BAMS

In Box
Cb-WoFS: Migrating the Warn-on-Forecast
System to the Cloud
Joshua J. Martin,®> Adam J. Clark,® Nusrat Yussouf,2®< Louis Wicker,” Pamela Heinselman,®
Kent Knopfmeier,>® Brian C. Matilla,2® Patrick C. Burke,” and Salar Adili
KEYWORDS: ABSTRACT: This article provides a brief, technical narrative of the WoFS journey to a cloud-based
Numerical weather high-performance computing (HPC) system, including some of the technological challenges en-
prediction/ countered and solutions found. Also, discussed are a few new components that are in development
forecasting; for cloud-based Warn-on-Forecast System (cb-WoFS), such as the cloud infrastructure project for
Mesoscale models; managing resources, as well as a new web application that manages cb-WoFS runs. An important
Optimization initial step in our cloud journey is containerizing all of the compiled applications, such as WRF, GSI,

and EnKF and their dependencies like netCDF and MPI. With these applications compiled within
an Apptainer container, WoFS can run on any local or cloud-based HPC cluster that supports
MPI. Furthermore, an additional software layer was developed that creates and manages cloud
vendor resources. This layer, which is referred to as the WoFS framework, contains the workflow
required to run cb-WoFsS, as well as management for other aspects of cb-WoFS (including but not
limited to creation of HPC pools in the end-to-end workflow, runtime notifications, and database
management). This additional layer was developed to separate the WoFS business logic from
vendor-specific API calls. The WoFS framework exposes features through its service library, which
is then referenced by the newly developed ch-WoFS web application and other cloud applications.
This makes WoFS a complete end-to-end cloud-based application, where an administrator can
launch a model run, manage resources, and view output all within a single web app.

DOI: 10.1175/BAMS-D-23-0296.1
Corresponding author: Joshua J. Martin, joshua.martin@noaa.gov
Manuscript received 20 November 2023, in final form 8 August 2024, accepted 29 August 2024

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse
of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

AMERICAN METEOROLOGICAL SOCIETY BAMS Brought to you by NOAA Lihl'm‘)‘q FrIBIECEnﬁL&C%% 6(»\\%11%@2()4/()1/25 02:41 PM UTC

http://doi.org/10.1175/BAMS-D-23-0296.1
mailto:joshua.martin@noaa.gov
http://www.ametsoc.org/PUBSReuseLicenses

AFFILIATIONS: @ Cooperative Institute for Severe and High-Impact Weather Research and Operations,
University of Oklahoma, Norman, Oklahoma; ® NOAA/OAR/National Severe Storms Laboratory,
Norman, Oklahoma; < School of Meteorology, University of Oklahoma, Norman, Oklahoma; ¢ Microsoft
Corporation, Redmond, Washington

1. Introduction

The NOAA National Severe Storms Laboratory (NSSL) started the Warn-on-Forecast research
program in 2009 with the goal of dramatically increasing lead times for hazardous convec-
tive weather within the watch to warning time frame (i.e., 0—6 h). By using a rapidly updat-
ing, storm-scale numerical weather prediction (NWP) ensemble modeling system to provide
probabilistic predictions, forecasters could potentially shift from a warn-on-detection para-
digm, which bases warnings on observations, to a warn-on-forecast paradigm that combines
observations and NWP guidance. Through a robust research program at NSSL and its partner
institutions over the past 15 years, this vision is coming to fruition. NSSL has developed a
mature prototype known as the Warn-on-Forecast System (WoFS). WoFS is an on-demand,
ensemble data assimilation (DA) and prediction system with 3-km grid spacing, which pro-
vides probabilistic storm-based guidance at 0—6-h lead times with output available at 5-min
intervals. The current WoFS prototype is derived from version 3.9 of the Weather Research
and Forecasting (WRF) Model, with a 900 km x 900 km movable domain. The DA analysis
ensemble has 36 members which are updated every 15 min by assimilating surface, radar,
and satellite observations using the ensemble Kalman filter (EnKF) algorithm within NOAA’s
Community Gridpoint Statistical Interpolation analysis system (GSI) software package.
A diagram of this workflow can be seen in Fig. 1.

The basic concept of operations for WoFS is that when an area of potential hazardous
weather risk is identified, a WoFS domain is centered over that region. Initial and boundary
conditions are obtained from the current operational High-Resolution Rapid Refresh (HRRR;
Dowell et al. 2022) system. Ideally, the ensemble state is first “spun-up” for 2 h preceding con-
vective initiation. After ensemble spinup, forecasts are initialized from the first 18 ensemble
members of the DA system every 30 min; forecasts at the top (bottom) of the hour integrate
out to 6h (3 h). The WoFS typically runs for 12-15 h per event. Forecasts are available on a
modern web viewer 25-30 min after the analysis time. For more information on WoFS, includ-
ing configuration details, postprocessing, visualization, and verification approaches, as well
as user-focused research, see Heinselman et al. (2024).

Since WoFS is designed to focus on high-impact weather prediction associated with
convective hazards, there may be periods when the system is not needed. Operational
NWP centers are often designed to allocate computational resources for all operational
prediction systems to run on a daily basis. Running WoFS on traditional high-performance
computing (HPC) would require setting aside portions of the HPC system that could remain
idle for long periods of time, wasting valuable resources. Furthermore, because WoFS also
generates a large suite of probabilistic output fields at high temporal resolution every half
hour, a combination of HPC for the ensemble prediction system and a tightly integrated
postprocessing and display system is required for rapid dissemination of the output. As a
result, WoFS has been developed as an on-demand system hosted on a cloud-based plat-
form that can provide both the HPC and web services needed for timely use. The associated

AMERICAN METEOROLOGICAL SOCIETY BAMS Brought to you by NOAA Lihrm‘yqFrﬁgtﬁc%gc;%s%% 6(»\\%11%@(3()/1/()1/25 02:41 PM UTC

GOES-16 Radar Surface
Cloud Water/Ice Path MRMS Reflectivity NCEP prepbufr
Clear Sky Radiances MRMS QC’d Level-ll Velocity OK Mesonet

WoFS WoFS WoFS WoFS WoFS
Analysis Analysis Analysis Analysis Analysis Analysis Analysis Analysis
36 members 36 members 36 members 36 members 36 members 36 members 36 members 36 members

WoFS WoFS WoFS WoFS WoFS

WOFS Initial Conditi

1400 utc 1-hour forecast from
HRRR-DAS valid at 1500 utc

WoFS Boundary Conditi

Forecast
18 members

Forecasts
5 minute output

Post
Processing

>200 Products

Forecast
18 members

3 Hour

Forecasts
5 minute output

Post
Processing

>200 Products

Forecast
18 members

6 Hour

Forecasts
5 minute output

Post
Processing
>200 Products

Forecast
18 members

Processing

>200 Products

Forecast
18 members

6 Hour

Forecasts
5 minute output

Post
Processing

>200 Producis

1200 utc HRRR Forecast +
0600 utc GEFS perturbations

Fic. 1. WoFS workflow diagram (Heinselman et al. 2024). WoFS analysis begins at T + 5min, with forecasts beginning at T+ 15min
and postprocessing finishing by T+ 30 min (T + 15min) for 6-h (3-h) forecasts.

pay-as-you-go pricing model offers significant benefits to a system like WoFS, with reduced
overall cost and access to the latest hardware advancements (see Table A1 in the appendix
for definitions to common cloud computing terms).

2. NWP in the cloud

A recently published report estimated significant cost savings with running the Icosahedral
Nonhydrostatic (ICON) weather model in the cloud rather than on-premise (Prill and Eser
2022). The report estimated that running ICON twice a day for a full year would cost less
than $50,000. This was a maximum rough estimate that does not take into account the de-
creasing cost of services seen in the cloud computing market as a result of continued growth.
In contrast, the average hardware cost to run national or regional models for 1year is over
$1 million, with the additional cost of operations and management exceeding $200,000.
The estimates do not include the costs associated with downtime, hacker attacks, server
maintenance, or the costs of system replacement which typically need to be updated every
5years (Prill and Eser 2022). The cost savings associated with WoFS would be even greater
because it is not needed on a daily basis. Other studies support the use of cloud computing
to reduce HPC costs for NWP (Siuta et al. 2016; Powers et al. 2021; Celeski 2020; Freeman
2020). Chui et al. (2019) discussed how to further increase the cost efficiency on the cloud for
NWP by using preemptible resources and file compression. In this article, we will discuss the
system that NSSL built on Microsoft Azure that includes many of these technologies, includ-
ing preemptive node usage, summary files with compression, and other storage cost savings.

! The original on-premise system was a Cray XC-30,
with each node containing 24 cores. We utilized
36 nodes for cycling, 54 nodes for forecasts,
and several 120-core Intel workstations for
postprocessing.

3. WoFS in the cloud

Through 2021, WoFS was run on NSSL’s in-house HPC system.!
In early 2020, NSSL began exploring the cloud and evaluated
the differences between Amazon Web Services (AWS) and Azure

AMERICAN METEOROLOGICAL SOCIETY BAMS cro

Brought to you by NOAA Librzu‘yq ,‘nautﬁe%gc;&e%% ﬂ)ox\ﬁﬂ)?dgﬂ)ﬁr/()l/% 02:41 PM UTC

by testing its NWP applications on the vendor platforms. After extensive testing, Microsoft
Azure was selected as the cloud provider that best met NSSL's requirements for a cloud-based
Warn-on-Forecast System (ch-WoFS). There were several factors that contributed to the ven-
dor selection, including NWP performance, cloud resource cost, and development cost. At
the time, the Azure platform was chosen because of its AMD hardware for HPC, which was
both faster and cheaper than the equivalent Intel offerings. In
addition, Azure’s public cloud holds a FedRAMP High P-ATO? * Refer to Table A1 in the appendix for a glossary
compliance accreditation. This accreditation allows for asecure { of terms referenced in this paper.

and compliant deployment of cb-WoFS in an environment that .

is rich with the latest technology and large-scaled infrastructure (for more information on

Azure and FedRAMP, see Microsoft 2023g). This facilitates a smoother transition from research

to operations in the future.

4. WoFS HPC

The HPC aspect of cb-WoFS was built on Azure’s scheduler-as-a-service offering, Azure Batch,?
which automatically manages pools, tasks, and scaling (Microsoft 2024a). The Batch Service will
automatically create a pool, or collection, of InfiniBand connected
nodes, loaded with the desired OS that has been tuned for MPI > Refer to Table A2 in the appendix for descrip-
workloads. With the Batch Service as the scheduler, an autoscale tions of Azure resources referenced in this paper.
formula was developed that gives preference to low-cost preemp- ’

tive? nodes, but when the number of preempted nodes reaches a certain threshold, automatically

drop them and switch to the exact number of dedicated nodes required for the model run (for

more information on Batch autoscaling, see Microsoft 2023e). This cost-effective solution happens

behind the scenes and without any user interaction. Building on top of this platform reduced
development time and system complexity because scheduler responsibilities are managed by the

Azure service rather than the user. This design offers numerous benefits. By offloading more tasks

to the cloud provider, the system’s overall complexity is reduced. When the cloud provider takes

charge of specific responsibilities, such as scheduler related activities, it leads to a reduction in

the amount of code required in the application. Furthermore, aligning the system with platform

services offered by a cloud provider enhances the user’s ability to leverage the full spectrum

of features provided by that service. Thus, platform-as-a-service (PaaS) offerings took priority

over infrastructure-as-a-service (IaaS) offerings because of their feature richness, scalability,

and overall reduction in system complexity.? This decision did, however, require more upfront
development work, as most system components had to be updated to “fit” into the PaaS model.

5. WoFS DevOps and architecture

The WOoFS software stack consists of many distinct components, each residing in its dedicated
GitHub repository. For example, the code that preprocesses satellite observations for DA is a
stand-alone application with its own repository, as is the case with radar preprocessing, WRF,
GSI, EnKF, web apps, and others. With every WoFS component already on GitHub, the first
migration step was to create a Terraform infrastructure project that brings everything together
by describing what cloud services are needed and which application runs on which service.
Terraform is a powerful tool that allows the user to express infrastructure as human-readable
code (HashiCorp 2024). With the entire cb-WoFS infrastructure expressed as human-readable
code in one project, NSSL can have its infrastructure code managed and source controlled in
GitHub right alongside WoFS application code. This gives NSSL the ability to quickly create
everything that is required to run cb-WoFS on any Azure cloud subscription, simplifying the
deployment process of WoFS. Terraform is cloud neutral and provides plugins for all the major
cloud service providers. The user must specify the cloud provider in the terraform project and
which service offerings to configure—and cloud vendor service offerings are not all the same.

AMERICAN METEOROLOGICAL SOCIETY BAMS Brought to you by NOAA Lihrm‘yqFrﬁgtﬁc%gc;%s%% ﬂ)m\ﬁllgigﬁ)fi/()l/% 02:41 PM UTC

For example, although AWS Lambdas and Azure Functions® are similar in nature, they have
subtle cost and feature differences that may be important to a user’s project.

The Terraform architecture project is also used to define the continuous integration/
continuous deployment strategy. There are many tools available for building a DevOps?
environment, and we opted for Azure DevOps due to its seamless integration with Microsoft
Entra ID’ (formerly Azure Active Directory), GitHub, built-in private PyPI? artifact feeds, and
project planning features (Microsoft 2022). With the Terraform DevOps plugin, we were able
to define a build pipeline for every application required to run WoFS. Each build definition in
the architecture project points to a GitHub repository and a YAML? file for instructions on how
to build the repository. The YAML file instructs Azure DevOps to download the source code,
build the Docker image, and publish the image to NSSL’s internal Azure Container Registry.?
For more information on defining a build pipeline in YAML, see Microsoft (2023f). All WoFS
Docker applications are automatically built and deployed to NSSL’s private Azure Container
Registry using a simple build definition YAML file. With the entire system containerized
and on GitHub, NSSL has the ability to rerun a WoFS case using the configuration from any
point in time, making the system reproducible and easy to maintain. In addition, many of
the platform services responsible for executing these Docker applications are configured to
automatically pull the latest build from the private registry when updated.

6. WoFS core applications
With an architecture project in place, as well as the build definitions for each project, the vari-
ous types of WoFS software packages, or applications, are now described. As we have already
discussed, many of the applications were converted into Docker applications that could be
invoked with simple command line arguments. Some of the Python projects, however, were
developed into packages that could be installed in an environment using Python’s pip? mod-
ule. A Python package is ideal for situations where the code can be reused in other projects.
A DevOps build pipeline, similar to the ones defined above, pulls the project from GitHub,
builds the environment, and upon successful completion of the project’s unit tests, creates a
Python installable package. The package is then deployed to a private PyPI feed so that other
internal build processes can install it into a container, or install it directly into a researcher’s
custom environment. An example of this would be the postprocessing application that ana-
lyzes ensemble member output and generates graphics. This application would need to run
in some fashion on the cloud but is also useful to researchers for simple and consistent plot-
ting utilities. A Python package is a perfect fit for this type of application, and automatically
deploying to an Azure DevOps’ private PyPI feed can easily be configured (Microsoft 2023a).
Python packages and Docker containers are not complicated, but what about NWP appli-
cations? At the time of development, there were clear performance advantages to building
message passing interface (MPI) applications within Apptainer (formerly Singularity; see
Apptainer 2021) as opposed to Docker. For WoFS, the NWP model and compiled utilities
(such as GSI, EnKF, and others) are packaged into a single Apptainer image. These utilities
often have software dependencies, such as netCDF, that require the same compiler. Therefore,
packaging the compiled applications into a single image keeps things simple. The build pipe-
line for these applications is defined similarly to the method outlined above, but it uses the
Apptainer command-line interface (CLI) to build the container from a build recipe in source
control. There are other advantages to using Apptainer instead of Docker, other than just
performance. For one, there is no need to publish your image to a Docker registry. Instead,
the entire image is contained within a single file that can be passed around and executed
on any Apptainer-enabled system. After the build pipeline generates the WoFS NWP image,
the new image is versioned and uploaded to Azure Storage’ as an Azure Batch application,
ready for immediate use (for more information on Batch Applications, see Microsoft 2023b).

AMERICAN METEOROLOGICAL SOCIETY BAMS Brought to you by NOAA Lihrm‘yqFrﬁgtﬁc%gc;%s%% ﬂ)(w\\ﬁﬂw?dgﬁ)fi/()l/% 02:41 PM UTC

7. Putting it all together

A database-driven web application was developed to unify all aspects of the application so
that configuring, launching, and viewing a model run could all be accomplished from within
a single user interface. This required a new, generic software layer to manage the cloud
workflow, with a separate implementation layer to interface with the Azure API. For the lo-
cal HPC system, the functionality existed in the form of shell scripts that would move files
to various component directories and execute workflows. For the cloud, this workflow logic
was developed into a development framework that would call into the necessary cloud APIs
to accomplish these same tasks within cloud provider services. This development framework
is used by the web application to trigger a model run, as seen in Fig. 2.

The development framework creates an Azure Batch Task for every unit of work seen in
Fig. 1. For example, when launching a new forecast for a cb-WoFS model run, the development
framework creates an Azure Batch Task for every member at every initialization. It supplies
everything required for the execution of that task to Azure Batch, including the run command,
and URLs for the initial conditions and boundary conditions. Downloading prerequisite
files is handled entirely by the Azure Batch service (Microsoft 2021). The run command is a
standard MPI command to launch the weather model contained within the Apptainer image,
like the following, “mpirun -n X -ppn Y apptainer exec ~bind $PWD /path/to/image /path/
to/wrf.” Fortran namelists are handled a little differently than standard storage methods.
Instead of saving a namelist to Azure Storage for every cycle, member, and application, an
internal web application was developed where components could make HTTP requests for
dynamically generated namelists. The Batch Task creates the namelist on the fly by making
an HTTP request to the internal web application with the ch-WoFS run ID, forecast member,
and initialization time. Once the task has been submitted to the Batch Service, the Azure Batch
Scheduler handles the rest: reserving available nodes from the pool, downloading the neces-
sary files from storage, running the MPI tasks, and uploading any output back to storage. For
the 3-km WoFS, the “Hot”? storage tier has proven sufficient, but a higher-resolution WoFS
would require a more performant file system, such as Azure Managed Lustre (Microsoft 2023c).

8. Postprocessing
Postprocessing the model forecast output in a timely manner is essential for cb-WoFS. Hun-
dreds of products are created from the postprocessing package, an example of which can be
seen in Fig. 3.

To take full advantage of the cloud and its scalability, we developed postprocessing around
an Azure Storage Queue for scalability (see Microsoft 2023d for more information on Azure

Azure Batch

Database . Scheduler
(Azure Cosmos DB) (Azure Functions)
Pools

Y T
E Observations Model Run Post-Processing :
Firewall / CDN L Web App . Storage : :
(Azure Front Door) (Azure App Service) | (Azure Blob Storage) e [Al

Azure Batch Applications
T Git DevOps T [I
‘; ﬁ \ NWP App !
Internet J ; (Apptainer) :

Docker Registry
(Azure Container Registry)

Fic. 2. Basic architectural diagram of cb-WoFS and its CI/CD workflow. As applications are updated,
DevOps tests, builds, and deploys the containerized component into an internal Docker registry or as a
Batch application. When a model run is launched from the website, the scheduler generates real-time
tasks within Azure Batch.

AMERICAN METEOROLOGICAL SOCIETY BAMS Brought to you by NOAA Lihl'étl')’qFY-IIZBIECEH!?UL%C%% 6(»\\%11%@(7()/1/()1/25 02:41 PM UTC

Ens. 90th Perc. of 10-m Gust (kts.) Init: 2022-05-12, 2030 UTC
Valid: 2022-05-12, 2330 UTC

+

85

o 4
w w
Ens. 90th Perc. of 10-m Gust (kts.)

T
w
w

IS
«

F35

25

5 ,!.'_.“'fu"::‘--.‘!" 0 . | Max Val: 103.0

Fic. 3. Cb-WoFS 90th percentile of maximum surface wind on 5 Dec 2022, overlaid with blue (black)
markers indicating reported severe wind gusts of 50kt (1kt = 0.51m s-") (65 kt) or greater (Burke et al.
2022). This highlights the accuracy of cb-WoFS in predicting the general region, magnitude, and timing
of the severe weather event.

Storage Queues). As forecast output is generated, a new message is enqueued that contains
all necessary information for postprocessing, such as the cb-WoFS run ID and URLs of the
forecast output. Meanwhile, a scalable array of simultaneously running postprocessing tasks
monitors the queue and waits for work. The Docker application, equipped with the WoFS
postprocessing Python application, retrieves messages from the queue and creates a “sum-
mary file,” which is a netCDF file containing specific model variables from all members for
a single time step. These files use lossy compression on most variables to reduce file size.
Web graphics are then generated from the corresponding summary file and uploaded to
Azure Storage.

With postprocessing dockerized, the application can scale according to the number of
domains that are running. Initially, we ran these tasks on Azure App Service,®> which offers
built-in scalability and Python packages that enable the user to easily specify a function that
is automatically invoked whenever a message is queued in an Azure queue (for more infor-
mation, see Microsoft 2024b). While effective, this approach incurred costs that exceeded
our desired budget. In the end, it was more cost effective to create a wrapper application that
monitors the queue manually and then create long-running Docker tasks within Azure Batch.
This method also makes the application more portable; it can run anywhere. It could just as
easily run in Kubernetes or on a local machine, as it is no longer built specifically for Azure
App Service. As postprocessing generates graphics, the output is immediately uploaded to
storage, and a database is updated with the model run’s progress. Users following the model
run on cb-WoFS are updated with the latest output via web sockets, a technology standard
that enables data to be pushed from a web server to connected browser clients.

AMERICAN METEOROLOGICAL SOCIETY BAMS Brought to you by NOAA Lihl'éﬂ‘)’qFY-IIZBIECEH!?UL%C%% ﬂ)o\\!':rl‘nl?dgﬁ)fi/()l/% 02:41 PM UTC

9. Results
With WoFS now on the cloud, the WoFS application is almost entirely a self-contained
cloud-native application. Owing to its design, a new cloud environment can be created and
destroyed in only a matter of minutes. In addition, individual WoFS components are modu-
lar and scalable, which enables NSSL to run multiple WoFS domains over the United States
simultaneously. A single web app facilitates the initiation, monitoring, and viewing of model
runs, simplifying the process through an intuitive user interface (Fig. 4).

This interface grants ch-WoFS administrators the capability to initiate a WoFS run without
requiring formal training in HPC. With WoFS on the cloud, NSSL does not have to pay for any
unused resources and also has access to the latest HPC technology as cloud vendors upgrade
their systems* to the latest hardware. For example, in 2022, Azure upgraded their AMD EPYC
Milan processors to Milan-X at no additional cost to the user, boosting cb-WoFS performance
by as much as 20% without any changes to the system. When a WoFS run is launched, the
HPC environment is built and begins processing in less than 10 min. Upon completion, the
environment is removed and the only remaining associated cost
with the model run is data storage. The average cost for a 12-h

cb-WoFS run, not including storage costs, is less than $1000. “ One interesting aspect of cloud computing for
Cloud-based WoFS was successfully demonstrated during : 0 @pplication thatrequires the same amount of

, . R { computational resources is that over time (~2-3
NOAA S HazaI‘dOUS Weather Testbed (HWT) Spl’ll’lg FOI‘ecaStll’lg years) the cost of running becomes Cheaper as
Experiment in 2022 and 2023 (Clark et al. 2023a,b) and will : theapplication moves from running on the most

. . . expensive to less expensive systems.
continue to be used in the foreseeable future. Cloud computing

Quick Launch

Select the location of your domain by double-clicking on the map or adjusting the latitude and longitude below.

Name Central Latitude Central Longitude Start @ End
ﬂ Domain 1 41.53 -100.85 05/05/2023 15:00 5] 05/06/2023 03:00
a Domain 2 3189 -98.22 05/05/2023 15:00 05/06/2023 03:00

Dll.gwa
Saint Paul Michign
Wisconsin -
= South Dakota
: Lokélmict Toronto
Milwaukee i
Hamilton
Detroit .
Chicago
Salt Lake
City
New Yo

Phil hi
Hansas City lrode\p.lra

¢ Virginia ®
Kansos Missour Washington

Virginia Beach

Tulsa

=X ¥ Raleigh
Albuguerque Oklahoma Memphis Charlottes Worth Caroling

Arizona New Mexico

South Caroling e
Atlanta
Phoenix

ali Tucson

Ciudad Judrez

A Jacksonville

| 1t Nuevo Laredo
Domain Region [J SPC Day 1 Tornado [J SPC Day 1 Wind E SPC Day 1 Hail (J SPC Day 1 Fire [J WPC Day 1 Excessive Rain
) SPC Day 2 Categorical [J Radars

Fic. 4. Screenshot of cb-WoFS Quick Launch screen, demonstrating how the screen would have
appeared on 5 May 2023. Each box highlights the region of each domain, overlayed with the Storm
Prediction Center's Day 1 1200 UTC large hail outlook.

AMERICAN METEOROLOGICAL SOCIETY BAMS Brought to you by NOAA Lihl'éﬂ‘)’qFY-IIZBIECEH!?UL%C%% 6(»\\%]1%@(9()4/01/25 02:41 PM UTC

provides an unmatched advantage for sporadic yet scalable applications, offering on-demand
resources that expand to meet surges in usage, ensuring cost efficiency and optimal perfor-
mance without the burden of maintaining continuous infrastructure. Finally, the development
of cloud-based WoFS is a unique example of a successful public—private partnership that is
enhancing NOAA’s mission, while at the same time helping the private sector understand
user needs to better direct their product roadmap.

Acknowledgments. This work is supported by the NOAA/Office of Oceanic and Atmospheric Research
under NOAA-University of Oklahoma Cooperative Agreement NA210AR4320204, U.S. Department of
Commerce. The authors would like to thank Monte Flora and the three anonymous reviewers, whose
thoughtful feedback greatly improved the quality of this article.

APPENDIX

Cloud Computing Terminology

Table A1 provides a brief definition of many commonly used cloud computing terms referenced
in this article. Table A2 describes the Azure services used by cb-WoFS.

Tase A1. A glossary of common terms.

AMD Advanced micro devices

Apptainer (formerly ~ Containerization platform primarily used in HPC environments. For additional information on containers, see Docker.
singularity)

Cl/CD Continuous integration/continuous deployment strategies are key practices within DevOps. These practices are designed to
streamline and automate the software delivery process.

DevOps DevOps, a combination of “development” and “operations,” is a set of practices and principles with the goal of improving
collaboration between development and operations. The practices usually include a CI/CD strategy.

Docker An open-source platform for creating, running, and deploying applications within a container. Containers enable developers to
package an application with all of its dependencies and runtime environment. An image is a snapshot of an application and its
dependencies. A container is a running instance of an image.

GitHub GitHub.com is a web-based platform for version control and collaborative software development, built around Git. It hosts
repositories, facilitates project management, and provides tools for code collaboration and version tracking.

Hot storage tier Azure's storage tiers provide a range of performance and pricing choices, from high-performance “hot” storage to cost-effective
“cold” storage for less frequently accessed data.

laaS Infrastructure-as-a-Service is a cloud computing model that offers virtualized computing resources like servers, storage, and
networking, allowing users to build and manage their own IT infrastructure.

Kubernetes Kubernetes is an open-source container orchestration platform that automates the deployment, scaling, and management of
containerized applications.

PaaS Platform-as-a-Service is a cloud computing model that provides a platform for customers to develop, run, and manage
applications without dealing with the complexity of infrastructure management.

P-ATO Provisional Authority to Operate is an authorization pathway for a cloud service provider to operate with the federal government.
The authorization indicates that the cloud service provider has met the required security standards developed by the Federal Risk
and Authorization Management Program (FedRAMP).

Preemptible A cloud resource (virtual machine or otherwise) that can be provisioned at a significantly reduced cost with the caveat that the
resource cloud provider can terminate it without notice.
Pip Python's pip module is a package management system that allows you to install and manage software packages written
in Python.
PyPI Python Package Index, a repository of Python software packages.
YAML YAML is a human-readable data serialization format that uses a simple, text-based structure to organize and store data. It is

commonly used for configuration files due to its readability and ease of use.

AMERICAN METEOROLOGICAL SOCIETY BAMS Brought to you by NOAA Librzu‘yq Frlgtﬁc%gu(%c%% ﬂ)m\ Ell%lg)fi/()l/% 02:41 PM UTC

http://GitHub.com

TaeLe A2. Description of Azure services referenced in this manuscript.

Container registry
DevOps

Entra ID (formerly
Active Directory)

App service Platform-as-a-Service for building, deploying, and scaling web apps and APIs, offering features
like auto-scaling, continuous integration, and a variety of programming languages.
Batch Designed for running large-scale parallel and HPC applications efficiently by automatically

scheduling and managing the execution of tasks across a pool of virtual machines. It simplifies the
process of scaling compute resources to meet demand, enabling users to run complex workloads
without the need to manually configure or manage infrastructure.

Managed Docker container registry service that allows users to store, manage, and deploy container
images and artifacts in a secure and scalable manner.

Provides development tools for planning, developing, testing, and delivering software, integrating
CI/CD pipelines, version control, and collaborative workspaces.

Identity and access management service that provides secure access to resources and applications
through single sign-on, multifactor authentication, and conditional access.

Functions Serverless compute service that enables users to run event-driven code without managing
infrastructure.
Storage Provides scalable, durable, and secure storage options for data objects, files, disks, and queues,
accessible via REST APIs and client libraries.
References

Apptainer, 2021: Community announcement. Accessed 14 February 2024, https://
apptainer.org/news/community-announcement-20211130/.

Burke, P. C., and Coauthors, 2022: Collaborating to increase warning lead time us-
ing the Warn-on-Forecast System. 30th Conf. on Severe Local Storms, Santa Fe,
NM, Amer. Meteor. Soc., 44, https://ams.confex.com/ams/30SLS/meetingapp.
cgi/Paper/407184.

Celeski, S., 2020: Forecasting the weather with AWS cloud. Presentation, AWS
Public Sector Summit Online, 19 pp., https://pages.awscloud.com/rs/112-
TZM-766/images/PartnerSolutions_Forecasting%20the%20weather%20
with%20AWS%20Cloud_Maxar.pdf.

Chui, T. C. Y,, D. Siuta, G. West, H. Modzelewski, R. Schigas, and R. Stull, 2019:
On producing reliable and affordable numerical weather forecasts on pub-
lic cloud-computing infrastructure. J. Atmos. Oceanic Technol., 36, 491-509,
https://doi.org/10.1175/JTECH-D-18-0142.1.

Clark, A. J., and Coauthors, 2023a: The third real-time, virtual spring forecast-
ing experiment to advance severe weather prediction capabilities. Bull. Amer.
Meteor. Soc., 104, E456—E458, https://doi.org/10.1175/BAMS-D-22-0213.1.

——, and Coauthors, 2023b: The first hybrid NOAA hazardous weather testbed
spring forecasting experiment for advancing severe weather prediction. Bull.
Amer. Meteor. Soc., 104, E2305-E2307, https://doi.org/10.1175/BAMS-D-
23-0275.1.

Dowell, D. C., and Coauthors, 2022: The High-Resolution Rapid Refresh (HRRR):
An hourly updating convection-allowing forecast model. Part I: Motivation
and system description. Wea. Forecasting, 37, 1371-1395, https://doi.org/10.
1175/WAF-D-21-0151.1.

Freeman, J., 2020: Cloud high performance computing. Presentation, Annual R&D
Workshaop, Online, Australia Bureau of Meteorology, 18 pp., http://www.bom.
gov.au/research/workshop/2020/Talks/Justin-Freeman.pdf.

HashiCorp, 2024: What is terraform? Accessed 14 February 2024, https://
developer.hashicorp.com/terraform/intro.

Heinselman, P. L., and Coauthors, 2024: Warn-on-Forecast System: From vision
toreality. Wea. Forecasting, 39, 75-95, https://doi.org/10.1175/WAF-D-23-0147.1.

Microsoft, 2021: Use multi-instance tasks to run Message Passing Interface (MPI)
applications in Batch. Accessed 14 February 2024, https://learn.microsoft.
com/en-us/azure/batch/batch-mpi.

——, 2022: Overview of services. Accessed 14 February 2024, https://learn.
microsoft.com/en-us/azure/devops/user-guide/services ?view=azure-devops.

AMERICAN METEOROLOGICAL SOCIETY BAMS

, 2023a: Quickstart: Publish and consume Python packages with Azure Arti-
facts using the command line (CLI). Accessed 14 February 2024, https://learn.
microsoft.com/en-us/azure/devops/artifacts/quickstarts/python-packages?
view=azure-devops.

—— 2023b: Deploy application packages to compute nodes with Batch applica-
tion packages. Accessed 14 February 2024, https://learn.microsoft.com/en-us/
azure/batch/batch-application-packages.

—— 2023c: What is Azure Managed Lustre? Accessed 14 February 2024, https://
learn.microsoft.com/en-us/azure/azure-managed-lustre/amlfs-overview.
——, 2023d: What is Azure Queue Storage? Accessed 14 February 2024,
https://learn.microsoft.com/en-us/azure/storage/queues/storage-queues-

introduction.

——, 2023e: Create a formula to automatically scale compute nodes in a Batch
pool. Accessed 14 February 2024, https://learn.microsoft.com/en-us/azure/
batch/batch-automatic-scaling.

——, 2023f: YAML vs Classic pipelines. Accessed 14 February 2024, https://learn.
microsoft.com/en-us/azure/devops/pipelines/get-started/pipelines-get-
started.

——, 2023g: Federal Risk and Authorization Management Program (FedRAMP).
Accessed 21 March 2024, https:/learn.microsoft.com/en-us/azure/compliance/
offerings/offering-fedramp#azure-and-fedramp.

——, 2024a: What is Azure Batch?. Accessed 14 February 2024, https:/learn.
microsoft.com/en-us/azure/batch/batch-technical-overview.

——, 2024b: Azure Queue storage trigger for Azure Functions. Accessed 14
February 2024, https:/learn.microsoft.com/en-us/azure/azure-functions/functions-
bindings-storage-queue-trigger.

Powers, J. G., K. K. Werner, D. O. Gill, Y.-L. Lin, and R. S. Schumacher, 2021: Cloud
computing efforts for the Weather Research and Forecasting Model. Bull. Amer:
Meteor. Soc.,102,E1261-E1274, https://doi.org/10.1175/BAMS-D-20-0219.1.

Prill, F., and C. Eser, 2022: ICONIC — ICON in the Cloud. Reports on ICON, issue
009, DWD and Max-Planck-Institute for Meteorology, 30 pp., https://www.
dwd.de/EN/ourservices/reports_on_icon/pdf_einzelbaende/2022_09.pdf;
jsessionid=966FC7B096F82A67DB3477967F9IBECOA.live11042?__blob=
publicationFile&v=13.

Siuta, D., G. West, H. Modzelewski, R. Schigas, and R. Stull, 2016: Viability of cloud
computing for real-time numerical weather prediction. Wea. Forecasting, 31,
1985-1996, https://doi.org/10.1175/WAF-D-16-0075.1.

Brought to you by NOAA Libl'zu‘yq Frlgtﬁc%gcﬁc%% ﬂ)m\ ﬁl]%Zd‘l()/i/()lQS 02:41 PM UTC

https://apptainer.org/news/community-announcement-20211130/
https://apptainer.org/news/community-announcement-20211130/
https://ams.confex.com/ams/30SLS/meetingapp.cgi/Paper/407184
https://ams.confex.com/ams/30SLS/meetingapp.cgi/Paper/407184
https://pages.awscloud.com/rs/112-TZM-766/images/PartnerSolutions_Forecasting%20the%20weather%20with%20AWS%20Cloud_Maxar.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/PartnerSolutions_Forecasting%20the%20weather%20with%20AWS%20Cloud_Maxar.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/PartnerSolutions_Forecasting%20the%20weather%20with%20AWS%20Cloud_Maxar.pdf
https://doi.org/10.1175/JTECH-D-18-0142.1
https://doi.org/10.1175/BAMS-D-22-0213.1
https://doi.org/10.1175/BAMS-D-23-0275.1
https://doi.org/10.1175/BAMS-D-23-0275.1
https://doi.org/10.1175/WAF-D-21-0151.1
https://doi.org/10.1175/WAF-D-21-0151.1
http://www.bom.gov.au/research/workshop/2020/Talks/Justin-Freeman.pdf
http://www.bom.gov.au/research/workshop/2020/Talks/Justin-Freeman.pdf
https://developer.hashicorp.com/terraform/intro
https://developer.hashicorp.com/terraform/intro
https://doi.org/10.1175/WAF-D-23-0147.1
https://learn.microsoft.com/en-us/azure/batch/batch-mpi
https://learn.microsoft.com/en-us/azure/batch/batch-mpi
https://learn.microsoft.com/en-us/azure/devops/user-guide/services?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/user-guide/services?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/artifacts/quickstarts/python-packages?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/artifacts/quickstarts/python-packages?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/artifacts/quickstarts/python-packages?view=azure-devops
https://learn.microsoft.com/en-us/azure/batch/batch-application-packages
https://learn.microsoft.com/en-us/azure/batch/batch-application-packages
https://learn.microsoft.com/en-us/azure/azure-managed-lustre/amlfs-overview
https://learn.microsoft.com/en-us/azure/azure-managed-lustre/amlfs-overview
https://learn.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://learn.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://learn.microsoft.com/en-us/azure/batch/batch-automatic-scaling
https://learn.microsoft.com/en-us/azure/batch/batch-automatic-scaling
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/pipelines-get-started
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/pipelines-get-started
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/pipelines-get-started
https://learn.microsoft.com/en-us/azure/compliance/offerings/offering-fedramp#azure-and-fedramp
https://learn.microsoft.com/en-us/azure/compliance/offerings/offering-fedramp#azure-and-fedramp
https://learn.microsoft.com/en-us/azure/batch/batch-technical-overview
https://learn.microsoft.com/en-us/azure/batch/batch-technical-overview
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue-trigger
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue-trigger
https://doi.org/10.1175/BAMS-D-20-0219.1
https://www.dwd.de/EN/ourservices/reports_on_icon/pdf_einzelbaende/2022_09.pdf;jsessionid=966FC7B096F82A67DB3477967F9BEC0A.live11042?__blob=publicationFile&v=13
https://www.dwd.de/EN/ourservices/reports_on_icon/pdf_einzelbaende/2022_09.pdf;jsessionid=966FC7B096F82A67DB3477967F9BEC0A.live11042?__blob=publicationFile&v=13
https://www.dwd.de/EN/ourservices/reports_on_icon/pdf_einzelbaende/2022_09.pdf;jsessionid=966FC7B096F82A67DB3477967F9BEC0A.live11042?__blob=publicationFile&v=13
https://www.dwd.de/EN/ourservices/reports_on_icon/pdf_einzelbaende/2022_09.pdf;jsessionid=966FC7B096F82A67DB3477967F9BEC0A.live11042?__blob=publicationFile&v=13
https://doi.org/10.1175/WAF-D-16-0075.1

	Cb-WoFS: Migrating the Warn-on-Forecast
System to the Cloud
	KEYWORDS
	Introduction
	NWP in the cloud
	WoFS in the cloud
	WoFS HPC
	WoFS DevOps and architecture
	WoFS core applications
	Putting it all together
	Postprocessing
	Results
	Acknowledgments.
	APPENDIX﻿
	Cloud Computing Terminology﻿
	References

