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ABSTRACT: This article provides a brief, technical narrative of the WoFS journey to a cloud-based 
high-performance computing (HPC) system, including some of the technological challenges en-
countered and solutions found. Also, discussed are a few new components that are in development 
for cloud-based Warn-on-Forecast System (cb-WoFS), such as the cloud infrastructure project for 
managing resources, as well as a new web application that manages cb-WoFS runs. An important 
initial step in our cloud journey is containerizing all of the compiled applications, such as WRF, GSI, 
and EnKF and their dependencies like netCDF and MPI. With these applications compiled within 
an Apptainer container, WoFS can run on any local or cloud-based HPC cluster that supports 
MPI. Furthermore, an additional software layer was developed that creates and manages cloud 
vendor resources. This layer, which is referred to as the WoFS framework, contains the workflow 
required to run cb-WoFS, as well as management for other aspects of cb-WoFS (including but not 
limited to creation of HPC pools in the end-to-end workflow, runtime notifications, and database 
management). This additional layer was developed to separate the WoFS business logic from 
vendor-specific API calls. The WoFS framework exposes features through its service library, which 
is then referenced by the newly developed cb-WoFS web application and other cloud applications. 
This makes WoFS a complete end-to-end cloud-based application, where an administrator can 
launch a model run, manage resources, and view output all within a single web app.

DOI: 10.1175/BAMS-D-23-0296.1
Corresponding author: Joshua J. Martin, joshua.martin@noaa.gov
Manuscript received 20 November 2023, in final form 8 August 2024, accepted 29 August 2024

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse 
of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

KEYWORDS: 
Numerical weather 
prediction/
forecasting; 
Mesoscale models; 
Optimization

Brought to you by NOAA Library | Unauthenticated | Downloaded 04/01/25 02:41 PM UTC

http://doi.org/10.1175/BAMS-D-23-0296.1
mailto:joshua.martin@noaa.gov
http://www.ametsoc.org/PUBSReuseLicenses


A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y O C TO B E R  2 0 2 4 E1963

1. Introduction
The NOAA National Severe Storms Laboratory (NSSL) started the Warn-on-Forecast research 
program in 2009 with the goal of dramatically increasing lead times for hazardous convec-
tive weather within the watch to warning time frame (i.e., 0–6 h). By using a rapidly updat-
ing, storm-scale numerical weather prediction (NWP) ensemble modeling system to provide 
probabilistic predictions, forecasters could potentially shift from a warn-on-detection para-
digm, which bases warnings on observations, to a warn-on-forecast paradigm that combines 
observations and NWP guidance. Through a robust research program at NSSL and its partner 
institutions over the past 15 years, this vision is coming to fruition. NSSL has developed a 
mature prototype known as the Warn-on-Forecast System (WoFS). WoFS is an on-demand, 
ensemble data assimilation (DA) and prediction system with 3-km grid spacing, which pro-
vides probabilistic storm-based guidance at 0–6-h lead times with output available at 5-min 
intervals. The current WoFS prototype is derived from version 3.9 of the Weather Research 
and Forecasting (WRF) Model, with a 900 km × 900 km movable domain. The DA analysis 
ensemble has 36 members which are updated every 15 min by assimilating surface, radar, 
and satellite observations using the ensemble Kalman filter (EnKF) algorithm within NOAA’s 
Community Gridpoint Statistical Interpolation analysis system (GSI) software package.  
A diagram of this workflow can be seen in Fig. 1.

The basic concept of operations for WoFS is that when an area of potential hazardous 
weather risk is identified, a WoFS domain is centered over that region. Initial and boundary 
conditions are obtained from the current operational High-Resolution Rapid Refresh (HRRR; 
Dowell et al. 2022) system. Ideally, the ensemble state is first “spun-up” for 2 h preceding con-
vective initiation. After ensemble spinup, forecasts are initialized from the first 18 ensemble 
members of the DA system every 30 min; forecasts at the top (bottom) of the hour integrate 
out to 6 h (3 h). The WoFS typically runs for 12–15 h per event. Forecasts are available on a 
modern web viewer 25–30 min after the analysis time. For more information on WoFS, includ-
ing configuration details, postprocessing, visualization, and verification approaches, as well 
as user-focused research, see Heinselman et al. (2024).

Since WoFS is designed to focus on high-impact weather prediction associated with 
convective hazards, there may be periods when the system is not needed. Operational 
NWP centers are often designed to allocate computational resources for all operational 
prediction systems to run on a daily basis. Running WoFS on traditional high-performance 
computing (HPC) would require setting aside portions of the HPC system that could remain 
idle for long periods of time, wasting valuable resources. Furthermore, because WoFS also 
generates a large suite of probabilistic output fields at high temporal resolution every half 
hour, a combination of HPC for the ensemble prediction system and a tightly integrated 
postprocessing and display system is required for rapid dissemination of the output. As a 
result, WoFS has been developed as an on-demand system hosted on a cloud-based plat-
form that can provide both the HPC and web services needed for timely use. The associated 
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pay-as-you-go pricing model offers significant benefits to a system like WoFS, with reduced 
overall cost and access to the latest hardware advancements (see Table A1 in the appendix 
for definitions to common cloud computing terms).

2. NWP in the cloud
A recently published report estimated significant cost savings with running the Icosahedral 
Nonhydrostatic (ICON) weather model in the cloud rather than on-premise (Prill and Eser 
2022). The report estimated that running ICON twice a day for a full year would cost less 
than $50,000. This was a maximum rough estimate that does not take into account the de-
creasing cost of services seen in the cloud computing market as a result of continued growth.  
In contrast, the average hardware cost to run national or regional models for 1 year is over 
$1 million, with the additional cost of operations and management exceeding $200,000. 
The estimates do not include the costs associated with downtime, hacker attacks, server 
maintenance, or the costs of system replacement which typically need to be updated every 
5 years (Prill and Eser 2022). The cost savings associated with WoFS would be even greater 
because it is not needed on a daily basis. Other studies support the use of cloud computing 
to reduce HPC costs for NWP (Siuta et al. 2016; Powers et al. 2021; Celeski 2020; Freeman 
2020). Chui et al. (2019) discussed how to further increase the cost efficiency on the cloud for 
NWP by using preemptible resources and file compression. In this article, we will discuss the 
system that NSSL built on Microsoft Azure that includes many of these technologies, includ-
ing preemptive node usage, summary files with compression, and other storage cost savings.

3. WoFS in the cloud
Through 2021, WoFS was run on NSSL’s in-house HPC system.1 
In early 2020, NSSL began exploring the cloud and evaluated 
the differences between Amazon Web Services (AWS) and Azure 

Fig. 1.  WoFS workflow diagram (Heinselman et al. 2024). WoFS analysis begins at T + 5 min, with forecasts beginning at T + 15 min 
and postprocessing finishing by T + 30 min (T + 15 min) for 6-h (3-h) forecasts.

1	The original on-premise system was a Cray XC-30, 
with each node containing 24 cores. We utilized 
36 nodes for cycling, 54 nodes for forecasts, 
and several 120-core Intel workstations for 
postprocessing.
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by testing its NWP applications on the vendor platforms. After extensive testing, Microsoft 
Azure was selected as the cloud provider that best met NSSL’s requirements for a cloud-based 
Warn-on-Forecast System (cb-WoFS). There were several factors that contributed to the ven-
dor selection, including NWP performance, cloud resource cost, and development cost. At 
the time, the Azure platform was chosen because of its AMD hardware for HPC, which was 
both faster and cheaper than the equivalent Intel offerings. In 
addition, Azure’s public cloud holds a FedRAMP High P-ATO2 
compliance accreditation. This accreditation allows for a secure 
and compliant deployment of cb-WoFS in an environment that 
is rich with the latest technology and large-scaled infrastructure (for more information on  
Azure and FedRAMP, see Microsoft 2023g). This facilitates a smoother transition from research 
to operations in the future.

4. WoFS HPC
The HPC aspect of cb-WoFS was built on Azure’s scheduler-as-a-service offering, Azure Batch,3 
which automatically manages pools, tasks, and scaling (Microsoft 2024a). The Batch Service will 
automatically create a pool, or collection, of InfiniBand connected 
nodes, loaded with the desired OS that has been tuned for MPI 
workloads. With the Batch Service as the scheduler, an autoscale 
formula was developed that gives preference to low-cost preemp-
tive2 nodes, but when the number of preempted nodes reaches a certain threshold, automatically 
drop them and switch to the exact number of dedicated nodes required for the model run (for 
more information on Batch autoscaling, see Microsoft 2023e). This cost-effective solution happens 
behind the scenes and without any user interaction. Building on top of this platform reduced 
development time and system complexity because scheduler responsibilities are managed by the 
Azure service rather than the user. This design offers numerous benefits. By offloading more tasks 
to the cloud provider, the system’s overall complexity is reduced. When the cloud provider takes 
charge of specific responsibilities, such as scheduler related activities, it leads to a reduction in 
the amount of code required in the application. Furthermore, aligning the system with platform 
services offered by a cloud provider enhances the user’s ability to leverage the full spectrum 
of features provided by that service. Thus, platform-as-a-service (PaaS) offerings took priority 
over infrastructure-as-a-service (IaaS) offerings because of their feature richness, scalability, 
and overall reduction in system complexity.2 This decision did, however, require more upfront 
development work, as most system components had to be updated to “fit” into the PaaS model.

5. WoFS DevOps and architecture
The WoFS software stack consists of many distinct components, each residing in its dedicated 
GitHub repository. For example, the code that preprocesses satellite observations for DA is a 
stand-alone application with its own repository, as is the case with radar preprocessing, WRF, 
GSI, EnKF, web apps, and others. With every WoFS component already on GitHub, the first 
migration step was to create a Terraform infrastructure project that brings everything together 
by describing what cloud services are needed and which application runs on which service. 
Terraform is a powerful tool that allows the user to express infrastructure as human-readable 
code (HashiCorp 2024). With the entire cb-WoFS infrastructure expressed as human-readable 
code in one project, NSSL can have its infrastructure code managed and source controlled in 
GitHub right alongside WoFS application code. This gives NSSL the ability to quickly create 
everything that is required to run cb-WoFS on any Azure cloud subscription, simplifying the 
deployment process of WoFS. Terraform is cloud neutral and provides plugins for all the major 
cloud service providers. The user must specify the cloud provider in the terraform project and 
which service offerings to configure—and cloud vendor service offerings are not all the same. 

2	Refer to Table A1 in the appendix for a glossary 
of terms referenced in this paper.

3	Refer to Table A2 in the appendix for descrip-
tions of Azure resources referenced in this paper.
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For example, although AWS Lambdas and Azure Functions3 are similar in nature, they have 
subtle cost and feature differences that may be important to a user’s project.

The Terraform architecture project is also used to define the continuous integration/
continuous deployment strategy. There are many tools available for building a DevOps2 
environment, and we opted for Azure DevOps due to its seamless integration with Microsoft 
Entra ID3 (formerly Azure Active Directory), GitHub, built-in private PyPI2 artifact feeds, and 
project planning features (Microsoft 2022). With the Terraform DevOps plugin, we were able 
to define a build pipeline for every application required to run WoFS. Each build definition in 
the architecture project points to a GitHub repository and a YAML2 file for instructions on how 
to build the repository. The YAML file instructs Azure DevOps to download the source code, 
build the Docker image, and publish the image to NSSL’s internal Azure Container Registry.3 
For more information on defining a build pipeline in YAML, see Microsoft (2023f). All WoFS 
Docker applications are automatically built and deployed to NSSL’s private Azure Container 
Registry using a simple build definition YAML file. With the entire system containerized 
and on GitHub, NSSL has the ability to rerun a WoFS case using the configuration from any 
point in time, making the system reproducible and easy to maintain. In addition, many of 
the platform services responsible for executing these Docker applications are configured to 
automatically pull the latest build from the private registry when updated.

6. WoFS core applications
With an architecture project in place, as well as the build definitions for each project, the vari-
ous types of WoFS software packages, or applications, are now described. As we have already 
discussed, many of the applications were converted into Docker applications that could be 
invoked with simple command line arguments. Some of the Python projects, however, were 
developed into packages that could be installed in an environment using Python’s pip2 mod-
ule. A Python package is ideal for situations where the code can be reused in other projects. 
A DevOps build pipeline, similar to the ones defined above, pulls the project from GitHub, 
builds the environment, and upon successful completion of the project’s unit tests, creates a 
Python installable package. The package is then deployed to a private PyPI feed so that other 
internal build processes can install it into a container, or install it directly into a researcher’s 
custom environment. An example of this would be the postprocessing application that ana-
lyzes ensemble member output and generates graphics. This application would need to run 
in some fashion on the cloud but is also useful to researchers for simple and consistent plot-
ting utilities. A Python package is a perfect fit for this type of application, and automatically 
deploying to an Azure DevOps3 private PyPI feed can easily be configured (Microsoft 2023a).

Python packages and Docker containers are not complicated, but what about NWP appli-
cations? At the time of development, there were clear performance advantages to building 
message passing interface (MPI) applications within Apptainer (formerly Singularity; see 
Apptainer 2021) as opposed to Docker. For WoFS, the NWP model and compiled utilities 
(such as GSI, EnKF, and others) are packaged into a single Apptainer image. These utilities 
often have software dependencies, such as netCDF, that require the same compiler. Therefore, 
packaging the compiled applications into a single image keeps things simple. The build pipe-
line for these applications is defined similarly to the method outlined above, but it uses the 
Apptainer command-line interface (CLI) to build the container from a build recipe in source 
control. There are other advantages to using Apptainer instead of Docker, other than just 
performance. For one, there is no need to publish your image to a Docker registry. Instead, 
the entire image is contained within a single file that can be passed around and executed 
on any Apptainer-enabled system. After the build pipeline generates the WoFS NWP image, 
the new image is versioned and uploaded to Azure Storage3 as an Azure Batch application, 
ready for immediate use (for more information on Batch Applications, see Microsoft 2023b).
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7. Putting it all together
A database-driven web application was developed to unify all aspects of the application so 
that configuring, launching, and viewing a model run could all be accomplished from within 
a single user interface. This required a new, generic software layer to manage the cloud 
workflow, with a separate implementation layer to interface with the Azure API. For the lo-
cal HPC system, the functionality existed in the form of shell scripts that would move files 
to various component directories and execute workflows. For the cloud, this workflow logic 
was developed into a development framework that would call into the necessary cloud APIs 
to accomplish these same tasks within cloud provider services. This development framework 
is used by the web application to trigger a model run, as seen in Fig. 2.

The development framework creates an Azure Batch Task for every unit of work seen in  
Fig. 1. For example, when launching a new forecast for a cb-WoFS model run, the development 
framework creates an Azure Batch Task for every member at every initialization. It supplies 
everything required for the execution of that task to Azure Batch, including the run command, 
and URLs for the initial conditions and boundary conditions. Downloading prerequisite 
files is handled entirely by the Azure Batch service (Microsoft 2021). The run command is a 
standard MPI command to launch the weather model contained within the Apptainer image, 
like the following, “mpirun -n X -ppn Y apptainer exec –bind $PWD /path/to/image /path/
to/wrf.” Fortran namelists are handled a little differently than standard storage methods. 
Instead of saving a namelist to Azure Storage for every cycle, member, and application, an 
internal web application was developed where components could make HTTP requests for 
dynamically generated namelists. The Batch Task creates the namelist on the fly by making 
an HTTP request to the internal web application with the cb-WoFS run ID, forecast member, 
and initialization time. Once the task has been submitted to the Batch Service, the Azure Batch 
Scheduler handles the rest: reserving available nodes from the pool, downloading the neces-
sary files from storage, running the MPI tasks, and uploading any output back to storage. For 
the 3-km WoFS, the “Hot”2 storage tier has proven sufficient, but a higher-resolution WoFS 
would require a more performant file system, such as Azure Managed Lustre (Microsoft 2023c).

8. Postprocessing
Postprocessing the model forecast output in a timely manner is essential for cb-WoFS. Hun-
dreds of products are created from the postprocessing package, an example of which can be 
seen in Fig. 3.

To take full advantage of the cloud and its scalability, we developed postprocessing around 
an Azure Storage Queue for scalability (see Microsoft 2023d for more information on Azure 

Fig. 2.  Basic architectural diagram of cb-WoFS and its CI/CD workflow. As applications are updated, 
DevOps tests, builds, and deploys the containerized component into an internal Docker registry or as a 
Batch application. When a model run is launched from the website, the scheduler generates real-time 
tasks within Azure Batch.
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Storage Queues). As forecast output is generated, a new message is enqueued that contains 
all necessary information for postprocessing, such as the cb-WoFS run ID and URLs of the 
forecast output. Meanwhile, a scalable array of simultaneously running postprocessing tasks 
monitors the queue and waits for work. The Docker application, equipped with the WoFS 
postprocessing Python application, retrieves messages from the queue and creates a “sum-
mary file,” which is a netCDF file containing specific model variables from all members for 
a single time step. These files use lossy compression on most variables to reduce file size. 
Web graphics are then generated from the corresponding summary file and uploaded to 
Azure Storage.

With postprocessing dockerized, the application can scale according to the number of 
domains that are running. Initially, we ran these tasks on Azure App Service,3 which offers 
built-in scalability and Python packages that enable the user to easily specify a function that 
is automatically invoked whenever a message is queued in an Azure queue (for more infor-
mation, see Microsoft 2024b). While effective, this approach incurred costs that exceeded 
our desired budget. In the end, it was more cost effective to create a wrapper application that 
monitors the queue manually and then create long-running Docker tasks within Azure Batch. 
This method also makes the application more portable; it can run anywhere. It could just as 
easily run in Kubernetes or on a local machine, as it is no longer built specifically for Azure 
App Service. As postprocessing generates graphics, the output is immediately uploaded to 
storage, and a database is updated with the model run’s progress. Users following the model 
run on cb-WoFS are updated with the latest output via web sockets, a technology standard 
that enables data to be pushed from a web server to connected browser clients.

Fig. 3.  Cb-WoFS 90th percentile of maximum surface wind on 5 Dec 2022, overlaid with blue (black) 
markers indicating reported severe wind gusts of 50 kt (1 kt ≈ 0.51 m s−1) (65 kt) or greater (Burke et al. 
2022). This highlights the accuracy of cb-WoFS in predicting the general region, magnitude, and timing 
of the severe weather event.
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9. Results
With WoFS now on the cloud, the WoFS application is almost entirely a self-contained 
cloud-native application. Owing to its design, a new cloud environment can be created and 
destroyed in only a matter of minutes. In addition, individual WoFS components are modu-
lar and scalable, which enables NSSL to run multiple WoFS domains over the United States 
simultaneously. A single web app facilitates the initiation, monitoring, and viewing of model 
runs, simplifying the process through an intuitive user interface (Fig. 4).

This interface grants cb-WoFS administrators the capability to initiate a WoFS run without 
requiring formal training in HPC. With WoFS on the cloud, NSSL does not have to pay for any 
unused resources and also has access to the latest HPC technology as cloud vendors upgrade 
their systems4 to the latest hardware. For example, in 2022, Azure upgraded their AMD EPYC 
Milan processors to Milan-X at no additional cost to the user, boosting cb-WoFS performance 
by as much as 20% without any changes to the system. When a WoFS run is launched, the 
HPC environment is built and begins processing in less than 10 min. Upon completion, the 
environment is removed and the only remaining associated cost 
with the model run is data storage. The average cost for a 12-h 
cb-WoFS run, not including storage costs, is less than $1000. 
Cloud-based WoFS was successfully demonstrated during 
NOAA’s Hazardous Weather Testbed (HWT) Spring Forecasting 
Experiment in 2022 and 2023 (Clark et al. 2023a,b) and will 
continue to be used in the foreseeable future. Cloud computing 

Fig. 4.  Screenshot of cb-WoFS Quick Launch screen, demonstrating how the screen would have 
appeared on 5 May 2023. Each box highlights the region of each domain, overlayed with the Storm 
Prediction Center’s Day 1 1200 UTC large hail outlook.

4	One interesting aspect of cloud computing for 
an application that requires the same amount of 
computational resources is that over time (∼2–3 
years) the cost of running becomes cheaper as 
the application moves from running on the most 
expensive to less expensive systems.
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provides an unmatched advantage for sporadic yet scalable applications, offering on-demand 
resources that expand to meet surges in usage, ensuring cost efficiency and optimal perfor-
mance without the burden of maintaining continuous infrastructure. Finally, the development 
of cloud-based WoFS is a unique example of a successful public–private partnership that is  
enhancing NOAA’s mission, while at the same time helping the private sector understand 
user needs to better direct their product roadmap.
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APPENDIX
Cloud Computing Terminology
Table A1 provides a brief definition of many commonly used cloud computing terms referenced 
in this article. Table A2 describes the Azure services used by cb-WoFS.

Table A1.  A glossary of common terms.

Term Definition

AMD Advanced micro devices

Apptainer (formerly 
singularity)

Containerization platform primarily used in HPC environments. For additional information on containers, see Docker.

CI/CD Continuous integration/continuous deployment strategies are key practices within DevOps. These practices are designed to 
streamline and automate the software delivery process.

DevOps DevOps, a combination of “development” and “operations,” is a set of practices and principles with the goal of improving 
collaboration between development and operations. The practices usually include a CI/CD strategy.

Docker An open-source platform for creating, running, and deploying applications within a container. Containers enable developers to 
package an application with all of its dependencies and runtime environment. An image is a snapshot of an application and its 
dependencies. A container is a running instance of an image.

GitHub GitHub.com is a web-based platform for version control and collaborative software development, built around Git. It hosts 
repositories, facilitates project management, and provides tools for code collaboration and version tracking.

Hot storage tier Azure’s storage tiers provide a range of performance and pricing choices, from high-performance “hot” storage to cost-effective 
“cold” storage for less frequently accessed data.

IaaS Infrastructure-as-a-Service is a cloud computing model that offers virtualized computing resources like servers, storage, and 
networking, allowing users to build and manage their own IT infrastructure.

Kubernetes Kubernetes is an open-source container orchestration platform that automates the deployment, scaling, and management of 
containerized applications.

PaaS Platform-as-a-Service is a cloud computing model that provides a platform for customers to develop, run, and manage 
applications without dealing with the complexity of infrastructure management.

P-ATO Provisional Authority to Operate is an authorization pathway for a cloud service provider to operate with the federal government. 
The authorization indicates that the cloud service provider has met the required security standards developed by the Federal Risk 
and Authorization Management Program (FedRAMP).

Preemptible 
resource

A cloud resource (virtual machine or otherwise) that can be provisioned at a significantly reduced cost with the caveat that the 
cloud provider can terminate it without notice.

Pip Python’s pip module is a package management system that allows you to install and manage software packages written 
in Python.

PyPI Python Package Index, a repository of Python software packages.

YAML YAML is a human-readable data serialization format that uses a simple, text-based structure to organize and store data. It is 
commonly used for configuration files due to its readability and ease of use.
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Table A2.  Description of Azure services referenced in this manuscript.

Azure service Description

App service Platform-as-a-Service for building, deploying, and scaling web apps and APIs, offering features  
like auto-scaling, continuous integration, and a variety of programming languages.

Batch Designed for running large-scale parallel and HPC applications efficiently by automatically  
scheduling and managing the execution of tasks across a pool of virtual machines. It simplifies the  
process of scaling compute resources to meet demand, enabling users to run complex workloads  
without the need to manually configure or manage infrastructure.

Container registry Managed Docker container registry service that allows users to store, manage, and deploy container  
images and artifacts in a secure and scalable manner.

DevOps Provides development tools for planning, developing, testing, and delivering software, integrating  
CI/CD pipelines, version control, and collaborative workspaces.

Entra ID (formerly  
Active Directory)

Identity and access management service that provides secure access to resources and applications  
through single sign-on, multifactor authentication, and conditional access.

Functions Serverless compute service that enables users to run event-driven code without managing  
infrastructure.

Storage Provides scalable, durable, and secure storage options for data objects, files, disks, and queues,  
accessible via REST APIs and client libraries.

References

Apptainer, 2021: Community announcement. Accessed 14 February 2024, https://
apptainer.org/news/community-announcement-20211130/.

Burke, P. C., and Coauthors, 2022: Collaborating to increase warning lead time us-
ing the Warn-on-Forecast System. 30th Conf. on Severe Local Storms, Santa Fe, 
NM, Amer. Meteor. Soc., 44, https://ams.confex.com/ams/30SLS/meetingapp.
cgi/Paper/407184.

Celeski, S., 2020: Forecasting the weather with AWS cloud. Presentation, AWS  
Public Sector Summit Online, 19 pp., https://pages.awscloud.com/rs/112- 
TZM-766/images/PartnerSolutions_Forecasting%20the%20weather%20
with%20AWS%20Cloud_Maxar.pdf.

Chui, T. C. Y., D. Siuta, G. West, H. Modzelewski, R. Schigas, and R. Stull, 2019: 
On producing reliable and affordable numerical weather forecasts on pub-
lic cloud-computing infrastructure. J. Atmos. Oceanic Technol., 36, 491–509, 
https://doi.org/10.1175/JTECH-D-18-0142.1.

Clark, A. J., and Coauthors, 2023a: The third real-time, virtual spring forecast-
ing experiment to advance severe weather prediction capabilities. Bull. Amer. 
Meteor. Soc., 104, E456–E458, https://doi.org/10.1175/BAMS-D-22-0213.1.

——, and Coauthors, 2023b: The first hybrid NOAA hazardous weather testbed  
spring forecasting experiment for advancing severe weather prediction. Bull.  
Amer. Meteor. Soc., 104, E2305–E2307, https://doi.org/10.1175/BAMS-D- 
23-0275.1.

Dowell, D. C., and Coauthors, 2022: The High-Resolution Rapid Refresh (HRRR): 
An hourly updating convection-allowing forecast model. Part I: Motivation  
and system description. Wea. Forecasting, 37, 1371–1395, https://doi.org/10. 
1175/WAF-D-21-0151.1.

Freeman, J., 2020: Cloud high performance computing. Presentation, Annual R&D 
Workshop, Online, Australia Bureau of Meteorology, 18 pp., http://www.bom.
gov.au/research/workshop/2020/Talks/Justin-Freeman.pdf.

HashiCorp, 2024: What is terraform? Accessed 14 February 2024, https:// 
developer.hashicorp.com/terraform/intro.

Heinselman, P. L., and Coauthors, 2024: Warn-on-Forecast System: From vision  
to reality. Wea. Forecasting, 39, 75–95, https://doi.org/10.1175/WAF-D-23-0147.1.

Microsoft, 2021: Use multi-instance tasks to run Message Passing Interface (MPI) 
applications in Batch. Accessed 14 February 2024, https://learn.microsoft.
com/en-us/azure/batch/batch-mpi.

——, 2022: Overview of services. Accessed 14 February 2024, https://learn. 
microsoft.com/en-us/azure/devops/user-guide/services?view=azure-devops.

——, 2023a: Quickstart: Publish and consume Python packages with Azure Arti
facts using the command line (CLI). Accessed 14 February 2024, https://learn. 
microsoft.com/en-us/azure/devops/artifacts/quickstarts/python-packages? 
view=azure-devops.

——, 2023b: Deploy application packages to compute nodes with Batch applica
tion packages. Accessed 14 February 2024, https://learn.microsoft.com/en-us/
azure/batch/batch-application-packages.

——, 2023c: What is Azure Managed Lustre? Accessed 14 February 2024, https://
learn.microsoft.com/en-us/azure/azure-managed-lustre/amlfs-overview.

——, 2023d: What is Azure Queue Storage? Accessed 14 February 2024,  
https://learn.microsoft.com/en-us/azure/storage/queues/storage-queues- 
introduction.

——, 2023e: Create a formula to automatically scale compute nodes in a Batch 
pool. Accessed 14 February 2024, https://learn.microsoft.com/en-us/azure/
batch/batch-automatic-scaling.

——, 2023f: YAML vs Classic pipelines. Accessed 14 February 2024, https://learn. 
microsoft.com/en-us/azure/devops/pipelines/get-started/pipelines-get- 
started.

——, 2023g: Federal Risk and Authorization Management Program (FedRAMP).  
Accessed 21 March 2024, https://learn.microsoft.com/en-us/azure/compliance/ 
offerings/offering-fedramp#azure-and-fedramp.

——, 2024a: What is Azure Batch?. Accessed 14 February 2024, https://learn.
microsoft.com/en-us/azure/batch/batch-technical-overview.

——, 2024b: Azure Queue storage trigger for Azure Functions. Accessed 14  
February 2024, https://learn.microsoft.com/en-us/azure/azure-functions/functions- 
bindings-storage-queue-trigger.

Powers, J. G., K. K. Werner, D. O. Gill, Y.-L. Lin, and R. S. Schumacher, 2021: Cloud 
computing efforts for the Weather Research and Forecasting Model. Bull. Amer.  
Meteor. Soc., 102, E1261–E1274, https://doi.org/10.1175/BAMS-D-20-0219.1.

Prill, F., and C. Eser, 2022: ICONIC – ICON in the Cloud. Reports on ICON, issue  
009, DWD and Max-Planck-Institute for Meteorology, 30 pp., https://www. 
dwd.de/EN/ourservices/reports_on_icon/pdf_einzelbaende/2022_09.pdf;
jsessionid=966FC7B096F82A67DB3477967F9BEC0A.live11042?__blob= 
publicationFile&v=13.

Siuta, D., G. West, H. Modzelewski, R. Schigas, and R. Stull, 2016: Viability of cloud 
computing for real-time numerical weather prediction. Wea. Forecasting, 31, 
1985–1996, https://doi.org/10.1175/WAF-D-16-0075.1.

Brought to you by NOAA Library | Unauthenticated | Downloaded 04/01/25 02:41 PM UTC

https://apptainer.org/news/community-announcement-20211130/
https://apptainer.org/news/community-announcement-20211130/
https://ams.confex.com/ams/30SLS/meetingapp.cgi/Paper/407184
https://ams.confex.com/ams/30SLS/meetingapp.cgi/Paper/407184
https://pages.awscloud.com/rs/112-TZM-766/images/PartnerSolutions_Forecasting%20the%20weather%20with%20AWS%20Cloud_Maxar.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/PartnerSolutions_Forecasting%20the%20weather%20with%20AWS%20Cloud_Maxar.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/PartnerSolutions_Forecasting%20the%20weather%20with%20AWS%20Cloud_Maxar.pdf
https://doi.org/10.1175/JTECH-D-18-0142.1
https://doi.org/10.1175/BAMS-D-22-0213.1
https://doi.org/10.1175/BAMS-D-23-0275.1
https://doi.org/10.1175/BAMS-D-23-0275.1
https://doi.org/10.1175/WAF-D-21-0151.1
https://doi.org/10.1175/WAF-D-21-0151.1
http://www.bom.gov.au/research/workshop/2020/Talks/Justin-Freeman.pdf
http://www.bom.gov.au/research/workshop/2020/Talks/Justin-Freeman.pdf
https://developer.hashicorp.com/terraform/intro
https://developer.hashicorp.com/terraform/intro
https://doi.org/10.1175/WAF-D-23-0147.1
https://learn.microsoft.com/en-us/azure/batch/batch-mpi
https://learn.microsoft.com/en-us/azure/batch/batch-mpi
https://learn.microsoft.com/en-us/azure/devops/user-guide/services?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/user-guide/services?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/artifacts/quickstarts/python-packages?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/artifacts/quickstarts/python-packages?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/artifacts/quickstarts/python-packages?view=azure-devops
https://learn.microsoft.com/en-us/azure/batch/batch-application-packages
https://learn.microsoft.com/en-us/azure/batch/batch-application-packages
https://learn.microsoft.com/en-us/azure/azure-managed-lustre/amlfs-overview
https://learn.microsoft.com/en-us/azure/azure-managed-lustre/amlfs-overview
https://learn.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://learn.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://learn.microsoft.com/en-us/azure/batch/batch-automatic-scaling
https://learn.microsoft.com/en-us/azure/batch/batch-automatic-scaling
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/pipelines-get-started
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/pipelines-get-started
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/pipelines-get-started
https://learn.microsoft.com/en-us/azure/compliance/offerings/offering-fedramp#azure-and-fedramp
https://learn.microsoft.com/en-us/azure/compliance/offerings/offering-fedramp#azure-and-fedramp
https://learn.microsoft.com/en-us/azure/batch/batch-technical-overview
https://learn.microsoft.com/en-us/azure/batch/batch-technical-overview
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue-trigger
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue-trigger
https://doi.org/10.1175/BAMS-D-20-0219.1
https://www.dwd.de/EN/ourservices/reports_on_icon/pdf_einzelbaende/2022_09.pdf;jsessionid=966FC7B096F82A67DB3477967F9BEC0A.live11042?__blob=publicationFile&v=13
https://www.dwd.de/EN/ourservices/reports_on_icon/pdf_einzelbaende/2022_09.pdf;jsessionid=966FC7B096F82A67DB3477967F9BEC0A.live11042?__blob=publicationFile&v=13
https://www.dwd.de/EN/ourservices/reports_on_icon/pdf_einzelbaende/2022_09.pdf;jsessionid=966FC7B096F82A67DB3477967F9BEC0A.live11042?__blob=publicationFile&v=13
https://www.dwd.de/EN/ourservices/reports_on_icon/pdf_einzelbaende/2022_09.pdf;jsessionid=966FC7B096F82A67DB3477967F9BEC0A.live11042?__blob=publicationFile&v=13
https://doi.org/10.1175/WAF-D-16-0075.1

	Cb-WoFS: Migrating the Warn-on-Forecast 
System to the Cloud
	KEYWORDS
	Introduction
	NWP in the cloud
	WoFS in the cloud
	WoFS HPC
	WoFS DevOps and architecture
	WoFS core applications
	Putting it all together
	Postprocessing
	Results
	Acknowledgments.
	APPENDIX﻿
	Cloud Computing Terminology﻿
	References


