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ABSTRACT: Nowcasting hail size poses a major challenge in operational practice due to physical limitations of weather
radar technology once hailstones are sufficiently large to enter the resonance scattering regime. Numerous radar-based hail
size proxies have been derived in recent decades, but their performance is generally poor in identifying giant hail
($10 cm). Using a novel thunderstorm updraft detection method, we examine the updraft characteristics of hailstorms in
the U.S. Great Plains based on a NEXRAD dataset of 114 hail events between 2013 and 2023. We find that some radar-
derived variables within the detected updraft are well suited for discriminating between small hail (1.0–3.0 cm) and severe
hail ($3.5 cm), e.g., minimum copolar cross-correlation coefficient in the midlevel updraft, whereas other radar metrics
such as the area of reflectivity . 50 dBZ in the upper portion of the updraft suggest the presence of giant hail. However,
the statistical distributions of each variable overlap for different hail sizes, and there is no single metric which performs
well across the entire hail size spectrum. Therefore, we trained a random forest model to nowcast hail size categories using
a multitude of these radar metrics. The model shows promising performance for discriminating hail sizes . 5 cm but re-
quires further refinement for smaller hail. We showcase the model’s capabilities for a set of hailstorms in the Great Plains.

SIGNIFICANCE STATEMENT: Large hail, which may reach sizes up to 20 cm in extreme cases, is a severe threat in
thunderstorms and responsible for significant damage in thunderstorm-prone areas around the world. Weather radars
are generally used for issuing warnings for the threat of large hail, but it is surprisingly difficult to apply their data to dis-
tinguish between hail sizes. We utilize a new approach that detects the thunderstorm updraft region, which is where
hailstones grow, and analyze the radar data therein. Based on these data, we then develop a model for assessing hail
sizes that could be used for warnings and illustrate the model results for six hailstorms.
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1. Introduction

Large hail is one of the most damaging threats associated
with deep moist convection, causing annual losses to property,
agriculture, and livestock on the order of 10 billion USD in
the United States alone (Gunturi and Tippett 2017; Ward et al.
2020). As the impact kinetic energy and damage potential of
hailstones strongly correlate with size (Heymsfield et al. 2014;
Heymsfield et al. 2018), an accurate assessment of maximum
expected hailstone size is critical in operational nowcasting.
However, high-end hail events are particularly challenging to
forecast and nowcast, and large hail sizes are regularly under-
estimated in operational warnings (Blair et al. 2017).

Weather radars facilitate the nowcasting of hailstorms and
the timely issuing of warnings. Their data are used to identify
the occurrence of hail in thunderstorms, and numerous empir-
ical relationships between radar (and radar-derived) variables
and hail size have been described in the literature. One of the
most widely used hail size proxies, the maximum expected
size of hail (MESH) introduced by Witt et al. (1998), is de-
rived from the vertical integration of radar reflectivity factor
ZH. Based on a comprehensive observation dataset from the

United States, Ortega (2018) showed that MESH was suited
for finding locations of severe hailfall but did not align well
with specific hail sizes observed. Using a significantly higher
number of hail reports than Witt et al. (1998), Murillo and
Homeyer (2019) revised the empirical fit of MESH, but the
underlying large variation of observed hail sizes for any given
MESH value remained. Other recent attempts include polari-
metric radar variables, generally differential reflectivity ZDR

and copolar cross-correlation coefficient rHV (Heinselman
and Ryzhkov 2006; Ryzhkov et al. 2013b; Ortega et al. 2016).
However, all these algorithms show limited skill differentiat-
ing between hailstone sizes once the hail is large enough to
enter the Mie backscattering regime, which for the S band ap-
plies to hailstones larger than approximately 5-cm diameter
and to even smaller hailstones in the C and X bands (Ryzhkov
et al. 2013a). Hail size discrimination is further complicated
by the wide variety of hailstone shapes and textures as well
as their complex falling behavior. Differing properties of dry
and water-coated hailstones result in a wide range of ZH,
ZDR, and rHV associated with hail (Jiang et al. 2019). Several
previous studies have leveraged indirect, storm intensity-
based radar features to assess maximum hail size, for exam-
ple, storm top divergence (Witt and Nelson 1991), scale
and intensity of the bounded weak echo region (Gutierrez
and Kumjian 2021), or midlevel rotation (Blair et al. 2011;Corresponding author: Vinzent Klaus, vinzent.klaus@boku.ac.at

DOI: 10.1175/WAF-D-23-0227.1

Ó 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding
reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

K L AU S AND KRAU S E 1795DECEMBER 2024

Brought to you by NOAA Library | Unauthenticated | Downloaded 04/01/25 07:02 PM UTC

https://orcid.org/0000-0002-4981-2785
https://orcid.org/0000-0002-4981-2785
mailto:vinzent.klaus@boku.ac.at
http://www.ametsoc.org/PUBSReuseLicenses


Witt et al. 2022). Operational use of these methods is limited
by sampling strategies that prioritize low-level scans (Cho
et al. 2022; Kingfield and French 2022) and derived empirical
functions based on relatively small datasets, tailored to spe-
cific geographic regions (Allen et al. 2019).

Here, we try to reconcile current direct radar estimates of
hail size with indirect storm-intensity-based proxies. While we
fully acknowledge that giant hail size assessment might be
close to impossible based on gate-by-gate fuzzy logic methods
or by a single kinematic proxy such as storm top divergence,
we hypothesize that hail sizes in the Mie scattering regime can
be inferred through the combination of multiple radar varia-
bles characterizing the dynamical and microphysical updraft
properties. We present and evaluate a new object-based ap-
proach that specifically targets the updraft area, since this is
the part of the storm where hydrometeors grow and hail-
stones can be suspended. Our updraft detection is based on
the radar signature of ZDR columns (Kumjian and Ryzhkov
2008; Snyder et al. 2017; Kuster et al. 2020), which we use to
extract data that potentially relate to the presence of hail or
the storm’s potential to grow large hail. In addition to estab-
lished hail markers, we explore a suite of new radar metrics
aimed at differentiating between hail sizes. We evaluate them
on a dataset of 384 hailstorms in the United States compiled
by linking radar data with hail reports from the NOAA
National Centers for Environmental Information (NCEI) storm
event database. By using rigid quality control algorithms, we try
to overcome the challenges caused by the scarcity, unreliability,
and lack of “true negatives” (reports of no hail) of the reports in
the storm events database. In contrast to Homeyer et al. (2023)
where the three-dimensional polarimetric structure of hailstorms
was analyzed based on a composite mean technique, we limit
our evaluation to hailstorm updraft characteristics that could be
exploited in nowcasting hail sizes.

Based on the hailstorm dataset, we then train a model using
machine learning (ML), in our case a random forest (RF;
Breiman 2001), to predict multiple hail size categories up to
giant hail with more than 10-cm diameter (see Table 1). Since
we aim to identify the hail growth process, we expect that short
lead times on the order of 10–30 min before hail reaches the sur-
faces might be possible to achieve, allowing the method to be
used in nowcasting (compare Picca and Ryzhkov 2010).

In section 2, we specify the input data and outline our meth-
ods for analyzing potential hail size-dependent radar signa-
tures. Furthermore, we describe the steps to train and verify
an RF hail size nowcasting model. In section 3, we present the
analysis of selected hail (precursor) signals. In section 4, we
evaluate the performance of the RF hail nowcasting model in

comparison with MESH and show nowcasting examples for
six hailstorms. In section 5, we summarize our findings and
provide an outlook for future developments.

2. Data and methods

The data processing for evaluating different radar metrics
and identifying their significance in hail nowcasting can be di-
vided into six major steps which we describe in detail as fol-
lows: 1) collection and preprocessing of input data, 2) updraft
detection and tracking, 3) linking of hail reports to storm cells,
4) retrieval of potential hail indicators and precursors, 5) RF
model training and tuning, and 6) RF model evaluation.

a. Collection and preprocessing of input data

We collected data for 114 hail events in a study area roughly
corresponding to the Great Plains (288–488N and 1058–908E), the
area most prone to severe hail within the United States (Cintineo
et al. 2012; Allen et al. 2017). All radar data used in this study
are S-band data from the WSR-88D NEXRAD network after
its upgrade to dual-polarization capability (NOAA NWS Radar
Operations Center 1991), resulting in a study period of approxi-
mately 10 years from 2013 to 2023. Each event can contain multi-
ple individual hailstorms and is uniquely characterized by the
identification (ID) of the nearest NEXRAD radar (whose data
are used) and the start day in UTC.

While events from 2013 to 2015 were manually selected
based on the availability of hail report data from the Severe
Hazards Analysis and Verification Experiment (SHAVE)
project (Ortega et al. 2009), all events after 2015 were auto-
matically selected by an algorithm scanning through 54 624
hail reports found in the NOAA National Weather Service
(NWS) storm events database (NOAANWS 2023). This algo-
rithm was tuned to select periods with abundant large hail re-
ports in the vicinity of NEXRAD radar sites. We considered
only events with at least 20 hail reports $ 1 cm diameter or
10 reports $ 5 cm or two reports $ 10 cm that occurred
within 5 h and at a range between 20 and 90 km to the nearest
NEXRAD site in the study area. The distance criterion was
designed to ensure sufficient midlevel radar coverage, since
the strongest hail growth is believed to occur between iso-
therm heights of 2108 and 2308C (Nelson 1983; Allen et al.
2019). The procedure resulted in a total of 114 events distrib-
uted over 102 different hail days.

Figure 1 shows the study area, the radars, and all hail reports
used for our study. The complete event list is shown in Table A1
in appendix A.

For each event, publicly available NEXRAD level II data re-
trieved from Amazon Web Services (AWS) were interpolated

TABLE 1. Convention for hail sizing used throughout this study and number of filtered hail cells available in each category.

Class
General naming convention of

hail sizes (cm)
Definition of hail sizes for our

cell classification (cm)
Number of cells available

after filtering

Small $1.0 1.0–3.0 138
Severe $3.5 3.5–5.5 130
Significantly severe $6.0 6.0–9.0 84
Giant $10.0 $10.0 32
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onto a 1 km 3 1 km Cartesian grid at isotherm heights of 2108,
2208, 2308, and 2408C (CAPPI) using an inverse distance
weighting function. The total extent of the grid was 2200 km ,

X , 200 km and 2200 km , Y , 200 km centered on the re-
spective radar site. The isotherm heights were uniform across the
grid and determined using Rapid Refresh (RAP; Benjamin et al.
2016) model soundings at the grid point closest to the radar loca-
tion. These data were retrieved from model data message
(MDM) files provided with the NEXRAD data on AWS. Geo-
potential heights of the model soundings were adjusted to heights
above ground level, and then, the temperature data were linearly
interpolated to find the heights of the respective isothermal level.
If no model sounding for a particular day and location was avail-
able in the level II database}this was the case for 38 events,
most of them before 2017}we used the nearest observation
sounding before the start of the event. In 20 of these cases, radio-
sonde observations were available within 60 km of the radar site,
and the overall maximum distance between radar and radio-
sonde launch location was 225 km. The temporal offset between
radiosonde launch and event begin was confined to 12 h. We
tried to estimate the error caused by this temporal offset by ana-
lyzing the 12-h trends of sounding-derived 2108C isothermal
heights for these 38 cases and found that they changed more
than6500 m in only 3 cases.

For all events, we also prepared additional radar variables
later required for the updraft analysis. Most notably, we calcu-
lated vertically integrated liquid (VIL) from ZH (Greene and
Clark 1972), azimuthal shear from radial velocity (Mahalik et al.
2019), and the depolarization ratio (DR) proxy (Ryzhkov et al.
2017) usingZDR and rHV:

DR 5
1 1 Z21

DR 2 2rHVZ
20:5
DR

1 1 Z21
DR 1 2rHVZ

20:5
DR

:

The DR value is maximized for combinations of low ZDR and
low rHV and can be used as a filter for nonmeteorological ech-
oes, e.g., hail spikes (Kilambi et al. 2018), but has also been
suggested as an indicator for hail. Another derived variable is
logCC, which is a transformation of rHV to a Gaussian distri-
bution proposed by Keat et al. (2016):

logCC 52log10(1 2 rHV):

By using logCC, we aim to facilitate statistical interpretation of
copolar cross correlation, e.g., when calculating average and stan-
dard deviation within the updraft region.

b. Updraft detection and tracking

One of the most crucial aspects of our study is the accurate
detection and tracking of storm updraft areas. Updraft detec-
tion was accomplished using the “ZDR hotspot technique” by
Krause and Klaus (2024). In a nutshell, the method focuses on
identifying positive anomalies of ZDR at the 2108C isotherm
height, a level typically reached by ZDR columns, which are
widely recognized as suitable proxies for thunderstorm up-
draft location (e.g., Kumjian et al. 2014; Snyder et al. 2017;
Ilotoviz et al. 2018; Chase et al. 2024). For each point of the
gridded ZDR field, the hotspot method calculates the median
ZDR in an inner 3 km 3 3 km grid box, centered on the grid
point in question, and in an outer 7 km3 7 km box, excluding
the points from the inner box. The subtraction of median ZDR

in the outer box from median ZDR in the inner box yields the
“hotspot value.” Due to the hotspot technique’s pixel-to-pixel
comparison, it is not affected by ZDR miscalibration, which is a
common problemwith the widely used algorithm by Snyder et al.
(2015). In contrast to the “modified Thunderstorm Risk Esti-
mation from Nowcasting Development via Size Sorting”
(mTRENDSS) algorithm described in French and Kingfield

FIG. 1. Map of the contiguous United States with our study area outlined in red. Radars used
for at least one event are indicated by large blue triangles, and unused radars are indicated by
small black triangles. Hail reports used in the study are shown as small dots, colored by hail class.
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(2021)}which is also insensitive to ZDR miscalibration}the
search window for background ZDR values is much smaller
with the hotspot technique, limiting the impact of differen-
tial attenuation. As a threshold for marking potential updraft
areas, we used a hotspot value of 0.2 dB, corresponding
roughly to one standard deviation of the hotspot value during
a subset of 11 events. Figure 2 shows an example of a “ZDR

hotspot” in a mature storm, and Fig. 2c illustrates the two
boxes used for deriving the hotspot value.

To merge adjacent updraft detections, we dilated and sub-
sequently eroded the updraft objects by one pixel (equaling
1 km), a process known as “closing” in mathematical mor-
phology. Next, we required a minimum updraft size of 5 km2,
and at least one pixel within the updraft where ZH . 25 dBZ,
which yielded the best results based on a manual inspection of
selected cases.

This procedure still left spurious updraft detections at the
fringes of storm cells, and the resulting objects were difficult
to track individually due to their small spatial scale and occa-
sional intermittent appearance over time. In an attempt to re-
solve both issues, we coupled the updraft detections to an
existing cell tracking algorithm, the “multicell identification and

tracking” (MCIT) system (Rosenfeld 1987; Hu et al. 2019). Al-
though untested by us, other storm cell tracking methods could
replace MCIT as part of this algorithm. The linking of updraft
objects to MCIT cells and the removal of erroneous updraft ob-
jects are described in detail in appendix B. An example of MCIT
cells with their assigned updraft areas is shown in Fig. 3. After as-
signing the updrafts, we filtered the MCIT cells to ensure a high-
quality dataset. We kept MCIT cells when the cell center was
within 120 km of the radar range and discarded all MCIT cells
that were tracked for less than six time steps (;30 min).

c. Linking hail reports to storm cells

Hail reports were matched with MCIT cells. We used the
time information of the hail report and extended it by a pe-
riod of 15 min before the report time window began and 2 min
after the report ended, as hail reports often appeared to lag
behind the passing of a thunderstorm. Within this interval
(215, 12 min), we assigned the hail report to the MCIT cell
that had its VIL maximum closest to the report location,
as long as the distance between report location and cell
center was ,15 km and the MCIT cell had a maximum
VIL . 25 kg m22, because weaker cells are very unlikely

FIG. 2. Example output of the ZDR hotspot technique for the NEXRAD site at Fort Worth, Texas (KFWS), at
2234 UTC 11 Jun 2016. Storm-wide (a) ZH and (b) ZDR CAPPIs at the height of the 2108C isotherm and, within the
red inset rectangle in (b), (c) ZDR with inner and outer box used for hotspot calculation and (d) hotspot field.
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to produce hail (Edwards and Thompson 1998). When a
hail report was assigned to an MCIT cell, the hail report
time was changed to the radar scan time when the MCIT
cell center (location of VIL maximum) was closest to the
report location. In total, 753 cells distributed over the 114
events were linked to at least one hail report.

There are many limitations in the hail reports we used for
this study; there is a lack of observations in sparsely populated
areas, the hail size reported is often categorical and estimated
rather than continuous and measured, and the exact timing of
the hailfall at the ground contains major uncertainties (Allen
and Tippett 2015). Our assignment process was designed to
yield the earliest plausible time of hail at the ground. This is
particularly relevant as the overarching goal of this study is to
examine potential nowcasting applications, which are charac-
terized by short lead times. In addition to timing uncertain-
ties, the reported hail size may also not be representative of
the maximum hail size of a given storm at that time (Ortega
et al. 2009; Blair et al. 2017). While we cannot resolve this
problem when there is a lack of reports, we always match the
largest reported hail size if there are multiple reports tagged
to the same MCIT time step.

In preparation for the following steps, we then categorized
the storm cells by the maximum size of hail they produced us-
ing the definitions from Table 1. We expected that the wide
size classes would be better suited to account for inaccuracies
of the maximum hail size produced by a storm. Note that we
also intentionally left a buffer between the hail size classes
analogous to Homeyer et al. (2023), and hail reports falling
between the classes were not used. From the 753 categorized
hail cells, we then removed those that were tracked for less
than five time steps before the first hail report fell into their
respective class, yielding a total of 384 cells.

d. Retrieval of potential hail indicators and precursors

To analyze the different updraft characteristics of storms
classified by maximum hailstone size and to generate the

training data for the RF model, we extracted radar data from
the updraft areas at multiple levels. In addition to the area
identified at the 2108C isotherm height, we also extracted ra-
dar data from the same area at the 2208, 2308, and 2408C
isotherm heights, since we expect that hail growth processes
would also occur at these heights. To account for tilted up-
drafts and to include information from the immediate sur-
roundings of the ZDR column (such as very low ZDR adjacent
to the column, possibly indicating the presence of large hail),
we dilated the updraft area by 3 pixels (53 km) on each level.
We then collected the radar metrics that we expected to be re-
lated to the storm’s potential to grow hail or to directly indi-
cate the growth and presence of hail. We evaluated these
metrics for each hail category from the previous step.

For the initial analysis, we selected time steps shortly before
the first hail report falling into the respective hail class defini-
tion. We then calculated the statistical distributions of the hail
metrics for each hail size class. Among the metrics are not
only basic aggregations such as average rHV or ZDR within
the updraft but also more complex combinations such as max-
imum DR where ZH . 50 dBZ or area-based metrics like the
updraft area with ZH . 50 dBZ. In total, we calculated 60 dif-
ferent radar metrics potentially related to hail formation or
presence of hail at each available isotherm height. Only four
metrics were not exclusively collected from the detected up-
draft area but taken from the MCIT output: total cell size,
maximum VIL, MESH (version by Witt et al. 1998) within
the storm cell, and the distance between updraft center and
MCIT cell center. A list with short descriptions of all the met-
rics we tested is given in Table A2 in appendix A.

To investigate whether there were any consistent precursor
signals indicating imminent hailfall, we also analyzed the tem-
poral evolution of radar metrics relative to the first hail obser-
vation of the respective hail size class. Due to differing scan
rates of the radars, we linearly interpolated available tracking
data to 2.5-min increments for the period from 45 min before
to 15 min after the first report of given size and then calculated

FIG. 3. Example of MCIT cells with assigned updrafts as seen from the NEXRAD radar at Frederick, Oklahoma
(KFDR), at 0035 UTC 23 May 2020. (a) CAPPI of ZH at the2108C isotherm height, and (b) different MCIT cells are
shaded greens with assigned (red; filled) and discarded (orange; contours only) updrafts.
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the median for each time step across all available cells in each
hail size category.

e. RF model training and tuning

Careful data selection, preprocessing, and model choice are
critical for the success of any ML-based forecast system, even
more so in our case considering the limitations of hail obser-
vations on which the model will be trained on. As previously
stated, we chose to classify storm cells into broad hail size cat-
egories (Table 1) and consequently opted for a classification
(discrete output) rather than a regressor (continuous) model.
We considered multiple ML methods but ultimately decided
to use an RF due to its simplicity, easy parallelization and hy-
perparameter tuning, and its ability to model highly nonlinear
systems (Gagne et al. 2014). RFs are an ensemble of decision
trees suited for regression and classification tasks and have al-
ready been successfully applied to a range of problems in the
field of radar meteorology. For instance, Wolfensberger et al.
(2021) used an RF for quantitative precipitation estimation
(QPE) within the Swiss C-band radar network, achieving higher
skill than the operational QPE system. Medina et al. (2019) used
an RF to nowcast downbursts with dual-polarization radar data.
Czernecki et al. (2019) showed the ability of RFs to predict the
occurrence of hail . 2 cm using a mix of numerical weather
prediction (NWP) and radar data but did not focus on hail
size discrimination. RFs also offer the possibility to examine
the importance of individual predictors}“features” in the
context of ML}for their classification decision, allowing some
interpretation of the role of predictors for the process in question
(McGovern et al. 2019).

Note that all the time steps within this window are treated
equally when training the model, without consideration of the
time difference relative to the observation. Although some ra-
dar signals indicating hail may vary considerably within the
35-min window, this approach substantially increases the size
of the training dataset, which is critical for training any RF.
Furthermore, the timing of signals is already obscured by the
error of hail report times. Consequently, initial experiments
with shorter time windows showed a reduction in model skill.
In addition to the storm cell classification based on maximum
hail size, we also introduced a “no hail” category so we could
train the RF model to discern between hailstorms and storms
not producing hail. For this, we used particularly rigorous
quality checks: First, we only considered MCIT cells without
tagged hail reports, excluding all cells that are found in one of
the hail classes. Afterward, we checked the remaining cells
for any hail report within 50 km for a time window of 40 min
before and after each time step. If these conditions were satisfied,
the cell was added to the no-hail dataset, ultimately containing
740 tracked cells. We explicitly did not add any radar-based qual-
ity checks due to the risk that the RF would be trained to pick
up any self-chosen thresholds for the hail/no-hail discrimination.

For tuning and training the RF, we used Python 3.11 with
the machine learning library scikit-learn 1.3.1 (Pedregosa et al.
2011). As the primary score for assessing model performance,
we used the Peirce skill score (PSS; Peirce 1884; Manzato
2007) which is widely used in forecast verification and in the

context of ML evaluation (e.g., Jergensen et al. 2020; Kamangir
et al. 2020). After initial tests with a single RF setup, we decided
to use a stacked model consisting of two separate RFs due to im-
proved skill. The first RF model (hereafter “hail detection mod-
el”) was designed for the binary decision of whether a cell will
grow hail . 1 cm or not. If the hail detection RF indicates hail,
the second RF model (hereafter “hail size model”) is applied
and classifies the hail size into the four categories detailed in
Table 1.

After selecting and preprocessing the input data, we reduced
the number of input variables by eliminating highly correlated
radar metrics that would not improve the ML model but compli-
cate the interpretation of feature importance (e.g., Gregorutti
et al. 2017). For this, we used hierarchical clustering on the
Spearman rank–order correlations and kept only a single feature
from each cluster, manually defined by a scalar threshold of 0.8
after visual inspection of the cluster dendrogram (not shown).
This resulted in a significant reduction in variables from 243 to
34 as many of them were highly correlated, e.g., most of the met-
rics related to azimuthal shear on all levels from 2108 to2408C.
We further use the same set of 34 variables for both RFs in our
model stack, listed in Table 2. All variables extracted from the
hotspot area are denoted with the prescript “HS” followed by
the isotherm height of the respective CAPPI level.

Before training the model, we split the available data into
a training set containing approximately 80% of all data and
a heldout test set used for evaluation with the remaining
roughly 20%. In creating these subsets, we paid attention not
to split up tracking data of the same MCIT cell to avoid artifi-
cially increased skill scores due to autocorrelation.

In the next step, we used a grid search with fivefold cross
validation on the training data to tune the RF hyperparameters
for both models separately (“GridSearchCV” in the scikit-learn
package), with PSS serving as evaluation score for the tuning.
The combination of hyperparameters that emerged as maximiz-
ing the skill in the cross-validation grid search is given in Table 3.

Next, we trained the two RF models using the variables
from Table 2 and the hyperparameters from Table 3. Due to
the strong imbalance of hail classes in the training set}8% of
all time steps belonged to the highest hail size class compared to
31% and 36% for the lowest two categories, respectively}we
decided to add a calibration step to the hail size RF in addition
to weighing rare hail classes higher during training. For calibra-
tion, we used logistic regression to map the probabilistic output
of the classifier to the observed event probability given a certain
class is predicted. This approach, although mainly designed for
probability estimates, turned out to improve the deterministic
classification particularly for the rare categories of significantly
severe and giant hail.

f. RF model evaluation

After training the models, we assessed the importance of indi-
vidual features using two different approaches: first, the impurity
importance, calculated directly in the RF training process as the
decrease in an impurity score}in our case Shannon entropy}
achieved by splits in the decision tree involving a certain predictor
(Breiman 2001; McGovern et al. 2019); second, the permutation
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importance, which is calculated on the test data by randomly shuf-
fling values of one feature and observing the decrease in PSS
compared to the unshuffled input data. The random shuffling is
repeated 50 times to calculate the median decrease in the skill
score. If the decrease in skill when shuffling one feature is high,
this feature can be assumed to be important for the model’s deci-
sion. We note that the importance of correlated features may be
underestimated using this method, but our variable reduction
from section 2e limits such error.

For the nowcasting verification, we first use the hail detec-
tion RF for the hail/no-hail nowcast. If this model indicates

hail, the hail size RF is used to forecast the expected hail size
class. Using the heldout test dataset, we verified this hail clas-
sification and evaluated at which lead time between 40 and
10 min the nowcast achieved the highest skill scores, using the
result of this evaluation to generate six nowcasting examples
from cells in the independent data (see section 4).

3. Evaluation of hail precursor signals

We begin by showcasing a subset of the metrics explored as
potential hail indicators. In Fig. 4, we show statistical distributions

TABLE 2. Final list of variables used for training two RFs for hail nowcasting. All variables with preceding HS in their name are
extracted from the detected updraft area.

Name Description

MESH Maximum expected size of hail (Witt et al. 1998); maximum value within
the MCIT storm cell

MCIT_HS-10Cdist Distance from MCIT cell core to updraft core
HS-10C_AreaRef40 Area ZH . 40 dBZ (2108C)
HS-10C_AveAZS Average azimuthal shear (2108C)
HS-10C_AveDR Average DR proxy (2108C)
HS-10C_AveHS Average hotspot value (2108C)
HS-10C_AveHSLogCC Average hotspot value of logCC; average HS (logCC) (2108C)
HS-10C_AveRho Average cross correlation (2108C)
HS-10C_AveZdr Average ZDR (2108C)
HS-10C_CellArea Hotspot area (2108C)
HS-10C_DRAveRef40 Average DR where ZH . 40 dBZ (2108C)
HS-10C_Drcount14Ref40 Area of DR . 214 where ZH . 40 dBZ (2108C)
HS-10C_DiffAZS Differential azimuthal shear; minimum azimuthal shear subtracted from

maximum azimuthal shear (2108C)
HS-10C_MaxHSLogCC Maximum hotspot of logCC; maximum HS (logCC) (2108C)
HS-10C_MaxLogCC Maximum of logCC (2108C)
HS-10C_MinHS Minimum hotspot value (2108C)
HS-10C_MinHSLogCC Minimum hotspot of logCC; minimum HS (logCC) (2108C)
HS-10C_MinRef Minimum ZH (2108C)
HS-10C_SigColdHS “Cold spots” of ZDR; area of HS , 20.2 (2108C)
HS-10C_SigColdHSLogCC Cold spots of logCC; area of HS (logCC) , 20.2 (2108C)
HS-20C_AveHS Average hotspot value (2208C)
HS-20C_Drcount14Ref40 Area of DR . 214 where ZH . 40 dBZ (2208C)
HS-20C_SigColdHS Cold spots of ZDR; area of HS , 20.2 (2208C)
HS-20C_SigColdHSRef40 Area of HS , 20.2 where ZH . 40 dBZ (2208C)
HS-30C_AveHS Average hotspot value (2308C)
HS-30C_AveHSLogCC Average hotspot value where logCC , 1.3 (2308C)
HS-30C_DR17count Area of DR . 217 (2308C)
HS-30C_DRAveRef50 Average DR where ZH . 50 dBZ (2308C)
HS-30C_Drcount14Ref40 Area of DR . 214 where ZH . 40 dBZ (2308C)
HS-30C_MaxHS Maximum hotspot value (2308C)
HS-30C_MaxHSLogCC Maximum hotspot of logCC; maximum HS (logCC) (2308C)
HS-30C_MinHS Minimum hotspot value (2308C)
HS-30C_MinHSLogCC Minimum hotspot of logCC; minimum HS (logCC) (2308C)
HS-40C_Drcount14Ref40 Area of DR . 214 where ZH . 40 dBZ (2408C)

TABLE 3. Hyperparameters used for training the two RF models.

Hyperparameter RF hail detection RF hail size

Maximum depth of individual trees 15 15
Minimum samples per leaf 1 2
Minimum samples per split 2 6
Number of estimators (trees) 500 200
Bootstrapping False True
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FIG. 4. Boxplots of different radar metrics prior to hailfall, ordered by hail size class. The whiskers indicate the
10th and 90th percentiles of the distribution, respectively.
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of eight metrics stratified by hailstorm classes, sampled from
40 to 10 min prior to the first hail report of the respective hail
class. This time window was selected to analyze early signals
for the respective hail size.

Interestingly, a feature for which we expected a clear signal
related to hail size, the total detected updraft area, increases
only marginally from small to significantly severe hail and
slightly more toward giant hail $ 10 cm (Fig. 4a). This result
is somewhat contradictory to recent studies which have em-
phasized the importance of updraft size for large hail growth,
by providing either more favorable hail growth trajectories or
higher liquid water content due to less entrainment (Kumjian
and Lombardo 2020; Peters et al. 2020; Gutierrez and Kumjian
2021). We note that our ZDR-based method may underestimate
total updraft size particularly in the presence of large hail due to
its intrinsic low ZDR at the S band. Additionally, sensitivity tests
conducted for one of the events revealed that the hotspot size is
rather sensitive to changes in the 2108C isothermal height (me-
dian hotspot size changed up to 10 km2 by shifting the 2108C
isothermal height 500 m downward or upward). In contrast, ag-
gregate metrics sampled within the detected hotspots remained
largely unaffected by moderate changes in isothermal height.

Moving to the upper-level reflectivity core, we observe a
stronger hail-size-related signal as shown by distributions of
the updraft area with ZH . 50 dBZ at the 2308C isotherm
(Fig. 4b). The upper-level reflectivity core seems particularly
well suited to detect giant hail. At an isotherm height of
2408C, only cells producing hail $ 6 cm have a 50-dBZ area
within the updraft that is significantly above zero with approx-
imately 10 km2 and cells with hail $ 10 cm have a median
50-dBZ area of 35 km2 (not shown). However, the interquar-
tile ranges still overlap largely between these categories. An-
other ZH-related variable, MESH (Fig. 4c), is the only metric
shown that is not sampled from within the updraft area, but
the whole storm. It aligns well with the reported hail size up
to the “large” category, while hail $ 6 cm is strongly underes-
timated, a finding in line with previous evaluations (Ortega
et al. 2009; Witt et al. 2018; Murillo and Homeyer 2019). Dif-
ferential azimuthal shear (Fig. 4d) is a storm intensity metric
indicating cell rotation and differs strongly between nonhail
and hail cells, but the increase levels off toward larger hail
sizes. This confirms that storm rotation is an important pre-
requisite for large hail growth, as well documented in the lit-
erature (e.g., Taszarek et al. 2017; Allen et al. 2019; Kumjian
and Lombardo 2020). Nevertheless, the statistical overlap of
azimuthal shear between the hail size classes limits its use as a
hail size nowcasting tool. Figures 4e and 4f show the minimum
rHV within the updraft at 2108 and 2308C, respectively. Again,
there is a significant overlap in the statistical distributions of this
variable between the hail size classes. At both levels, rHV

decreases with hail size, but at different rates. At 2108C, rHV

decreases most strongly in the lower end of the hail spectrum
and with little difference among hail sizes$ 6 cm. In contrast, at
2308C, there is only a slight decrease in rHV between the smaller
hail categories, but a sharp dip toward giant hail. We speculate
that this is caused by the stronger and taller updrafts that support
giant hail growth, with mixed-phase processes and hail growth
occurring at higher levels. A similar observation was made by

Witt et al. (2022) who showed a strong negative correlation be-
tween minimum rHV at the2308C isotherm height and hail sizes
above 12 cm and a weaker correlation at the 2108C isotherm
height. Examining this phenomenon with higher radar fre-
quencies could reveal larger statistical separations between the
hail size classes, as previous research shows that the rHV reduc-
tion in hail is generally more pronounced at the C and X bands
(Kaltenboeck and Ryzhkov 2013).

Last, we highlight two area-based metrics that we deem
promising as early signals of giant hail. In Fig. 4g, we show the
number of updraft grid points fulfilling the value combination
of DR . 214 dB and ZH . 50 dBZ at the 2108C isotherm
height. DR primarily depends on particle shape and phase
composition and has been shown to strongly increase with
hail size (Ryzhkov et al. 2014). We tested multiple thresholds
of DR and found 214 dB to distinguish most strongly be-
tween significantly severe hail and giant hail. This threshold
was combined with a requirement for ZH . 50 dBZ to ensure
that large meteorological scatterers were present at the same
location, because high DR can also be caused by nonmeteoro-
logical scatterers (Kilambi et al. 2018). Only cells that contain
giant hail have a median area . 0 meeting the combined DR–

ZH condition. The small area even for the giant hail category
(median of 3 km2) might imply that this metric is closely re-
lated to the actual area of hail of this magnitude rather than be-
ing an indirect proxy through storm intensity. In contrast, much
larger areas satisfy the condition rHV , 0.95 and ZH . 40 dBZ
at the2108C isotherm (Fig. 4h). This is likely because the thresh-
olds are less restrictive and areas with smaller hail and mixed-
phase processes are included. Still, there is a strong increase in
this area for significantly severe and giant hail cells. We attribute
this to two likely causes: The updraft area occupied by hail and
mixed-phase processes generally increases with hail diame-
ter, and/or rHV decreases downradial of hail due to nonuni-
form beamfilling, which is regularly observed in intense
storms (Ryzhkov 2007). We purposely selected 40 dBZ as
the threshold in this case as this reduced the interquartile
range for most hail categories.

In Fig. 5, we show the temporal evolutions of median and 25th
and 75th percentiles for the same eight metrics prior to and
shortly after the first hail report of a given size. These data have
to be examined with caution, as hail report timing errors may ob-
fuscate underlying time-dependent signals.

As seen before, the hotspot area does not diverge significantly
between the hail classes from 1 to 9 cm. Interestingly, the hotspot
area of giant hail cells differs most strongly from the smaller-sized
hail classes more than thirty minutes before the hail reports and
then decreases until being almost equal to the other classes
shortly before estimated hailfall. There is a similar decrease in
hotspot area in the significant severe hail class, although less pro-
nounced and with later onset (t 5 220 min). We speculate that
in both cases the decrease is caused by the low ZDR of large hail,
reducing the detected updraft area. Updraft rotation, estimated
by azimuthal shear in Fig. 5d, on the other hand, is stable over
time, with not only slight differences between the classes but also
large overlap of the distributions.

The upper-level reflectivity core (Fig. 5b) provides robust
differences between the hail classes, especially toward larger
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FIG. 5. Median time series of selected metrics relative to the first hail report of given size. The dotted lines corre-
spond to the 25th and 75th percentiles. Numbers next to the hail class definitions indicate the number of individual
storm cells contributing to the time series.
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hail. In contrast, MESH in Fig. 5c only shows minor differ-
ences between the two highest hail classes but performs well
for other categories. All MESH medians reach their maxi-
mum around 210 min , t , 25 min, increasing the confi-
dence that our assigned report time serves as a good estimate
of hailfall at the ground, as it takes some minutes for hail-
stones to descend to the surface.

The minimum rHV at 2108 and 2308C shown in Figs. 5e
and 5f indicates that hail growth and mixed-phase processes
in severe, significantly severe, and giant hail cells are ongoing
for an extended period as rHV is low (minimum rHV , 0.9 at
2108C isotherm height) already 30–45 min before the report
time, while the area of low rHV overlapping with high ZH at
the 2108C isotherm (Fig. 5h) is maximized at 10–20 min be-
fore the report time. We note that it is likely that the storms
already produce significant hail before t 5 0, as we take the
time of the first report exceeding a certain hail size threshold
as reference. Therefore, giant hail cells, for example, may
have been producing severe hail for a longer time before
reaching the giant hail class for the first time}which appears
likely given the long lifetime of supercells that are capable of
producing such large hail.

Our conclusion from this analysis is that no single metric
from our arsenal of potential hail (growth) indicators per-
forms well across the entire spectrum of hail sizes. We found
that some radar metrics discriminate well between hail/no
hailstorms, such as differential azimuthal shear. Other met-
rics, for example, MESH, discriminate well between hail up to
the significantly severe class but do not capture giant hail. Yet
other metrics, namely, minimum rHV in the upper part of the
updraft or area-based metrics using a ZH-rHV threshold,
showed the strongest signal at the upper end of the hail size
spectrum but were generally not suited for distinguishing be-
tween hail sizes, 5 cm.

Therefore, our analysis finds that a nonlinear modeling ap-
proach using a variety of input features is most promising for
hail size nowcasting as we illustrate below.

4. Hail nowcasting using the random forest

a. Feature importance

Before verifying model predictions, we assess the value of
individual model features (predictors) using the two feature
importance methods outlined in section 2f. A selection of the
10 most important features emerging from each method is
shown for the hail detection (Figs. 6a,b) and the hail size
model (Figs. 6c,d), respectively.

The two variants of feature importance agree on MESH as
the most important predictor for both hail detection and hail
size classification. While MESH is leading by far in hail detec-
tion, the next-ranking features follow MESH much more
closely in the hail size model. This reflects the decreasing
value of ZH}and indirectly MESH}once hailstone sizes en-
ter the Mie resonance regime and is in line with the results
from section 3. However, MESH is valuable for discerning be-
tween smaller-sized hail and therefore still ranks as the most
important feature in the hail size model. For the hail detection

model, differential azimuthal shear at 2108C isotherm height
ranks as the second most important feature, indicating the rel-
evance of a rotating updraft for hail development. Radar
proxies for storm rotation are also found in the top five most
important features of the hail size model but are slightly sur-
passed by polarimetric variables or combinations thereof.
One of these combination metrics featured prominently in
both hail detection and size classification is average DR where
ZH . 50 dBZ within the hotspot area at the height of the
2308C isotherm, underlining the potential of DR in hail de-
tection. We note that this variable also implicitly contains the
information about whether a storm cell can reach .50 dBZ at
2308C.

As expected, based on the evaluation in section 3, the total
size of the detected hotspot is not among the highest-ranking
features. Interestingly, PSS even increases when the total area
is randomly shuffled, showing that the model improves when
updraft size is not considered. Either other area-based metrics
such as the size of the reflectivity core in the updraft area
(HS-10C_AreaRef40) take up this role, or the ZDR hotspot
size is not a reliable proxy for the updraft size in the presence
of large hail.

b. Model results

First, we evaluate the lead time at which the nowcasting
model achieves the highest PSS compared to hail observations
in the test data. As we trained the model using equally
weighted lead times between 15 and 45 min, further investiga-
tions are necessary to find the optimal model lead time. To do
so, we calculate the PSS in dependence on the lead time, for
which we use a moving window of 5 min to increase the statis-
tical robustness of the PSS. We calculate PSS for the stacked
model as a whole and additionally for the hail size RF alone,
as the expected large number of “correct negatives”}no hail
predicted and none observed}may skew the PSS of the
stacked model. The resulting PSS curves as functions of lead
time (Fig. 7) show relatively stable PSS between 30- and
15-min lead time and a sharp drop in skill of the hail size
model for lead times . 32 min. As expected, the PSS of the
hail size RF alone is lower than the PSS of the combined
model, which includes the correct negatives without any hail.
Based on the combined inspection of both stacked model and
hail size model, we conclude that lead times of 15–20 min are
a sensible choice if applying the presented model for nowcast-
ing. The stability of PSS from 32- to 15-min lead times may re-
flect the error margins of the hail report times and shows the
challenge of correctly predicting the onset of large hail based
on the data available. It is worth noting that skillful lead times
could be considerably reduced in rapidly growing storms con-
sidering the typical 5-min lags between consecutive radar
scans and modeling studies suggesting large hail growth times
of only 10–15 min (Kumjian and Lombardo 2020; Kumjian
et al. 2021).

We then evaluate the hail classes predicted by the stacked
model on the test dataset against the observed hail sizes in a
contingency table and perform a similar evaluation using
MESH to put the new model in perspective to an existing hail
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size model (Fig. 8). For the RF nowcast model, we select only
lead times between 30 and 10 min prior to the hail report and
compare this to a “MESH nowcast” for the same lead times
and, additionally, to a “MESH analysis” in a time window of
610 min around the report time.

We note that the chosen time window of 20 min often yields
more than one hail size estimate for one observation since
multiple tracking time steps often fall into this period. This is
done deliberately because we assume that hailfall of any given
size is ongoing for at least some minutes. If MESH values fall
into the gaps that are left as buffers in the RF model (e.g.,
between 3.0 and 3.5 cm), they are rounded up or down to
the closest category. For the no-hail category, we utilized the

respective cell dataset containing only cells with no associated
hail reports throughout their lifetime (compare section 2e).
We used all tracking time steps from these cells for building
the contingency table; therefore, MESH nowcast and MESH
analysis share the same first column in Fig. 8.

An important consideration when comparing RF nowcasts
to MESH is that time steps without updraft detections could
not be used in the RF contingency table; the RF relies on up-
draft data and cannot handle missing values. This is a serious
limitation: 46% of the tracking time steps with subsequent
hail observations of any size were without updraft detection,
24% of the time steps prior to at least significantly severe hail,
and 22% of giant hail tracking time steps. In other words,

FIG. 6. (left) Permutation feature importance and (right) impurity importance for (top) the hail detection model
and (bottom) the hail size model. The feature importance is given as boxplots with whiskers marking the 10th and
90th percentiles of PSS decrease. The impurity importance shown is the average impurity decrease per variable, with
whiskers indicating the standard deviation. Reflectivity-based variables are in orange, azimuthal shear is in yellow,
and polarimetric variables are in light blue.
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successful updraft detections and assignments are increasingly
likely with increasing hail size, but far from always available.
As a result, the number of observations is significantly higher
in the MESH contingency tables.

The contingency table for the RF model (Fig. 8a) shows
reasonable agreement between observations and forecasts
among larger hail. The model often nowcasts giant hail accu-
rately, with the forecasted category being either matched or
only one class off. The hail/no-hail discrimination is also suc-
cessful in most cases (285 hits in Fig. 8a). Model skill is lowest
for the small hail class, which is often observed when the
next-higher class is predicted. The overall PSS is 0.44, but this
value is strongly influenced by the correct identification of
nonhailstorms. Considering only observations of hail $ 1.0 cm,
the PSS decreases to 0.19 but slightly increases to 0.25 for ob-
served hail sizes$ 3.5 cm.

The MESH contingency tables (Figs. 8b,c) show good
agreement around the severe hail class (3.5–5.5 cm) but reflect
MESH’s weakness to detect giant hail. There is also a sub-
stantial number of misclassifications between no hail and the
smallest hail category as MESH is not optimized for small hail

, 2.5 cm (Witt et al. 1998). Interestingly, the MESH nowcast
has slightly higher skill than the analysis, potentially because
of the delay between hail formation in the cloud and fallout at
the surface. The nowcast achieves an overall PSS of 0.41 that
decreases to 0.20 for hail observations $ 1.0 cm and to 0.03
for hail $ 3.5 cm.

c. Nowcasting example

After evaluating general model performance, we turn to
illustrative examples for nowcasting, aiming to answer the
questions: 1) How does the RF model perform in a real-world
nowcasting scenario of a severe hailstorm? 2) Under which
conditions does it fail? We try to address these questions by
applying the developed model to cells from the test dataset
and comparing the forecasted hail size class to hail reports
and maximum MESH within the storm cell area (Fig. 9). We
selected the five hailstorms accountable for hail . 10 cm for
which most hail reports were available and the overall
longest-tracked hailstorm, lasting almost 4 h and producing re-
ported hail up to 8 cm. Based on the RF model evaluation in
section 4b, we presumed a lead time of 20 min, and therefore,
there are no nowcasts available for the early cell lifetime.

One obvious takeaway from Fig. 9 is the challenge of com-
paring radar data and model results to hail reports, as the re-
ports have large gaps when MESH and RF nowcasts still
suggest hailfall. However, if there are hail reports available,
the RF model generally also indicates hail. RF nowcasts often
move in concert with MESH, although with a time delay cor-
responding to the nowcast lead time, particularly evident by
the temporal evolution of MESH and RF nowcasts in Fig. 9d
between 0130 and 0200 UTC. Rapid intensification or decay
of hailstorms is therefore rarely detected in time and some-
times seems to require a signal in MESH first (e.g., the weak-
ening of KSHV20200425 in Fig. 9b after 0330 UTC). Still, the
relationship between RF nowcasts and MESH is clearly non-
linear as shown by instances when significant increases or de-
creases in MESH prompt no change in the RF forecasted hail
class, seen, for example, in the KTWX20150910 case (Fig. 9e).

FIG. 7. Five-minute running mean of PSS in dependence on
lead time.

FIG. 8. Contingency table of the (a) RF model with lead times from 10 to 30 min, (b) MESH with lead times from 10 to 30 min, and
(c) MESH from 10 min before to 10 min after hail report time. The number in each box indicates the amount of observation/forecast
pairs falling into this bin, and the background colors are log scaled based on this number.
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Despite no information from previous time steps being
used in the RF nowcast, predictions are surprisingly stable
over time and rarely change more than one class from one
time step to the next apart from early cell lifetime. Further-
more, in all events except KFWS20210428 (Fig. 9a), no up-
draft assignments are missing during critical periods of the
thunderstorm lifetime, i.e., when large hail can be expected.

We manually inspected radar data from KFWS20210428 to
explore the reasons for missed updraft assignments and found
that there was no pronounced ZDR column over large periods
of the cell’s lifetime, in stark contrast to obvious markers of
storm strength such as very high ZH . 65 dBZ at the height
of the 2108C isotherm (another cell on the same day pro-
duced a new Texas hail size record of 16.3 cm). During peak
intensity, approximately from 0030 to 0130 UTC, a small ZDR

column could be found, but was partly obscured by strong dif-
ferential attenuation, most likely from the presence of large
hail.

In another case, KDFX20200412 in Fig. 9d, the RF model
seemingly does not predict the decay of the hailstorm. Signifi-
cant severe hail and even giant hail are still predicted after
0130 UTC when MESH is already ,3.5 cm, and no-hail re-
ports are available. Upon inspection of the radar data from
this day, we found that the hailstorm persisted in its distinct
supercell appearance after 0130 UTC but moved directly to-
ward the radar site and entered the inner 20-km radius
around the radar at 0140 UTC, subsequently reducing MESH
due to missing upper-level samples. Despite the precipitation
core being largely located within the cone of silence and
MESH , 1 cm, nowcasts generated based on the 0200 UTC
radar scan still indicate hail potential, apparently only based
on data from the updraft just to the southwest of the cone of
silence and in contrast to low MESH.

There are also a few instances of underforecasting, for ex-
ample, for KSHV20200425 in Fig. 9b. This is one of the rare
cases when the RF model predicts small hail , 3 cm, while
MESH indicates larger hail between 3.5 and 5.5 cm at the
time of model initiation. We also revisited this case and found
that this supercell storm was split up into two cells by the
storm-tracking system at 0220 UTC, complicating updraft de-
tection and assignment, the latter of which even failed for the
0226 UTC time step, resulting in the missing nowcast (white
box in Fig. 9b) for 20 min later at 0246 UTC. Storm tracking
resumes to correctly identify the cell at 0238 UTC, which is
shortly before the peak hail activity at 0245 UTC, when multi-
ple hail reports were submitted and pronounced differential
attenuation is visible in the ZDR field. This case shows not
only the need for highly reliable storm tracking and updraft
assignment algorithms in our feature-based approach but also
the added value of the updraft information.

5. Conclusions and outlook

To study the updraft characteristics of storms producing
differently sized hail and to find radar metrics differing among
them, we analyzed a large sample of hailstorms in the Great
Plains region of the United States based on a novel updraft
detection system and ground observations of hail.

We found statistical differences between the hail size clas-
ses for several radar variables: Azimuthal shear allowed for
the discrimination between hail/no-hail cells, MESH per-
formed well for hail , 9 cm, and upper-level ZH and rHV in
the updraft showed strong giant hail signals. However, no sin-
gle variable was suitable for distinguishing between all hail
sizes. Consequently, we aimed to combine a large number of

FIG. 9. Six example nowcasts of the RF model compared to hail
observations (OBS) and MESH. OBS on the first line and time-
aligned model (RF) 20-min forecasts of hail size on the second line,
and colors indicate the hail size category. The box width is set to
5 min. Background shading of the MESH curve corresponds to the
hail class color coding. Event names are composed of NEXRAD
radar site ID followed by year, month, and day.
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radar metrics in a feature-based hail nowcasting model using a
random forest machine learning approach, trained on ground ob-
servations of hail. The model feature importance showed that
MESH was the single most valuable predictor, followed by varia-
bles extracted from the updraft regions such as storm rotation
(azimuthal shear) for identifying hail-producing storms and rHV-
based variables for assessing hail size. We evaluated the model
and found that it showed promising performance for detecting
very large and giant hail and for discerning cells without hail, but
encountered difficulties discriminating between hail sizes below
5.5 cm. The skill of model forecasts is highest for lead times
around 20 min, but different nowcasting examples showed that
sudden temporal changes in storm intensity are often not accu-
rately identified. Additionally, in the current model version, no
nowcasts can be generated if no updraft has been detected and
assigned to the storm cell, which can be the case if there is no
pronounced ZDR column or if the storm tracking provides erro-
neous output.

Based on the results of this study, we believe in the poten-
tial of the feature-based approach as it combines information
about overall storm strength with radar data extracted from
the updraft area of the storm. However, there are various as-
pects that require improvement before considering an opera-
tional use. First, storm tracking and updraft assignment are
critical parts of the nowcasting system that need further fine-
tuning in order to work reliably for all modes of severe con-
vection, from small, isolated cells to large multicell clusters
and linear convective systems. Second, we used hail report
data from the Storm Prediction Center (SPC) database which
comes with known limitations regarding the accuracy of hail
time and sizing. While we attempted to enhance data quality
by time-correcting hail reports and using broad hail size clas-
ses, the remaining uncertainties may still impede more time-
specific nowcasts. Third, we focused on the detection of very
large hail, which is reflected in the choice of events. We need
to extend the available training dataset and include more
small hail events for better model performance in classifying
hail, 5.5 cm.

The ZDR-based updraft detection has been one of the core
elements of this study but is also its main physical limitation.
Once large hail is present in the updraft, the ZDR column can
be (partly) obscured by the low ZDR of these hailstones, yield-
ing updraft detections that are significantly smaller than the
actual convective updraft. In extreme cases, no updraft assign-
ment is possible when giant hail is falling. In the future, we
would like to experiment with other approaches so that hail
size nowcasts will not depend on detections of ZDR columns
alone}either by utilizing ML approaches that handle missing
data in their input or by training another RF using only storm-
wide data. A comparison with the nowcasting model from this
study would show whether the additional steps to identify the up-
draft and extract data there from are necessary to derive a valu-
able hail size model.

In the next model version, we would also like to include ad-
ditional radar variables such as specific differential phase
KDP, which could aid in the discrimination of small hail sizes
(e.g., Kumjian et al. 2019; Homeyer et al. 2023) and storm top
divergence as another updraft strength proxy. Adding other
data sources such as lightning data could also be considered,
as lightning jumps have been shown to precede storm intensi-
fication and hailfall (Nisi et al. 2016; Farnell et al. 2018).

We are also interested in investigating the model perfor-
mance on other datasets, for example, on C-band data and in
complex terrain. Since our model has been trained solely on
S-band data from the Great Plains, we expect that model per-
formance will deteriorate in regions typically subject to differ-
ent synoptic and microphysical conditions and for other
weather radar frequency bands with different backscattering
behavior, particularly when encountering large hail. However,
the large dataset required for training ML models}both ra-
dar data and hail observations}is an obstacle for extending
our methods to other domains, as, for example, high-quality
long-term polarimetric radar data are often not freely avail-
able outside of the United States.

Last, we note that there are other scientific questions that
would be interesting to address with our dataset, e.g., the dis-
crimination between tornadic and nontornadic supercells
(compare Loeffler et al. 2020) or the assimilation of detected
updrafts in NWP (Carlin et al. 2017). Furthermore, the hot-
spot technique could be extended to find anomalies of other
polarimetric variables such as rHV or KDP and explore their
role in hail growth.
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APPENDIX A

Tables of All Events and Radar Variables

First, Table A1 lists all events with target time periods
and the NEXRAD sites in use.

Second, Table A2 details all radar variables tested in this
study.

TABLE A1. Full event list of hail days used in this study.

Event ID Radar ID Radar location Time

KICT20130723 KICT Wichita, Kansas 2200–0400 UTC 23 Jul 2013
KOAX20140603 KOAX Omaha, Nebraska 1800–0300 UTC 3 Jun 2014
KSJT20140612 KSJT San Angelo, Texas 2000–0300 UTC 12 Jun 2014
KSGF20150324 KSGF Springfield, Missouri 2100–0300 UTC 24 Mar 2015
KINX20150325 KINX Tulsa, Oklahoma 1900–0300 UTC 25 Mar 2015
KLZK20150419 KLZK Little Rock, Arkansas 2100–0300 UTC 19 Apr 2015
KDYX20150426 KDYX Dyess AFB, Texas 0000–0300 UTC 27 Apr 2015
KUDX20150619 KUDX Rapid City, South Dakota 1900–0600 UTC 19 Jun 2015
KDMX20150624 KDMX Des Moines, Iowa 2200–0500 UTC 24 Jun 2015
KARX20150713 KARX La Crosse, Wisconsin 1900–0300 UTC 13 Jul 2015
KABR20150717 KABR Aberdeen, South Dakota 2000–0300 UTC 17 Jul 2015
KTWX20150910 KTWX Topeka, Kansas 2200–0400 UTC 10 Sep 2015
KFWS20160324 KFWS Fort Worth, Texas 0000–0600 UTC 24 Mar 2016
KFWS20160411 KFWS Fort Worth, Texas 2000–0200 UTC 11 Apr 2016
KEWX20160413 KEWX Austin, Texas 0100–0600 UTC 13 Apr 2016
KEWX20160425 KEWX Austin, Texas 2100–0300 UTC 25 Apr 2016
KTWX20160426 KTWX Topeka, Kansas 1900–0000 UTC 26 Apr 2016
KEAX20160426 KEAX Kansas City, Missouri 1100–1600 UTC 26 Apr 2016
KVNX20160509 KVNX Vance AFB, Oklahoma 1800–0300 UTC 9 May 2016
KAMA20160516 KAMA Amarillo, Texas 2300–0600 UTC 16 May 2016
KICT20160526 KICT Wichita, Kansas 1700–0200 UTC 26 May 2016
KEAX20160526 KEAX Kansas City, Missouri 1300–2100 UTC 26 May 2016
KICT20160615 KICT Wichita, Kansas 2100–0500 UTC 15 Jun 2016
KGLD20160707 KGLD Goodland, Kansas 2300–0600 UTC 7 Jul 2016
KPUX20160708 KPUX Pueblo, Colorado 0100–0800 UTC 8 Jul 2016
KPUX20160729 KPUX Pueblo, Colorado 0200–0800 UTC 29 Jul 2016
KSHV20170121 KSHV Shreveport, Louisiana 2100–0400 UTC 21 Jan 2017
KDVN20170228 KDVN Davenport, Louisiana 2000–0400 UTC 28 Feb 2017
KEAX20170301 KEAX Kansas City, Missouri 0100–0700 UTC 1 Mar 2017
KEAX20170306 KEAX Kansas City, Missouri 2300–0600 UTC 6 Mar 2017
KSGF20170309 KSGF Springfield, Missouri 2000–0300 UTC 9 Mar 2017
KFWS20170326 KFWS Fort Worth, Texas 2100–0500 UTC 26 Mar 2017
KINX20170404 KINX Tulsa, Oklahoma 2000–0200 UTC 4 Apr 2017
KOAX20170415 KOAX Omaha, Nebraska 2000–0400 UTC 15 Apr 2017
KAMA20170416 KAMA Amarillo, Texas 2100–0500 UTC 16 Apr 2017
KAMA20170515 KAMA Amarillo, Texas 2200–0300 UTC 15 May 2017
KDDC20170516 KDDC Dodge City, Kansas 1900–0300 UTC 16 May 2017
KEAX20170518 KEAX Kansas City, Missouri 2300–0500 UTC 18 May 2017
KTWX20170518 KTWX Topeka, Kansas 2000–0300 UTC 18 May 2017
KINX20170527 KINX Tulsa, Oklahoma 2200–0600 UTC 27 May 2017
KMPX20170611 KMPX Minneapolis, Minnesota 1200–1600 UTC 11 Jun 2017
KCYS20170612 KCYS Cheyenne, Wyoming 1900–0200 UTC 12 Jun 2017
KARX20170616 KARX La Crosse, Wisconsin 2100–0400 UTC 16 Jun 2017
KDDC20170617 KDDC Dodge City, Kansas 2200–0500 UTC 17 Jun 2017
KOAX20170629 KOAX Omaha, Nebraska 2200–0600 UTC 29 Jun 2017
KMVX20170704 KMVX Grand Forks, Dakota 2300–0600 UTC 4 Jul 2017
KMPX20170710 KMPX Minneapolis, Minnesota 0000–0500 UTC 10 Jul 2017
KUDX20170814 KUDX Rapid City, South Dakota 2000–0400 UTC 14 Aug 2017
KDDC20171006 KDDC Dodge City, Kansas 1900–0200 UTC 6 Oct 2017
KGRK20180318 KGRK Granger, Texas 2000–0000 UTC 18 Mar 2018
KFWS20180406 KFWS Fort Worth, Texas 2100–0300 UTC 6 Apr 2018
KFWS20180413 KFWS Fort Worth, Texas 1900–0000 UTC 13 Apr 2018
KEAX20180413 KEAX Kansas City, Missouri 2000–0300 UTC 13 Apr 2018
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TABLE A1. (Continued)

Event ID Radar ID Radar location Time

KFWS20180421 KFWS Fort Worth, Texas 2000–0300 UTC 21 Apr 2018
KICT20180514 KICT Wichita, Kansas 1900–0300 UTC 14 May 2018
KTWX20180514 KTWX Topeka, Kansas 2100–0300 UTC 15 May 2018
KDDC20180529 KDDC Dodge City, Kansas 2000–0200 UTC 29 May 2018
KPUX20180613 KPUX Pueblo, Colorado 0500–0900 UTC 13 Jun 2018
KFTG20180619 KFTG Denver, Colorado 1700–0000 UTC 19 Jun 2018
KPUX20180806 KPUX Pueblo, Colorado 1900–0300 UTC 6 Aug 2018
KAMA20190322 KAMA Amarillo, Texas 2100–0400 UTC 22 Mar 2019
KSRX20190324 KSRX Fort Smith, Arkansas 2100–0200 UTC 24 Mar 2019
KFWS20190324 KFWS Fort Worth, Texas 2100–0400 UTC 24 Mar 2019
KAMA20190507 KAMA Amarillo, Texas 1700–0000 UTC 7 May 2019
KEAX20190601 KEAX Kansas City, Missouri 1900–0000 UTC 1 Jun 2019
KDYX20190620 KDYX Dyess AFB, Texas 0000–0300 UTC 20 Jun 2019
KFTG20190704 KFTG Denver, Colorado 2000–0300 UTC 4 Jul 2019
KMPX20190726 KMPX Minneapolis, Minnesota 2100–0400 UTC 26 Jul 2019
KMPX20190805 KMPX Minneapolis, Minnesota 1600–0000 UTC 5 Aug 2019
KEAX20190927 KEAX Kansas City, Missouri 2200–0400 UTC 27 Sep 2019
KDVN20200407 KDVN Davenport, Iowa 2200–0600 UTC 7 Apr 2020
KTWX20200411 KTWX Topeka, Kansas 2200–0700 UTC 11 Apr 2020
KDFX20200412 KDFX Laughlin, Texas 0000–0300 UTC 12 Apr 2020
KSHV20200424 KSHV Shreveport, Louisiana 2200–0500 UTC 24 Apr 2020
KFWS20200428 KFWS Fort Worth, Texas 0600–1200 UTC 28 Apr 2020
KINX20200428 KINX Tulsa, Oklahoma 2100–0300 UTC 28 Apr 2020
KTWX20200504 KTWX Topeka, Kansas 1000–1600 UTC 4 May 2020
KFDR20200507 KFDR Fredrick, Oklahoma 2200–0400 UTC 7 May 2020
KFDR20200522 KFDR Fredrick, Oklahoma 2100–0500 UTC 22 May 2020
KEWX20200527 KEWX Austin, Texas 2300–0500 UTC 27 May 2020
KUDX20200710 KUDX Rapid City, South Dakota 2100–0000 UTC 10 Jul 2020
KTWX20200711 KTWX Topeka, Kansas 1700–2200 UTC 11 Jul 2020
KUDX20200808 KUDX Rapid City, South Dakota 2000–0200 UTC 8 Aug 2020
KSGF20210317 KSGF Springfield, Missouri 2100–0300 UTC 17 Mar 2021
KFWS20210324 KFWS Fort Worth, Texas 2100–0500 UTC 24 Mar 2021
KFWS20210409 KFWS Fort Worth, Texas 2200–0400 UTC 9 Apr 2021
KGRK20210415 KGRK Granger, Texas 1900–0000 UTC 15 Apr 2021
KFDR20210423 KFDR Fredrick, Oklahoma 2100–0300 UTC 23 Apr 2021
KFWS20210428 KFWS Fort Worth, Texas 2300–0400 UTC 28 Apr 2021
KEWX20210503 KEWX Austin, Texas 2300–0500 UTC 3 May 2021
KFWS20210503 KFWS Fort Worth, Texas 2000–0400 UTC 3 May 2021
KFTG20210613 KFTG Denver, Colorado 2100–0300 UTC 13 Jun 2021
KMPX20210617 KMPX Minneapolis, Minnesota 2200–0300 UTC 17 Jun 2021
KDMX20210619 KDMX Des Moines, Iowa 0200–0700 UTC 19 Jun 2021
KLZK20220411 KLZK Little Rock, Arkansas 2200–0600 UTC 11 Apr 2022
KSRX20220411 KSRX Fort Smith, Arkansas 2000–0400 UTC 11 Apr 2022
KGRK20220412 KGRK Granger, Texas 2100–0400 UTC 12 Apr 2022
KMPX20220412 KMPX Minneapolis, Minnesota 2300–0400 UTC 12 Apr 2022
KMPX20220509 KMPX Minneapolis, Minnesota 1200–1600 UTC 9 May 2022
KFDR20220513 KFDR Fredrick, Oklahoma 2200–0300 UTC 13 May 2022
KSGF20220514 KSGF Springfield, Missouri 1900–0000 UTC 14 May 2022
KMPX20220519 KMPX Minneapolis, Minnesota 1900–0000 UTC 19 May 2022
KICT20220531 KICT Wichita, Kansas 2000–0400 UTC 31 May 2022
KDDC20220607 KDDC Dodge City, Kansas 0000–0400 UTC 7 Jun 2022
KUDX20220612 KUDX Rapid City, South Dakota 2300–0300 UTC 12 Jun 2022
KTLX20230227 KTLX Oklahoma City, Oklahoma 0000–0600 UTC 27 Feb 2023
KFWS20230316 KFWS Fort Worth, Texas 1900–0300 UTC 16 Mar 2023
KDMX20230331 KDMX Des Moines, Iowa 1600–2300 UTC 31 Mar 2023
KDMX20230404 KDMX Des Moines, Iowa 2100–0400 UTC 4 Apr 2023
KSGF20230415 KSGF Springfield, Missouri 1800–0000 UTC 15 Apr 2023
KTWX20230419 KTWX Topeka, Kansas 2200–0600 UTC 19 Apr 2023
KOAX20230419 KOAX Omaha, Nebraska 2100–0400 UTC 19 Apr 2023
KTLX20230419 KTLX Oklahoma City, Oklahoma 2100–0200 UTC 19 Apr 2023
KGRK20230428 KGRK Granger, Texas 1900–0200 UTC 28 Apr 2023
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TABLE A2. All radar metrics used for the evaluation of hail (precursor) signals. All variables extracted from the detected updraft
begin with HS. Each of these variables is calculated at isotherm heights of 2108, 2208, 2308, and 2408C, which we indicate by “x8C”
Hotspot values always refer to hotspots of ZDR unless stated otherwise.

Name Description

MCIT-HS-xC_Dist Distance from MCIT cell core to updraft core
MCIT-MESH Maximum expected size of hail (Witt et al. 1998); maximum value within the MCIT

storm cell
MCIT-MaxLog10Vil Maximum log (VIL) within the MCIT storm cell
MCIT-size Total size of MCIT cell
HS-xC_AreaRef40 Area ZH . 40 dBZ (x8C)
HS-xC_AreaRef50 Area ZH . 50 dBZ (x8C)
HS-xC_AveAZS Average azimuthal shear (x8C)
HS-xC_AveDR Average DR (x8C)
HS-xC_AveHS Average hotspot value (x8C)
HS-xC_AveHSLogCC Average hotspot value of logCC; average HS (logCC) (x8C)
HS-xC_AveLogCC Average logCC (x8C)
HS-xC_AveRef Average ZH (x8C)
HS-xC_AveRho Average rHV (x8C)
HS-xC_AveZdr Average ZDR (x8C)
HS-xC_CellArea Hotspot area (x8C)
HS-xC_DR17count Area of DR . 217 (x8C)
HS-xC_DR17percent Area fraction of DR . 217 within the hotspot (x8C)
HS-xC_DRAveRef40 Average DR where ZH . 50 dBZ (x8C)
HS-xC_DRAveRef50 Average DR where ZH . 50 dBZ (x8C)
HS-xC_DRcount14Ref40 Area of DR . 214 where ZH . 40 dBZ (x8C)
HS-xC_DRcount14Ref50 Area of DR . 214 where ZH . 50 dBZ (x8C)
HS-xC_DRcount17Ref40 Area of DR . 217 where ZH . 40 dBZ (x8C)
HS-xC_DRcount17Ref50 Area of DR . 217 where ZH . 50 dBZ (x8C)
HS-xC_DRcount20Ref40 Area of DR . 220 where ZH . 40 dBZ (x8C)
HS-xC_DRcount20Ref50 Area of DR . 220 where ZH . 50 dBZ (x8C)
HS-xC_DiffAZS Differential azimuthal shear; minimum azimuthal shear subtracted from maximum

azimuthal shear (x8C)
HS-xC_DilArea Dilated hotspot area; hotspot area dilated by 3 pixels in each direction (3 km)
HS-xC_LogCCRef40 Average logCC where ZH . 40 dBZ (x8C)
HS-xC_LogCCRef50 Average logCC where ZH . 50 dBZ (x8C)
HS-xC_MaxAZS Maximum azimuthal shear (x8C)
HS-xC_MaxDR Maximum DR (x8C)
HS-xC_MaxHS Maximum hotspot value (x8C)
HS-xC_MaxHSLogCC Maximum hotspot value of logCC; maximum HS (logCC) (x8C)
HS-xC_MaxLogCC Maximum logCC (x8C)
HS-xC_MaxRef Maximum ZH (x8C)
HS-xC_MaxRho Maximum rHV (x8C)
HS-xC_MaxZdr Maximum ZDR (x8C)
HS-xC_MinAZS Minimum azimuthal shear (x8C)
HS-xC_MinDR Minimum DR (x8C)
HS-xC_MinHS Minimum hotspot value (x8C)
HS-xC_MinHSLogCC Minimum hotspot value of logCC; minimum HS (logCC) (x8C)
HS-xC_MinLogCC Minimum logCC (x8C)
HS-xC_MinRef Minimum ZH (x8C)
HS-xC_MinRho Minimum rHV (x8C)
HS-xC_MinZdr Minimum ZDR (x8C)
HS-xC_PercentNegHSLogCC Area fraction of HS (logCC) , 0 (x8C)
HS-xC_STDAZS Standard deviation of azimuthal shear (x8C)
HS-xC_STDDR Standard deviation of DR (x8C)
HS-xC_STDHS Standard deviation of hotspot value (x8C)
HS-xC_STDHSLogCC Standard deviation of HS (logCC) (x8C)
HS-xC_STDLogCC Standard deviation of logCC (x8C)
HS-xC_STDRef Standard deviation of ZH (x8C)
HS-xC_STDRho Standard deviation of rHV (x8C)
HS-xC_STDZdr Standard deviation of ZDR (x8C)
HS-xC_SigColdHS “Cold spots of ZDR”; area of HS (ZDR) , 20.2 (x8C)
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APPENDIX B

Algorithm for Assigning Updraft Detections to
MCIT Cells

1) Sort MCIT cells and updraft objects by size in descending
order.

2) Beginning with the largest MCIT cell, go through the list
of sorted updraft objects and assign the first updraft that
overlaps the MCIT cell and is within a cell-size-dependent
distance of the MCIT center location of the previous time
step. If no previous time step is available, take the current
location. The rationale for taking the previous cell location
is that updrafts are usually found trailing the precipitation
maximum and the maximum VIL of the previous time step
is therefore closer to the current updraft location, given the
data are available at a common 5-min scan interval. The
maximum allowed distance is given by max{10 (km), [cell
area (km2)]/}, the latter being the radius of a circle with the
same area as the storm cell. Once an updraft is assigned, it is
removed from the list of available updraft objects.

3) For the same MCIT cell, continue through the list of up-
draft objects. If there is another overlap, add the updraft
object to the cell if the center of the updraft is within 12 km
of the first assigned updraft. This is to avoid adding updrafts
on different sides of the cell. Again, if an updraft is assigned,
it is removed from the list of available updrafts.

4) Continue with the next-largest MCIT cell and repeat steps
2 and 3.

5) After the first loop going through all MCIT cells, there is
a second, final pass looping through MCIT cells that have
no attached updraft yet. We now assign any remaining up-
draft object to an MCIT cell which overlaps it.

6) Updrafts that have not been assigned to MCIT cells are
discarded.
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