
Iterative Error‐Driven Ensemble Labeling (IEDEL)
Algorithm for Enhanced Data Quality Control for the
Atmospheric Radiation Measurement (ARM) Program User
Facility
Lishan Li1 , Kenneth E. Kehoe1, Jiaxi Hu1,2 , Randy A. Peppler1, Alyssa J. Sockol1, and
Corey A. Godine1

1Cooperative Institute for Severe and High‐Impact Weather Research and Operations, University of Oklahoma, Norman,
OK, USA, 2NOAA/OAR National Severe Storms Laboratory, Norman, OK, USA

Abstract For over three decades, the Atmospheric Radiation Measurement (ARM) Program user facility
has provided researchers with invaluable benchmark atmospheric data. Ensuring the accuracy and integrity of
ARM data is vital, and to achieve this, the ARM Data Quality Office (DQO) has implemented customized
quality control tests tailored to each variable, with guidance from instrument mentors. These tests are designed
to pinpoint common issues, such as data exceeding valid ranges or persisting with little change over extended
periods, and ARM offers tools for users to review and exclude contaminated data efficiently. However, certain
quality issues, such as spikes in time series or data drift over time, sometimes evade detection by existing tests
and require manual identification by data analysts and instrument mentors through visualization tools. To tackle
these challenges more efficiently, the DQO has developed and implemented the Iterative Error‐Driven
Ensemble Labeling (IEDEL) algorithm with unanimous voting and transfer learning techniques to efficiently
generate labeled data at scale. This initiative has empowered the creation of high‐performing machine learning
models, enabling real‐time monitoring of data quality issues within the ARM data and thereby enhancing data
integrity and accessibility.

Plain Language Summary For more than 30 years, the Atmospheric Radiation Measurement
(ARM) Program user facility has been providing scientists with important atmospheric data. Ensuring these data
are accurate and trustworthy is crucial. To achieve this, the ARM Data Quality Office (DQO) establishes
tailored quality control (QC) checks for each data variable, based on thresholds designed by the ARM
instrument mentors, who are experts in meteorology. These checks help identify common data issues, such as
data falling outside the normal range or not changing as expected over time. However, some problems, like
sporadic data spikes or shifts in the average of data over time, might not be detected by these QC checks. These
issues require visual identification by data analysts and ARM instrument mentors using ARM's visualization
tools. To become more efficient at detecting these problems, the DQO has developed a new method called the
Iterative Error‐Driven Ensemble Labeling algorithm to label data issues and used a machine learning algorithm
to categorize them. This innovative approach enables the DQO to build intelligent applications that monitor data
in real time, around the clock, and allow instrument mentors to resolve data issues promptly.

1. Introduction
The Atmospheric Radiation Measurement (ARM) Program has long maintained a dedication to collecting high‐
quality data for use by climate science researchers (see Turner and Ellingson (2016) for an overview of the
program). Data quality processing has evolved over the life of the program (e.g., Peppler et al., 2016). Initially it
was the responsibility of respective instrument mentors and site scientist teams, with early efforts focused on the
development of self‐consistency checks for individual datastreams and datastream intercomparisons. Data quality
efforts were consolidated with the creation of the Data Quality Office (DQO) in 2000 to standardize data quality
processing and analysis across the program and to provide consistent direction. The DQO today is responsible for
monitoring and ensuring the integrity of all data collected across various ARM sites, which are equipped with a
wide range of instruments. The DQO collaborates closely with ARM Infrastructure to continuously monitor and
enhance the accuracy of data issue detection.

RESEARCH ARTICLE
10.1029/2024JH000192

Key Points:
• Unsupervised learning methods can't

generalize well to new data due to their
reliance on the estimate of training
data's anomaly ratio

• The Iterative Error‐Driven Ensemble
Labeling (IEDEL) algorithm effec-
tively guides abnormal data pattern
discovery in large data sets using pre‐
trained models

• The IEDEL algorithm reduces review
effort by up to 95% without sacrificing
accuracy in labeling abnormal data
patterns

Supporting Information:
Supporting Information may be found in
the online version of this article.

Correspondence to:
L. Li,
miali@ou.edu

Citation:
Li, L., Kehoe, K. E., Hu, J., Peppler, R. A.,
Sockol, A. J., & Godine, C. A. (2024).
Iterative error‐driven ensemble labeling
(IEDEL) algorithm for enhanced data
quality control for the atmospheric
radiation measurement (ARM) program
user facility. Journal of Geophysical
Research: Machine Learning and
Computation, 1, e2024JH000192. https://
doi.org/10.1029/2024JH000192

Received 8 MAR 2024
Accepted 19 JUN 2024
Corrected 28 SEP 2024

This article was corrected on 28 SEP 2024.
See the end of the full text for details.

© 2024 The Author(s). Journal of
Geophysical Research: Machine Learning
and Computation published by Wiley
Periodicals LLC on behalf of American
Geophysical Union.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

LI ET AL. 1 of 21

https://orcid.org/0009-0004-7428-5392
https://orcid.org/0000-0002-7795-334X
mailto:miali@ou.edu
https://doi.org/10.1029/2024JH000192
https://doi.org/10.1029/2024JH000192
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Specific quality control (QC) tests employed by the DQO have been designed and built to suit the unique re-
quirements of each variable. These tests also help to identify time series data with erroneous values, such as those
falling outside of a reasonable scientific range or exhibiting significant discrepancies between neighboring fa-
cilities. The thresholds of these QC tests are determined at the discretion of instrument mentors and others in the
program. In addition, these QC tests are scrutinized by a group of data quality analysts who conduct further visual
reviews to discover, validate, categorize, and report data issues within the ARM system.

To further tackle and automate time‐series data anomaly detection tasks, the widely used approaches include: (a)
Probabilistic‐based methods, which involve training a model using archived data, and then using new data as
input for the model's fitting test. If the fitting test fails, the new data is labeled as an anomaly (Markou &
Singh, 2003). (b) Pattern matching‐based approaches, which require known characteristics and supervision (Yu
et al., 2015). (c) Clustering/distance‐based methods, which rely on new input data having a lower relative distance
to the archived data, classifying it as a normal sample (Chandola et al., 2009). (d) Predictive models, which use a
regression‐based method to label new data as anomaly points when the predictive data value significantly differs
from the observed new data value (Giannoni et al., 2018). (e) Ensemble methods, which combine the afore-
mentioned approaches and employ a voting mechanism to determine anomaly points (Iliopoulos et al., 2023). (f)
A variant of semi‐supervised learning (SSL), known as uncertainty‐aware pseudo‐label selection (UPS), which
aims to enhance SSL performance by reducing label noise through the utilization of confidence probabilities in
predictions (Nayeem Rizve et al., 2021). (g) Iterative Pseudo‐Labeling algorithm, designed for Speech Recog-
nition, which involves the iterative generation of pseudo labels, leveraging a small, labeled data set and a model
trained with these data. This method requires no validation on label (Xu et al., 2020).

Leveraging machine learning (ML) for data QC offers significant advancements in efficiency and accuracy,
reducing the need for manual monitoring efforts. This innovative implementation enables immediate alerts and
timely interventions on data issues, thereby minimizing extensive data loss. While the benefits of ML are evident,
the associated challenges are intricate and difficult to overcome.

Despite DQO's concerted efforts to implement QC tests for data quality assurance, certain types of data issues,
such as spikes and drifts, occasionally evade QC scrutiny. Therefore, we require additional tools to identify these
specific pattern‐based data anomalies. Since the current data issue reporting system in ARM is not designed to
seamlessly integrate with ML algorithms, one of the foremost challenges we must tackle is the lack of labeled
data.

To initiate our ML project, we were first presented with two options. The first option involves dedicating an
enormous amount of time to manually search for rare occurrences of data issues and label them until we accu-
mulate enough labeled data. The second is to use unsupervised learning algorithms, which requires no labeling at
all. Given the arduous nature of manually scrutinizing years of data to uncover rare anomalies, and considering
that reducing the need for manual review was a primary motivation for launching our ML project, we have
decided to start our project with the latter option. However, we later discovered that the results produced by
unsupervised learning algorithms were not reliable. As a result, we conducted further investigation and developed
innovative approaches to efficiently generate labels for building supervised learning models.

In this study, our primary focus was to develop a series of algorithms aimed at facilitating the implementation of
SSL and transfer learning techniques for anomaly detection within the ARM Data Archive. The objective of
anomaly detection in time series data is to pinpoint patterns or data points that exhibit significant deviations from
the anticipated or normal behavior within a temporal sequence. To assess the effectiveness of our approaches, we
conducted three distinct experiments. These experiments involved the utilization of 9‐year relative humidity data,
collected from 1 January 2013 to 31 December 2021, at the ARM North Slope of Alaska (NSA) site (e.g.,
Verlinde et al., 2016), and 13‐year relative humidity and temperature data, collected from 28 September 2011 to
29 September 2023, at the ARM Southern Great Plains (SGP) site (e.g., Sisterson et al., 2016). We provide a
comprehensive account of the performance metrics and outcomes associated with each of the proposed algorithms
and models in this manuscript.

2. Methods
The initial motive for using ML algorithms in the ARMData Archive was to enhance the efficiency and precision
of data issue reporting. Building supervised learning models for identifying data issues is impossible without fully

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 2 of 21

labeled data. That's why we began our spike detection project with the exploration of unsupervised learning
algorithms. We later discovered that certain unsupervised learning algorithms only yield satisfactory results when
we accurately estimate the number of anomalies in the training data set. However, this number can vary
significantly depending on the selected training data. For example, a single day might have multiple spikes,
whereas an entire month might have none.

Consequently, we decided to build supervised learning models, which have more reliable performance than
unsupervised learning models. To avoid the exhaustive task of manually labeling anomalies in the ARM data, we
developed multiple algorithms for efficiently labeling anomalies in large‐scale data sets. These algorithms enable
us to train accurate supervised learning models, which will assist in real‐time monitoring of data issues within the
ARM Archive.

2.1. Unsupervised Learning

In the absence of labeled data, we delved into several prevalent unsupervised learning algorithms tailored for
anomaly detection. These algorithms include Isolation Forest (Liu et al., 2008), One‐Class Support Vector
Machine (One‐Class SVM) (Schölkopf et al., 2001), Density‐Based Spatial Clustering of Applications with Noise
(DBSCAN) (Schubert et al., 2017), and Local Outlier Factor (LOF) (Breunig et al., 2000).

The Isolation Forest algorithm constructs a random binary tree to isolate each training sample based on the
premise that anomalies typically require more binary tree splits for isolation, whereas regular samples require
much fewer. Its accuracy is considerably influenced by the “contamination” parameter, which denotes the ex-
pected proportion of anomalies in the data set. Calculating a contamination ratio is impossible without labeled
data since it relies on the statistical analysis of historical data. Overestimating or underestimating data anomalies
can lead to a surge of false positives (FPs) or False Negatives (FNs), respectively. In this context, “positive” refers
to a sample containing at least one data spike, while “negative” denotes samples without any data spikes.

In contrast to the conventional SVM, which is widely used in classification, the One‐Class SVM is designed to
distinguish novelties from a data set by computing the maximum margin hyperplane that separates the training
data from the origin. As a result, samples falling beneath this hyperplane are deemed anomalies.

DBSCAN, a density‐based clustering approach, classifies samples residing in low‐density regions as anomalies.
Similarly, LOF detects anomalies by evaluating the local density deviation of a sample with respect to its
neighbors. A significant local density deviation indicates a higher likelihood of the sample being an anomaly.

We evaluated the effectiveness of these four algorithms in identifying spikes within a time series using 10 days'
worth of relative humidity data from the ARM datastream “nsametC1.b1,” dated from 17 October 2020 to 26
October 2020. As illustrated in Figure S1 in Supporting Information S1, it's evident that the performance of the
Isolation Forest is predominantly influenced by the selected “contamination” ratio, with other parameters set at
their default values. In contrast, modifying the “n_estimators” parameter without changing the default
“contamination” ratio showed no enhancement in accuracy. Although LOF also requires a contamination ratio for
its model training, its default parameter values appear to be effective as displayed in Figure S2 in Supporting
Information S1. Moreover, fine‐tuning the “n_neighbors” parameter alone can yield rather accurate outcomes.
DBSCAN, on the other hand, can achieve a similar precision by adjusting the “eps” and “min_samples” pa-
rameters, as shown in Figure S3 in Supporting Information S1. Amongst the four, the One‐Class SVM was the
least effective, outputting an excessively large number of FPs. More details are provided in Figure S4 in Sup-
porting Information S1.

In summary, the primary obstacle with these algorithms lies in the selection of optimal values of model pa-
rameters. Without guidance from labels, model performance can be unstable and unpredictable, producing
somewhat arbitrary predictions. As such, unsupervised learning algorithms might be better suited for data labeling
tasks rather than for real‐time anomaly detection in streaming ARM data.

2.2. Synthetic Method of Semi‐Supervised Learning (SSL) and Transfer Learning

2.2.1. Semi‐Supervised Learning

SSL has emerged as an effective strategy for building ML models, when there is a limited supply of labeled data
and labeling additional data is prohibitively expensive. One common method within SSL involves using

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 3 of 21

clustering algorithms to group a mix of labeled and unlabeled data into several classes. After that, labels of labeled
data are propagated to the unlabeled data within each cluster. Additionally, various other methods in SSL assign
pseudo‐labels based on prediction probabilities. However, these methods offer no control over the accuracy of
their labels. The high level of uncertainty and noise associated with these labels often results in creating less
robust supervised learning models. To overcome this challenge, we propose an innovative and practical approach
that enhances labeling efficiency without sacrificing accuracy. Our approach begins with the concept of transfer
learning.

2.2.2. Transfer Learning

Transfer Learning is a generic term inML, referring to a technique of using a pre‐trained model designed and built
for a problem to solve another new problem (Божиновски, 2020). It assumes that the knowledge gained in
learning a previous task can be insightful in generalizing one another. When a suitably labeled data set for transfer
is accessible, transfer learning could be a more favorable option over any SSL techniques (Oliver et al., 2018).
Considering the enormous number of variables across a wide variety of instruments at different ARM sites,
building one model for each time series might seem overly ambitious and highly inefficient. As a result, it's
inevitable for us to leverage transfer learning techniques to reduce our review workload. To determine how to
make it work and whether it's an appropriate approach, we will expand our discussion with results of three ex-
periments from our spike detection project.

2.2.3. Iterative Error‐Driven Labeling (IEDL)

There's a self‐explanatory trade‐off between the effort required by labeling and the accuracy of labels. The
challenge lies in how to achieve a high level of label completeness of true positive samples with a minimal manual
workload. Unlike the classic pseudo‐labeling approach (Nayeem Rizve et al., 2021), where a pre‐trained model
filters predictions on unlabeled data solely based on one or multiple thresholds of the corresponding predictive
probabilities, our proposed semi‐supervised labeling method demands iterative review for positive predictions
and prediction errors. The first algorithm we developed in this study, termed Iterative Error‐Driven Labeling
(IEDL), represents a synthesis of both SSL and transfer learning techniques, and is specifically tailored for la-
beling the minority class in large‐scale data sets with boosted efficiency.

Labeling samples into both minority and dominant classes is time‐consuming. Hence, IEDL focuses on differ-
entiating and labeling samples of the minority class in contrast to the majority class samples. Initially, IEDL
assumes that all unlabeled samples belong to the majority class and utilizes a pre‐trained model with labeled data
to make predictions on unlabeled data. It then iteratively updates labels for true positive samples by scrutinizing
prediction errors until no more new errors are found. Since labels of the minority class samples are created after
validation, instead of reviewing both FP and FN samples, we only need to review the FP ones. However, in
scenarios where labeling criteria are uncertain or difficult to quantify—such as deciding whether an abnormal
data pattern signifies a significant data quality issue that warrants further investigation, it's advisable to review
both FP and FN samples.

To better explain the IEDL algorithm, let's consider a simple example with an illustration. Figure 1 shows a small,
labeled mixture of samples with and without anomalies, with samples without anomalies being the dominant
“negative” class. To identify all the anomaly samples without reviewing the entire unlabeled data set, we employ
the IEDL algorithm. The process begins by training a model on this small set of labeled data, which is then used to
make predictions on unlabeled data. This technique is known as transfer learning, notably reducing the effort of
reviewing the whole data set to focusing solely on samples predicted as positive. However, not all positive
predictions are accurate, since the effectiveness of transfer learning depends on the level of similarity between the
previous task and the current one. Next, iterative reviews on prediction errors occur to further reveal the remaining
true positive samples. In this example, by mainly reviewing regular samples that are falsely predicted as
anomalies, we can incrementally locate all or at least most anomaly samples, ultimately reducing label noise and
prediction uncertainty.

It is worth noting that, at the end of the IEDL implementation, samples initially marked with the pseudo label
“negative” are only partially confirmed as either “positive” or “negative” after manual examination, as high-
lighted in red rectangles in Figure 1. When samples first assigned the pseudo label “negative” clearly don't match
the target data pattern (in this project, the shape of a spike), it is highly probable that these samples remain

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 4 of 21

unreviewed due to the lack of ambiguity in their classification. They are most likely to be correctly labeled, as no
new FP samples were revealed at the end, reflecting greatly minimized label noise. This is how IEDL enables us to
label data quality issues without investigating the entire data set.

The concept of IEDL draws inspiration from the Gradient Descent (GD) Algorithm, predominantly used in Deep
Learning. GD involves iterative updates to model parameters in the direction of minimizing the loss function.
Instead of calculating gradient descents of the loss function, as illustrated in Figure 2, IEDL relies on iteratively
examining prediction errors to guide the labeling process toward reducing the number of remaining unrevealed
true positive samples. We also defined a threshold for the number of samples required for review in each iteration
of IEDL, which we term as the “desired validation effort (DVE),” comparable to the learning rate in GD. A large

Figure 1. An illustrative process of Iterative Error‐Driven Labeling (IEDL) algorithm. Shape and color legends of unlabeled, validated, and predicted data samples are
shown in the upper right corner.

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 5 of 21

learning rate can possibly lead to divergence in GD, but in IEDL, a large value of DVE will result in fewer it-
erations without deviation.

An overfitting model can learn the training data by memorizing each training sample, resulting in poor perfor-
mance in generalization. To enable a model to discover unrevealed true positive samples from the unlabeled data
set, we need to intentionally opt for an underfitting model, as proposed in Table 1.

There are several methods to tune down the model complexity, which are inspired by the concept of the ensemble
learning algorithm, that builds a strong learner by aggregating results from a bunch of weak learners. These
include: (a) reducing the number of training samples used in weak learner training; (b) selecting a small subset of
available features for training a weak learner; and (c) choosing a less complex ML algorithm either by setting
regularization constraints within model hyperparameters or by using a simpler algorithm by nature. By applying
any combination of these techniques, we can effectively prevent the use of an overfitting model in IEDL.

2.2.4. Iterative Error‐Driven Ensemble Labeling (IEDEL)

The Iterative Error‐Driven Ensemble Labeling (IEDL) algorithm is a synthetic method of SSL and transfer
learning that improves efficiency over the blind and manual searching and labeling anomalies in large‐scale data
sets. However, it has shortcomings from two perspectives. First, IEDL relies on predictions from merely one

Figure 2. Comparison between Gradient Descent (GD) (a) and Iterative Error‐Driven Labeling (b) algorithms.

Table 1
Iterative Error‐Driven Labeling Algorithm Information for Anomaly Detection

Iterative error‐driven labeling (IEDL) algorithm for anomaly detection

Data: Labeled data DL = {(Xi, yi)}
NL
i=1, Unlabeled data DU = {(Xi, yi)}

NU
i=1

Labels: yi = “positive,” the minority class (with at least one anomaly). yi = “negative,” the majority class (without any anomalies)

Process:

(Transfer Learning)

1. Assume all samples in DU belong to the majority class, D̃u = {Xi, yi = “negative”}
NU
i=1

2. Train a non‐overfitting classifier with labeled data DL

3. Use this trained model to make predictions on unlabeled data DU

4. Review samples predicted as positive and update labels to the minority class, “positive,” in D̃u on newly discovered true positive samples, as D̃u′

5. Merge DL and D̃u′ and marked it as DL′, so DL′ will be the labeled data under development

(Iterative Labeling)

Repeat

1. Retrain a non‐overfitting classifier with DL′

2. Prediction Error Review: Review prediction errors and record reviewed samples to avoid duplicate reviews in the following iterations

3. Update labels of DL′ with newly found true positive samples from this review

Until there are no prediction errors that haven't been reviewed yet

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 6 of 21

model; thus, the return on review effort, reflected by precision, is uncertain, which is later clearly demonstrated in
Figure 7. There are hardly any measures to ensure high precision since the IEDL algorithm employs only a single
model during transfer learning.

Furthermore, it's possible that the small set of manually labeled data used initially in the IEDL algorithm might
not comprehensively represent a full spectrum of possibilities. Evidence of this can be seen in Figure 3, where the
maximum feature importance of nine available features starts at 0.93 with 72 days of labeled data and drops to
0.54 when using 6 years of labeled data (from 2013 to 2018). This change indicates that the model trained on
6 years of data learned to utilize more features in classifying training samples, whereas the 72‐day model relied
heavily on one feature for predictions. Given this observation, pseudo labeling and its advanced variant, the
uncertainty‐aware pseudo‐label selection framework (UPS), are not ideally suited for efficiently generating ac-
curate labels for anomalies within the ARM Archive.

To address these shortcomings, instead of using a single underfitting model for labeling anomalies, we can
leverage multiple underfitting models. These models are constructed by selecting only a subset of features during
training, thereby forcing each model to focus on different aspects of the data during classification. By aggregating
results from several weak learners, we traded off more bias for less variance, therefore reducing training loss. This
novel approach is called the IEDEL algorithm, which is a variant and more powerful version of the IEDL
algorithm.

In IEDEL, we first build a series of underfitting models with different subsets of features using labeled data and
make predictions on unlabeled data with these models. After reviewing positive predictions on unlabeled data, we
will generate more labels on the minority class. An underdeveloped set of labeled data will be utilized in iterative
prediction error review after combining fully labeled and partially labeled data. Table 2 displays the IEDEL
algorithm's process step by step with more details. Additionally, we suggest employing unanimous voting to
effectively reduce the number of positive predictions requiring review in IEDEL.

Both the IEDL and IEDEL algorithms share a common weakness: without manually validating the entire data set,
we cannot ensure 100% labeling accuracy for true positive samples. Nevertheless, these methods are highly
efficient in locating most true positive samples that are sufficient to build robust models for identifying the
targeted data issue in future data, thus fulfilling their intended purpose.

2.2.5. Unanimous Voting

In IEDEL, several underfitting models output predictions to aid in disguising unrevealed true positive samples.
With either hard voting or soft voting methods to select samples predicted positive for review, there's no guarantee
of a high return on effort spent in validation. To address such a dilemma, we propose a new algorithm, termed
unanimous voting. This approach is detailed step‐by‐step in Table 3. Unanimous voting requires predictions from

Figure 3. Changes on Feature Importance in Experiment I with nsametC1.rh_mean data. It compares the initial model, which was trained on 72 days of data, with the
final model, trained on data spanning 6 years.

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 7 of 21

all selected subset models to agree on voting a sample to the minority class to predict it as a minority class sample,
which means we only review the minority class predictions with the highest aggregated votes.

In Figure 4, we compare unanimous voting with hard voting and soft voting. In scenarios where hard voting
(Figure 4a) produces minority class predictions, unanimous voting (Figure 4c) is more likely to favor the majority
class just because not all predictors voted for the minority class. In this illustration, we assume that the weights of
weak learners are equal within the ensemble. With hard voting, the ensemble learning result is determined based
on the majority vote. For instance, as shown in Figure 4a, a sample is predicted as “0” because class “0” receives
the most votes. In contrast, soft voting (Figure 4b) calculates the arithmetic mean of the votes based on predictive
probabilities. In Figure 4b, even though class “0” receives two votes, the sample is predicted as “1.” This
distinction can lead to situations where the results of hard voting diverge from those of soft voting. Unanimous
voting, however, requires all weak learners to simultaneously vote for the minority class to predict that class,
thereby making it more likely to classify samples as belonging to the majority class. As shown in Figure 4c, the
sample is voted as “1” because one of the learners voted for “0.”

While unanimous voting has proven effective in reducing the overall review effort, it can, unfortunately, result in
producing no positive predictions when too many subset models are used. Therefore, we established a threshold
for the DVE per iteration in our project. For example, we can set the DVE at 50 samples. We continuously

Table 2
Iterative Error‐Driven Ensemble Labeling (IEDEL) Algorithm Information for Anomaly Detection

Iterative error‐driven ensemble labeling (IEDEL) for anomaly detection

Data: Labeled data DL = {(Xi, yi)}
NL
i=1, Unlabeled data DU = {(Xi, yi)}

NU
i=1

Labels: yi = “positive,” the minority class (with at least one anomaly). yi = “negative,” the majority class (without any anomalies)

Process:

(Transfer Learning)

1. Assume all samples in DU belong to the majority class, D̃u = {Xi, yi = “negative”}
NU
i=1

2. Train a series of underfitting classifiers with labeled data DL

3. Use these trained models to make predictions on unlabeled data DU

4. Aggregate results from these models by either hard voting, soft voting (with or without weights), or unanimous voting

5. Review samples predicted as positive from the aggregated results and update labels to the minority class, “positive,” in D̃u on newly discovered true positive
samples, as D̃u′

6. Merge DL and D̃u′ and marked it as DL′, so DL′ will be the labeled data under development

(Iterative Labeling)

Repeat

1. Retrain a series of underfitting classifiers with DL′

2. Prediction Error Review: Review prediction errors and record reviewed samples to avoid duplicate reviews in the following iterations

3. Update labels of DL′ with newly found true positive samples from this review

Until there are no prediction errors that haven't been reviewed yet

Table 3
Unanimous Voting for Ensemble Labeling Algorithm Information

Unanimous voting for ensemble labeling

Define:

Labels: yi = “positive,” the minority class (with at least one anomaly). yi = “negative,” the majority class (without any anomalies)

We observe voting results from N classifiers, V = {V1,…,Vi}
N
i=1

Process:

1. If any Vi = “negative,” the result of unanimous voting is “negative”

2. Otherwise, the result of unanimous voting is “positive”

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 8 of 21

employed additional subset models in unanimous voting to generate more rigorous predictions until the number of
samples falsely predicted as positive fell below 50. By doing so, we make sure to continuously review a certain
amount of new prediction errors throughout iterations until no new ones are found, achieving a level of labeling
completeness of the minority class, wherein the model can easily differentiate between two classes due to the
substantial reduction in labeling noise.

3. ARM Data
3.1. ARM Data and Experiment Setting

ARM collects large amounts of continuous atmospheric data from over 200 meteorological instruments—roughly
50 terabytes of data per month (U.S. Department of Energy, 1998). These data come from the instruments as raw
data, then flow through a number of processes to ensure accuracy. Raw data is ultimately transformed into useable
netCDF files through the ingest process. It is during this process that various data levels are generated: a‐level
data, which converts the raw data into netCDF files; b‐level data, which applies various types of QC checks
depending on the instrument; and c‐level data, which are considered Value Added Products and may include more
complex derivations and QC. ARM data is also subject to stringent data standards to ensure better data quality,
readability, and reliability. ARM datastreams in particular follow the following format (ARM Standards
Committee, 2020):

(sss)(inst)(facility).(level)

sss is the three letter ARM site identifier
inst is the ARM instrument abbreviation
facility is the two or three character ARM facility designation
level is the data level descriptor consisting of one lowercase letter followed by one number

Our experiments are aimed to discover the best practice of efficient labeling and transfer learning of this ARM
data from various time series data across different variations, addressing problems as follows:

Figure 4. Comparison of Three Voting Algorithms in Ensemble Learning. (a) “Hard Voting” algorithm where the final prediction is the majority vote from multiple
decision trees. (b) “Soft Voting,” which takes the average probability from the predictions of each tree to determine the final prediction. (c) “Unanimous Voting,”
requiring all decision trees to agree on a positive prediction for it to be considered true, otherwise the final prediction defaults to negative. Each panel visualizes the flow
from input through ensemble learning to the collective decision of the ensemble classifier. “1” denotes “positive,” and “0” indicates “negative.”

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 9 of 21

• Transfer learning across time
• Transfer learning across ARM sites
• Transfer learning across different variables

For these experiments, we will be using data from two ARM datastreams: nsametC1.b1 and sgpmetE37.b1
(Kyrouac et al., 2011; see Table 4). Keeping in mind the ARM datastream format mentioned above, it is clear that
“NSA” (or the North Slope of Alaska) is the site and C1 is the facility for the nsametC1.b1 datastream, while
“SGP” (or the Southern Great Plains) is the site and E37 is the facility for the sgpmetE37.b1 datastream. From the
nsametC1.b1 datastream, we will use mean relative humidity (rh_mean) data. From the sgpmetE37.b1 data-
stream, we will use mean relative humidity (rh_mean) data as well as mean temperature (temp_mean) data. All of
the data from these datastreams are collected from two of ARM's Surface Meteorology Systems (MET in-
struments), which use in‐situ sensors to gather information. The data collected from both datastreams will be b‐
level data, meaning that there will be QC checks applied to many of the measurement variables, including both
rh_mean and temp_mean.

3.2. Notation for Spike Detection Experiments

Let DL = {(Xi, yi)}
NL
i=1 be a labeled data set with NL samples, where Xi denotes the feature space and yi represents

the corresponding class label. The objective of this project is to detect abnormal data spikes that are significantly
indicative of a data quality issue, warranting a review by the DQO. The decision to include a data spike in an ARM
data quality report rests with both the DQO and the instrument mentors. MLmodels are used solely for monitoring
purposes. There are two classes: “positive,” for samples exhibiting at least one suspicious data quality spike, and
“negative,” for samples without such spikes. Given the rarity of data quality spikes, the “negative” class is the
majority class.

Let DU = {(Xi)}
NU
i=1 be a data set with NU samples but without any labels. In DU, the majority class label,

“negative,” will by default be assigned to all samples, {(Xi, ỹi= “negative”)}
NU
i=1} , referred to as pseudo labels. By

applying our proposed algorithms, we can incrementally update labels of true positive samples from “negative” to
“positive” within these pseudo labels. This process eventually generates a set of labels forDUwith high accuracy,
enabling us to construct high‐performance supervised learning models to detect data quality spikes in the ARM
Data Archive.

3.3. Data Preprocessing

Most ARM datastreams are time series data. To incorporate the time dimension in model training, we generated
sliding windows based on a fixed time window size and stride, using them as training samples. In our spike
detection project, the time window size is set to 20 timesteps (with a time resolution of 1 min), and the stride varies
based on the need for up‐sampling and down‐sampling, which we will explain in Section 3.4.

Based on our experiments, we've established a rule of thumb that a desired time window size for anomaly
detection must be large enough to provide sufficient information about changes over time to determine whether a
window contains a targeted type of data anomaly. However, it should also be small enough to isolate this anomaly
within a single time window. For instance, a time window size of one day would not be appropriate, as multiple
spikes can occur within one day. When multiple anomalies occur within a single time window, they might no
longer appear to be abnormal patterns in time series data, leading to compromised model performance.
Furthermore, the larger the window size, the longer the wait to process and classify it. With all these in mind, there
is a range of appropriate window sizes. As the DQO, we prefer to provide our users with more timely and precise
detection of data issues; therefore, a smaller time window size within this range is better suited to our needs.

Table 4
Data Sets Used in This Study, Including Atmospheric Radiation Measurement Site, Instrument, Facility, and Variable Information

Data sets Site Instrument Facility Variable

nsametC1.rh_mean North Slope of Alaska (NSA) MET Central Facility 1 (C1) Relative Humidity Mean (rh_mean)

sgpmetE37.rh_mean Southern Great Plains (SGP) MET Extended Facility 37 (E37) Relative Humidity Mean (rh_mean)

sgpmetE37.temp_mean Southern Great Plains (SGP) MET Extended Facility 37 (E37) Temperature Mean (temp_mean)

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 10 of 21

As we observed from data sets used in experiments, the likelihood of a 20‐min sliding window containing more
than one spike is very low. In scenarios where multiple spikes occur within a 20‐min time window, our proposed
solution remains effective since the successive sliding windows can always isolate the first and the last data
spikes, provided the stride is set to 1. Thus, we suggest setting stride to 1 when implementing ML models for
production to ensure proper handling of samples where multiple spikes appear in a single time window. Next, we
will expand the discussion on how to select a proper stride for slicing sliding windows to address class imbalance
issues in anomaly detection.

3.4. Class Imbalance Issue and Data Augmentation

Data quality issues in the ARM Archive are rare. When training a binary classifier to identify a data issue, it's
crucial to first address the class imbalance issue. This prevents models from favoring the majority class with lazy
predictions, instead of learning to differentiate classes effectively. Generally, we could consider up‐sampling the
minority class by introducing random noise into existing samples of this class and incorporating them into the
training set. For example, the Synthetic Minority Over‐sampling Technique (SMOTE) is useful for generating
synthetic data points interpolated between existing minority class samples. However, SMOTE isn't suitable for
identifying abnormal data patterns in time series data, as it does not guarantee the preservation of the overall
pattern (Chawla et al., 2002).

Another method of up‐sampling, specific for time series analysis, is to augment the number of the minority class
samples by creating random time windows around that identified data anomaly. For example, a data spike in our
spike detection project with 1‐min resolution relative humidity data might span 3–5 min. Each sample represents a
20‐min time window. We can label multiple time windows containing this data spike as “positive,” rather than
labeling just one sample per spike. This approach upscales the minority class set by setting the stride to its
minimum value. Additionally, such an augmentation technique ensures that labels for spikes are location‐
irrelevant within a 20‐min time window, enhancing the robustness of our spike detection models, especially
when the number of strides varies in segmenting sliding time windows.

Alternatively, we could apply down‐sampling to the majority class samples by randomly selecting a subset of a
size comparable to the minority class set. Moreover, by setting the stride to a larger value, such as half of the time
window size, when producing sliding windows for samples without spikes, we can effectively decrease the
number of majority class samples. By implementing both up‐sampling and down‐sampling techniques, we have
successfully mitigated the impact of extreme class imbalance in our anomaly detection project.

4. Results
In this section, we present the results of our proposed algorithms, beginning with a comparison between IEDL and
IEDEL. This comparison demonstrates the advantages of using an ensemble of subset models for labeling
anomalies in large‐scale data sets, as opposed to relying on a single model. Additionally, it highlights the
importance of the unanimous voting algorithm in effectively improving the return on review effort. Regarding
ML algorithms, we employed the Decision Tree algorithm for data labeling, and subsequently, the Random Forest
algorithm was used for processing tasks on the labeled data.

4.1. IEDL and IEDEL

As illustrated in Figure 5, the IEDEL algorithm gradually improved the precision of labeled data by iteratively
increasing the completeness of true positive samples during reviews of FPs. Each row presents results for one data
set in the following order: “nsametC1.rh_mean,” “sgpmetE37.rh_mean,” and “sgpmetE37.temp_mean.” In
Figure 5a, both FPs and FNs initially fluctuated over several iterations, vividly illustrating how label noise misled
the models. However, they eventually stabilized at a point where no new FPs were identified in the last iteration.
As of now, there remain some prediction errors, including both FPs and FNs, but all have been investigated in past
iterations, indicating that label noise has been significantly reduced. This suggests the need to switch to a more
complex model and refit the data. Based on our results from these experiments, we have found few new anomalies
after refitting. Nonetheless, there is still a possibility of discovering new anomalies by reviewing prediction errors
from the refitted models, but these should be minimal, and manually labeling them is no longer an exhaustive task.
By employing the ARM visualization tools, including DQ‐Plotbrowser and DQ‐Zoom, which present data on a
daily basis, we used the number of dates of reviewed data to indicate the workload in each iteration of IEDEL. In

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 11 of 21

Figure 5. Analysis of Prediction Errors and Reduction of Review Efforts in Iterative Error‐Driven Ensemble Labeling (IEDEL). Left column panels (a), (b), and (c) show
the count of False Positives (FPs) and False Negatives (FNs) across successive iterations of error‐driven labeling for the data sets “nsametC1.rh_mean,” “sgpmetE37.
rh_mean,” and “sgpmetE37.temp_mean,” respectively. Right column panels (d), (e), and (f) display the number of new reviewed dates across the same iterations for
each data set. These results collectively exhibit the progression of the IEDEL algorithm.

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 12 of 21

Figures 5b, 5c, 5e, and 5f, similar observations can be found in the data sets “sgpmetE37.rh_mean” and
“sgpmetE37.temp_mean.”

One thing worth noting is that the number of iterations required in IEDEL depends on the validation effort
invested in each iteration. Therefore, such a number might differ across experiment settings. Also, we imple-
mented unanimous voting until the number of aggregated positive predictions fell below the DVE. The values of
DVE used in our spike detection project range from 50 to 100.

The purpose behind the IEDEL algorithm is to efficiently label anomalies within a large‐scale database, such as
the ARM Archive. By implementing IEDEL, we achieved a significant reduction in labeling efforts for our spike
detection project, with reductions of 95.3%, 92.1%, and 96.8% for data sets “nsametC1.rh_mean,” “sgpmetE37.
rh_mean,” and “sgpmetE37.temp_mean,” respectively (shown in Table 5 and Panels a, b, and c of Figure 6).
Notably, labels for 13 years of “sgpmetE37.rh_mean” data were derived through transfer learning from just
72 days of data from “nsametC1.rh_mean,” resulting in only 39.3% of the reviewed samples being accurately
identified as data spikes, as illustrated in Figure 6e. Furthermore, the application of transfer learning from
“sgpmetE37.rh_mean” to “sgpmetE37.temp_mean” resulted in a mere 15.6% accuracy in spike detection among
our reviewed samples. These compromised outcomes can be attributed to the different levels of similarity be-
tween the data sets mentioned. Despite these challenges, IEDEL significantly reduced our average review time by
94.6% across these data sets.

Instead of reviewing data points to locate rare anomalies, we now only need to review a minimal amount of data to
identify most of the targeted data issues. For example, instead of reviewing 12 years of “sgpmetE37.rh_mean”
data to locate rare occurrences of spikes, we now only need to review 1 year of data to identify most of the spikes.
IEDEL can enhance labeling efficiency without compromising accuracy, empowering us to construct supervised
models that offer precise and real‐time monitoring for various data quality issues within the ARM Archive.

4.2. Unanimous Voting in IEDEL

Unanimous voting is a rigorous algorithm employed to make predictions that were with high precision and low
recall from an ensemble of underfitting models. This method aligns well with our goal of anomaly detection while
minimizing the validation effort. In Experiment I, we trained models with 72 days of data, which included 110
recurring spikes from 30 September 2020 to 11 December 2020. We then utilized these well‐trained models to
predict using data from 1 January 2019 to 31 December 2021, excluding the 72 days in 2020.When examining the
number of positive predictions, we observed a range varying from 224 to 1,431 after merging overlapping time
intervals. Reviewing 224 time intervals in one iteration is still less than ideal, given the scale of the ARMArchive,
especially considering that later we found that only 22% of these 224 time intervals were correct. With unanimous
voting, we were able to significantly reduce this range to only 41 positive predictions, which were later examined
with a precision of 51%. This resulted in a significant enhancement in return on review effort.

We also observed that the number of positive predictions produced by ensemble models, trained using data from
2019 to 2021 and applied to data from 2013 to 2018, reduced from a range of 252 to 4,559 to a mere 42 after
applying unanimous voting. Similar observations were made across all applications of unanimous voting
throughout the iterative labeling processes of three experiments, clearly demonstrating the effectiveness of
unanimous voting in preventing the waste of review time.

Table 5
Summary of Data Review and Efficiency Gain Using the Iterative Error‐Driven Ensemble Labeling Algorithm

Data sets Total number of days Number of reviewed days Number of days with DQ spikes after review Reduction in review effort (%)

nsametC1.rh_mean 3,287 155 40 95.3

sgpmetE37.rh_mean 4,385 345 96 92.1

sgpmetE37.temp_mean 4,385 147 23 96.8

Total 12,057 647 159 94.6

Note. This table presents the total number of dates, the number of dates reviewed, the number of dates with detected data spikes after the review, and the corresponding
reduction in review effort for the data sets “nsametC1.rh_mean,” “sgpmetE37.rh_mean,” and “sgpmetE37.temp_mean.” The aggregated totals for all data sets are also
provided in the last row, demonstrating the overall performance of the IEDEL algorithm on enhancing review efficiency.

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 13 of 21

4.3. Precision‐Recall Trade‐Offs

We observed precision and recall trade‐offs in all three experiments when applying unanimous voting with
IEDEL. Leveraging these trade‐offs allows us to control the desired precision and recall at each iteration of
IEDEL. In IEDEL, precision reflects the return on review efforts, while recall indicates how much we can in-
crease the completeness of labeling true positive samples in a single iteration. For clarification, the term “recall”
refers to an approximate estimate of the completeness of true positive labels, since we can't ensure a perfect
accuracy of data labels without laboriously reviewing every single sample.

Figure 6. Evaluation of review efficiency improvement and precision using the Iterative Error‐Driven Ensemble Labeling Algorithm. Panels (a), (b), and (c) show the
data review percentages for the data sets “nsametC1.rh_mean,” “sgpmetE37.rh_mean,” and “sgpmetE37.temp_mean,” respectively, illustrating the proportion of data
manually reviewed versus that not required for review. Panels (d), (e), and (f) correspond to each respective data set and display the precision of the reviewed data,
indicating the percentage of data spikes detected within the reviewed data.

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 14 of 21

We don't always want to apply unanimous voting to all subset models, as doing so results in the minimum number
of positive predictions, leading to high precision but low recall. For instance, as shown in Figure 7, when we apply
unanimous voting to all 13 subset models, we achieved 51% precision and 31% recall. However, by applying
unanimous voting only to the first 8 models (from subset 0 to subset 7), we attain a precision of 44.6% and a recall
of 48.5%, resulting in a more balanced outcome. This illustrates a trade‐off, with a 6.4% decrease in precision for a
17.5% increase in recall.

In practice, while we won't be able to ascertain the exact trade‐off between precision and recall at each iteration,
we can still use this trade‐off principle to determine what best suits our needs. For example, if we aim for a
validation effort of 50 time intervals per iteration, we only need to continuously apply unanimous voting on subset
models until the number of samples requiring review falls below 50. In this way, we can trade off a moderate
decrease in precision for a higher recall, ultimately requiring fewer iterations to finish the whole IEDEL process.

4.4. Transfer Learning Performance

The implementation of transfer learning is crucial to the success of our project in leveraging ML algorithms to
monitor data quality issues within the ARM Archive, since we started with insufficient labels. The IEDEL al-
gorithm relies on a small set of labeled data to guide subsequent labeling iterations. However, manually labeling
enough anomalies has proven to be a time‐consuming and sometimes challenging task. To address this challenge,
instead of laboriously searching for anomalies, we applied the transfer learning technique as detailed in Tables 1
and 2. This technique allows us to make predictions on unlabeled data and subsequently use these predictions to
initiate the IEDEL implementation on new data sets.

Figure 7. Reduction in review effort after applying Unanimous Voting in data set “nsametE37.rh_mean.” Panel (a) and (b) present results from a model trained using
data spanning 2019–2021, which was then applied to predict outcomes in data from 2013 to 2018. Panel (a) illustrates a comparison: it contrasts the initial count of
positive predictions with the adjusted count obtained after merging overlapping samples. Panel (b) demonstrates the significant reduction in the number of positive
predictions achieved through the implementation of unanimous voting algorithm. Panels (c) and (d) showcase results from a separate model, trained using data from 30
September 2020 to 11 December 2020. This model was utilized to generate predictions on data from 2019 to 2021, excluding the period used for training. The
observations in Panels (c) and (d) mirror those in Panels (a) and (b).

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 15 of 21

We conducted an analysis to evaluate the performance of transfer learning data under various scenarios, as shown
in Tables 6 and 7, including transfer learning over time, across extended facilities within the same ARM site,
between different ARM sites, and across diverse variables. In the #1 transfer learning process, the maximum
precision and a corresponding recall were 22.32% and 72.06%when reviewing 224 samples produced from subset
model #1, and the maximum recall and a corresponding precision were 89.71% and 3.98% when reviewing 1,431
samples from subset model #9. These statistics highlight a performance trade‐off in the IEDL algorithm between a
decrease in precision by 18.34% and an increase in recall by 17.65%, and vice versa. The transfer learning
performance of IEDL, while not impressive by itself, is better than unguided browsing for anomalies, especially

Table 6
A Summary of Transfer Learning Performance Across Three Experiments in the Spike Detection Project

Transfer
learning

Precision Recall

IEDL IEDEL & UV IEDL IEDEL & UV

Min
Positive
predictions Max

Positive
predictions

Positive
predictions Min

Positive
predictions Max

Positive
predictions

Positive
predictions

1 Metrics 3.98% 1,431 22.32% 224 51.22% 41 67.65% 646 89.71% 1,431 30.88% 41

(Recall
89.71%)

(Recall
72.06%)

(Precision
6.97%)

(Precision 3.98%)

Model ID Model #9 Model #1 All Model #10 Model #9 All

Precision &
Recall per
review

0.0028% 0.0996% 1.24% 0.0108% 0.0028% 1.24%

0.0627% 0.3217% 0.7532% 0.1047% 0.0627% 0.7532%

2 Metrics 0.53% 4,559 8.68% 242 52.38% 42 72.41% 324 100.00% 541, 675,
816, 932

34.38% 42

(Recall
89.66%)

(Recall
79.31%)

(Precision
6.17%)

(Precision 4.81%,
3.85%,

3.19%, 2.79%)

Model ID Model #6 Model #12 All Model #11 Model #1, 2, 3, 4 All

Precision &
Recall per
review

0.0001% 0.0359% 1.2471% 0.0190% 0.0049% 1.2471%

0.0197% 0.3277% 0.8186% 0.2235% 0.1350% 0.8186%

3 Metrics 1.79% 4,692 14.04% 292 55.26% 26 30.30% 212 94.95% 1,203 14.14% 26

(Recall
88.89%)

(Recall
42.42%)

(Precision
13.68%)

(Precision 7.48%)

Model ID Model #6 Model #11 All Model #12 Model #4 All

Precision &
Recall per
review

0.0004% 0.0481% 2.1254% 0.0645% 0.0062% 2.1254%

0.0189% 0.1453% 0.5438% 0.1429% 0.0789% 0.5438%

4 Metrics 0.56% 3,780 7.51% 253 14.55% 55 42.42% 1,123 69.70% 3,780 24.24% 55

(Recall
69.70%)

(Recall
57.58%)

(Precision
1.25%)

(Precision 0.56%)

Model ID Model #F Model #A All Model #G Model #F All

Precision &
Recall per
review

0.0001% 0.0297% 0.2645% 0.0011% 0.0001% 0.2645%

0.0184% 0.2276% 0.4407% 0.0378% 0.0184% 0.4407%

Weighted
average
precision &
Recall

1.29% 12.96% 39.86% 4.69% 2.73% 39.86%

83.68% 61.61% 26.90% 52.59% 81.08% 26.90%

Weighted
average
precision &
Recall per
review

0.0001% 0.0128% 0.2430% 0.0020% 0.0004% 0.2430%

0.0058% 0.0609% 0.1640% 0.0228% 0.0113% 0.1640%

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 16 of 21

Ta
bl
e
7

So
ur
ce
s
an

d
Ti
m
e
Ra

ng
es

of
D
at
a
U
se
d
in

Ea
ch

Tr
an

sf
er

Le
ar
ni
ng

Pr
oc
es
s
fo
r
th
e
Sp

ik
e
D
et
ec
tio

n
Pr

oj
ec
t

Tr
an
sf
er
le
ar
ni
ng
pr
oc
es
se
s

Fr
om

To

1
Te
m
po
ra
lT
ra
ns
fe
r
w
ith
in
th
e
Sa
m
e
V
ar
ia
bl
e

D
at
a
se
t

ns
am
et
C
1.
rh
_m
ea
n

ns
am
et
C
1.
rh
_m
ea
n

Ti
m
e
R
an
ge

20
20
/0
9/
30
–2
02
0/
12
/1
1
(7
2
da
ys
)

20
19
/0
1/
01
–2
02
1/
12
/3
1
(3
ye
ar
s,
ex
cl
ud
in
g
72
da
ys
us
ed
in
tra
in
in
g)

2
Te
m
po
ra
lT
ra
ns
fe
r
w
ith
in
th
e
Sa
m
e
V
ar
ia
bl
e

D
at
a
se
t

ns
am
et
C
1.
rh
_m
ea
n

ns
am
et
C
1.
rh
_m
ea
n

Ti
m
e
R
an
ge

20
19
/0
1/
01
–2
02
1/
12
/3
1
(3
ye
ar
s)

20
13
/0
1/
01
–2
01
8/
12
/3
1
(6
ye
ar
s)

3
A
cr
os
s
Si
te
s
Tr
an
sf
er
w
ith
in
th
e
Sa
m
e
V
ar
ia
bl
e

D
at
a
se
t

ns
am
et
C
1.
rh
_m
ea
n

sg
pm
et
E3
7.
rh
_m
ea
n

Ti
m
e
R
an
ge

20
20
/0
9/
30
–2
02
0/
12
/1
1
(7
2
da
ys
)

20
11
/0
9/
28
–2
02
3/
09
/2
9
(1
3
ye
ar
s)

4
A
cr
os
s
V
ar
ia
bl
es
Tr
an
sf
er
w
ith
in
th
e
sa
m
e
fa
ci
lit
y

D
at
a
se
t

sg
pm
et
E3
7.
rh
_m
ea
n

sg
pm
et
E3
7.
te
m
p_
m
ea
n

Ti
m
e
R
an
ge

20
11
/0
9/
28
–2
02
3/
09
/2
9
(1
3
ye
ar
s)

20
11
/0
9/
28
–2
02
3/
09
/2
9
(1
3
ye
ar
s)

N
ot
e.
Th
is
ta
bl
e
of
fe
rs
ad
di
tio
na
ld
et
ai
ls
co
m
pl
em
en
ta
ry
to
th
os
e
in
Ta
bl
e
6.

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 17 of 21

Figure 8. Comparative analysis of precision and recall for Iterative Error‐Driven Labeling (IEDL) and Iterative Error‐Driven Ensemble Labeling (IEDEL) algorithms:
(a) performance metrics for IEDL, detailing precision and recall across different subset model indices with annotations of minimum and maximum sample sizes.
(b) Delineates the same metrics for IEDEL, with annotations indicating the extent to which sample sizes were reduced through the application of IEDEL with
Unanimous Voting. (c) Presents the efficiency in enhancing precision and recall per sample review when applying IEDEL with Unanimous Voting.

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 18 of 21

considering that these results were achieved through transfer learning from 72 days of labeled data to 3 years of
data. With iterative reviews of prediction errors, IEDL can gradually improve accuracy in labeling anomalies.

As shown in Table 6, the IEDEL algorithmwith unanimous voting, compared to IEDL, improved transfer learning
precision in the #1process froma rangeof 3.98% to22.32% to an aggregated result of 51.22%, in the #2process from
a range of 0.53% to 8.68% to an aggregated result of 52.38%, in the #3 process froma range of 1.79% to 14.04% to an
aggregated result of 55.26%, and in the #4process froma range of 0.56% to 7.51% to an aggregated result of 14.55%.
Overall, the average weighted precision across all aforementioned transfer learning processes increased from a
range of 1.29% to 12.96% to an aggregated result of 39.86%, trading off with a decrease in transfer learning recall
from a range of 52.59% to 80.54% to an aggregated result of 26.9%. The effectiveness of this trade‐off is possibly
debatable considering the varying number of samples required for review across different aggregated results.

To further assess efficiency improvements in labeling from IEDL to IEDEL with unanimous voting, we estimated
the average precision and recall contributed by each sample review. Although Figure 8b shows a trade‐off be-
tween precision and recall, Figure 8c indicates a consistent increase in both metrics per review with unanimous
voting implementation. The maximum weighted average precision and recall per review for IDEL across four
processes listed in Table 6 were 0.0228% and 0.0609%, respectively. In comparison, IEDEL achieved 0.2430%
and 0.1640% respectively, marking an efficiency enhancement by 2–10 times. These findings validate our pro-
posal of the IEDEL algorithm and demonstrate that the IEDEL algorithm, with a bunch of models, outperforms
the IEDL algorithm with a single model in enhancing the efficiency of labeling data anomalies.

Figure 9. F1 score learning curves for model evaluation and selection. These panels correspond to F1 scores for six data sets: training data for (a) nsametC1.rh_mean,
(b) sgpmetE37.rh_mean, and (c) sgpmetE37.temp_mean; and test data for (d) nsametC1.rh_mean, (e) sgpmetE37.rh_mean, and (f) sgpmetE27.temp_mean. Panels (a),
(b), and (c) illustrate the trends in F1 scores on training data as the training data size increases, while panels (d), (e), and (f) showcase the trends estimated on the test data.
Horizontal lines at F1 scores of 0.9 and 0.95 are marked, along with vertical lines indicating the points at which models first achieve these thresholds. The legend details
the specific model settings employed for each data set.

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 19 of 21

While it remains uncertain which subset model can consistently produce predictions with the highest precision or
recall, it is evident that utilizing IEDEL with unanimous voting can significantly enhance precision at each
iteration. Consequently, the overall validation effort required for anomaly detection is substantially reduced.

4.5. Model Evaluation and Selection

Generally, by fine‐tuning model hyperparameters through K‐fold cross‐validation, we can determine the optimal
model for our specific use case. However, when multiple models demonstrate strong performance on both the
training and test data sets, hyperparameter tuning alone may no longer provide valuable insights for model se-
lection. To select the best model for production, our primary criteria is the model's ability to generalize accurately
to future data, rather than just its training performance. Therefore, we propose using a learning curve to evaluate
how a model's performance might evolve with more data, simulating an assessment of the model's current per-
formance versus its future performance.

As illustrated in Figure 9d, the Random Forest model with “n_estimators” set to 300 and “min_samples_split” set
to 2 archives the highest F1 score on test data for the “nsametC1.rh_mean” data set, reaching an F1 score above
0.9 when 283,000 training samples are used in model training, and above 0.95 when 749,000 samples are used,
indicating that this model is clearly the best performer among the five models evaluated.

However, model selection can sometimes be challenging. As shown in Figure 9e, a default decision tree
and a random forest with “min_samples_split” set to 20 are closely matched, with only a 0.0043 difference
in F1 scores when the entire training data set is utilized for model training. Selecting a model between
these two based solely on their performance on test data would be contentious, as minor variations in data
splitting or randomness of model configuration could reverse this decision. But, when examining the
learning curves of both models, it becomes evident that the random forest with “min_samples_split” set to
20 demonstrates more consistent performance improvement and overall outperforms the default decision
tree.

Additionally, the differences in F1 scores between training and test data for the best model performance across
three scenarios range from 1% to 5%, indicating that these final models are not overfitting the training data. More
details on precisions and recalls can be found in the Figure S5 in Supporting Information S1.

5. Conclusions
In this paper, we introduce the “IEDEL with Unanimous Voting” algorithm, an innovative labeling method
tailored for anomaly detection in ARM's data. This method integrates transfer learning and iterative reviews of
prediction errors, enabling the development of robust ML models that we can deploy to complement existing QC
tests within ARM data sets. Besides, by incorporating transfer learning, IEDEL can be effectively scaled across
different datastreams in the ARM Archive. IEDEL is versatile, suitable for addressing various types of data
anomalies using a consistent process. The primary distinctions across different anomaly types primarily lie in the
process of data preprocessing and feature engineering. It's crucial to note that while IEDEL does not guarantee
perfect label accuracy, it can achieve sufficient accuracy to support the development of effective ML models for
data monitoring purposes.

Our upcoming DQO plan, which focuses on leveraging ML algorithms for data QC, will be dedicated to
establishing a framework to operate ML pipelines. This includes implementing IEDEL with Unanimous Voting
and devising strategies for data preparation and features engineering specific to each type of data anomaly. For
example, in our spike detection project, we use a time window of 20 steps, with a stride of 1 for minority class
samples and 5 for majority class samples. In contrast, drift detection should involve examining long‐term data
drifts, necessitating larger time windows and strides. In summary, IEDEL presents a promising avenue for
employing supervised learning algorithms in the data quality monitoring of ARM Program data.

Data Availability Statement
The Atmospheric Radiation Measurement (ARM) user facility data used for spike detection experiments in the
study are available at the ARM Data Discovery Website via https://doi.org/10.5439/1786358.

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 20 of 21

https://doi.org/10.5439/1786358

References
ARM Standards Committee. (2020). ARM data file standards version: 1.3. pdf. Retrieved from https://www.arm.gov/publications/programdocs/
doe‐sc‐arm‐15‐004.pdf

Божиновски, А. (2020). Reminder of the first paper on transfer learning in neural networks, 1976. Informatica, 44(3), 291–302. https://doi.org/
10.31449/inf.v44i3.2828

Breunig, M. M., Kriegel, H.‐P., Ng, R. T., & Sander, J. (2000). LOF: Identifying density‐based local outliers. SIGMOD Record, 29(2), 93–104.
https://doi.org/10.1145/335191.335388

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACMComputing Surveys, 41(3), 1–58. Article 15. https://doi.org/
10.1145/1541880.1541882

Chawla, N., Bowyer, K., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over‐sampling technique. ArXiv, abs/1106.1813.
Giannoni, F., Mancini, M., & Marinelli, F. (2018). Anomaly detection models for IoT time series data. arXiv e‐prints. arXiv:1812.00890.
Iliopoulos, A., Violos, J., Diou, C., & Varlamis, I. (2023). Detection of anomalies in multivariate time series using ensemble techniques.
Kyrouac, J., Shi, Y., & Tuftedal, M. (2011). Surface Meteorological Instrumentation (MET). Atmospheric Radiation Measurement (ARM) user
facility. https://doi.org/10.5439/1786358

Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008). Isolation forest. In 2008 Eighth IEEE International Conference on Data Mining (pp. 413–422).
Markou, M., & Singh, S. (2003). Novelty detection: A review—Part 1: Statistical approaches. Signal Processing, 83(12), 2481–2497. https://doi.
org/10.1016/j.sigpro.2003.07.018

Nayeem Rizve, M., Duarte, K., Rawat, Y. S., & Shah, M. (2021). Defense of pseudo‐labeling: An uncertainty‐aware pseudo‐label selection
framework for semi‐supervised learning. arXiv:2101.06329.

Oliver, A., Odena, A., Raffel, C., Cubuk, E. D., & Goodfellow, I. J. (2018). Realistic evaluation of deep semi‐supervised learning algorithms. In
Neural information processing systems.

Peppler, R. A., Kehoe, K. E., Monroe, J. W., Theisen, A. K., &Moore, S. T. (2016). The ARM data quality program.Meteorological Monographs,
57(1), 12.1–12.14. https://doi.org/10.1175/AMSMONOGRAPHS‐D‐15‐0039.1

Schölkopf, B., Platt, J. C., Shawe‐Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the support of a high‐dimensional distribution.
Neural Computation, 13(7), 1443–1471. https://doi.org/10.1162/089976601750264965

Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). DBSCANRevisited, Revisited: Why and how you should (still) use DBSCAN.
ACM Transactions on Database Systems, 42(3), 1–21. Article 19. https://doi.org/10.1145/3068335

Sisterson, D. L., Peppler, R. A., Cress, T. S., Lamb, P. J., & Turner, D. D. (2016). The ARM Southern Great Plains (SGP) site. Meteorological
Monographs, 57(1), 6.1–6.14. https://doi.org/10.1175/AMSMONOGRAPHS‐D‐16‐0004.1

Turner, D. D. & Ellingson, R. G. (Eds.). (2016). The Atmospheric Radiation Measurement (ARM) program: The first 20 years. Meteorological
Monographs, 57(1). Retrieved from https://journals.ametsoc.org/view/journals/amsm/57/1/amsm.57.issue‐1.xml

U.S. Department of Energy. (1998). Atmospheric Radiation Measurement (ARM) user facility data are collected through routine operations and
scientific field experiments. Retrieved from https://www.arm.gov/data/

Verlinde, J., Zak, B. D., Shupe, M. D., Ivey, M. D., & Stamnes, K. (2016). The ARM north slope of Alaska (NSA) sites. Meteorological
Monographs, 57(1), 8.1–8.13. https://doi.org/10.1175/AMSMONOGRAPHS‐D‐15‐0023.1

Xu, Q., Likhomanenko, T., Kahn, J., Hannun, A. Y., Synnaeve, G., & Collobert, R. (2020). Iterative pseudo‐labeling for speech recognition. In
Interspeech.

Yu, B., Pan, D. Z., Matsunawa, T., & Zeng, X. (2015). Machine learning and pattern matching in physical design. In The 20th Asia and South
Pacific Design Automation Conference (pp. 286–293).

Erratum
The originally published version of this article omitted a funding source. The Acknowledgments have been
revised to read as follows: “Funding was provided by NOAA/Office of Oceanic and Atmospheric Research under
NOAA—University of Oklahoma Cooperative Agreement #NA21OAR4320204, U.S. Department of Com-
merce. This research was supported by the Atmospheric Radiation Measurement (ARM) user facility, a U.S.
Department of Energy (DOE) Office of Science user facility managed by the Biological and Environmental
Research Program.” The error has been corrected, and this may be considered the authoritative version of record.

Acknowledgments
Funding was provided by NOAA/Office of
Oceanic and Atmospheric Research under
NOAA—University of Oklahoma
Cooperative Agreement
#NA21OAR4320204, U.S. Department of
Commerce. This research was supported
by the Atmospheric Radiation
Measurement (ARM) user facility, a U.S.
Department of Energy (DOE) Office of
Science user facility managed by the
Biological and Environmental Research
Program.

JGR: Machine Learning and Computation 10.1029/2024JH000192

LI ET AL. 21 of 21

https://www.arm.gov/publications/programdocs/doe-sc-arm-15-004.pdf
https://www.arm.gov/publications/programdocs/doe-sc-arm-15-004.pdf
https://doi.org/10.31449/inf.v44i3.2828
https://doi.org/10.31449/inf.v44i3.2828
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.5439/1786358
https://doi.org/10.1016/j.sigpro.2003.07.018
https://doi.org/10.1016/j.sigpro.2003.07.018
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0039.1
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1145/3068335
https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0004.1
https://journals.ametsoc.org/view/journals/amsm/57/1/amsm.57.issue-1.xml
https://www.arm.gov/data/
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0023.1

	description
	description뜰",
	Iterative Error‐Driven Ensemble Labeling (IEDEL) Algorithm for Enhanced Data Quality Control for the Atmospheric Radiation ...
	1. Introduction
	2. Methods
	2.1. Unsupervised Learning
	2.2. Synthetic Method of Semi‐Supervised Learning (SSL) and Transfer Learning
	2.2.1. Semi‐Supervised Learning
	2.2.2. Transfer Learning
	2.2.3. Iterative Error‐Driven Labeling (IEDL)
	2.2.4. Iterative Error‐Driven Ensemble Labeling (IEDEL)
	2.2.5. Unanimous Voting

	3. ARM Data
	3.1. ARM Data and Experiment Setting
	3.2. Notation for Spike Detection Experiments
	3.3. Data Preprocessing
	3.4. Class Imbalance Issue and Data Augmentation

	4. Results
	4.1. IEDL and IEDEL
	4.2. Unanimous Voting in IEDEL
	4.3. Precision‐Recall Trade‐Offs
	4.4. Transfer Learning Performance
	4.5. Model Evaluation and Selection

	5. Conclusions
	Data Availability Statement

	Erratum

