
1.  Introduction
Weather and climate prediction requires the numerical integration of one or more computational models derived
from the fundamental equations of motion and initialized with an estimate of the present-day system state (e.g.,
temperature, wind speeds, etc.). Due to the high cost of these computational models, prediction systems typically
require suboptimal tradeoffs. On one hand, it is desirable to increase the credibility of the underlying numer-
ical model as much as possible, for instance by increasing model grid resolution (e.g., Hewitt et al., 2016) or
by explicitly simulating as many coupled components (e.g., atmosphere, land, ocean, ice) as possible (e.g.,
Penny et al., 2017). On the other hand, knowledge of the model initial conditions is imperfect and the govern-
ing equations will always contain necessary, inexact approximations of reality. As a result, prediction systems
employ statistical methods like ensemble based forecasting in order to represent this uncertainty. Producing an
ensemble with statistical significance requires integrating the underlying numerical model many times; usually

Abstract  The immense computational cost of traditional numerical weather and climate models has
sparked the development of machine learning (ML) based emulators. Because ML methods benefit from long
records of training data, it is common to use data sets that are temporally subsampled relative to the time steps
required for the numerical integration of differential equations. Here, we investigate how this often overlooked
processing step affects the quality of an emulator's predictions. We implement two ML architectures from a
class of methods called reservoir computing: (a) a form of Nonlinear Vector Autoregression (NVAR), and
(b) an Echo State Network (ESN). Despite their simplicity, it is well documented that these architectures
excel at predicting low dimensional chaotic dynamics. We are therefore motivated to test these architectures
in an idealized setting of predicting high dimensional geophysical turbulence as represented by Surface
Quasi-Geostrophic dynamics. In all cases, subsampling the training data consistently leads to an increased
bias at small spatial scales that resembles numerical diffusion. Interestingly, the NVAR architecture becomes
unstable when the temporal resolution is increased, indicating that the polynomial based interactions are
insufficient at capturing the detailed nonlinearities of the turbulent flow. The ESN architecture is found to be
more robust, suggesting a benefit to the more expensive but more general structure. Spectral errors are reduced
by including a penalty on the kinetic energy density spectrum during training, although the subsampling related
errors persist. Future work is warranted to understand how the temporal resolution of training data affects other
ML architectures.

Plain Language Summary  The computer models that govern weather prediction and climate
projections are extremely costly to run, causing practitioners to make unfortunate tradeoffs between
accuracy of the physics and credibility of their statistics. Recent advances in machine learning have sparked
the development of neural network-based emulators, that is, low-cost models that can be used as drop-in
replacements for the traditional expensive models. Due to the cost of storing large weather and climate data
sets, it is common to subsample these fields in time to save disk space. This subsampling also reduces the
computational expense of training emulators. Here, we show that this pre-processing step hinders the fidelity of
the emulator. We offer one method to mitigate the resulting errors, but more research is needed to understand
and eventually overcome them.

SMITH ET AL.

© 2023 The Authors. Journal of
Advances in Modeling Earth Systems
published by Wiley Periodicals LLC on
behalf of American Geophysical Union.
This is an open access article under
the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

Temporal Subsampling Diminishes Small Spatial Scales
in Recurrent Neural Network Emulators of Geophysical
Turbulence
Timothy A. Smith1,2 , Stephen G. Penny1,3 , Jason A. Platt4 , and Tse-Chun Chen5

1Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder, Boulder, CO,
USA, 2Physical Sciences Laboratory (PSL), National Oceanic and Atmospheric Administration (NOAA), Boulder, CO, USA,
3Sofar Ocean, San Francisco, CA, USA, 4University of California San Diego (UCSD), La Jolla, CA, USA, 5Pacific Northwest
National Laboratory, Richland, WA, USA

Key Points:
•	 �Reducing training data temporal

resolution by subsampling leads to
overly dissipative small spatial scales
in neural network emulators

•	 �A quadratic autoregressive
architecture is shown to be inadequate
at capturing small scale turbulence,
even when data are not subsampled

•	 �Subsampling bias in Echo State
Networks is mitigated but not
eliminated by prioritizing kinetic
energy spectrum during training

Supporting Information:
Supporting Information may be found in
the online version of this article.

Correspondence to:
T. A. Smith,
tim.smith@noaa.gov

Citation:
Smith, T. A., Penny, S. G., Platt, J.
A., & Chen, T.-C. (2023). Temporal
subsampling diminishes small spatial
scales in recurrent neural network
emulators of geophysical turbulence.
Journal of Advances in Modeling Earth
Systems, 15, e2023MS003792. https://doi.
org/10.1029/2023MS003792

Received 1 MAY 2023
Accepted 2 NOV 2023

10.1029/2023MS003792

Special Section:
Machine learning application to
Earth system modeling

RESEARCH ARTICLE

1 of 26

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-4463-6126
https://orcid.org/0000-0002-5223-8307
https://orcid.org/0000-0001-6579-6546
https://orcid.org/0000-0001-6300-5659
https://doi.org/10.1029/2023MS003792
https://doi.org/10.1029/2023MS003792
https://doi.org/10.1029/2023MS003792
https://doi.org/10.1029/2023MS003792
https://doi.org/10.1029/2023MS003792
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1942-2466.MLAMODEL1
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1942-2466.MLAMODEL1

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

2 of 26

𝐴𝐴 (10) − (100) in practice, but ideally 𝐴𝐴 (1000) or greater (Evensen et al., 2022). Therefore, the resulting compu-
tational costs require practitioners to compromise between the fidelity of the numerical model and credibility of
the statistical method.

An ongoing area of research that aims to enable statistical forecasting subject to the dynamics of an expen-
sive numerical model is surrogate modeling. The general approach relies on using a model that represents
or “emulates” the dynamics of the original numerical model with “sufficient accuracy” for the given appli-
cation, while being computationally inexpensive to evaluate. Historically, surrogate models have been an
important tool for nonlinear optimization (e.g., Bouhlel et al., 2020; Li et al., 2019), and in the Earth sciences
have been developed with techniques such as Linear Inverse Models (e.g., principal oscillation or interac-
tion patterns; Hasselmann, 1988; Penland, 1989; Moore et al., 2022), kriging (Cressie, 1993), or polynomial
chaos techniques (Najm, 2009), to name only a few. More recently, advances in computing power, the rise
of general purpose graphics processing units, and the explosion of freely available data has encouraged the
exploration of more expensive machine learning methods like neural networks for the emulation task (Schultz
et al., 2021). A number of data-driven, neural network architectures have been developed to generate surrogate
models for weather forecasting and climate projection applications. Some examples include models based on
feed forward neural networks (Dueben & Bauer, 2018), convolutional neural networks (CNNs; Scher, 2018;
Scher & Messori, 2019; Rasp & Thuerey, 2021; Weyn et al., 2019, 2020, 2021), recurrent neural networks
(RNNs; Arcomano et al., 2020; X. Chen et al., 2021; Nadiga, 2021), graph neural networks (Keisler, 2022;
Lam et al., 2022), Fourier neural operators (Pathak et al., 2022), and encoder-transformer-decoder networks
(Bi et al., 2023).

A significant advancement in surrogate modeling for weather and climate prediction has been the rapid increase
in spatial resolution. To the best of our knowledge, the current highest resolution neural network emulators for
global atmospheric dynamics is ∼0.25° (∼31 km) (Bi et al., 2023; Lam et al., 2022; Pathak et al., 2022), which
is the same resolution as the ERA5 Reanalysis (Hersbach et al., 2020) used to train these models. At this resolu-
tion, General Circulation Models (GCMs) of the atmosphere are capable of explicitly capturing important small
scale processes like low-level jets and interactions with mountainous topography (Orlanski, 1975). However,
it is not yet clear that neural networks are able to represent the same dynamical processes as the training data.
Instead, based on our own experimentation, we hypothesize that without careful architectural modifications,
neural network emulators will effectively operate at a coarser resolution than the original data set used in training.

To make the discussion concrete, we present a sample prediction from our own surrogate model in Figure 1.
The panels show the time evolution of Sea Surface Temperature (SST) in the Gulf of Mexico at 1/25° horizontal
resolution, using data from a Navy HYCOM, 3D-Var-based reanalysis product as “Truth” (upper row; see Appen-
dix B for data details). We generate the prediction (middle row) with an RNN architecture described more fully
in Section 3.4. Generally speaking, the RNN captures the largest scales of the SST pattern over a 36 hr window.
However, as time progresses, the SST pattern becomes overly smooth. The RNN is unable to capture the spatial
details that are well resolved in the reanalysis data set, with the largest errors evolving along sharp SST fronts. We
note that a similar smoothing behavior can be observed in other neural network based emulators, see for example,
(Bi et al., 2023, Figure 3) (Pathak et al., 2022, Figures 4c and 4d) (Keisler, 2022, Figure 5).

There are a number of reasons that could cause this smoothing behavior to manifest in the predictions. As we
show in Sections 4 and 5, the blurring of small scale features is a high frequency spectral bias, which has been
studied in relation to the training of feedforward neural networks (Xu et al., 2022) and numerical instabilities of
neural network predictions for turbulent flows (Chattopadhyay & Hassanzadeh, 2023). One potential reason that
we observe spectral bias in our predictions is that the training uses a mean-squared error loss function, which is
known to prioritize large over small scale features (Rossa et al., 2008). Here, we suggest that any blurring effect
from such a loss function is exacerbated by more fundamental decisions in the experimental design. Our primary
goal is to explore how temporal subsampling in the training data set adds to this blurring effect. We are motivated
to study the impact of this subsampling because many existing emulators, including our example in Figure 1,
rely on reanalysis products as training data (e.g., Arcomano et al., 2020; Bi et al., 2023; Keisler, 2022; Lam
et al., 2022; Pathak et al., 2022; Weyn et al., 2021). While there are excellent reasons to leverage the existence
of reanalysis products, namely that they are constrained to observational data, the shear size of the data requires
some degree of temporal subsampling. It is therefore important to understand how this highly routine data reduc-
tion step impacts the performance of data-driven prediction methods when used for training.

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

3 of 26

Figure 1.  A sample prediction of sea surface temperatures in the Gulf of Mexico at 1/25° horizontal resolution. The upper row (Truth) shows the evolution of unseen
test data from the Navy HYCOM reanalysis product, and the middle row shows a prediction from the Echo State Network architecture described in Section 3.4. The
bottom row (Error) shows the absolute value of the difference between the two. See Appendix B for a description of the data set.

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

4 of 26

In our work, we explore the degree to which temporal subsampling impedes single layer autogregressive and
recurrent neural network emulators from learning the true underlying dynamics of the system. In order to isolate
this effect from the potential impacts of a data assimilation system and multivariate interactions, we do not rely
on the Gulf of Mexico reanalysis data. Instead, we use a model for Surface Quasi-Geostrophic (SQG) turbulence
(Blumen, 1978a; Held et al., 1995), which additionally gives us direct control over the data sets used for training,
validation, and testing. The SQG model and data set generation is described more fully in Section 2.

The architectures that we use in this study stem from a broad class of machine learning techniques termed as reser-
voir computing (RC), which was independently discovered as Echo State Networks (ESNs; Jaeger, 2001), Liquid
State Machines (Maass et al., 2002), and the Decorrelation Backpropagation Rule (Steil, 2004). One defining
characteristic of RC models is that all internal connections are adjusted by global or “macro-scale” parameters,
significantly reducing the number of parameters that need to be trained. The relatively simplified structure and
training requirements of RC make it an attractive architecture for large scale prediction because it enables rapid
development, and could be useful in situations requiring online learning. More importantly though, we are moti-
vated to use RC because past studies have repeatedly shown that it can emulate low dimensional chaotic systems
while often outperforming more complex RNNs such as those with Long Short-Term Memory units (LSTMs)
(e.g., Griffith et al., 2019; Lu et al., 2018; Pathak et al., 2018; Platt et al., 2022; Vlachas et al., 2020). Additionally,
Penny et al. (2022) showed that RC can be successfully integrated with a number of data assimilation algorithms,
either by generating samples for ensemble based methods like the Ensemble Kalman Filter, or by generating the
tangent linear model necessary for 4D-Var. Finally, we note that Gauthier et al. (2021) proposed a further simpli-
fication to the RC architecture based on insights from Bollt (2021) that unifies versions of RC with nonlinear
vector autoregression (NVAR). For a variety of chaotic systems, this architecture has shown excellent prediction
skill even with low order, polynomial-based feature vectors (Barbosa & Gauthier, 2022; T.-C. Chen et al., 2022;
Gauthier et al., 2021), despite requiring a much smaller hidden state and less training data. Considering all of
these advancements, we are motivated to use these simple yet powerful single layer NVAR and ESN architectures
to emulate turbulent geophysical fluid dynamics, and study how they are affected by temporal subsampling (see
Section 3 for architecture details).

2.  Surface Quasi-Geostrophic Turbulence
Our goal in this study is to emulate turbulent motions relevant to realistic geophysical fluid dynamics, while avoid-
ing the complications associated with the data assimilation system used to produce reanalysis data sets, including
observational noise and error covariance estimates, and the intricate multivariate interactions inside atmosphere
or ocean GCMs. Therefore, we aim to emulate a numerical model for SQG turbulence (Blumen, 1978a; Held
et al., 1995) as outlined by Tulloch and Smith (2009). The model is formulated to represent the nonlinear Eady
problem (Eady, 1949), following Blumen (1978b). The model simulates turbulence on an f plane with uniform
stratification and shear, bounded by rigid surfaces H = 10 km apart. The motion is determined entirely by temper-
ature advection on the boundaries z = {0 km, 10 km} as follows,

𝜕𝜕𝜃̂𝜃

𝜕𝜕𝜕𝜕
+ 𝐽𝐽

(

𝜓̂𝜓 𝜓 𝜃̂𝜃
)

+ 𝑖𝑖𝑖𝑖

(

𝑈𝑈𝜃̂𝜃 + 𝜓̂𝜓
𝜕𝜕Θ

𝜕𝜕𝜕𝜕

)

= 0 𝑧𝑧 = 0, 10 km,�

where z = 0 km is the surface layer of the atmosphere, and z = 10 km is approximately at the top of the tropo-
sphere. Here, hatted variables denote spectral components, 𝐴𝐴 𝐽𝐽 is the Jacobian in spectral space, and the tempera-
ture streamfunction is

𝜓̂𝜓(𝑧𝑧𝑧 𝑧𝑧) =
𝐻𝐻

𝜇𝜇 sinh𝜇𝜇

[

cosh

(

𝜇𝜇
𝑧𝑧

𝐻𝐻

)

𝜃̂𝜃(𝐻𝐻𝐻𝐻𝐻) − cosh

(

𝜇𝜇
𝑧𝑧 −𝐻𝐻

𝐻𝐻

)

𝜃̂𝜃(0,𝑡𝑡)

]

,�

with μ = 𝐴𝐴 |𝐊𝐊|NH/f as the nondimensional wavenumber. We note that this model produces an approximate spectrum
of 𝐴𝐴 |𝐊𝐊| −5/3 without any break (Figure 2), as is expected in Eady turbulence. For more details on this model, see
Tulloch and Smith (2009).

Our model configuration is discretized in space with Nx = Ny = 64 and Nz = 2, uses a periodic boundary in both
horizontal directions, and uses a timestep of Δt = 5 min. To generate data sets for the neural networks, we initial-
ize the model with Gaussian i. i.d. noise and spinup for 360 days, which we define as one model year. The spinup

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

5 of 26

period is discarded, and we then generate a 25 year-long data set that we partition into training (first 15 years),
validation (next 5 years), and testing (final 5 years). For validation and testing, we randomly select without
replacement 12 hr time windows from each respective data set.

3.  Single Layer Autoregressive and Recurrent Neural Networks
Our goal is to develop an emulator that can reproduce the time evolution of a chaotic dynamical system, such that
its future state can be predicted from an initial state estimate. Therefore we use the following generic, discrete-
time equations for our recurrent and autoregressive models,

𝐫𝐫(𝑛𝑛 + 1) = 𝑓𝑓 (𝐫𝐫(𝑛𝑛), 𝐯𝐯(𝑛𝑛);𝜽𝜽)

𝐯̂𝐯(𝑛𝑛 + 1) = 𝑔𝑔(𝐫𝐫(𝑛𝑛 + 1)),
� (1)

as by Goodfellow et al. (2016). Here 𝐴𝐴 𝐴𝐴 ∈ ℤ denotes a particular timestep t = nΔτ, where Δτ = NsubΔt is the time-
step size of the neural network, which may be larger than Δt = 5 min, the step size of the original model described
in Section 2. Here 𝐴𝐴 𝐯𝐯(𝑛𝑛) ∈ ℝ

𝑁𝑁𝐯𝐯 is the state of the dynamical system and 𝐴𝐴 𝐫𝐫(𝑛𝑛) ∈ ℝ
𝑁𝑁𝐫𝐫 is the hidden or internal state of

the network, which is also referred to as the “reservoir” in RC or “feature vector” in NVAR. The generic function
f(⋅) evolves this hidden state forward in time subject to the explicit influence of the current hidden and system
states, as well as the macro-scale parameters θ. The output layer, g(⋅), or “readout” operation, maps the hidden
state back to the original state space, giving an approximation of the target system.

During the training phase, v(n) is provided to the model at each timestep and the misfit between the approxi-
mation and data, 𝐴𝐴 𝐯̂𝐯(𝑛𝑛 + 1) − 𝐯𝐯(𝑛𝑛 + 1) , is used to train the weights in the output layer. After training, during the
prediction phase, the network becomes an autonomous system:

𝐫𝐫(𝑛𝑛 + 1) = 𝑓𝑓 (𝐫𝐫(𝑛𝑛), 𝐯̂𝐯(𝑛𝑛);𝜽𝜽).�

The neural network architectures that we use employ a common structure that is relevant to the readout operator
and training procedure; we discuss these details in Section 3.1. Additionally, we employ a similar strategy to
parallelize the architecture for high dimensional systems, and this is discussed in Section 3.2. Finally, the specific
form of f(⋅) for the ESN and NVAR architectures is provided in Sections 3.3 and 3.4, respectively.

3.1.  Linear Readout and Training

The neural networks that we use employ two simplifications relative to the generic form presented in Equa-
tion 1. First, any internal relationships encapsulated within f(⋅) are pre-defined by the macro-scale parameters, θ.

Figure 2.  A reference snapshot from the SQG data set. The left and middle panels show snapshots of potential temperature anomaly at the surface and
top-of-troposphere layers, respectively. The right panel shows the kinetic energy density spectrum associated with this snapshot (black line), compared to |K| −5/3 (dashed
line).

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

6 of 26

Therefore, no internal weights contained within f(⋅) are learned during the formal training process. Second, the
readout operator is linear, such that

𝑔𝑔(𝐫𝐫(𝑛𝑛)) ∶= 𝐖𝐖out𝐫𝐫(𝑛𝑛),�

where 𝐴𝐴 𝐖𝐖out ∈ ℝ
𝑁𝑁𝐯𝐯×𝑁𝑁𝐫𝐫 is a matrix. The result of these two assumptions is a cost function that is quadratic with

respect to the elements of Wout,

 (𝐖𝐖out) =
1

2𝑁𝑁train

𝑁𝑁train
∑

𝑛𝑛=1

‖𝐖𝐖out𝐫𝐫(𝑛𝑛) − 𝐯𝐯(𝑛𝑛)‖
2

2 +
𝛽𝛽

2
‖𝐖𝐖out‖

2
F.� (2)

Here 𝐴𝐴 ‖𝐀𝐀‖F ∶=
√

Tr(𝐀𝐀𝐀𝐀𝑇𝑇) is the Frobenius norm, Ntrain is the number of time steps used for training, β is a
Tikhonov regularization parameter (Tikhonov, 1963), chosen to improve numerical stability and prevent
overfitting.

The hidden and target states can be expressed in matrix form by concatenating each time step “column-wise”:
R := (r(1) r(2) ⋯ r(Ntrain)), and similarly, V := (v(1) v(2) ⋯ v(Ntrain)). With this notation, the elements of
Wout can be compactly written as the solution to the linear ridge regression problem

𝐖𝐖out = 𝐕𝐕𝐕𝐕
𝑇𝑇

(

1

𝑁𝑁train

𝐑𝐑𝐑𝐑
𝑇𝑇 + 𝛽𝛽𝐈𝐈

)−1

,� (3)

although we do not form the inverse explicitly. We instead use the solve function from SciPy's linear algebra
module (Virtanen et al., 2020), based on testing shown in Appendix C of Platt et al. (2022).

3.2.  Parallelization Strategy

The model architectures that we use inherit the gridded structure of the target state being emulated, and often
require hidden states that are 𝐴𝐴 (10) to 𝐴𝐴 (100) times larger than the target system dimension. Atmosphere and
ocean GCMs typically propagate high dimensional state vectors, ranging from 𝐴𝐴 

(

106
)

 to 𝐴𝐴 
(

109
)

 , so representing
the system with a single hidden state would be intractable. Thus, we employ a parallelization strategy to distrib-
ute the target and hidden states across many semi-independent networks. Our strategy follows the algorithm
introduced by Pathak et al. (2018), and follows a similar construction as Arcomano et al. (2020). We outline the
procedure here and note an illustration of the process for the ESN architecture in Figure 3.

We subdivide the domain into Ng rectangular groups based on horizontal location, akin to typical domain decom-
position techniques for atmosphere and ocean GCMs on structured grids. Each group contains 𝐴𝐴 𝐴𝐴

loc

𝑥𝑥 ×𝑁𝑁
loc

𝑦𝑦 hori-
zontal grid cells, and all Nz vertical grid cells at each horizontal location. The global state vector, v, which consists
of all state variables to be emulated at all grid cells, is partitioned into Ng local state vectors, vk. For example,
Figure 3 shows a field v decomposed into nine groups, where each group is delineated by white lines. In our SQG
predictions, we set 𝐴𝐴 𝐴𝐴

loc

𝑥𝑥 = 𝑁𝑁
loc

𝑦𝑦 = 8 , resulting in Ng = 64.

In order to facilitate interactions between nearby groups, each group has a designated overlap, or “halo,” region
which consists of No elements from its neighboring groups. The local group and overlapping points are illustrated
in Figure 3 with a black box. The local state vectors, plus elements from the overlap region, are concatenated to
form local input state vectors, 𝐴𝐴 𝐮𝐮𝑘𝑘 ∈ ℝ

𝑁𝑁
loc

𝐮𝐮  . The result from the network is the local output state vector, 𝐴𝐴 𝐯𝐯𝑘𝑘 ∈ ℝ
𝑁𝑁

loc

𝐯𝐯  ,
which is expanded to fill the target group as illustrated by the white box on the prediction shown in Figure 3. Here
we set No = 1, so that 𝐴𝐴 𝐴𝐴

loc

𝐮𝐮 = 200 and 𝐴𝐴 𝐴𝐴
loc

𝐯𝐯 = 128 , given that 𝐴𝐴 𝐴𝐴
loc

𝑥𝑥 = 𝑁𝑁
loc

𝑦𝑦 = 8 and Nz = 2.

The local input vectors drive separate networks at each group, thereby generating distinct hidden states for each
group as follows

𝐫𝐫𝑘𝑘(𝑛𝑛 + 1) = 𝑓𝑓 (𝐫𝐫𝑘𝑘(𝑛𝑛), 𝐮𝐮𝑘𝑘(𝑛𝑛);𝜽𝜽)

𝐯̂𝐯𝑘𝑘(𝑛𝑛 + 1) = 𝐖𝐖
𝑘𝑘

out
𝐫𝐫𝑘𝑘(𝑛𝑛 + 1).

� (4)

We make the assumption that the macro-scale parameters that determine internal connections within f(⋅) are
globally fixed. Therefore, the only components that drive unique hidden states in each group are the local input
vector uk and the local readout matrix, 𝐴𝐴 𝐖𝐖

𝑘𝑘

out
 .

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

7 of 26

During the training phase, each group acts completely independently from one another. Therefore, the training
process is embarrassingly parallel and allows us to scale the problem to arbitrarily large state vectors across a
distributed computing system, subject to resource constraints. During the prediction phase, neighboring elements
must be passed between groups in order to fill each overlap region at each time step with the most accurate state
estimate possible, to ensure spatial consistency across the domain.

3.3.  Nonlinear Vector Autoregression Design

Following T.-C. Chen et al. (2022), we consider forming the hidden state by using polynomial combinations
of the time-lagged input state. We explain this process with a simple example using a two variable system,

𝐴𝐴 𝐮𝐮(𝑛𝑛) = [𝑢𝑢0(𝑛𝑛), 𝑢𝑢1(𝑛𝑛)]
𝑇𝑇  , a maximum polynomial degree p = 2, and a generic maximum number of lagged states

Nlag:

��(� + 1) = [1,

�0(�), �1(�), �0(� − 1), �1(� − 1), ⋯ �0
(

� −�lag
)

, �1
(

� −�lag
)

,

�20(�), �
2
1(�), �0(�)�1(�), �

2
0(� − 1), ⋯ �21

(

� −�lag
)

�0(�)�0(� − 1), �0(�)�1(� − 1), ⋯ �0
(

� −�lag
)

�1(�), ⋯]

�̂�(� + 1) =��
out��(� + 1).

� (5)

Clearly, the size of the hidden state vector grows rapidly with p and Nlag, even for relatively low dimensional
systems (see Supporting Information of T.-C. Chen et al., 2022, for explicit calculations). We therefore make a
simplification to the generic polynomial NVAR model. That is, we only represent nonlinear interactions between
points that lie within a given radius between one another, defined by the number of neighboring points, Nb. As
a simple example, with Nb = 1 and Nlag = 0, the quadratic elements of a periodic, four variable system would be

𝑢𝑢
2

0
, 𝑢𝑢

2

1
, 𝑢𝑢

2

2
, 𝑢𝑢

2

3
, 𝑢𝑢0𝑢𝑢1, 𝑢𝑢0𝑢𝑢3, 𝑢𝑢1𝑢𝑢2, 𝑢𝑢2𝑢𝑢3�

ignoring “non-local” interactions such as u0u2. In order to make this parameter consistent with the over-
lap region in the parallelization scheme (Section 3.2), we set Nb = No = 1. Note, however, that we do
model “non-local” linear interactions, up to the number of grid cells in each local group, that is, containing

𝐴𝐴
(

𝑁𝑁
loc

𝑥𝑥 + 2𝑁𝑁𝑜𝑜

)

×
(

𝑁𝑁
loc

𝑦𝑦 + 2𝑁𝑁𝑜𝑜

)

×𝑁𝑁𝑧𝑧 points.

Figure 3.  An illustration of the ESN architecture used, as it is applied to each local group throughout the domain. The domain is decomposed purely based on
horizontal location, so the illustration shows a single horizontal slice, but note that each group contains all Nz vertical levels. In this example, there are nine groups
delineated by the white lines on the 2D slice on the left. The black box denotes the group being operated on, which includes a region of width No that overlaps with
neighboring groups. At timestep n, the group is flattened to make the input vector uk(n), which is mapped into the ESN via Win. The output 𝐴𝐴 𝐯̂𝐯𝑘𝑘(𝑛𝑛 + 1) is expanded to fill
its position in the global domain. In ESNs, the matrices A and Win (gray) are fixed, and only the readout matrix, Wout (green), is estimated from the training data.

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

8 of 26

All of the remaining macro-scale parameters that determine the NVAR performance are

𝜽𝜽𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁 =
{

𝑝𝑝𝑝𝑝𝑝lag, 𝛽𝛽
}

.�

By using the preconditioning scheme introduced by T.-C. Chen et al. (2022), we found results to be insensitive to
the Tikhonov parameter β, and so we fix this to β = 10 −4. As noted earlier, we set p = 2. Our assumption behind
this decision is that the NVAR model will be able to learn local quantities like gradients and fluxes between
neighboring grid cells. Based on the results from T.-C. Chen et al. (2022), the NVAR model should then be able
to use this information to construct arbitrarily complex time stepping schemes as a function of Nlag. Because of its
explicit nature, we manually vary Nlag to understand how memory impacts NVAR prediction skill.

3.4.  Echo State Network Design

Our ESN architecture is illustrated in Figure 3, and is defined as follows

𝐫𝐫𝑘𝑘(𝑛𝑛 + 1) = (1 − 𝛼𝛼)𝐫𝐫𝑘𝑘(𝑛𝑛) + 𝛼𝛼 tanh(𝐀𝐀𝐀𝐀𝑘𝑘(𝑛𝑛) +𝐖𝐖in𝐮𝐮𝑘𝑘(𝑛𝑛) + 𝐛𝐛)

𝐯̂𝐯𝑘𝑘(𝑛𝑛 + 1) = 𝐖𝐖
𝑘𝑘

out
𝐫𝐫𝑘𝑘(𝑛𝑛 + 1).

� (6)

Here α ∈ [0, 1] is a leak parameter, 𝐴𝐴 𝐀𝐀 ∈ ℝ
𝑁𝑁𝐫𝐫×𝑁𝑁𝐫𝐫 is an adjacency matrix that determines the internal connections

between the nodes of the hidden state, 𝐴𝐴 𝐖𝐖in ∈ ℝ
𝑁𝑁𝐫𝐫×𝑁𝑁𝐮𝐮 maps the input vector into the higher dimensional hidden

state, and 𝐴𝐴 𝐛𝐛 ∈ ℝ
𝑁𝑁𝐫𝐫 is the bias vector with elements 𝐴𝐴 𝐴𝐴𝑖𝑖 ∼  (−𝜎𝜎𝑏𝑏, 𝜎𝜎𝑏𝑏) . Unless otherwise specified, each ESN model

uses a hidden layer width of Nr = 6, 000. Finally, we note that ESNs require a spinup period before generating
predictions, so we specify a 10 day spinup period for all validation and testing samples.

Two scalar parameters, ρ and σ, are used to control the scaling of the adjacency and input matrices, respectively.
These parameters have a dramatic influence on ESN prediction skill, since their values influence the network's
memory and stability (Hermans & Schrauwen, 2010; Lukoševičius, 2012). Here we first normalize the matrices
by their largest singular value, and then apply the scaling parameters as follows

𝐀𝐀 ∶=
𝜌𝜌

𝜎𝜎max

(

𝐀̂𝐀

) 𝐀̂𝐀 𝐀𝐀in ∶=
𝜎𝜎

𝜎𝜎max

(

𝐖̂𝐖in

)𝐖̂𝐖in�

where the elements of 𝐴𝐴 𝐖̂𝐖in are initialized with elements 𝐴𝐴 𝑤̂𝑤𝑖𝑖𝑖𝑖𝑖 ∼  (−1, 1) . The initial adjacency matrix is generated
similarly, except that the indices i, j are randomly chosen such that 𝐴𝐴 𝐀̂𝐀 attains a specified sparsity. Here we set the
matrix sparsity to 1 − κ/Nr, with κ = 6, following the success of very sparsely connected adjacency matrices as
shown by Griffith et al. (2019). By first normalizing the matrices by the largest singular value, the parameters
ρ and σ re-scale the induced 2-norm of the matrix. This normalization is not standard in the ESN literature, but
we found that it helped improve prediction skill. We provide further discussion of this process in Appendix A.

In summary, the macro-scale parameters that determine the overall characteristics of the ESN are

𝜽𝜽𝐸𝐸𝐸𝐸𝐸𝐸 = {𝜌𝜌𝜌 𝜌𝜌𝜌 𝜌𝜌𝑏𝑏, 𝛼𝛼𝛼 𝛼𝛼},� (7)

which are globally fixed for all groups. Due to the high sensitivity of ESN prediction skill to these parameter
values, we follow the general optimization framework described by Platt et al. (2022) to determine approximately
optimal values. We use the Bayesian Optimization algorithm outlined by Jones et al. (1998) and implemented by
Bouhlel et al. (2019) to tune them. This process is discussed in Section 5. However, we first focus on prediction
skill using the NVAR architecture in Section 4.

4.  Nonlinear Vector Autoregression Prediction Skill
In this section we show the prediction skill of the polynomial based NVAR architecture described in Section 3.3.
Note that we show the prediction skill of the ESN architecture in Section 5. To quantitatively evaluate each fore-
cast, we compute the normalized root-mean-square error (NRMSE)

NRMSE(𝑛𝑛) =

√

√

√

√
1

𝑁𝑁𝐯𝐯

𝑁𝑁𝐯𝐯
∑

𝑖𝑖=1

(

𝑣̂𝑣𝑖𝑖(𝑛𝑛) − 𝑣𝑣𝑖𝑖(𝑛𝑛)

SD

)2

,� (8)

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

9 of 26

which is averaged over each spatial dimension, succinctly represented as a summation over Nv, and normalized by
the standard deviation, SD, computed from the true trajectory over time and all spatial dimensions. Additionally,
we compute the relative error in terms of the kinetic energy (KE) density spectrum,

KE Relative Error(𝑛𝑛𝑛 𝑛𝑛) =
𝐸̂𝐸(𝑛𝑛𝑛 𝑛𝑛) − 𝐸𝐸(𝑛𝑛𝑛 𝑛𝑛)

|𝐸𝐸(𝑛𝑛𝑛 𝑛𝑛)|
,� (9)

where E(n, k) and 𝐴𝐴 𝐸̂𝐸(𝑛𝑛𝑛 𝑛𝑛) are the true and predicted KE density coefficients for each timestep n and wavenumber
k, respectively (e.g., as in the right panel of Figure 2). Note that |⋅| denotes the absolute value operation, and we
retain the sign of the error in order to show a sense of the spectral error in each prediction.

We compute these quantities based on 50 twelve-hour predictions initialized from a random set of initial condi-
tions taken from an unseen test data set. To compactly visualize the skill over all samples, each lineplot in the
following subsections shows a sample-average value with a solid line, and the 99% confidence interval with
shading. We note that in some cases the model trajectory becomes unstable to the point that infinite values are
produced. In the event that any single sample from a distribution has produced infinity, we take the more conserv-
ative approach and cut off any statistical averaging or confidence interval computation at that point in time and
carry it no further. Therefore, some plots of NRMSE over time do not extend over the full 12 hr window, even
though some sample trajectories are still valid, for example, Figure 5 (left).

4.1.  Temporal Subsampling

Figure 4 shows a qualitative comparison of NVAR predictions as a function of Nsub, that is, how frequently the
training data are sampled and the model makes predictions. For this figure, we set Nlag = 1, and note that both
the NRMSE and a snapshot of the KE density relative error corresponding to this configuration are shown in
Figure 5.

At the model timestep (Δτ = Δt = 5 min; Nsub = 1), the NVAR predictions are qualitatively similar to the truth
for short forecast lead times. That is, the NRMSE is near 0, and many of the small scale features that exist in the
truth are also evident in the predictions. However, at longer lead times the predictions become unstable. NRMSE
spikes rapidly at about 4 hr after numerical instabilities are generated, which causes the NVAR model to produce
physically unrealistic results. For reference, Figure S1 shows a view of what these numerical instabilities look
like at their onset.

As the temporal resolution of the data is reduced, that is, as Nsub increases, the predictions are generally stable for
a longer period of time. Figure 5 shows that for Nsub = 4, predictions are stable for roughly 6 hr, and for Nsub = 16
no predictions generate numerical instabilities over the 12 hr window. However, this stability comes with a cost:
as the temporal resolution is reduced, the model's representation of small scale features diminishes as these

Figure 4.  One sample NVAR prediction from the test data set for Nsub = 1, 4, 16; shown in the second, third, and fourth panels at a lead time of 4 hr. The corresponding
truth is shown in the far left panel. As the temporal subsampling factor is increased, the small spatial scale features are diminished and predictions become blurrier.
Here Nlag = 1 and only the surface level is shown.

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

10 of 26

features become more blurry or smoothed. This blurring effect is apparent in Figure 4, where the prediction is
qualitatively more blurry as Nsub increases in each panel from left to right.

This smoothing behavior is captured quantitatively in the right panel of Figure 5, which shows the KE relative
error as in Equation 11. Here, we show the KE relative error after only 1.33 hr to show the behavior before insta-
bilities dominate the Nsub = 1 predictions. The plot indicates the degree of spectral bias in each solution, which is
largest at the smaller spatial scales, corresponding to higher wave numbers.

At Nsub = 1 there is a small positive bias at the smallest resolved spatial scales, indicating that this is when
numerical instabilities are starting to generate. The subsampled runs, Nsub = {4, 16}, show a negative bias,
which corresponds to a dampened energy spectrum at the scales that are not resolved in the qualitatively smooth
predictions shown in Figure 4. This negative bias is clearly larger with higher subsampling, or reduced temporal
resolution,  suggesting that as the data are subsampled, the network becomes incapable of tracking the small scale
dynamics. The result is an averaged view of what may be occurring in between each time stamp.

4.2.  Prediction Skill as a Function of Memory

A key feature of RNNs and autoregressive models is that they retain memory of previous system states. Given the
explicit nature of the NVAR architecture, we explore the effect of adding memory by increasing Nlag, the number
of lagged states used to create the feature vector. We first summarize how memory impacts prediction skill in
Figure 6, which shows the NRMSE as a function of Nlag (colors) for each subsampling factor Nsub = {1, 4, 16}
(panels). For any value of Nsub, adding memory (increasing Nlag) reduces the short term error. However, adding
memory also tends to increase error by the end of the forecast, often leading to the development of numerical
instabilities and an incoherent solution. Similarly, for any fixed value of Nlag, increasing the temporal resolution
(decreasing Nsub) shows the same behavior.

To shed some light on how this additional memory impacts the solution, we show the KE relative error for the
case of Nsub = 16 as a function of time (panels) and Nlag (colors) in Figure 7. For about the first 4 hr, increasing
memory improves prediction skill at all spatial scales. However, beyond this point, the overall NRMSE grows
rapidly, the improvement at small scales (|K| > 4 ⋅ 10 −3 rad km −1) is more muted, and error is propagated rapidly
into the larger spatial scales.

We surmise that adding memory degrades the long term prediction skill in the quadratic NVAR because the
relationship between points further back in history are governed by higher order nonlinear interactions that are
incorrectly represented by the simple local-quadratic relation that is used here. As more terms are added that are
incorrectly represented, the model becomes more and more unstable. We make this supposition based on the fact
that despite theoretical similarities between NVAR and ESNs as highlighted by Bollt (2021), we attain stable
predictions using an ESN architecture with a hyperbolic tangent activation function in Section 5.

Figure 5.  NRMSE (Equation 8; left) and KE density relative error (Equation 9; right) indicating prediction skill of the
NVAR architecture using 50 samples from the test data set. Solid lines indicate averages and shading indicates 99%
confidence interval. Here Nlag = 1, and the gray line indicates prediction skill of a persistent forecast, that is, where the initial
condition does not change.

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

11 of 26

The question for the NVAR architecture is therefore how to retain the short term benefit of added memory capac-
ity throughout the forecast horizon while maintaining a stable trajectory. While it may seem natural to explore
higher order polynomials to properly represent this history, we do not explore this further because the size of
the feature vector grows dramatically with the polynomial order (T.-C. Chen et al., 2022). Another option would
be to explore entirely different basis functions. While this could be a potential option for future work, we note
the  findings of Zhang and Cornelius (2022), who show the extreme sensitivity of NVAR to the form of nonlin-
earity imposed. Given that it is an entirely open question on how to represent the smallest scales of geophysical
turbulence, we do not explore other basis functions, and instead turn to the more general ESN architecture.

5.  Echo State Network Prediction Skill
In this section we show the prediction skill of the more general ESN architecture outlined in Section 3.4. Here
we use similar metrics as in Section 4 to evaluate the ESN skill, except that we show time averaged quantitative
metrics because all of the ESN predictions are stable for the full twelve-hour forecast horizon. That is, when
shown as a single distribution rather than a time series, NRMSE is reported as

NRMSE =

√

√

√

√
1

𝑁𝑁time𝑁𝑁𝐯𝐯

𝑁𝑁time
∑

𝑛𝑛=1

𝑁𝑁𝐯𝐯
∑

𝑖𝑖=1

(

𝑣̂𝑣𝑖𝑖(𝑛𝑛) − 𝑣𝑣𝑖𝑖(𝑛𝑛)

SD

)2

,� (10)

Figure 6.  NRMSE computed using NVAR at various temporal resolutions (Nsub; columns) and with variable memory capacities (Nlag; colors). Decreasing the
subsampling factor shows a similar effect as adding memory: error is at first reduced, but tends to produce more unstable forecasts.

Figure 7.  Kinetic energy density relative error with Nsub = 16 at various timesteps (columns) and memory capacity (Nlag; colors). Increasing memory at first reduces
error at all spatial scales, but later on the error propagates more readily into the large scale.

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

12 of 26

where Ntime consists of the number of timesteps in the trajectory. In order to characterize spectral error, we show
the KE relative error as in Section 4. Additionally, we show the NRMSE in terms of the KE density spectrum as
follows

KE_NRMSE =

√

√

√

√
1

𝑁𝑁time𝑁𝑁𝐾𝐾

𝑁𝑁time
∑

𝑛𝑛=1

𝑁𝑁𝐾𝐾
∑

𝑘𝑘=1

(

𝐸̂𝐸(𝑛𝑛𝑛 𝑛𝑛) − 𝐸𝐸(𝑛𝑛𝑛 𝑛𝑛)

SD(𝑘𝑘)

)2

,� (11)

where NK is the number of spectral coefficients and SD(k) is the temporal standard deviation of each spectral
coefficient throughout the test trajectory. As in Section 4, all distributions and lineplots indicate prediction skill
from 50 randomly selected initial conditions from an unseen test data set.

5.1.  Soft Constraints on Spectral Error

It is well known that ESN prediction skill is highly dependent on the global or “macro-scale” parameters noted in
Equation 7 (θESN, e.g., Platt et al., 2022; Lukoševičius, 2012). Following the success of previous studies in using
Bayesian Optimization methods to systematically tune these parameters (Griffith et al., 2019; Penny et al., 2022;
Platt et al., 2022), we use the Bayesian Optimization algorithm outlined by Jones et al. (1998) and implemented
by Bouhlel et al. (2019) to find optimal parameter values.

More recently, Platt et al. (2023) showed that constraining these macro-scale parameters using global invariant
properties of the underlying system leads the optimization algorithm to select parameters that generalize well to
unseen test data. In that work, the authors were successful in using the largest positive Lyapunov exponent, and to
a lesser extent the fractal dimension of the system. Because of the focus on resolved scales in this work, we take a
similar approach, but test the effect of constraining the ESN to the KE density spectral coefficients. Specifically,
we implement the following two-stage training process. At each step, the macro-scale parameters, θESN, are fixed,
and the “micro-scale” parameters Wout are obtained by minimizing Equation 2. This readout matrix is then used
to make forecasts from randomly selected initial conditions from a validation data set. The skill of each of these
forecasts is captured by the macro-scale cost function

macro(𝜽𝜽𝐸𝐸𝐸𝐸𝐸𝐸) =
1

𝑁𝑁macro

𝑁𝑁macro
∑

𝑗𝑗=1

{NRMSE(𝑗𝑗) + 𝛾𝛾KE_NRMSE(𝑗𝑗)},� (12)

where NRMSE and KE_NRMSE are defined in Equations 10 and 11, Nmacro is the number of forecasts used in
the validation set, and γ is a hyperparameter that determines how much to penalize deviations from the true KE
density spectrum. The value of 𝐴𝐴 macro is then used within the Bayesian Optimization algorithm, which reiterates
the whole optimization process with new values for θESN until an optimal value is found or the maximum number
of iterations is reached. Here, we use Nmacro = 10, initialize the optimization with 20 randomly sampled points
in the 5 dimensional parameter space, and run for 10 iterations. Note that we run this optimization procedure for
each unique ESN configuration throughout Section 5 (i.e., for each Nsub and each γ value).

Figure 8 shows a qualitative view of how penalizing the KE density impacts ESN prediction skill when it operates
at the original timestep of the SQG model (i.e., Nsub = 1). At γ = 0, the ESN parameters are selected based on
NRMSE alone, and the prediction is relatively blurry. However, as γ increases to 10 −1, the prediction becomes
sharper as the small scale features are better resolved.

Figure 9 gives a quantitative view of how the KE density penalty changes ESN prediction skill, once again with
Nsub = 1. The first two panels show that there is a clear tradeoff between NRMSE and KE error: as γ increases the
NRMSE increases but the spectral representation improves. The final panel in Figure 9 shows the spatial scales
at which the spectral error manifests in these different solutions. When γ = 0, the macro-scale parameters are
chosen to minimize NRMSE, leading to blurry predictions and a dampened spectrum at the higher wavenumbers,
especially for |K| > 2 ⋅ 10 −3 rad km −1. We note that Lam et al. (2022) report the same behavior when using a cost
function that is purely based on mean-squared error. On the other hand, when γ = 10 −1, the global parameters
are chosen to minimize both NRMSE and KE density error, where the latter treats all spatial scales equally. In
this case, KE relative error is reduced by more than a factor of two and the spectral bias at higher wavenumbers
is much more muted.

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

13 of 26

Of course, the tradeoff for the reduced spectral error is larger NRMSE, resulting from slight mismatches in the
position of small scale features in the forecast. However, our purpose is to generate forecasts that are as repre-
sentative of the training data as possible. Overly smoothed forecasts are not desirable, because this translates to
losing local extreme values, which are of practical importance in weather and climate. Additionally, a key aspect
of ensemble forecasting is that the truth remains a plausible member of the ensemble (Kalnay et al., 2006). There-
fore, representing the small scale processes, at least to some degree, will be critical for integrating an emulator
into an ensemble based prediction system.

Finally, we note that using a cost function with only KE_NRMSE produced inconsistent results. Therefore, we
consider it important to keep the NRMSE term in the cost function, as this prioritizes the position of small scale
features. That is, it helps maintain phase information. Additionally, we note that there is some irreducible high
wavenumber error, which is most clearly seen by comparing the prediction skill to a persistent forecast. While the
sample median NRMSE for each γ value beats persistence, the KE_NRMSE is more than double, due to this error
at the small spatial scales. Ideally, our forecasts would beat persistence in both of these metrics, but obtaining
the “realism” in the small spatial scales necessary to dramatically reduce this spectral error should be addressed
in future work.

Figure 8.  One sample prediction from the test data set, where each panel shows potential temperature in the truth (left) and subsequently for ESN predictions with
parameters optimized using γ = {0, 10 −2, 10 −1} in Equation 12. Each panel shows the prediction at a forecast lead time of 4 hr, using the same initial conditions as in
Figure 4. As γ increases from left to right, the prediction becomes sharper (i.e., less blurry). Here, the ESN is evaluated at the SQG model timestep, that is, Nsub = 1.

Figure 9.  Quantitative comparison of ESN predictions at Nsub = 1 with macro-scale parameters chosen using different values of γ in Equation 12. NRMSE
(Equation 10; left), KE_NRMSE (Equation 11; middle), and KE relative error (Equation 9; right) highlight the tradeoff between minimizing NRMSE and spectral error:
as γ increases spectral error is reduced, but NRMSE increases. Note that the KE relative error is shown at 4 hr to provide direct comparison to the snapshots in Figure 8.
In each plot, the solid gray line indicates the median skill of a persistent forecast.

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

14 of 26

5.2.  Temporal Subsampling

The NVAR predictions shown in Section 4.1 indicate that subsampling the training data systematically increases
error at small spatial scales. However, the architecture was not specifically designed or constrained to have a good
spectral representation of the underlying dynamics. On the other hand, the previous section (Section 5.1) showed
that the spectral bias at high wavenumbers can be reduced by optimizing the global ESN parameters to the true
KE density spectrum. Given these two results, we explore the following question: does temporal subsampling
still increase spectral bias in the more general ESN framework, even when parameters are chosen to minimize
this bias?

Figures 10 and 11 show that even when the macro-scale parameters are chosen to prioritize the KE density
representation (i.e., γ = 10 −1 is fixed), temporal subsampling does lead to an apparently inescapable spectral
bias. This effect is shown qualitatively in Figure 10, where the predictions become smoother as the tempo-
ral subsampling factor, Nsub, increases. The effect is similar to what was seen with NVAR except the blurring
effect is less pronounced. Quantitatively, Figure 11b shows that as Nsub increases, error in KE density spec-
trum generally increases, while panel (c) shows that this KE error is concentrated in the small spatial scales,
|K| > 2 ⋅ 10 −3 rad km −1. We note that the degree of spectral bias at Nsub = 16 is smaller than what was achieved
with NVAR for the same Nsub value, cf. Figure 7, indicating that the optimization was successful in reducing the
spectral bias.

Figure 10.  One sample prediction from the test data set, exactly as in Figure 8, except here γ = 10 −1 is fixed, and the temporal subsampling factor is varied: Nsub = {1,
4, 16}. As the temporal subsampling factor increases, the small spatial scale features are lost and the prediction becomes blurrier.

Figure 11.  Quantitative comparison of ESN predictions, showing NRMSE (left), KE_NRMSE (middle), and KE relative error (right), exactly as in Figure 9, except
here γ = 10 −1 is fixed, and the temporal subsampling factor is varied: Nsub = {1, 4, 16}. As the temporal subsampling factor increases, spectral errors increase. In each
plot, the solid gray line indicates the median skill of a persistent forecast.

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

15 of 26

Interestingly, there is little difference between NRMSE obtained by the ESNs at different Nsub values. Addition-
ally, Figure 12 shows that there is little difference in both NRMSE and KE_NRMSE when γ = 0, that is, when
NRMSE is the only criterion for parameter selection. This result shows that NRMSE alone is not a good criterion
for model selection, given that we have shown success in reducing spectral errors by prioritizing the spectrum
appropriately.

5.3.  Impact of the Hidden Layer Dimension

The dimension of the hidden layer, Nr, also known as the reservoir size, determines the memory capacity availa-
ble to the ESN (Jaeger, 2001; Lukoševičius, 2012). For systems with high dimensional input signals, it is crucial
to use a sufficiently large hidden layer to afford the memory capacity necessary for accurate predictions (Hermans
& Schrauwen, 2010). In all of the preceding sections we fixed Nr = 6, 000 for each local group, where for refer-
ence each local group has an input dimension of 𝐴𝐴 𝐴𝐴

loc

𝐮𝐮 = 200 and an output dimension of 𝐴𝐴 𝐴𝐴
loc

𝐯𝐯 = 128 . Here, we
briefly address the effect of doubling the hidden layer dimension, while keeping the input and output dimensions
constant, in order to test how sensitive our conclusions are on this crucial hyperparameter. Due to the compu-
tational expense of the parameter optimization discussed in Section 5.1, we only perform this experiment for
Nsub = 16.

The impact of doubling Nr on prediction skill is shown in Figure 13, where for the sake of brevity we only
show results for the case when γ = 10 −1 in Equation 12. The left panel shows that the larger hidden layer actu-
ally increases the NRMSE slightly. However, the middle and right panels show that this increase is due to the
improved spectral representation. The improvement in KE_NRMSE is nearly proportional to the improvement
achieved by increasing the temporal resolution of the data. That is, doubling the hidden layer width reduces the
average KE_NRMSE by 14%, while increasing the temporal resolution of the data by a factor of 4 reduces the
KE_NRMSE by 30%. These results indicate a potential brute force approach to overcoming the subsampling
related spectral errors. However, the larger hidden layer dimension has to be constrained with enough training
data, and requires more computational resources.

5.4.  Impact of Training Data Set Size

In all of the preceding experiments, the length of training time was fixed to 15 years, meaning that there are fewer
training samples when the data are subsampled, that is, as Nsub grows. Specifically, 15 years of data at an original
model timestep of 5 min means that there are approximately 1.6 ⋅ 10 6, 3.9 ⋅ 10 5, and 9.72 ⋅ 10 4 samples for each
case previously shown: Nsub = 1, 4, and 16, respectively. Here, we show that even when the number of training
samples is fixed, the subsampling related spectral errors are still present.

Figure 14 shows the prediction skill in terms of NRMSE and spectral errors when the number of training samples
is fixed to 9.72 ⋅ 10 4. With this number of samples, the training data is exactly the same for Nsub = 16, but only

Figure 12.  Same as Figure 11, except here γ = 0, indicating that only NRMSE is penalized in the cost function. The error is relatively similar, indicating that NRMSE
alone is a suboptimal penalty for model selection. In each plot, the solid gray line indicates the median skill of a persistent forecast.

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

16 of 26

spans 3.75 and 0.94 years for Nsub = 4 and Nsub = 1, respectively. However, we see the same general trend as
before: subsampling the data improves NRMSE slightly but increases the KE_NRMSE. As before, the spectral
error is largest in the higher wavenumbers, |K| > 2 ⋅ 10 −3 rad km −1. We note that the difference in performance
between Nsub = 4 and Nsub = 16 is marginal. The only notable difference between these two cases is that the ESN is
less consistent, that is, the KE_NRMSE distribution is broader, when Nsub = 16. However, it is clear that spectral
error is lowest when the data are not subsampled at all, even though less than a year of data is used. This result
indicates that there could be a benefit to training a RNN on a relatively shorter model trajectory that is untouched,
rather than a longer data set that is subsampled in time.

6.  Discussion
Weather and climate forecasting necessitates the integration of expensive numerical models to make accurate
predictions and projections. The computational cost of these models often results in tradeoffs, where practition-
ers must balance the spatial resolution of their model with other factors, such as the number of integrated model
components or the ensemble size that can be afforded in the system. Model emulation or surrogate modeling
aims to enable such predictions by emulating the dynamical system with adequate accuracy at a much lower
computational expense. In this study, our primary interest was to shed light on the spatial scales that can be
resolved by single layer autoregressive and recurrent neural network emulators in order to better understand the
effective resolution that could be achieved in weather and climate applications. We used two relatively simple,

Figure 14.  Subsampling related spectral errors persist even when the number of training samples is fixed. Here, the number of samples is fixed to 9.72 × 10 4 for all
cases, and yet the temporal subsampling related spectral errors remain. Here, γ = 10 −1 and the solid gray line indicates the median skill of a persistent forecast.

Figure 13.  The impact of doubling the hidden layer dimension from Nr = 6,000 to Nr = 12,000 on NRMSE (left), KE_NRMSE (middle), and KE relative error (right).
Increasing the hidden layer dimension is relatively proportional to reducing the temporal subsampling factor, indicating a potential brute force approach to reducing the
subsampling related spectral errors. Here γ = 10 −1, and the solid gray line indicates the median skill of a persistent forecast.

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

17 of 26

single layer autoregressive and recurrent neural network architectures, mainly because it has been shown that
they can successfully emulate low dimensional chaotic dynamics over multiple Lyapunov timescales (Gauthier
et al., 2021; Pathak et al., 2017; Platt et al., 2022; Vlachas et al., 2020). We implemented a multi-dimensional
parallelization scheme based on the concept introduced by Pathak et al. (2018) and similar to that of Arcomano
et al. (2020) in order to scale up these architectures and test them in high dimensional systems. We note that an
in-depth discussion of our software implementation using the task based scheduling system in python, Dask
(Dask Development Team, 2016), will be covered in a forthcoming paper.

6.1.  Main Result and Connections to Previous Work

Our main result is that we observe an inherent spectral bias that occurs when training data are subsampled
in time, such that as the temporal resolution is reduced, the resolution of small scale features in NVAR and
ESN predictions is diminished. High wavenumber spectral bias is a phenomenon that has been studied in
the context of training feed forward neural networks (see Xu et al., 2022, for a comprehensive review on the
topic). The authors show that while numerical Partial Differential Equation (PDE) solvers typically resolve
small spatial scales first and iteratively refine the larger spatial scales, spectral biases arise while training
neural networks because the reverse happens: the large scales are uncovered first and small spatial scales are
slowly refined.

Here, we showed a similar bias that arises in NVAR and ESN architectures in relation to their temporal resolution.
Given the sensitivity to model time step, this phenomenon bears resemblance to the Courant-Friedrich-Lewy
(CFL) condition, which poses an upper bound on the time step size that can be used in the numerical solution of
PDEs. The CFL condition is therefore a barrier to weather and climate model efficiency. However, sensitivity to
the time step size manifests very differently in neural networks and numerical PDEs. While violating the CFL
condition with too large of a time step leads to fundamental issues of numerical instability in numerical PDEs,
here we see that increasing the time step adds a sort of numerical dissipation, which can actually stabilize an
otherwise unstable model architecture (Section 4.1). Our results show that this occurs because the small scales
are “lost” within the recurrent and autoregressive time stepping relations. Because of this, the models are trained
to take on an interpolated or spatially averaged view of the intermediate dynamical behavior, which generates a
blurred prediction.

We note that Bi et al. (2022) discuss a similar phenomenon relating to the timestepping of their autoregressive
transformer model. Specifically, they devise a “Hierarchical Temporal Aggregation” scheme to make more stable
and accurate forecasts (in terms of RMSE) over longer periods of time than they would potentially be able to if
they were to use the original 1 hr cadence of the ERA5 data set. However, it is not clear how well small scale
features are preserved with this approach. This is unclear first because they use a cost function that is purely based
on RMSE. Second, the approach requires training multiple models at successively larger time intervals, and a
forecast is made using the largest interval possibly available first. For instance, with trained models operating on
1 and 6 hourly increments, a 7 hr forecast would be made by first a 6 and then 1 hr prediction. Our results indicate
that this could be problematic, as the model making the 6 hr prediction would filter out small scale features that
would otherwise be captured by the second model, operating on a 1 hr timestep.

Finally, Chattopadhyay and Hassanzadeh (2023) show the connection between high wavenumber spectral bias
and instabilities in neural network predictions of turbulent flows. Their focus was on achieving long term stabil-
ity in neural network time stepping for climate applications, while the focus in our work has been on short term
forecasting for weather applications - capturing the long term, climate statistics in turbulent geophysical fluid
dynamics with an ESN or NVAR is future work. However, both works (a) draw some connection between high
frequency spectral bias and the time stepping of the neural network, and (b) offer potential solutions by penalizing
the solution's spectrum. In our work, we show that some of the spectral bias stems from the timestep size of the
data used for training, while Chattopadhyay and Hassanzadeh (2023) devise a Runge-Kutta scheme to reduce the
bias on subsampled data. Additionally, they use a spectral loss to train the internal weights of the network, along
with the addition of a “corrector” network to make predictions of only the small scales. On the other hand, we use
a spectral loss to guide the optimization of 5 “macro-scale” parameters, but the training of the network weights
and operation of the network remain the same. Despite the differences in approach, the similarity of these two
works indicates that the details of neural network time stepping schemes are crucial to their stability and accuracy
in representing small scale processes. Additionally, it is clear that these small scale processes must be prioritized

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

18 of 26

in some way, for instance through a loss function, and potentially additional “corrector” networks that propagate
the small scales explicitly.

6.2.  Implications for Training Data Sets in Weather and Climate

Our results have important implications for the rapidly developing field of neural network emulation for weather
and climate forecasting because they show a potential limit to the effective resolution of an emulator relative
to the original training data. If an emulator is used as a parameterization scheme for subgrid-scale dynamics,
then a high wavenumber spectral bias will be detrimental to performance. Additionally, we surmise that such
errors will reduce ensemble spread within data assimilation algorithms, which could limit their usefulness
within a forecasting system (e.g., Kalnay et al., 2006). Our findings are pertinent to the field of neural network
emulation development because of the widespread usage of reanalysis data sets for training. Currently, most
existing neural network emulators in this field use the ERA5 reanalysis data set (Hersbach et al., 2020) for
training (e.g., Arcomano et al., 2020; Bi et al., 2023; Keisler, 2022; Lam et al., 2022; Pathak et al., 2022;
Weyn et al., 2021). Of course, reanalyses like ERA5 are an obvious choice for many reasons: the data sets
are made freely available, they present a multi-decadal view of weather and climate, and, most importantly,
they are constrained to observational data. However, we note that reanalysis products are imperfect for at least
the following reasons: they contain jumps in the system state at the start of each DA cycle, they may contain
inconsistencies reflective of changes in observational coverage, and they are only made available at large time
intervals relative to the time step of the underlying integrated numerical model dynamics, due to the massive
size of the data. Our study only addressed the latter of these issues, and showed that this simple space-saving
step can have a negative impact on data-driven prediction methods. While we showed that adding spectral error
as a weak constraint in the neural network training can reduce this time step related spectral bias, our results
indicate that the underlying issue persists (Section 5.2). Moreover, as long as the data are not subsampled, we
showed that ESNs perform only slightly worse when <1 year of data are used, compared to 15 years of training
data (Section 5.4). This result suggests that it may be more effective to design an RNN-based emulator with
a relatively short model trajectory that is not subsampled, rather than a long trajectory that is subsampled.
In contrast to training the emulator on a reanalysis data set, a pure model-based emulator could then be used
within a data assimilation system as by Penny et al. (2022) in order to additionally benefit from observational
constraints.

6.3.  Implications and Future Work Relating to Model Architecture

Due to the fact that RNNs require long, sequential data streams in order to learn the governing dynamics, it could
be the case that RNNs suffer most dramatically from temporal subsampling. This hypothesis could be one reason
for why the RNNs used by Agarwal et al. (2021) performed worse than other models on data that were subsam-
pled every 10 days. Additionally, if RNNs are most dramatically affected by temporal subsampling, then they
could be a suboptimal architecture choice for model emulators in cases where representing small scale dynamics
is important but a coarse time step is required. This requirement is especially true when designing a parameter-
ization scheme for subgrid-scale dynamics, where the emulator should ideally run at the same time step as the
“large-scale” model.

However, given that we can qualitatively observe some degree of spectral error in a wide variety of neural
network architectures that use subsampled data for training (e.g., Bi et al., 2023; Keisler, 2022; Lam et al., 2022;
Pathak et al., 2022), the issue could be more general to other neural network architectures. Moreover, the similar-
ities between our work and Chattopadhyay and Hassanzadeh (2023) as well as the reasons behind the hierarchical
time stepping scheme introduced by Bi et al. (2022) (both discussed in Section 6.1) imply that the time stepping
related spectral bias is a general issue. Therefore, future work should be directed at understanding the degree
to which temporal resolution affects architectures other than RNNs. Potential avenues could include exploring
how attention mechanisms (Dosovitskiy et al., 2021; Vaswani et al., 2017) handle this phenomenon. Addition-
ally, in light of our results indicating that wider networks can mitigate the spectral bias at least to some degree
(Section 5.3), it would be instructive to understand how successively adding layers to a neural network affects the
spectral bias. Finally, we note the work of Duncan et al. (2022) who show success in using adversarial training to
mitigate the spectral bias observed in FourCastNet, and suggest that such techniques deserve additional study to
understand their robustness.

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

19 of 26

Of course, our neural network implementations are imperfect, and here we list some future avenues to improve
their predictive capabilities. Both of the architectures relied on a mean-squared error micro-scale cost function
to learn the readout matrix weights, even in the ESN models where the spectral errors were penalized in the
macro-scale cost function. However, even when the spectrum was penalized and the data were not subsampled,
the ESNs maintained a high wavenumber bias that resulted in KE_NRMSE far greater than that of a persistent
forecast. While additional testing shows that a periodic sine activation function can reduce the high frequency
bias in KE_NRMSE, following work by Sitzmann et al. (2020), the underlying problem still remains (see addi-
tional analysis in the Supporting Information S1). Therefore, in order to further reduce the high frequency bias,
it may be necessary to move the spectral penalties to the micro-scale cost function, that is, to learn the readout
matrix weights in the case of reservoir computing. The time stepping, spectral loss, and “small scale corrector
network” employed by Chattopadhyay and Hassanzadeh (2023) would be appropriate starting points for such
future work.

The NVAR architecture that we employed is incredibly simple. While we supposed that the local quadratic
feature vector could learn quantities like derivatives and fluxes necessary to step the model forward in time, it
is apparently not robust enough given the dramatic sensitivity to time step used. Future work could explore the
possibility of using a larger library of analytic functions to improve the nonlinear expressions in the model, with
the caution that this will lead to very high dimensional feature vectors. Such developments must sufficiently
address the “Catch-22” described by Zhang and Cornelius (2022), who show that NVAR is inherently sensitive
to the types of nonlinearity chosen. It is entirely possible, though, that an appropriate set of such basis functions
exist for weather and climate emulation.

The ESN architecture that we employed is also relatively straightforward, and can undoubtedly be improved. In
this work we took a somewhat brute force approach to emulate arbitrarily high dimensional systems by partition-
ing the system into subdomains and deploying parallel ESNs on each group. However, this process comes with
overhead and can still lead to rather large networks on each group. The memory costs associated with these large
networks coupled with any additional computational costs associated with timestepping, either by increasing the
frequency or by using a more expensive method to represent small scale processes, will likely make the ESN
implementation shown here too expensive to be considered for practical applications. Future work could explore
dimension reduction techniques involving proper orthogonal decomposition (Jordanou et al., 2022), autoencoders
(Heyder et al., 2022), or approaches involving self-organizing or scale invariant maps (Basterrech et al., 2011).
Similarly, Whiteaker and Gerstoft (2022) show success in deriving a controllability matrix for the ESN, which
leads to a reduced network size with minimal reduction in error. Finally, a number of studies claim to have
developed ESN architectures that can capture dynamics occurring at many scales (Gallicchio et al., 2017, 2018;
Ma et al., 2020; Malik et al., 2017; Moon et al., 2021), and these could be explored for geophysical turbulence
emulation as well.

7.  Conclusions
Recent advances in neural network based emulators of Earth's weather and climate indicate that forecasting
centers could benefit greatly from incorporating neural networks into their future prediction systems. However,
a common issue with these data-driven models is that they produce relatively blurry predictions, and misrepre-
sent the small spatial scale features that can be resolved in traditional, physics-based forecasting models. Here,
we showed that the simple space saving step of subsampling the training data used to generate recurrent neural
network emulators accentuates this small scale error. While we show some success in mitigating the effects of this
subsampling related, high wavenumber bias through an inner/outer loop optimization framework, the problem
persists. Many neural network emulators use subsampled data sets for training, including most prominently the
ERA5 Reanalysis. While our work suggests that there could be a benefit to using a training data set based on a
relatively shorter model trajectory that is not subsampled, rather than a longer one that is, addressing the subsam-
pling issue would provide more confidence in using already existing, freely available data sets like reanalyses.
We therefore suggest that future work should focus on how other architectures and techniques like attention or
adversarial training can address this subsampling related bias at the small spatial scales of turbulent geophysical
fluid dynamics.

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

20 of 26

Appendix A:  Matrix and Data Normalization for Echo State Networks
Here we describe several aspects of our ESN implementation that are unique with respect to previous works.
Additionally, we provide some empirical justification for these choices, using the Lorenz96 model as a testbed
(Lorenz, 1996), see Appendix A4 for a description of the data sets generated for these tests.

Our testing framework follows the general procedure laid out by Platt et al. (2022) to evaluate the architec-
ture choices. For each design choice, we compute the Valid Prediction Time (VPT) of an ESN model over 100
randomly chosen initial conditions from a test data set. VPT is computed as

VPT = argmin
𝑛𝑛

{NRMSE(𝑛𝑛) > 𝜖𝜖}

NRMSE(𝑛𝑛) =

√

√

√

√
1

𝑁𝑁𝐯𝐯

𝑁𝑁𝐯𝐯
∑

𝑖𝑖=1

(

𝑣̂𝑣𝑖𝑖(𝑛𝑛) − 𝑣𝑣𝑖𝑖(𝑛𝑛)

SD𝑖𝑖

)2

,

�

where n is a time index, SDi is the temporal standard deviation of the ith dimension, computed from the training
data, and ϵ = 0.2. To eliminate the dependence of the results on the randomly chosen adjacency and input matri-
ces, we repeat the process for 10 different adjacency and input matrix pairs, initialized with different random
number generator seeds. In total, we compare each design choice with a VPT distribution from 1,000 test samples.
We note that we optimize the ESN parameters listed in Equation 7 for each design choice and each random matrix
pair, following the procedure described in Section 5.1 with an NRMSE cost function. Of course, these tests are
insufficient to definitively prove that these choices will translate perfectly to the SQG system. However, we
consider this to be a bare minimum test that will catch downright bad design choices, while saving the computing
resources necessary to train an emulator for larger problems.

A1.  Input Matrix Scaling

Typically, Win is filled with entries

𝑤̂𝑤𝑖𝑖𝑖𝑖𝑖 ∼  (−𝜎𝜎𝜎 𝜎𝜎) 𝑖𝑖 = {1, 2, . . . , 𝑁𝑁𝐫𝐫},𝑗𝑗 = {1, 2, . . . , 𝑁𝑁𝐮𝐮}�

where σ determines the bounds of the uniform distribution. Here we found it to be advantageous to normalize the
input matrix by the largest singular value. That is, we first compute 𝐴𝐴 𝐖̂𝐖in , with elements

𝑤̂𝑤𝑖𝑖𝑖𝑖𝑖 ∼  (−1, 1) 𝑖𝑖 = {1, 2, . . . , 𝑁𝑁𝐫𝐫},𝑗𝑗 = {1, 2, . . . , 𝑁𝑁𝐮𝐮}.�

Then, we set Win as

𝐖𝐖in ∶=
𝜎𝜎

𝜎𝜎max

(

𝐖̂𝐖in

)𝐖̂𝐖in�

where 𝐴𝐴 𝐴𝐴max(⋅) is the largest singular value, and the parameter σ is the desired largest singular value of Win.

Our motivation for using this type of normalization is that we found it necessary to use very wide parameter
optimization bounds for σ when using the standard input scaling strategy. Normalizing the matrix by the larg-
est singular value compensates for the fact that the amplitude of the contributions to the reservoir, that is, the
elements of the vector

𝐩𝐩 = 𝐖𝐖in𝐮𝐮 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐰𝐰
𝑇𝑇

1
𝐮𝐮

𝐰𝐰
𝑇𝑇

2
𝐮𝐮

⋮

𝐰𝐰
𝑇𝑇

𝑁𝑁𝐫𝐫

𝐮𝐮

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

�

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

21 of 26

grow with Nu. By controlling for this growth, we were able to reduce the optimization search space and achieve
more consistent prediction skill with fewer iterations.

Additionally, we found empirical evidence to suggest that this normalization is advantageous even for small
systems. Figure A1 shows the VPT achieved with the 20-Dimensional Lorenz96 system (Appendix A4), using a
variety of normalization strategies for the input and adjacency matrices. In Figure A1, the two schemes used for
the input matrix are (a) no normalization (indicated by cWin) and (b) normalization by the largest singular value
(indicated by σmax(Win)). For a variety of reservoir sizes, Nr, we found that using the largest singular value often
performed better, usually by about 0.5 MTU.

A2.  Adjacency Matrix Scaling

Typically, the reservoir adjacency matrix is normalized to achieve a desired spectral radius. That is, the matrix 𝐴𝐴 𝐀̂𝐀
is generated with elements 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑖 ∼  (−1, 1) , where i, j are random indices in order to satisfy the desired sparsity
of the matrix (all other elements are 0). Then, A is set as

𝐀𝐀 ∶=
𝜌𝜌

𝜆𝜆max

(

𝐀̂𝐀

) 𝐀̂𝐀,�

where 𝐴𝐴 𝐴𝐴max(⋅) is the spectral radius, and ρ scales the matrix to achieve the desired spectral radius. A common
guideline is to set ρ ≃ 1, as it is hypothesized that this puts the reservoir on the “edge of stability” so that it
performs well in emulating nonlinear systems (e.g., as recommended by Lukoševičius, 2012). However, as origi-
nally described by Jaeger (2001), the spectral radius provides only a necessary, but insufficient, means to satisfy
the required Echo State Property. On the other hand, using the largest singular value is a sufficient condition for
satisfying the echo state property.

In our experimentation, we have found a slight benefit from using the largest singular value to normalize the
adjacency matrix. Figure A1 shows that, for fixed input matrix normalization, using the largest singular value
rather than spectral radius achieves similar and up to ∼0.3 longer valid predictions. While the improvement

Figure A1.  Valid Prediction Time (VPT) obtained with an ESN, using different normalization strategies for the adjacency
and input matrices, A and Win. The normalization used for each matrix is indicated as follows: λmax(⋅) refers to the largest
eigenvalue (i.e., spectral radius), σmax(⋅) refers to the largest singular value (i.e., induced 2 norm), while c implies that
no normalization was used. The results are computed with the 20D Lorenz96 system, described in Appendix A4. The
boxplots indicate prediction skill from 10 different adjacency and input matrices, achieved by changing the random number
generator seed, with 100 initial conditions randomly sampled from the test data set for each set of matrices. The macro-scale
parameters, including also the leak rate, bias, and Tikhonov parameter, were optimized for each unique matrix pair. Color
indicates the size of the reservoir used.

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

22 of 26

may seem subtle, we note that using the largest singular value has the following practical benefit for our
python-based implementation: the singular values can be computed directly on a Graphical Processing Unit
using CuPy (Okuta et al., 2017), while a general, non-symmetric eigenvalue decomposition is not readily
available.

A3.  Data Normalization

A key aspect in machine learning is normalizing input data before passing it to the model. Experiments from Platt
et al. (2022) showed, however, that the standard approach to normalizing data can be detrimental to prediction
skill. By “standard approach,” we mean

𝑣𝑣𝑖𝑖(𝑛𝑛) =
𝑣𝑣𝑖𝑖(𝑛𝑛) − 𝑣̄𝑣𝑖𝑖

SD𝑖𝑖

𝑖𝑖 = {1, 2, . . .𝑁𝑁𝐯𝐯},�

where

𝑣̄𝑣𝑖𝑖 =
1

𝑁𝑁train

𝑁𝑁train
∑

𝑛𝑛=1

𝑣𝑣𝑖𝑖(𝑛𝑛), SD𝑖𝑖 =

√

√

√

√

√

√

𝑁𝑁train
∑

𝑛𝑛=1

(𝑣𝑣𝑖𝑖(𝑛𝑛) − 𝑣̄𝑣𝑖𝑖)
2

𝑁𝑁train − 1

�

that is, 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 and SDi are the mean and standard deviation taken from the training data separately over each channel
of data, indexed by i. The key takeaway from Platt et al. (2022) is that by using separate normalization values for
each channel, the covarying relationships between the data are destroyed and the reservoir cannot learn the true
dynamics. The authors propose to normalize with the average and range of the data, computed over the length of
the training data and over all channels

𝑣𝑣𝑖𝑖(𝑛𝑛) =
𝑣𝑣𝑖𝑖(𝑛𝑛) − 𝜇𝜇

𝑣𝑣max − 𝑣𝑣min

𝑖𝑖 = {1, 2, . . .𝑁𝑁𝐯𝐯},� (A1)

where

� = 1
��

��
∑

�=1

�̄�, �max = max
�={1,. . . ,��}

�={1,. . . ,�train}

(��(�)), �min = min
�={1,. . . ,��}

�={1,. . . ,�train}

(��(�)).� (A2)

Here, we propose to replace the range in the denominator with the standard deviation computed over all channels
and timesteps in the training data,

𝑣𝑣𝑖𝑖(𝑛𝑛) =
𝑣𝑣𝑖𝑖(𝑛𝑛) − 𝜇𝜇

SD
𝑖𝑖 = {1, 2, . . .𝑁𝑁𝐯𝐯},� (A3)

with

SD =

√

√

√

√

√

√

𝑁𝑁𝐯𝐯
∑

𝑖𝑖=1

𝑁𝑁train
∑

𝑛𝑛=1

(𝑣𝑣𝑖𝑖(𝑛𝑛) − 𝜇𝜇)
2

(𝑁𝑁train − 1)(𝑁𝑁𝐯𝐯 − 1)
.

�

Figure A2 compares the prediction skill when these two normalization strategies are used. Using the standard
deviation normalization as in Equation A3 leads to an average VPT increase of 2 MTU. We suggest that this
improvement is due to the fact that when the data are normalized by the full range, then all values are in the range
[−1, 1]. In this case, once the input is mapped into the hidden space, it is more likely to lie on the linear regime of
the tanh(⋅) activation function. While a large enough input scaling could eliminate this problem, it is apparently
not easily obtained during the Bayesian optimization.

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

23 of 26

A4.  Lorenz96 Data Sets

The Lorenz96 data set used for these supplemental experiments were generated by the following set of equations
introduced by Lorenz (1996),

𝑑𝑑𝑑𝑑𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑
= 𝑣𝑣𝑖𝑖−1(𝑡𝑡)(𝑣𝑣𝑖𝑖+1(𝑡𝑡) − 𝑣𝑣𝑖𝑖−2(𝑡𝑡)) − 𝑣𝑣𝑖𝑖(𝑡𝑡) + 𝐹𝐹 𝐹�

where i = 1, 2, …, Nl, and the domain is periodic. F = 8 is a fixed parameter that generates chaotic dynamics.
We use Nl = 20 for the tests in Appendices A1 and A2 and Nl = 6 for the tests in Appendix A3. Each data set was
generated by stepping the model forward with a fourth order Runge-Kutta scheme with Δt = 0.01 Model Time
Units (MTU). Each data set consisted of a 10 MTU spinup period that was discarded, 420 MTU of training data, a
60 MTU validation period, and a 120 MTU test period. Each randomly chosen validation and test trajectory were
1 MTU and 15 MTU, respectively, and the ESN spinup period was 5 MTU.

Appendix B:  Gulf of Mexico Data Set and ESN Prediction
The Gulf of Mexico reanalysis data set used to generate the prediction in Figure 1 was provided by HYCOM (2016).
The data consists of 3 hourly snapshots of 2D sea surface height and 3D temperature, salinity, and zonal and
meridional velocities, covering 1993–2012 (inclusive). We used only the top level of temperature, and used the
first 18 years as training, and the last 2 years as test data. Here we apply a parallelized ESN architecture, using

𝐴𝐴 𝐴𝐴
loc

𝑥𝑥 = 𝑁𝑁
loc

𝑦𝑦 = 4 , No = 1, and Nr = 6, 000. Because we use only the top level of temperature, Nz = 1, and therefore
𝐴𝐴 𝐴𝐴

loc

𝐮𝐮 = 25 , 𝐴𝐴 𝐴𝐴
loc

𝐯𝐯 = 16 . The grid cells that represent continental land are ignored in the input and output vectors,
and in the corresponding rows of Wout. Therefore, the effect of the boundary conditions on the neighboring grid
cells is implicitly learned from the data.

Data Availability Statement
The model configurations used to generate the results in this manuscript can be found at https://github.com/
timothyas/rc-gfd, and specifically used the version at Smith (2023). The repository uses a modified version of the
SQG Turbulence model code developed by Jeffrey S. Whitaker at https://github.com/jswhit/sqgturb.

Figure A2.  Valid Prediction Time (VPT) with an ESN, using the Max/Min normalization strategy shown in Equation A1 and
standard deviation (SD) normalization strategy as in Equation A3. The results are computed with the 6D Lorenz96 system,
described in Appendix A4. The boxplots indicate prediction skill from 10 different adjacency and input matricesm, achieved
by changing the random number generator seed, with 100 initial conditions randomly sampled from the test data set for each
set of matrices. All macro-scale parameters were optimized for each unique matrix pair.

https://github.com/timothyas/rc-gfd
https://github.com/timothyas/rc-gfd
https://github.com/jswhit/sqgturb

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

24 of 26

References
Agarwal, N., Kondrashov, D., Dueben, P., Ryzhov, E., & Berloff, P. (2021). A comparison of data-driven approaches to build low-dimensional

ocean models. Journal of Advances in Modeling Earth Systems, 13(9), e2021MS002537. https://doi.org/10.1029/2021MS002537
Arcomano, T., Szunyogh, I., Pathak, J., Wikner, A., Hunt, B. R., & Ott, E. (2020). A machine learning-based global atmospheric forecast model.

Geophysical Research Letters, 47(9), e2020GL087776. https://doi.org/10.1029/2020GL087776
Barbosa, W. A. S., & Gauthier, D. J. (2022). Learning spatiotemporal chaos using next-generation reservoir computing. arXiv:2203.13294 [nlin].

Retrieved from http://arxiv.org/abs/2203.13294
Basterrech, S., Fyfe, C., & Rubino, G. (2011). Self-organizing maps and scale-invariant maps in echo state networks. In 2011 11th international

conference on intelligent systems design and applications (pp. 94–99). https://doi.org/10.1109/ISDA.2011.6121637
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., & Tian, Q. (2022). Pangu-weather: A 3D high-resolution model for fast and accurate global weather

forecast. arXiv. Retrieved from http://arxiv.org/abs/2211.02556
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., & Tian, Q. (2023). Accurate medium-range global weather forecasting with 3D neural networks.

Nature, 619(7970), 533–538. https://doi.org/10.1038/s41586-023-06185-3
Blumen, W. (1978a). Uniform potential vorticity flow: Part I. Theory of wave interactions and two-dimensional turbulence. Journal of the Atmos-

pheric Sciences, 35(5), 774–783. https://doi.org/10.1175/1520-0469(1978)035〈0774:UPVFPI〉2.0.CO;2
Blumen, W. (1978b). Uniform potential vorticity flow: Part II. A model of wave interacions. Journal of the Atmospheric Sciences, 35(5), 784–789.

https://doi.org/10.1175/1520-0469(1978)035〈0784:UPVFPI〉2.0.CO;2
Bollt, E. (2021). On explaining the surprising success of reservoir computing forecaster of chaos? The universal machine learning dynamical system

with contrast to VAR and DMD. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(1), 013108. https://doi.org/10.1063/5.0024890
Bouhlel, M. A., He, S., & Martins, J. R. R. A. (2020). Scalable gradient–enhanced artificial neural networks for airfoil shape design in the subsonic

and transonic regimes. Structural and Multidisciplinary Optimization, 61(4), 1363–1376. https://doi.org/10.1007/s00158-020-02488-5
Bouhlel, M. A., Hwang, J. T., Bartoli, N., Lafage, R., Morlier, J., & Martins, J. R. R. A. (2019). A Python surrogate modeling framework with

derivatives. Advances in Engineering Software, 135, 102662. https://doi.org/10.1016/j.advengsoft.2019.03.005
Chattopadhyay, A., & Hassanzadeh, P. (2023). Long-term instabilities of deep learning-based digital twins of the climate system: The cause and

a solution. arXiv. Retrieved from http://arxiv.org/abs/2304.07029
Chen, T.-C., Penny, S. G., Smith, T. A., & Platt, J. A. (2022). “Next generation” reservoir computing: An empirical data-driven expression of

dynamical equations in time-stepping form. https://doi.org/10.48550/arXiv.2201.05193
Chen, X., Nadiga, B. T., & Timofeyev, I. (2021). Predicting shallow water dynamics using echo-state networks with transfer learning.

arXiv:2112.09182 [physics]. Retrieved from http://arxiv.org/abs/2112.09182
Cressie, N. (1993). Statistics for spatial data.
Dask Development Team. (2016). Dask: Library for dynamic task scheduling [Computer software manual]. Dask Development Team. Retrieved

from https://dask.org
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., et al. (2021). An Image is Worth 16x16 Words: Transform-

ers for image recognition at scale. arXiv. Retrieved from http://arxiv.org/abs/2010.11929
Dueben, P. D., & Bauer, P. (2018). Challenges and design choices for global weather and climate models based on machine learning. Geoscientific

Model Development, 11(10), 3999–4009. https://doi.org/10.5194/gmd-11-3999-2018
Duncan, J., Subramanian, S., & Harrington, P. (2022). Generative modeling of high-resolution global precipitation forecasts. https://doi.

org/10.48550/arXiv.2210.12504
Eady, E. T. (1949). Long waves and cyclone waves. Tellus, 1(3), 33–52. https://doi.org/10.1111/j.2153-3490.1949.tb01265.x
Evensen, G., Vossepoel, F. C., & van Leeuwen, P. J. (2022). Data assimilation fundamentals: A unified formulation of the state and parameter

estimation problem. Springer International Publishing. https://doi.org/10.1007/978-3-030-96709-3
Gallicchio, C., Micheli, A., & Pedrelli, L. (2017). Deep reservoir computing: A critical experimental analysis. Neurocomputing, 268, 87–99.

https://doi.org/10.1016/j.neucom.2016.12.089
Gallicchio, C., Micheli, A., & Pedrelli, L. (2018). Design of deep echo state networks. Neural Networks, 108, 33–47. https://doi.org/10.1016/j.

neunet.2018.08.002
Gauthier, D. J., Bollt, E., Griffith, A., & Barbosa, W. A. S. (2021). Next generation reservoir computing. Nature Communications, 12(1), 5564.

https://doi.org/10.1038/s41467-021-25801-2
Goodfellow, I., Yoshua, B., & Aaron, C. (2016). Sequence modeling: Recurrent and recursive nets. In Deep learning. MIT Press. Retrieved from

https://www.deeplearningbook.org/
Griffith, A., Pomerance, A., & Gauthier, D. J. (2019). Forecasting chaotic systems with very low connectivity reservoir computers. Chaos: An

Interdisciplinary Journal of Nonlinear Science, 29(12), 123108. https://doi.org/10.1063/1.5120710
Hasselmann, K. (1988). PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns. Journal

of Geophysical Research, 93(D9), 11015–11021. https://doi.org/10.1029/JD093iD09p11015
Held, I. M., Pierrehumbert, R. T., Garner, S. T., & Swanson, K. L. (1995). Surface quasi-geostrophic dynamics. Journal of Fluid Mechanics, 282,

1–20. https://doi.org/10.1017/S0022112095000012
Hermans, M., & Schrauwen, B. (2010). Memory in reservoirs for high dimensional input. In The 2010 international joint conference on neural

networks (IJCNN) (pp. 1–7). IEEE. https://doi.org/10.1109/IJCNN.2010.5596884
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal

of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
Hewitt, H. T., Roberts, M. J., Hyder, P., Graham, T., Rae, J., Belcher, S. E., et al. (2016). The impact of resolving the Rossby radius at mid-latitudes

in the ocean: Results from a high-resolution version of the Met Office GC2 coupled model. Geoscientific Model Development, 9(10), 3655–
3670. https://doi.org/10.5194/gmd-9-3655-2016

Heyder, F., Mellado, J. P., & Schumacher, J. (2022). Generalizability of reservoir computing for flux-driven two-dimensional convection. Physi-
cal Review, 106(5), 055303. https://doi.org/10.1103/PhysRevE.106.055303

HYCOM. (2016). HYCOM + NCODA Gulf of Mexico 1/25° reanalysis, (GOMu0.04/expt_50.1). (Data retrieved from HYCOM, Retrieved from
https://www.hycom.org/data/gomu0pt04/expt-50pt1)

Jaeger, H. (2001). The “echo state” approach to analysing and training recurrent neural networks—With an Erratum note. German National
Research Center for Information Technology GMD Technical Report, 148, 13.

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimiza-
tion, 13(4), 455–492. https://doi.org/10.1023/A:1008306431147

Acknowledgments
T.A. Smith and S.G. Penny acknowl-
edge support from NOAA Grant
NA20OAR4600277. S.G. Penny and
J.A. Platt acknowledge support from the
Office of Naval Research (ONR) Grants
N00014-19-1-2522 and N00014-20-1-
2580. T.A. Smith thanks Nora Loose for
comments and discussion that improved
the manuscript. The authors thank Jeffrey
S. Whitaker for developing the open
source SQG Turbulence model code
which was the basis for our training,
validation, and testing data set. The
authors thank three anonymous reviewers,
the associate editor, and editor Stephen
Griffies for comments that improved the
manuscript.

https://doi.org/10.1029/2021MS002537
https://doi.org/10.1029/2020GL087776
http://arxiv.org/abs/2203.13294
https://doi.org/10.1109/ISDA.2011.6121637
http://arxiv.org/abs/2211.02556
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1175/1520-0469(1978)035%E2%8C%A90774:UPVFPI%E2%8C%AA2.0.CO;2
https://doi.org/10.1175/1520-0469(1978)035%E2%8C%A90784:UPVFPI%E2%8C%AA2.0.CO;2
https://doi.org/10.1063/5.0024890
https://doi.org/10.1007/s00158-020-02488-5
https://doi.org/10.1016/j.advengsoft.2019.03.005
http://arxiv.org/abs/2304.07029
https://doi.org/10.48550/arXiv.2201.05193
http://arxiv.org/abs/2112.09182
https://dask.org
http://arxiv.org/abs/2010.11929
https://doi.org/10.5194/gmd-11-3999-2018
https://doi.org/10.48550/arXiv.2210.12504
https://doi.org/10.48550/arXiv.2210.12504
https://doi.org/10.1111/j.2153-3490.1949.tb01265.x
https://doi.org/10.1007/978-3-030-96709-3
https://doi.org/10.1016/j.neucom.2016.12.089
https://doi.org/10.1016/j.neunet.2018.08.002
https://doi.org/10.1016/j.neunet.2018.08.002
https://doi.org/10.1038/s41467-021-25801-2
https://www.deeplearningbook.org/
https://doi.org/10.1063/1.5120710
https://doi.org/10.1029/JD093iD09p11015
https://doi.org/10.1017/S0022112095000012
https://doi.org/10.1109/IJCNN.2010.5596884
https://doi.org/10.1002/qj.3803
https://doi.org/10.5194/gmd-9-3655-2016
https://doi.org/10.1103/PhysRevE.106.055303
https://www.hycom.org/data/gomu0pt04/expt-50pt1
https://doi.org/10.1023/A:1008306431147

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

25 of 26

Jordanou, J. P., Antonelo, E. A., Camponogara, E., & Gildin, E. (2022). Investigation of proper orthogonal decomposition for echo state networks.
arXiv. Retrieved from http://arxiv.org/abs/2211.17179

Kalnay, E., Hunt, B., Ott, E., & Szunyogh, I. (2006). Ensemble forecasting and data assimilation: Two problems with the same solution. Predict-
ability of weather and climate, 157, 180.

Keisler, R. (2022). Forecasting global weather with graph neural networks. arXiv:2202.07575 [physics]. Retrieved from http://arxiv.org/
abs/2202.07575

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., et al. (2022). GraphCast: Learning skillful medium-range
global weather forecasting. https://doi.org/10.48550/arXiv.2212.12794

Li, J., Bouhlel, M. A., & Martins, J. R. R. A. (2019). Data-based approach for fast airfoil analysis and optimization. AIAA Journal, 57(2),
581–596. https://doi.org/10.2514/1.J057129

Lorenz, E. (1996). Predictability—A problem partly solved. In Proceedings of a seminar held at ECMWF on predictability.
Lu, Z., Hunt, B. R., & Ott, E. (2018). Attractor reconstruction by machine learning. Chaos: An Interdisciplinary Journal of Nonlinear Science,

28(6), 061104. https://doi.org/10.1063/1.5039508
Lukoševičius, M. (2012). A practical guide to applying echo state networks. In G. Montavon, G. B. Orr, & K.-R. Müller (Eds.), Neural networks:

Tricks of the trade (2nd ed., pp. 659–686). Springer. https://doi.org/10.1007/978-3-642-35289-8_36
Ma, Q., Shen, L., & Cottrell, G. W. (2020). DeePr-ESN: A deep projection-encoding echo-state network. Information Sciences, 511, 152–171.

https://doi.org/10.1016/j.ins.2019.09.049
Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based

on perturbations. Neural Computation, 14(11), 2531–2560. https://doi.org/10.1162/089976602760407955
Malik, Z. K., Hussain, A., & Wu, Q. J. (2017). Multilayered echo state machine: A novel architecture and algorithm. IEEE Transactions on

Cybernetics, 47(4), 946–959. https://doi.org/10.1109/TCYB.2016.2533545
Moon, J., Wu, Y., & Lu, W. D. (2021). Hierarchical architectures in reservoir computing systems. Neuromorphic Computing and Engineering,

1(1), 014006. https://doi.org/10.1088/2634-4386/ac1b75
Moore, A. M., Fiechter, J., & Edwards, C. A. (2022). A linear stochastic emulator of the California Current system using balanced truncation.

Ocean Modelling, 174, 102023. https://doi.org/10.1016/j.ocemod.2022.102023
Nadiga, B. T. (2021). Reservoir computing as a tool for climate predictability studies. Journal of Advances in Modeling Earth Systems, 13(4),

e2020MS002290. https://doi.org/10.1029/2020MS002290
Najm, H. N. (2009). Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annual Review of Fluid

Mechanics, 41(1), 35–52. https://doi.org/10.1146/annurev.fluid.010908.165248
Okuta, R., Unno, Y., Nishino, D., Hido, S., & Loomis, C. (2017). Cupy: A numpy-compatible library for nvidia gpu calculations. In Proceedings

of workshop on machine learning systems (learningsys) in the thirty-first annual conference on neural information processing systems (NIPS).
Retrieved from http://learningsys.org/nips17/assets/papers/paper_16.pdf

Orlanski, I. (1975). A Rational subdivision of scales for atmospheric processes. Bulletin of the American Meteorological Society, 56(5), 527–530.
Retrieved from https://www.jstor.org/stable/26216020

Pathak, J., Hunt, B., Girvan, M., Lu, Z., & Ott, E. (2018). Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir
computing approach. Physical Review Letters, 120(2), 024102. https://doi.org/10.1103/PhysRevLett.120.024102

Pathak, J., Lu, Z., Hunt, B. R., Girvan, M., & Ott, E. (2017). Using machine learning to replicate chaotic attractors and calculate Lyapunov expo-
nents from data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(12), 121102. https://doi.org/10.1063/1.5010300

Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., et al. (2022). FourCastNet: A global data-driven
high-resolution weather model using adaptive fourier neural operators. arXiv:2202.11214 [physics]. Retrieved from http://arxiv.org/
abs/2202.11214

Penland, C. (1989). Random forcing and forecasting using principal oscillation pattern analysis. Monthly Weather Review, 117(10), 2165–2185.
https://doi.org/10.1175/1520-0493(1989)117〈2165:RFAFUP〉2.0.CO;2

Penny, S. G., Akella, S., Alves, O., Craig, B., Buehner, M., Chevallier, M., et al. (2017). Coupled data assimilation for integrated earth system
analysis and prediction: Goals, challenges and recommendations (Tech. Rep.). World Meteorological Organization.

Penny, S. G., Smith, T. A., Chen, T.-C., Platt, J. A., Lin, H.-Y., Goodliff, M., & Abarbanel, H. D. I. (2022). Integrating recurrent neural networks
with data assimilation for scalable data-driven state estimation. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002843.
https://doi.org/10.1029/2021MS002843

Platt, J. A., Penny, S. G., Smith, T. A., Chen, T.-C., & Abarbanel, H. D. I. (2022). A systematic exploration of reservoir computing for forecasting
complex spatiotemporal dynamics. Neural Networks, 153, 530–552. https://doi.org/10.1016/j.neunet.2022.06.025

Platt, J. A., Penny, S. G., Smith, T. A., Chen, T.-C., & Abarbanel, H. D. I. (2023). Constraining Chaos: Enforcing dynamical invariants in the
training of recurrent neural networks. https://doi.org/10.48550/arXiv.2304.12865

Rasp, S., & Thuerey, N. (2021). Data-driven medium-range weather prediction with a Resnet pretrained on climate simulations: A new model for
WeatherBench. Journal of Advances in Modeling Earth Systems, 13(2), e2020MS002405. https://doi.org/10.1029/2020MS002405

Rossa, A., Nurmi, P., & Ebert, E. (2008). Overview of methods for the verification of quantitative precipitation forecasts. In S. Michaelides (Ed.),
Precipitation: Advances in measurement, estimation and prediction (pp. 419–452). Springer. https://doi.org/10.1007/978-3-540-77655-0_16

Scher, S. (2018). Toward data-driven weather and climate forecasting: Approximating a simple general circulation model with deep learning.
Geophysical Research Letters, 45(22), 12616–12622. https://doi.org/10.1029/2018GL080704

Scher, S., & Messori, G. (2019). Weather and climate forecasting with neural networks: Using general circulation models (GCMs) with different
complexity as a study ground. Geoscientific Model Development, 12(7), 2797–2809. https://doi.org/10.5194/gmd-12-2797-2019

Schultz, M. G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L. H., et al. (2021). Can deep learning beat numerical weather
prediction? Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 379(2194), 20200097. https://
doi.org/10.1098/rsta.2020.0097

Sitzmann, V., Martel, J. N. P., Bergman, A. W., Lindell, D. B., & Wetzstein, G. (2020). Implicit neural representations with periodic activation
functions. arXiv. Retrieved from http://arxiv.org/abs/2006.09661

Smith, T. (2023). timothyas/rc-gfd: Revision 1. Zenodo. https://doi.org/10.5281/zenodo.8368225
Steil, J. (2004). Backpropagation-decorrelation: Online recurrent learning with O(N) complexity. In 2004 IEEE international joint conference on

neural networks (IEEE Cat. No.04CH37541) (Vol. 2, pp. 843–848). https://doi.org/10.1109/IJCNN.2004.1380039
Tikhonov, A. N. (1963). Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl.
Tulloch, R., & Smith, K. S. (2009). A note on the numerical representation of surface dynamics in Quasigeostrophic turbulence: Application to

the nonlinear Eady model. Journal of the Atmospheric Sciences, 66(4), 1063–1068. https://doi.org/10.1175/2008JAS2921.1

http://arxiv.org/abs/2211.17179
http://arxiv.org/abs/2202.07575
http://arxiv.org/abs/2202.07575
https://doi.org/10.48550/arXiv.2212.12794
https://doi.org/10.2514/1.J057129
https://doi.org/10.1063/1.5039508
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.1016/j.ins.2019.09.049
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1109/TCYB.2016.2533545
https://doi.org/10.1088/2634-4386/ac1b75
https://doi.org/10.1016/j.ocemod.2022.102023
https://doi.org/10.1029/2020MS002290
https://doi.org/10.1146/annurev.fluid.010908.165248
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://www.jstor.org/stable/26216020
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1063/1.5010300
http://arxiv.org/abs/2202.11214
http://arxiv.org/abs/2202.11214
https://doi.org/10.1175/1520-0493(1989)117%E2%8C%A92165:RFAFUP%E2%8C%AA2.0.CO;2
https://doi.org/10.1029/2021MS002843
https://doi.org/10.1016/j.neunet.2022.06.025
https://doi.org/10.48550/arXiv.2304.12865
https://doi.org/10.1029/2020MS002405
https://doi.org/10.1007/978-3-540-77655-0_16
https://doi.org/10.1029/2018GL080704
https://doi.org/10.5194/gmd-12-2797-2019
https://doi.org/10.1098/rsta.2020.0097
https://doi.org/10.1098/rsta.2020.0097
http://arxiv.org/abs/2006.09661
https://doi.org/10.5281/zenodo.8368225
https://doi.org/10.1109/IJCNN.2004.1380039
https://doi.org/10.1175/2008JAS2921.1

Journal of Advances in Modeling Earth Systems

SMITH ET AL.

10.1029/2023MS003792

26 of 26

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). Attention is all you need. In Advances in neural
information processing systems (Vol. 30). Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., et al. (2020). SciPy 1.0: Fundamental algorithms for
scientific computing in python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2

Vlachas, P. R., Pathak, J., Hunt, B. R., Sapsis, T. P., Girvan, M., Ott, E., & Koumoutsakos, P. (2020). Backpropagation algorithms and reservoir
computing in recurrent neural networks for the forecasting of complex spatiotemporal dynamics. Neural Networks, 126, 191–217. https://doi.
org/10.1016/j.neunet.2020.02.016

Weyn, J. A., Durran, D. R., & Caruana, R. (2019). Can machines learn to predict weather? Using deep learning to predict gridded 500-hPa
geopotential height from historical weather data. Journal of Advances in Modeling Earth Systems, 11(8), 2680–2693. https://doi.
org/10.1029/2019MS001705

Weyn, J. A., Durran, D. R., & Caruana, R. (2020). Improving data-driven global weather prediction using deep convolutional neural networks on
a cubed sphere. Journal of Advances in Modeling Earth Systems, 12(9), e2020MS002109. https://doi.org/10.1029/2020MS002109

Weyn, J. A., Durran, D. R., Caruana, R., & Cresswell-Clay, N. (2021). Sub-seasonal forecasting with a large ensemble of deep-learning weather
prediction models. Journal of Advances in Modeling Earth Systems, 13(7), e2021MS002502. https://doi.org/10.1029/2021MS002502

Whiteaker, B., & Gerstoft, P. (2022). Reducing echo state network size with controllability matrices. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 32(7), 073116. https://doi.org/10.1063/5.0071926

Xu, Z.-Q. J., Zhang, Y., & Luo, T. (2022). Overview frequency principle/spectral bias in deep learning. arXiv. Retrieved from http://arxiv.org/
abs/2201.07395

Zhang, Y., & Cornelius, S. P. (2022). A catch-22 of reservoir computing. arXiv. Retrieved from http://arxiv.org/abs/2210.10211

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.neunet.2020.02.016
https://doi.org/10.1016/j.neunet.2020.02.016
https://doi.org/10.1029/2019MS001705
https://doi.org/10.1029/2019MS001705
https://doi.org/10.1029/2020MS002109
https://doi.org/10.1029/2021MS002502
https://doi.org/10.1063/5.0071926
http://arxiv.org/abs/2201.07395
http://arxiv.org/abs/2201.07395
http://arxiv.org/abs/2210.10211

	Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural Network Emulators of Geophysical Turbulence
	Abstract
	Plain Language Summary
	1. Introduction
	2. Surface Quasi-Geostrophic Turbulence
	3. Single Layer Autoregressive and Recurrent Neural Networks
	3.1. Linear Readout and Training
	3.2. Parallelization Strategy
	3.3. Nonlinear Vector Autoregression Design
	3.4. Echo State Network Design

	4. Nonlinear Vector Autoregression Prediction Skill
	4.1. Temporal Subsampling
	4.2. Prediction Skill as a Function of Memory

	5. Echo State Network Prediction Skill
	5.1. Soft Constraints on Spectral Error
	5.2. Temporal Subsampling
	5.3. Impact of the Hidden Layer Dimension
	5.4. Impact of Training Data Set Size

	6. Discussion
	6.1. Main Result and Connections to Previous Work
	6.2. Implications for Training Data Sets in Weather and Climate
	6.3. Implications and Future Work Relating to Model Architecture

	7. Conclusions
	Appendix A: Matrix and Data Normalization for Echo State Networks
	A1. Input Matrix Scaling
	A2. Adjacency Matrix Scaling
	A3. Data Normalization
	A4. Lorenz96 Data Sets
	Appendix B: Gulf of Mexico Data Set and ESN Prediction
	Data Availability Statement
	References

