biases. BS01 (Fig. 4k) has a slight high bias. The dis-
connect between the magnitude of temperature biases and SCS
parameter biases may partly be a result of the GEFSRv12’s t2m
bias being attributed to snow cover (Guan et al. 2022), where
CAPE and CIN are often negligible. Additionally, only two
temperature fields are shown in Fig. 4, which is insufficient to
capture the full vertical profile that yields CAPE and CIN
calculations.

Further rank histograms were calculated for differing sea-
sons and forecast leads (not shown). Underdispersion domi-
nates in week 1 for all seasons, as expected with a small
ensemble. The week 3 and week 4 rankings generally resemble
those in week 2. Seasonally, the largest t2m biases are found
during the winter and fall, which again supports the results
found in Guan et al. (2022) regarding temperatures and snow
cover. For t700, the warm bias is consistent year-round. Slight
underdispersion is evident for SBCAPE and SRH during the
spring, while the other two convective parameters remain
well-dispersed. However, given the poor scores in the deter-
ministic metrics for composite convective parameters and
dominance of zero values, the degree of dispersion is a less
useful discriminator for performance for these fields.

For further comparison between variables, RPSS (Weigel
et al. 2007) for tercile categories}being below the 33rd per-
centile, between the 33rd and 66th percentiles, and above the
66th percentile}is presented in Fig. 5 for differing temporal
averages. The fair RPSS (Ferro 2014), which adjusts for
smaller ensemble sizes, is used in the calculation. Compared to
the results for ACC and RMSE, decreasing the temporal win-
dow tends to have a minimal impact on skill. GEFSRv12 con-
vective parameters continue to show an overall poorer
performance. For daily means, the inflection point in the mean
RPSS where the minimum skill relative to climatology is
achieved and generally remains constant is reached by the
middle to end of forecast week 2. However, for composite con-
vective parameters (Figs. 5m–p) and SBCIN (Fig. 5l), there is
virtually no skill on average relative to climatology at any lead

FIG. 4. Rank histograms for daily means of the same variables from Figs. 1 to 3 for all seasons during forecast week 2.
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beyond week 1, with the exception of STP-fixed (Fig. 5n).
Even using 75th percentile, RPSS suggests little in the way of
forecast opportunities for composite convective parameters.
Seasonal RPSS calculations were also performed as with
RMSE and ACC, yielding similar results (not shown) with the
highest scores in winter and the lowest scores in summer and
fall. Additional tests (not shown) using weekly mean persis-
tence and randomly selected forecasts as reference yielded
similar results with skill for composite parameters declining by
the end of week 1. The slope of RPSS with both persistence
and random reference forecasts was steeper than for the
model climatology, which shows that the choice of reference
climatology can certainly impact the resultant skill scores
(Hamill and Juras 2006; Manrique-Suñén et al. 2020).

In summary, for deterministic and probabilistic skill scores,
temporal averaging tends to improve skill via deterministic met-
rics and yields minimal improvement for probabilistic metrics.
Individual kinematic and thermodynamic fields outperform ver-
tically integrated and composite convective parameters. Sum
aggregation of composite SCS parameters over longer leads
may provide clues that are removed when temporally averag-
ing, which are discussed in the following section.

c. Evaluation of composite parameter weekly sums

The deterministic and probabilistic measures above sug-
gest that GEFSRv12 can resolve larger-scale kinematic and

thermodynamic fields over the CONUS well into week 2, es-
pecially when applying temporal generalization. However,
Gensini and Tippett (2019) suggested that there is addi-
tional promise in using composite convective parameters
from the GEFS operational forecasts out to week 2. As
mentioned, one issue with using composite parameters is
the abundance of zero values that lead to a skewed proba-
bility density function at most grid points, especially during
less active seasons for SCSs such as winter. To partially ad-
dress this issue and instead temporally aggregate as opposed
to average, we employ weekly summations using a forward
window of daily maximum composite convective parameters
to investigate the relationship between “favorable” SCS pa-
rameter spaces in GEFSRv12 and those in reanalysis.

To define thresholds for statistical tests for the four com-
posite convective parameters, we use weekly sums calculated
from the GEFSv12 reanalysis and remove zero values, so
there is less skewing toward low values given their frequency.
The zero values are only removed for the purposes of estab-
lishing higher thresholds for the yes/no verification metrics.
No zero values are removed when calculating the verification
metrics. Subsequently, we compute the mean and 90th per-
centile values over all 20 years and all grid points in the do-
main. Using this method for the mean values, the CAPE–
SHEAR threshold is set at 40 000, the SCP-fixed threshold is
set at 3, the STP-fixed threshold is set at 0.3, and the

FIG. 5. As in Figs. 1 and 2, but for mean tercile ranked probabilistic skill scores against lead-dependent climatology for forecasts during
all seasons.
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SHERBE threshold is set at 2. The STP-fixed threshold is rel-
atively low}especially for a weekly summation}which can
be partly attributed to the relative rarity of significant torna-
does. Additionally, the incorporation of convective inhibition
in the STP-fixed calculation (Thompson et al. 2003) yields less
spatial continuity (smaller regions without zero values) than
with the other parameters.

Figure 6 shows the weekly sum climatology of AUC for
lead times extending to week 4, which represents the relation
between true-positive and false alarm rates. The mean AUC
is higher for CAPE–SHEAR, SCP-fixed, and SHERBE at
most lead times compared to STP-fixed. As in Gensini and
Tippett (2019), the analysis of the ROC curves themselves for
differing leads (not shown) suggests that the additional AUC
relative to climatology primarily comes from lower false
alarm rates at higher probabilities of detection. Seasonal anal-
ysis of AUC indicates that more variability exists during the
cool seasons of fall and winter, which is expected as CAPE is
less available during these seasons.

Another metric for assessing the binary probabilities of ex-
ceedance for the weekly sums is the BSS, which is presented
in Fig. 7. Here, the annual cycle of forecast skill is emphasized
using monthly aggregation instead of seasons, and median
scores instead of means are calculated to remove some influ-
ence of outliers where the climatological Brier score is very
close to zero. Forecasts during the all months consistently per-
form better than model climatology at all lead times for the

four variables, although seasonal variation does remain.
Months that have higher incidence of appreciable CAPE
(summer) show the greatest skill relative to climatology for
CAPE–SHEAR, while the spring months show the best re-
sults for the three remaining variables. Focusing on week 2,
September is the poorest month relative to climatology for
SCP-fixed and STP-fixed, while the winter months are the
poorest for CAPE–SHEAR (when CAPE is less available).
The time series for SHERBE is the most tightly clustered of
the variables, which is perhaps a result of its less reliance on
CAPE. Both the seasonal results of AUC and BSS suggest
that the availability of instability on a consistent basis is an im-
portant factor in determining quality of forecasts using con-
vective parameters. For example, a decrease or increase of
1000 J kg21 CAPE compared to observations may result in a
more substantial forecast error during the winter where back-
ground climatology is closer to zero versus the summer
months (Kirkpatrick et al. 2011).

For the purpose of assessing tails of the weekly sum distri-
bution associated with SCS activity, a 90th percentile thresh-
old BSS evaluation is presented in Fig. 8. Here, weekly sum
thresholds increase to 110 000 for CAPE–SHEAR, 7 for SCP-
fixed, 0.8 for STP-fixed, and 4 for SHERBE. Skill generally
decreases relative to climatology compared to mean threshold
values, as one would expect for rarer events. The skill also de-
cays at a faster rate with increasing lead time, particularly for
CAPE–SHEAR. Once again, the lowest skill scores relative

FIG. 6. Climatological AUC for weekly sums of daily maximum: (a) CAPE–SHEAR, (b) SCP-fixed, (c) STP-fixed,
and (d) SHERBE for the CONUS domain. The solid red line indicates the mean, while the red dashed–dotted lines
indicate the 25th and 75th percentile AUCs at the given leads and the red-shaded region highlights the interquartile
range. The blue dashed–dotted line indicates the middle of forecast week 2. Weekly sum exceedance thresholds are
indicated in the titles of each subplot. Grayed-out region masks the first 4 days of the forecast, and the plot is shifted
to the center of each forward-running weekly period.
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to climatology are present during the winter months. Outside
of the spring and summer months for extreme values, many of
the STP-fixed and SCP-fixed curves decrease below climato-
logical skill via the BSS.

Some caution should be taken in interpreting the results of the
AUC and BSS tests above, particularly that the BSS never de-
creases below the climatological reference forecast, which differs
from that of the RPSS shown in Fig. 5. As highlighted in Hamill
and Juras (2006), the underlying reference forecast and climatol-
ogy can be a source of unrealistically high skill in evaluation met-
rics. Here, we believe that the discrepancy arises from the
differing underlying climatologies between the weekly sums and
weekly/daily means and, perhaps more broadly, the choice of the
model climatology as the reference forecast (Manrique-Suñén
et al. 2020). Therefore, it is perhaps more prudent to highlight the
slope of each metric with increasing lead, which remains relatively
steep through week 2 before flattening in subsequent leads.

While AUC and BSS provide the estimates of forecast skill
for the weekly sums, they do not provide the estimates of
forecast reliability. For this reason and given the availability
of 20 years of data that Gensini and Tippett (2019) did not
have access to, we use reliability diagrams to determine
whether forecast probabilities for exceeding thresholds are
matching the true probabilities from observations.

In Fig. 9, the GEFSRv12 does a reasonable job in matching
observed frequencies for exceeding the mean thresholds. Par-
ticularly for CAPE–SHEAR, reliability curves for all forecast
leads follow the 1:1 (perfect reliability) line to some degree.
There is a slight tendency toward underconfidence}higher
true frequencies than predicted probabilities}at lower (less
than 10%) forecast probabilities for CAPE–SHEAR. There
is also notable underconfidence during week 1 for SHERBE,
with lesser underconfidence during week 2 and beyond. For
SCP-fixed and STP-fixed, there is a tendency for overconfi-
dence (higher predicted probabilities than observed frequen-
cies) at higher probability thresholds greater than 50%. These
results are generally reflected when evaluating 90th percentile
threshold values in Fig. 10. During week 1, SCP-fixed and
STP-fixed show minimal skill via their reliability curves for ex-
treme values, but improve marginally during week 2 and be-
yond. There remains underprediction during week 1 for
SHERBE but close following the perfect reliability line dur-
ing subsequent weeks. The reliability curves for 90th percen-
tile values during all weeks for CAPE–SHEAR closely follow
the 1:1 line.

Notably, all reliability curves for week 2}where determin-
istic scores decay below climatology}show promising results
and despite some deviation from the perfect reliability line,

FIG. 7. Monthly climatology of BSSs evaluating weekly sums exceeding the thresholds for the same variables as in
Fig. 6. Model climatology is used as the reference forecast. Grayed-out region masks the shifting of the plot to account
for the forward-running window as in Fig. 6. Legend for all subplots is located in (b).
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all variables show improvement from the no skill threshold.
This result is consistent for both sets of thresholds tested and
for all seasons. The reliability diagrams for the weekly sums
show indications that GEFSRv12 is representing probabilities
for SCS environments reasonably well when aggregating.

Statistical summation can add additional information that
may be removed when averaging (Li and Stechmann
2018)}especially over longer periods such as 1 week}with
the reduction in the number of zero values in the raw (nona-
nomaly) data. It is thus expected that the underlying climato-
logical standard deviation becomes larger in magnitude when
using weekly sums of daily maxima versus weekly averages.
To further emphasize the usefulness of weekly sums when
evaluating convective parameters, climatological anomaly
correlation coefficients are again presented in Fig. 11 and
compared to the daily max and rolling weekly average from
Fig. 1. A notable improvement in ACC skill (values summa-
rized in Table 1) for weekly sums is present for all four com-
posite convective parameters and especially for CAPE–
SHEAR. For SCP-fixed, STP-fixed, and CAPE–SHEAR,
while daily maxes and even weekly averages struggle to
achieve synoptic or climatological skill into week 2, weekly
summations extend skill for mean ACC into the early or even
middle of week 2. For SHERBE, while weekly averaging
showed some promise, weekly summation further extends ap-
preciable skill in the mean to day 10. The 75th percentile

ACC for all four parameters extends toward the end of
week 2 for climatological skill, thus representing additional
increases in skill using weekly summations compared to
weekly averages.

As a final illustration of the improvements in skill offered
by temporal averaging or aggregation, the mean weekly ACC
for weeks 1 (days 1–7), 2 (days 8–14), 3 (days 15–21), and
4 (days 22–28) is calculated for all variables used in the study
and summarized in Table 1. For kinematic, circulation, and
nonvertically integrated thermodynamic variables, the aver-
age ACC for week 1 lies between 0.7 and 0.9 for weekly
means and decreases to 0.4–0.6 for week 2. The 75th percen-
tile ACC (not shown) eclipses synoptic skill (0.6) thresholds
during week 2 for several of these variables. BS06 also yields
appreciable skill into week 2 when using a weekly average.
For the remainder of variables tested, while weekly averag-
ing does improve skill over daily means, it does not gener-
ally exceed the synoptic or climatological (0.5) threshold.
However, for weekly summations, the average week 2 ACC
for three of the composite convective parameters rises close
to the climatological skill threshold. The results for weeks 3
and 4 are generally unfavorable for all variables, indicating
the lack of predictability (Miller and Gensini 2023) at this
range.

Weekly summations of convective parameters yield promis-
ing indications via a number of skill metrics compared to

FIG. 8. As in Fig. 7, but for 90th percentile exceedance thresholds instead of mean values.
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weekly averages. The results of this section further suggest
that work into predicting SCSs at extended ranges using
model variables should focus on the early portion of the sub-
seasonal time scale}as meaningful skill rarely exists beyond
that lead time}at least in the GEFSRv12. Exceptions may
exist (Gensini et al. 2019; Miller and Gensini 2023), but when
considering an average across a large number of forecasts and
potential operational implications, the most potential for ex-
pansion of current SCS forecasts exists in week 2.

4. Conclusions and discussion

Prediction of severe convective storms (SCSs) beyond
week 1 has been of interest to the meteorological community

in recent years. Studies dedicated to SCS forecasting outside
of forecast week 1 have been primarily focused on statistical
work (Barrett and Gensini 2013; Gensini and Marinaro 2016;
Allen et al. 2018; Gensini et al. 2019), and studies that have at-
tempted to forecast SCSs at these lead times have not evalu-
ated the variables used as proxies (Gensini and Tippett 2019;
Lee et al. 2021; Miller et al. 2022). Thus, this work attempts to
establish a baseline climatology for forecast parameters. Prior
literature studies examining forecasts for SCS environments
have been limited by smaller sample sizes and short temporal
windows of available model data (Gensini and Tippett 2019).
Therefore, recently released GEFSv12 reforecast (GEFSRv12)
data (Guan et al. 2022; Zhou et al. 2022) over the 20-yr period
from 2000 through 2019 are used over the CONUS domain to

FIG. 9. CONUS reliability diagrams for the same variables as in Figs. 6 and 7 for exceedance probabilities at varying
forecast leads during all seasons. The black solid line indicates the 1:1 line of perfect reliability. The black dashed line
indicates climatological probabilities for exceeding the threshold at any given grid point, and the black dashed–dotted
line indicates the no skill delineation between perfect reliability and climatology. Reliability curves are calculated us-
ing 10 probability bins. Legend for all subplots is located in (b).
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provide a multidecadal dataset of forecasts. A variety of deter-
ministic and probabilistic metrics are used to evaluate 35-day re-
forecasts issued weekly, in addition to a novel use of weekly
summations of composite SCS parameters to attempt to extend
their use into forecast week 2.

Results suggest that variables concerning synoptic-scale
variability across the CONUS can be reasonably resolved into
week 2 by the GEFSRv12, although ensemble dispersion suf-
fers during week 1 given the small size of the ensemble. Fore-
casts of opportunity (Gensini et al. 2019; Mariotti et al. 2020;
Miller and Gensini 2023) exist into week 3 via anomaly corre-
lation analysis and ranked probability skill scores for some
variables such as 500-hPa geopotential height (z500) and 2-m
temperature (t2m). Biases exist for thermodynamic variables
that have been documented previously (Guan et al. 2022), al-
though 700-hPa temperature (t700) shows the opposite bias
(warm) to t2m. Concurrent work (Miller and Gensini 2023)
determined favorable global weather regimes for these higher

skill windows, particularly for z500. The findings surrounding
z500 additionally support the exploratory work of Miller et al.
(2020) using WRs to skillfully predict SCS activity at longer
time scales.

The seasonal cycle of forecast skill is evident, with kine-
matic and thermodynamic fields showing longer windows of
skill in the winter and early spring versus summer. Addition-
ally, temporal averaging of fields (van Straaten et al. 2020)
into 7-day rolling means adds some additional predictability
as evidenced by deterministic and probabilistic verification
measures. However, care should be taken when smoothing
variables that vary on shorter time scales such as composite
SCS parameters, as this tends to remove variability associated
with these fields. As this work is meant to act as a precursor
for later calibrated forecast and machine learning experi-
ments, this work suggests that only single-level kinematic and
thermodynamic fields from GEFSRv12 should be utilized as
inputs for forecasts at leads greater than 1 week and that

FIG. 10. As in Fig. 9, but for 90th percentile exceedance thresholds instead of mean values.
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some degree of temporal averaging is likely to assist in fore-
casts beyond week 1.

For SCS composite parameters such as SCP-fixed and STP-
fixed, skill via traditional deterministic and probabilistic met-
rics rarely exists beyond week 1. Vertically integrated fields
such as CAPE and CIN also struggle. Errors in boundary
layer parameterization (Cohen et al. 2017) may be a leading
cause of these difficulties, along with the vertical resolution of
the ensemble guidance. For SCS composite parameters, the
mere fact that multiple variables are being combined together
could be responsible for faster error growth, in addition to
their design in prediction of mesoscale features that have
shorter intrinsic predictability. For these reasons, a method

using aggregated sums of daily maximum composite parame-
ter values over longer temporal windows is developed in this
work and tested with promising results from some probabilis-
tic skill metrics, such as reliability diagrams and Brier skill
scores (BSSs), which showed improvement from climatologi-
cal forecasts. Weekly summation also provides additional skill
compared to weekly averaging for deterministic measures
(Fig. 11).

A number of caveats exist in this analysis. To start, all fields
in this work are compared using model reanalysis as the obser-
vations, which itself may contain biases and errors compared
to actual observations (Taszarek et al. 2020; Li et al. 2020).
However, the GEFSv12 reanalysis is internally consistent with

FIG. 11. As in Fig. 1, but only for composite convective parameters and including ACC for 7-day summations. The
red line/shading now represents the 7-day rolling mean, and the gray line/shading represents the 7-day summation.

TABLE 1. Average ACC during forecast weeks 1–4 (W1–4) for the 16 chosen variables. Columns represent weekly averages and
weekly summations. The bolded text represents the ACC exceeding the climatological threshold at W2 or later.

Variable
W1 ACC
mean

W1 sum
ACC mean

W2 ACC
mean

W2 sum
ACC mean

W3 ACC
mean

W3 sum
ACC mean

W4 ACC
mean

W4 sum
ACC mean

z500 0.866 x 0.522 x 0.215 x 0.095 x
u250 0.832 x 0.501 x 0.220 x 0.115 x
v850 0.779 x 0.401 x 0.130 x 0.044 x
q850 0.732 x 0.416 x 0.185 x 0.112 x
t2m 0.838 x 0.540 x 0.270 x 0.160 x
q2m 0.811 x 0.504 x 0.247 x 0.158 x
t700 0.857 x 0.524 x 0.217 x 0.107 x
SBCAPE 0.680 x 0.384 x 0.176 x 0.099 x
SRH 0.705 x 0.377 x 0.142 x 0.069 x
BS06 0.811 x 0.480 x 0.204 x 0.107 x
BS01 0.682 x 0.343 x 0.122 x 0.061 x
SBCIN 0.640 x 0.349 x 0.158 x 0.107 x
SCP-fixed 0.545 0.675 0.209 0.412 0.019 0.175 20.019 0.097
STP-fixed 0.523 0.650 0.211 0.391 0.039 0.171 0.008 0.1
SHERBE 0.582 0.825 0.213 0.421 20.001 0.163 20.036 0.117
CAPE–

SHEAR
0.596 0.706 0.223 0.464 0.013 0.190 20.024 0.108
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the reforecast data. The list of variables examined in this study
is by no means comprehensive, nor is the small size of the en-
semble reforecast, which should be compared with operational
NWP ensembles. The thresholds identified in the weekly sum
analysis for convective variables are based on domainwide
averages. Regional dependence for many of these variables
should be further explored and rolling climatologies may also
be used to better represent the seasonal cycle versus rigidly de-
fined seasons.

More broadly, the use of model variables as proxies for
SCS activity (Gensini and Tippett 2019; Lee et al. 2021) is not
the primary objective of the study. Rather, this work represents
an intermediate step between raw model output and using
proxy parameters to estimate SCS activity that occurs. It is an
attempt to narrow down the methods and variables used for
SCS forecasting that are useful beyond week 1 and to reduce
the “garbage in, garbage out” problem (Hall 2014) that often
affects forecasts that use postprocessed data from models.

Despite these issues and considerations, this evaluation
provides a more comprehensive climatology of forecast pa-
rameters relevant for SCS prediction than previously explored
in the literature. The results presented act as a baseline for
subsequent work in improving SCS forecasts time scales be-
yond week 1 using GEFS, especially during week 2 when
meaningful skill does often exist. Ongoing and proposed work
using machine learning at longer leads (Hill et al. 2023) to
both classify and predict weather regimes favorable for SCSs
(Miller et al. 2020) may use such evaluation studies to better
understand variables that are useful at these time scales. The
reforecast evaluation could also expand to other regions, par-
ticularly the North Pacific, where the variability of the jet
stream has shown links to the North American pattern (Gensini
et al. 2019; Winters 2021). Future forecast experiments at
subseasonal leads for SCSs may also incorporate information
about model-predicted or observed MJO and other subseaso-
nal variability helpful in the identification of higher skill peri-
ods (Miller and Gensini 2023), which is beyond the scope of
this paper. We hope that this work can complement such stud-
ies in efforts to expand prediction of SCSs beyond current
capabilities.
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APPENDIX

Supplemental Equations

a. Equations of convective composite parameters

The equations for the supercell composite parameter (SCP)
and significant tornado parameter (STP) are given in Thompson
et al. (2003, 2012) and are modified appropriately for their
fixed-layer versions using 0–3- or 0–1-km SRH (SRH03 or
SRH01), SBCAPE, surface-based lifted condensation levels
(SBLCLs), and 0–6-km bulk shear (BS06) instead of their ef-
fective or mixed-layer counterparts,

SCPfixed 5
MUCAPE

1000 J kg21 3
BS06

20 m s21 3
SRH03
50m2 s22 , (A1)

STPfixed 5
SBCAPE

1500 J kg21 3
(2000 2 SBLCL)

1000 m
3

BS06
20 m s21

3
SRH01

150 m2 s22 3
(200 1 SBCIN)

150 J kg21 : (A2)

For the SCP formulation, the BS06 term is set to zero when
BS06 is less than 10 m s21 and becomes 1 when values
are greater than 20 m s21. For the STP formulation, the
SBLCL term is set to 1 when the SBLCL is less than 1000 m
AGL and set to 0 when the SBLCL is greater than 2000 m
AGL. The SBCIN term is set to 1 when SBCIN is greater
than 250 J kg21 and set to 0 when SBCIN is less than
2200 J kg21. Finally, the BS06 term is set at 1.5 when BS06
is greater than 30 m s21 and set to 0 when BS06 is less than
12.5 m s21.

Meanwhile, the equation for SHERBE is given in Sherburn
and Parker (2014) and is as follows:

SHERBE 5
BSE

27m s21 3
LLLR

5:2Kkm21 3
LR75

5:6 Kkm21 : (A3)

Here, BSE represents the effective bulk wind shear (m s21),
LLLR represents the low-level lapse rate (K km21), and
LR75 represents the 700–500-hPa lapse rate (K km21).

b. Equations of verification metrics

The equations for anomaly correlation coefficient (ACC)
and root-mean-square error (RMSE) of the ensemble mean
at time t are as follows and are provided in a modified ver-
sion from that in Joliffe and Stephenson (2012),

ACC 5

∑
M

m51
( f m 2 cm)(om 2 cm)���������������������

∑
M

m51
( f m 2 cm)2

√ ��������������������
∑
M

m51
(om 2 cm)2

√ , (A4)

RMSE 5

�������������������������
1
M

∑
M

m51
( f m 2 om)2

√
: (A5)

Here, m represents the mth grid point, M represents the to-
tal number of grid points (71 3 171), f represents the
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forecast value (GEFSv12 reforecast ensemble mean) at
time t, c represents the climatological mean value at time t,
and o represents the observed (GEFSv12 reanalysis) value
at time t.

For the ensemble consistency, the mean-square error at
time t is simply the RMSE without the square root but is
modified to account for the small ensemble size as in Eckel
and Mass (2005). Ensemble variance is also calculated using
this adjustment and using the individual ensemble members:

MSE 5
n

n 1 1

( )
1
M

∑
M

m51
( f m 2 om)2, (A6)

Vare 5
1
M

∑
M

m51

1
n 2 1

∑
n

i51
( fm,i 2 f m)

[ ]
: (A7)

Here, i represents the ith ensemble member and fm,i is the
forecast value of the ith ensemble member at the mth grid
point at the given time t.

For probabilistic skill scores of a given forecast–observation
pair at a time t, equations for the ranked probability score
are given in Weigel et al. (2007) for both forecasts and
climatology. Scores are calculated relative to their local
climatologies before being pooled together in summary
statistics,

RPS 5 ∑
K

k51
(Fk 2 Ok)2, (A8)

RPSclim 5 ∑
K

k51
(CFk 2 Ok)2: (A9)

Here, k represents the kth category, K represents the total
number of categories, F is the forecast vector, CFk is the
climatological forecast vector, and O is the observation vec-
tor. The Brier score simply corresponds to the binary case
where K 5 2. The CFk in our study refers to the lead-
dependent climatology as described in section 2b. The corre-
sponding ranked probability skill score (RPSS) is calculated as
follows (Weigel et al. 2007; Wilks 2011):

RPSS 5 1 2
hRPSi

hRPSclimi
: (A10)

Here, hRPSi is the average RPS across all forecast–observation
vectors, while hRPSclimi is the average RPS across all climato-
logical forecast–observation vectors. For more detailed informa-
tion on these scores, see Epstein (1969), Weigel et al. (2007),
Wilks (2011), and Joliffe and Stephenson (2012). The correc-
tion used for adjusting these scores for the ensemble size is de-
tailed in Ferro (2014).
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