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Abstract 20 

This study investigates the hydrologic utility of satellite precipitation estimates from the Global 21 

Precipitation Measurement mission by comparing flood signals produced across the Continental 22 

United States by a ten-year span of in-situ, ground-based radar and satellite-based precipitation 23 

data. The flood characteristics generated with radar and satellite precipitation through a distributed 24 

hydrologic model are contrasted against reference stream gauge data as a method of integrated 25 

validation to assess and quantify error budgets between precipitation products by highlighting 26 

precipitation products’ accuracy, hydrologic scaling effects, and the impact of the hydrologic 27 

model. It is found that systematic and random errors associated with flood characteristics behave 28 

similarly to trends previously seen in precipitation rate errors between precipitation products, 29 

establishing a clear link through propagation of errors into the water cycle. Additionally, behaviors 30 

associated with both water balance and routing schemes within the hydrologic model were shown 31 

to affect outputs. Errors generated by water balance tend to cause overestimation of peak discharge 32 

values, while errors associated with routing tend to cause underestimation of flood durations and 33 

push flood timings earlier than the stream gauge reference.  34 

 35 

Plain Language Summary 36 

This study investigates how effectively rainfall estimates from the Global Precipitation 37 

Measurement mission can generate models of floods observed by stream gauges across the 38 

Continental United States. By comparing these modeled floods to actual gauge data, assessments 39 

can be made regarding the overall trends in error associated with the rainfall products themselves, 40 

the hydrologic model used, and the scales at which these errors are detected the most. It is found 41 

that, overall, the trends in hydrologic error between the products behave similarly to previously 42 
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established errors in rainfall between products, showing a clear link as these errors move through 43 

the water cycle. The analysis also found that different components of the hydrologic model itself 44 

can affect the characteristics of the floods modeled, with one tending to cause overestimation of 45 

flood peaks and the other leading to underestimation of flood durations.  46 

1 Introduction 47 

 48 

In research and operations alike, hydrologic models are the keystone for flood assessment, 49 

understanding, and forecasting. This remains especially true in the realm of flash floods, with one 50 

well-known model being the Ensemble Framework for Flash Flood Forecasting (Flamig et al., 51 

2020) or EF5, an open-source distributed hydrologic modeling framework. To date, EF5 has been 52 

established in tandem with the Multi-Radar Multi-Sensor (MRMS) system (Zhang et al., 2016) to 53 

build an operational flash flood forecasting network over the CONUS: the Flooded Locations And 54 

Simulated Hydrographs (FLASH) system (Gourley et al., 2017). The MRMS network of 176 55 

ground-based radars provides high-quality precipitation data at a spatial resolution of 1-km and 56 

temporal resolutions as low as 2 minutes, with FLASH subsequently operating at 1-km spatial and 57 

10-minute temporal.  58 

The same boast cannot be said across most of the world, however. Without reliable radar 59 

coverage, researchers and forecasters instead turn to satellite precipitation products, such as those 60 

provided through the Global Precipitation Measurement mission (GPM). This program generates 61 

a global dataset of precipitation at half-hourly temporal and 0.1-degree spatial resolution, from 62 

90N to 90S latitude, through use of the Integrated Multi-satellitE Retrievals for GPM (IMERG) 63 

algorithm Version 6 (Huffman et al., 2014). Great lengths of research have been undertaken to 64 

assess and intercompare satellite precipitation product returns to those provided by ground-based 65 
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products (Gebregiorgis et al., 2018; Kirstetter et al., 2012; Kirstetter et al., 2020; Derin et al., 2021; 66 

Derin and Kirstetter, 2022), but until recently less has been done to forward the need for “integrated 67 

hydrologic validation” of GPM (Hou et al., 2014). A foray into this was made in Woods et al. 68 

(2023) where MRMS and IMERG were used as precipitation forcings through EF5, and their 69 

extracted flood characteristics were directly compared. This approach also took heed to answer 70 

calls put forward in the greater hydrologic community, premier of which by Clark et al. (2021), to 71 

assess hydrologic models and hydrograph outputs through new methods less reliant on “bulk 72 

metrics”, as these traditional approaches become increasingly limited when expressed 73 

simultaneously over large sample sizes and more diverse ranges of catchment and flood 74 

characteristics (Clark et al., 2021; Lamontagne et al., 2020; Nanding et al., 2021; Newman et al., 75 

2015). 76 

The research put forth here continues this premise, but with the addition of observational 77 

flood data provided by the United States Geological Survey (USGS) as a benchmark. As such, 78 

focus can now be shifted from initial relative assessment of the products to a more objective and 79 

in-depth analysis of error trends and model behaviors. Error budgets and analyses have been done 80 

previously between precipitation products (satellite and ground-based), but again have focused 81 

less on how this propagates further into the water cycle. This information in the literature, however, 82 

can still provide valuable insights towards what to expect from a more hydrology-focused error 83 

budget. For example, studies have consistently highlighted increasing underestimation and random 84 

error in estimates of satellite precipitation products at higher reference rain rates (Kirstetter et al., 85 

2013; Kirstetter et al., 2014; Uphadyaya et al., 2020). Links have also been shown between errors 86 

generated by IMERG precipitation and errors in the performance of streamflow simulations when 87 

compared to observations at basin scales (e.g. Hartke et al., 2023, investigating six years of data 88 
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over Iowa), so by association there are already grounds for significant propagation of errors into 89 

the hydrologic system and subsequent flood characteristics, especially at the continental modeling 90 

scale.  91 

This study seeks to build upon the results and assessments made in Woods et al. (2023) 92 

and bring them fully into the context of on-ground observations. The quality-controlled selection 93 

of gauged USGS basins provides an unprecedented look at model behaviors across the entire 94 

CONUS at once, as opposed to basin or region-scale studies. Additionally, the results of this 95 

research not only aim to better understand the appearance and root causes of water cycle-related 96 

simulation errors but also better inform algorithm developers and end-users alike about potential 97 

ways to mitigate for and model these errors. This is especially important to undertake with both 98 

precipitation products operating at their native resolutions, helping to establish clear benchmarks 99 

in behavior without having to account for resampling. The approach put forth here and in Woods 100 

et al. (2023) is novel in its ability to assess these precipitation products on their capability to model 101 

distinct signals of features associated with floods (i.e. peak magnitude, flood duration, and event 102 

timing) as opposed to directly comparing streamflow time series. Results from this process serve 103 

to provide more robust and tangible information regarding the behavior of these products when 104 

held up against observed reference data. 105 

The rest of the paper is organized as follows: Section 2 describes the dataset generation 106 

and methodology, Section 3 provides the results for and immediate discussion of each of the three 107 

flood characteristics investigated, and Section 4 constitutes the final conclusions.  108 

 109 

2 Data and Methods 110 

 111 
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 112 

Figure 1. Map of gauge locations utilized across the Continental United States. 113 

 114 

This study continues to build upon the body of work featuring numerous large-scale studies 115 

utilizing a CONUS-wide MRMS precipitation reanalysis dataset (Zhang and Gourley, 2018; 116 

Flamig et al., 2020; Gourley et al., 2017). Woods et al. (2023) focused on the use of the Version 117 

06 IMERG Early run (IMERG-E) for a satellite forcing compared against the MRMS mosaic as a 118 

ground-based benchmark to highlight the impact of satellite precipitation resolution and accuracy. 119 

EF5 allows its user to arbitrarily select from and utilize several different options of both water 120 

balance models and routing schemes to generate hydrologic outputs such as return period indexes, 121 

streamflow discharge, and specific/unit discharge (i.e. the discharge at a pixel normalized by its 122 

upstream basin area). Importantly, EF5 also allows the user flexibility in the format of its input 123 
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precipitation forcing data. For this study, each precipitation forcing was run with EF5 using the 124 

Coupled Routing and Excess STorage (CREST; Wang et al., 2011) distributed hydrologic model 125 

combined with kinematic wave routing (Vergara et al., 2016). This scheme of EF5/CREST is the 126 

same configuration utilized by the FLASH system for flash flood warning operations in the United 127 

States National Weather Service and is built off extensive geospatial datasets of parameters which 128 

remove the need for timeseries-centered model calibration (Vergara et al., 2016; Gourley et al, 129 

2017; Flamig et al., 2020).  130 

 131 

Table 1. Associated general basin characteristics of gauges selected for analysis. 132 

Basin Characteristic Value Range 

Area 21.11 – 45557.9 (km2) 

Slope Index 0.00013 – 0.08999 

Relief Ratio 0.00043 – 0.16836 

Basin Average Imperviousness 0.0 – 1.074 (%) 

Basin Average Curve Number 48.2 – 89.4 

Annual Precipitation 261.1 – 2841.2 (mm) 

 133 

 134 

This study utilizes a previously extensively quality-controlled selection of over 3000 135 

gauges (Gourley et al., 2017), where any gauges deemed by the USGS to have any anthropogenic 136 

influence, where at least 80% of the basin falls within an area where the MRMS radar beam height 137 

is 1 km above ground level or less, as well as any basins where snowmelt processes are dominant 138 

(i.e. basins where snowfall contributes to >30% of annual precipitation) were removed. The 139 
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locations of these gauges can be seen in Figure 1, while the associated basin characteristics of 140 

these gauges can be found in Table 1. Simulations were run across the CONUS for both 141 

precipitation forcings at their native resolutions (i.e., MRMS-forced at 1-km spatial and 5-min 142 

temporal, and IMERG-forced at 10-km spatial and 30-min temporal) from 2004 to 2011. United 143 

States Geological Survey (USGS) data for each gauge was also taken as reference data for the time 144 

period simulated. Each time series was post-processed to isolate individual flood events based on 145 

its designated USGS “action-level” discharge value, which is the lowest threshold value provided 146 

by the USGS at each specific basin denoting the water level at which a given event is considered 147 

a flood. This also serves to denote the start time (i.e., the time point where discharge exceeded the 148 

threshold) and end time (i.e., the point where discharge fell back below the threshold) of each 149 

event. For an example of how this may look graphically, see Figure 2 which provides a zoomed-150 

in look at an arbitrary USGS gauge in Indiana (Gauge 03358000). Each raw event was then 151 

matched one-to-one between the simulated streamflow time series and the USGS observations, 152 

respectively, using an algorithm of cross-referencing criteria. The algorithm first looks for and 153 

matches events that overlap, i.e. where an observed event shares timesteps with a simulated event. 154 

Where there is an unmatched observed event with no overlap, the algorithm then uses the start and 155 

end times of the unmatched observed event to attempt to locate an unmatched simulated event in 156 

proximity (i.e., within a window of 100 hours) that has both the closest start time and closest end 157 

time to the observed event. These criteria also served to remove outliers where multiple simulated 158 

events appear to be logged over the time period of one observed event, caused by the wobbling of 159 

the timeseries above and below the flood threshold. Each individual simulated event that was 160 

successfully matched to an individual observed event generates a fixed pair of overall peak 161 

discharge values (observed and simulated), respective event durations, and overall event start and 162 
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end times while the remaining unmatched events are archived. Differences in the simulated and 163 

observed characteristics are used to compute errors with respect to the USGS reference and analyze 164 

errors in the simulated flood characteristics. Specifically for each event, (1) the difference in peak 165 

discharge indicates whether the simulation overestimates (positive error) or underestimates 166 

(negative error) the observed flood peak; (2) the difference in flood duration indicates whether the 167 

simulated flood is shorter (negative error) or longer (negative error) than the observed flood; (3) a 168 

simulated flood that starts (ends) earlier (later) than the observed flood will be associated with a 169 

positive (negative) start (end) time error. This new and representative dataset of more than 20,000 170 

matched events per product serves as the basis of this study. Given the diversity of basins and 171 

climatologies gathered in this study, errors in peak discharge, duration, and timing are expected to 172 

characterize representative behaviors associated with the precipitation forcing (MRMS and 173 

IMERG-E) as well as from the hydrologic model. Specifically, error samples will be used to 174 

quantify separate systematic errors and random errors. 175 

 176 

 177 

Figure 2. An example of a modeled timeseries comparison, with included USGS action level. 178 

 179 
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All three flood characteristics evaluated in Woods et al. (2023) will again be evaluated in 180 

this study in the context of USGS observations: the flood magnitude (peak discharge), the flood 181 

duration (total time elapsed from start to end), and the flood timing (the relative difference in start 182 

and end times between products). This continues to delve into the growing sentiment in the greater 183 

hydrologic community to move away from traditional methods of hydrologic evaluation, bulk 184 

metrics such as the Nash-Sutcliffe Efficiency (NSE) or the Kling-Gupta Efficiency (KGE) (Nash 185 

and Sutcliffe, 1970; Gupta et al., 2009), and focus on new methods of model assessment (Clark et 186 

al., 2021). The idea here is that agreement between the products and observations on these flood 187 

characteristics from discrete events can provide a far more robust assessment of modeling quality 188 

across the study area than traditional methods. For a more in-depth explanation of this reasoning, 189 

please refer to Woods et al. (2023).   190 

 191 

3 Results and Discussion 192 

 193 

3.1 Magnitude (Peak Discharge) 194 

 Critical to the development of flood mitigation strategies and engineered controls, as well 195 

as for emergency managers and real-time flood forecasters, is the understanding of how well the 196 

magnitude of a simulated flood behaves with respect to what is observed in the underlying basin. 197 

Figure 3 provides a comprehensive representation of the accuracy of MRMS-forced and IMERG-198 

forced flood peak discharge simulations, respectively. Of the density scatter plots provided, 199 

Figures 3a and 3c display peak discharge values whereas Figures 3b and 3d show specific peak 200 

discharge. Note that specific peak discharge was calculated and provided as a means to filter out 201 
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the natural dependence of peak discharge values with basin area; it is also a vital metric when 202 

dealing with flash floods.  203 

  204 

 205 

Figure 3. Scatterplots of MRMS-forced simulated peak discharge (A), MRMS-forced simulated specific peak 206 

discharge (B), IMERG-E-forced simulated peak discharge (C) and IMERG-E-forced simulated specific peak 207 

discharge values compared against USGS reference values. The red diagonal line indicates the 1:1 line.  208 

  209 

 While the points tend to gather around the one-to-one line, a distinct conditional bias can 210 

be seen across both products and discharge types, with an increasing overestimation of higher 211 

(specific) discharges. Both MRMS and IMERG-E simulations overestimate with respect to USGS, 212 

though a tighter spread can be seen in the MRMS simulations. This is to be expected, with MRMS 213 
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operating at higher spatial and temporal resolutions than IMERG-E. Additional conditional bias 214 

can also be seen in the peak discharges, with point densities tending to fall more vertical on the 215 

plots as opposed to following the 1:1 line. To further dissect these results, the data was converted 216 

into plots of conditional distributions (provided in Figure 4). This style of plot was highlighted in 217 

Woods et al. (2023) as a more direct way of assessing conditional biases and random error. The 218 

process examines an independent variable through binned quantiles (10th, 25th, 50th, 75th, 90th) of 219 

values from a chosen dependent variable. For the figure shown here (as well as in subsequent 220 

sections) the conditional median (50th quantile) provides the first-order trend of the dependency, 221 

the interquartile area (25th to 75th) estimates the uncertainty in the relationship between the 222 

variables, and the 10th and 90th quantiles describe the range of extreme values between the 223 

variables.   224 

 225 

 226 
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Figure 4. Conditional distribution plots of MRMS-forced and IMERG-E-forced peak discharges (A and C) and 227 

specific peak discharges (B and D) compared against USGS references. The thick center line shows the 50th quantile 228 

(median), with the dark grey section extending to the 75th and 25th quantiles, then light gray to the 90th and 10th. The 229 

dashed line is the 1:1 line.  230 

  231 

 The conditional distribution investigation in Figure 4 reiterates what was seen in the 232 

density scatterplots: distinct overestimation on the part of both MRMS and IMERG-E simulations 233 

with respect to the USGS observations. Again, as expected, the uncertainties associated with 234 

MRMS simulations (i.e., the overall spread of the quantiles) are smaller than those associated with 235 

IMERG-E; the effects of resolution certainly play a role here. Interesting to note, however, is how 236 

the specific peak discharge of both products (Figure 4b and Figure 4d) trend from overestimation 237 

at lower values towards the 1:1 line and eventually into slight underestimation at the highest values 238 

to the point where IMERG-E simulations begin to plateau out. This plateau effect was similarly 239 

seen in Woods et al. (2023) and attributed to the coarser spatial and temporal resolutions of 240 

IMERG, with these resolutions prohibiting the algorithm’s ability to resolve the highest levels of 241 

instantaneous precipitation and therefore being unable to resolve the highest specific peak 242 

discharges often associated with them. Seeing the effect appear when compared to the gauged 243 

USGS reference corroborates this idea, suggesting that the shortcoming lies within the ability of 244 

IMERG to resolve the highest values and locations of extreme precipitation events (i.e., those 245 

responsible for flash floods associated with these high specific peak discharges) as opposed to 246 

errors generated within the hydrologic model itself.   247 

 248 
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 249 

Figure 5. Error calculations for simulated flood peak discharge and specific peak discharge from MRMS 250 

(red) and IMERG-E (blue) with respect to USGS. Solid lines represent systematic error while dashed lines represent 251 

random error. 252 

 253 

Building upon the quantile analysis, as well as to further inform on the abilities of the 254 

products, an error analysis was conducted (Figure 5). For both products, and for both discharge 255 
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types, the systematic error (simulated median minus observed median) and random error (75th 256 

quantile minus 25th quantile) were calculated and plotted against the USGS reference values. In 257 

Figure 5a, distinct increasing trends in systematic (positive bias) and random error are seen for 258 

both MRMS-forced and IMERG-E-forced simulations with respect to increasing associated USGS 259 

peak discharge values. This is likely associated with the behavior of EF5 itself with the generation 260 

of larger floods at larger basin sizes; there could potentially be issues with the water balance model 261 

and the sheer volume of water, but it is also known that kinematic wave routing becomes less 262 

effective than more dynamic routing schemes when modeling larger rivers (Vergara et al., 2016). 263 

The effects of satellite product resolution and accuracy can be seen between the simulations 264 

themselves, with IMERG-E simulations consistently showing higher systematic and random 265 

biases compared to MRMS simulations.  266 

When looking at specific peak discharge (Figure 5b) similar stories can be seen. While 267 

both products now trend into underestimation of specific peak discharges compared to USGS, 268 

simulations generated by IMERG-E still show more negative systematic bias than those generated 269 

by MRMS. From a model perspective, this overall underestimation at the highest specific 270 

discharges is likely associated with the water balance component, CREST, as opposed to routing. 271 

To generate flash floods of these magnitudes there needs to be considerably high rainfall rates; if 272 

precipitation products are already underestimating these rates, errors are likely going to propagate 273 

even further when combined with basin characteristics and model physics. Random error provides 274 

a new interesting look, however; at increasing values of specific discharge (> 1.5 cms/km2) the 275 

random error associated with MRMS simulations overtakes the random error of those associated 276 

with IMERG-E. This is likely due to smoothing effects of IMERG resolution as well as algorithm 277 

limitations; MRMS, with its higher resolutions, has a better chance of capturing the high-intensity 278 
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rainfall events normally associated with these extreme values of specific discharge better than 279 

IMERG can, naturally leading to increased random error in the system. It is worth noting that 280 

accuracies in flash flood discharge estimation have been shown to improve significantly as 281 

precipitation products become more sophisticated (Gourley and Vergara, 2021), so future research 282 

is warranted to better dissect and diagnose the behavior of EF5 with the improvements that have 283 

been made to both MRMS and IMERG precipitation products in the years after the time period of 284 

this study. Namely, MRMS forcings generated with weather radar data that have been upgraded 285 

and processed using dual-polarization technology (i.e., after 2013) and IMERG forcing data that 286 

has been retrieved using the spaceborne sensors launched with the GPM constellation itself (i.e., 287 

after 2014). These updated products will only serve to enhance the results of this study and provide 288 

for a more in-depth understanding of potential hydrologic model deficiencies.  289 

 290 

3.2 Flood Duration 291 

 Further critical to emergency management efforts and flood operations is an understanding 292 

of the expected duration of a flooding event, real or simulated. As such, the analyses utilized for 293 

peak discharge were also undertaken for simulated flood duration. First, density scatterplots were 294 

created and can be found in Figure 6. As with discharge, event durations were normalized by basin 295 

area to generate specific duration values as an additional method of assessment. What can be seen 296 

is surprising; overall, MRMS simulations of floods tend to underestimate their durations with 297 

respect to their USGS counterparts. Longer flood durations are increasingly underestimated 298 

(conditional bias). This conditional bias is related to basin size, as it is less significant with unit 299 

flood durations (see also Figure 7b and 7d). This is likely explained by the routing scheme used; 300 

the accuracy of the kinematic wave routing employed by this version of EF5 is known to degrade 301 
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as basin size and river size increases, where more dynamic routing schemes typically perform 302 

better (Vergara et al., 2016). What is seen from IMERG-E simulations (in Figures 6c and 6d) is 303 

also interesting, with durations being closer to the 1:1 line with respect to USGS than MRMS 304 

simulations. This behavior is likely due to the inherent overestimation of IMERG-E durations with 305 

respect to MRMS, as was seen in Woods et al., 2023, meaning the underestimation exhibited by 306 

EF5 is instead counteracted in the simulations by IMERG-E’s propensity to overestimate 307 

precipitation durations and resulting floods.  308 

 309 

 310 
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Figure 6. Density scatterplots of MRMS and IMERG-E simulated flood durations (A and C) and normalized 311 

duration values based on associated basin area (B and D), all plotted against USGS references. The red line indicates 312 

the 1:1 line. 313 

 314 

 The conditional distribution plots (Figure 7) tell a similar tale, with noticeable 315 

underestimations seen for both products, but several additional features can be extracted. For 316 

instance, despite the core of MRMS-simulated durations in the density plot showing 317 

underestimation, there are distinct regions of overestimation at the shortest of flood durations (<5 318 

hr). This feature is consistent across both products as well as both duration types, as well as both 319 

products trending from overestimation to underestimation as flood durations increase. Unlike with 320 

peak discharge, however, there is no noticeable difference in error spread between MRMS-321 

simulated durations and IMERG-simulated durations with respect to USGS. Both products also 322 

behave similarly when normalized by basin area, though with a somewhat closer spread of 323 

quantiles from MRMS simulations. This is more consistent with expectations regarding the higher 324 

resolutions associated with MRMS.  325 

   326 
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 327 

Figure 7. Conditional distribution plots of MRMS and IMERG-E simulated event durations (A and C) and 328 

normalized duration values (B and D), all plotted against USGS references. The thick center line shows the 50th 329 

quantile (median), with the dark grey section extending to the 75th and 25th quantiles, then light gray to the 90th and 330 

10th. The dashed line indicates the 1:1 line.  331 

 332 

 Like with discharge, representations of error for duration and specific duration are shown 333 

in Figure 8. When looking at the duration of events (Figure 8a), the errors remain fairly regular 334 

(overestimation) for shorter events (< 10 hr) before a steep drop-off into large underestimation as 335 

durations increase. The overestimation at lower durations is likely associated with EF5’s tendency 336 

to start flood events earlier and with potentially longer trailing limbs and ends (seen in Section 337 

3.3). The intense underestimation of longer durations is again likely an artifact generated by the 338 
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breakdown of efficiency of kinematic wave routing at larger basins and rivers, the usual culprits 339 

responsible for floods of these long lengths.  340 

For intercomparison between the products themselves, some interesting features arise. 341 

Random error is as expected, with consistently higher random error associated with IMERG-E-342 

forced simulations than MRMS-forced simulations, a byproduct of the difference in product 343 

resolution. Systematic error is a different story; IMERG-E simulations overestimate more than 344 

MRMS at shorter durations (again, a factor of resolution) but at longer durations MRMS is the 345 

product with higher underestimation in simulations. This corroborates what was seen in the density 346 

scatterplots (Figure 6) where IMERG-E simulated durations fall closer on the 1:1 line with respect 347 

to USGS than MRMS simulated durations.  348 
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 349 

Figure 8. Error calculations for simulated flood durations and specific durations from MRMS (red) and IMERG-E 350 

(blue) with respect to USGS. Solid lines represent systematic error while dashed lines represent random error. 351 

 352 

 The errors associated with specific duration (Figure 8b) largely mirror what was seen with 353 

duration; the systematic error of IMERG-E simulations remain slightly less negative than those 354 

generated by MRMS while the random error of IMERG-E simulations remain higher than those 355 
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of MRMS. Due to the quasi-linear nature of the systematic biases we see from the products for 356 

specific duration, it will be simple to make an error model in the future. 357 

 358 

3.3 Flood Timing 359 

 Perhaps the most critical information for flood and flash flood forecasting generated by 360 

this study are the computations of event timings. When events are logged and matched as part of 361 

the overall methodology, they are naturally associated with timestamps for both the start of the 362 

event and end of the event. As such, the difference between the observed and simulated start (and 363 

end) times can also be calculated and logged. For this process, the absolute start and end times for 364 

MRMS and IMERG-E simulations were subtracted from their associated USGS event absolute 365 

start and end times, giving either a positive or negative time difference value in hours. A positive 366 

(negative) value in this regard indicates that the simulated event occurs earlier (later) than its 367 

reference counterpart.  368 

 Histograms of both products with respect to USGS can be found in Figure 9. For both 369 

MRMS and IMERG-E simulations most events are associated with both positive start and positive 370 

end times, meaning that the simulated events for both products tend to start early and end early 371 

with respect to their matched USGS event. This is likely associated with the routing component of 372 

EF5, with water overall moving through the system faster than what is observed at the gauge. 373 

MRMS-forced simulations values also have an average start time closer to zero and with a smaller 374 

standard deviation than those forced by IMERG-E, which remains consistent with the higher 375 

temporal resolution available to the product. The end times for both products behave similarly 376 

statistically, however, which is interesting to note. Larger time deltas are likely associated with 377 

longer duration floods, which in turn are associated with larger basins and flow lengths – an area 378 
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where the kinematic wave routing scheme utilized in this study’s EF5 scheme becomes less 379 

effective (Vergara et al., 2016).  380 

 381 

 382 

Figure 9. Histograms of the time deltas of matched flood start times (blue) and end times (orange) for MRMS 383 

simulations, IMERG-E simulations, and USGS observations, with associated means and standard deviations. A 384 

positive (negative) value indicates that the simulated event (MRMS or IMERG-E) event occurs earlier (later) than 385 

its USGS absolute time counterpart. 386 

 387 

 In investigating the conditional distribution plots, found in Figure 10, these same trends 388 

can be seen. Since the size of a basin is naturally associated with flood timing, area was chosen to 389 

be the dependent variable to draw for the quantiles of start time and end time. All four sets of 390 

quantiles track well with the overlying conclusions from Figure 9, that both products tend to 391 

simulate floods that start and end earlier than the reference. This also corroborates the idea that the 392 

higher means and standard deviations seen with end time are more often associated with the largest 393 

basins, scales where kinematic wave routing begins to struggle. Simulations forced by IMERG-E 394 

are shown to have significantly higher extreme error quantiles associated with smaller basin sizes 395 

than those forced by MRMS, an effect similarly seen in Woods et al., 2023, understood to likely 396 
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be associated with the coarse resolution of IMERG-E being unable to generate more precise 397 

precipitation-flood responses. At larger basin sizes, these errors shown by IMERG-E simulations 398 

can be attributed to systematic biases and uncertainty caused by basin-scale aggregations, with an 399 

increasing importance falling on precipitation spatial distributions (Woods et al., 2023), but similar 400 

trends from MRMS simulations at large basins suggests routing from the model itself is likely also 401 

a contributor in this case.   402 

 403 

 404 

Figure 10. Conditional distribution plots of calculated event delta start (A and C) and delta end (B and D) times 405 

compared against associated basin areas. The thick center line shows the 50th quantile (median), with the dark grey 406 

section extending to the 75th and 25th quantiles, then light gray to the 90th and 10th. The dashed red line is the zero 407 

line, signifying matching timing of events. A positive (negative) value indicates that the simulated event (MRMS or 408 

IMERG-E) event occurs earlier (later) than its USGS absolute time counterpart.  409 
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 410 

 Despite increasing uncertainty with basin size (as well as significant extreme quantiles 411 

associated with IMERG-E simulations), median values and 25th/75th error quantiles remain 412 

remarkably tame for both products at areas <1000 km2. End time values lose effectiveness sooner, 413 

before reaching 500 km2 in both cases, and the overall spread ends noticeably wider than final 414 

spreads for start time. Regardless, event start time is inherently a more important statistic to predict 415 

accurately more often, especially in the case of flood forecasting and emergency response.   416 

 The error budgets of the products with regard to event timing (Figure 11) are in agreement 417 

with overall trends seen throughout this analysis but are able to provide important insight into 418 

accuracies at different scales. Before discussion, however, it is important to establish an 419 

understanding of what timing error means in this context. Throughout this section, the positive and 420 

negative deltas have been associated with absolute times. With regards to error, this instead 421 

translates to positive values signifying an overall trend towards earlier times (both start and end) 422 

while negative values signify an overall trend towards later times. As can be seen across both time 423 

delta plots, the overwhelming majority of errors for both products tend to push start and end times 424 

earlier than USGS. This effect is likely caused by routing within the EF5 model, with water more 425 

likely to flow faster through the system (especially at larger basin areas) than more slowly. For 426 

end times there also exists a small window at basins < 100 km2 where IMERG-E simulations have 427 

negative systematic error values, meaning that at smaller basins IMERG-E-forcings tend to try to 428 

pull end times later. Overall, this suggests that there is an inherent competition between routing 429 

and resolution being exhibited; this trend to counteract end times and extend the total duration of 430 

events ties into what was seen in the previous section (Section 3.2) and Figure 6, where IMERG-431 
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E produces more consistent simulated event durations with respect to USGS than the 432 

underestimation of durations simulated by MRMS.  433 

 434 

 435 

Figure 11. Error calculations for start time and end time deltas from MRMS-simulated (red) and IMERG-E-436 

simulated (blue) events with respect to USGS, plotted against associated basin area. Solid lines represent systematic 437 

error while dashed lines represent random error. 438 

 439 

 For delta start errors, what can be seen is consistent with the other characteristics previously 440 

discussed; IMERG-E simulations showcase both higher systematic and higher random error values 441 
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than those simulated by MRMS. Both products, however, perform well at smaller basins with 442 

minimal systematic error; welcome news for the potential to utilize IMERG-E for operational flood 443 

prediction purposes. With small basins naturally more susceptible to flash flooding, having a 444 

reliable benchmark for predicting the timing of when these events will begin significantly 445 

improves the ability of forecasters and emergency managers to protect life and property.  446 

Contrary to delta start, errors seen with delta end are more favorable to IMERG-E 447 

simulations, with MRMS simulations showing higher systematic errors at all basin sizes. MRMS 448 

simulations still maintain a lower random error, up until the larger basins where the random error 449 

of the two products becomes noisier and essentially evens out. Another interesting feature is the 450 

sharp decrease in random error from IMERG-E simulations from ~50 km2 to ~75 km2; this likely 451 

points to the location of the effective resolution of IMERG-E for flood simulation utility 452 

(Guilloteau et al., 2017; Guilloteau et al., 2020).  453 

 454 

3.4 Hydrologic Model Performance Analysis (Quadrant Plots) 455 

 Given the increased influence of simulated flood tendencies attributed to the hydrologic 456 

model itself with respect to USGS observations that have been highlighted so far in this study, 457 

further error characterization into EF5 was undertaken. Model influence on outputs was expected, 458 

to a degree, which was a core reasoning behind why Woods et al. (2023) elected to directly 459 

compare only simulated events against each other, with MRMS simulations serving as the 460 

reference, in order to specifically remove any effects from the hydrologic model and focus solely 461 

on the influence of the precipitation products themselves. The ability to include USGS data as the  462 

reference in this study allows for a more robust analysis and diagnosis of both hydrologic outputs 463 
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and model tendencies, benefitting extensively from what was found in the simulation-only 464 

research.  465 

 More insight can be gained by characterizing the joint peak and duration errors that can be 466 

influenced by the precipitation forcings and the hydrologic model components (i.e., water balance 467 

and routing) . A quadrant plot displays the duration (x-axis) and peak discharge (y-axis) errors  468 

(Figure 12), with each error quadrant signifying a different  tendency within the hydrologic model 469 

outputs. Points in the top left quadrant (positive peak errors and negative duration errors) indicate 470 

simulated floods with higher peaks and shorter durations than USGS, a signal of influence from 471 

kinematic wave where the water is being pushed through the system too quickly. In the top right 472 

quadrant (positive peak errors and positive duration errors) points are found where both the peak 473 

and the duration are higher than USGS, indicating positive water balance errors (i.e. there is too 474 

much water in the system, with greater areas under the theoretical hydrograph). The bottom left 475 

quadrant (both negative errors) is again dominated by water balance, but instead with too little 476 

water simulated. The bottom right quadrant shows simulations with smaller peaks but longer 477 

durations than the reference, signifying flood attenuation by the model.  478 

 479 



manuscript submitted to Journal of Hydrology 

29 

 

 480 

Figure 12. Density scatterplots of discharge and duration errors for MRMS and IMERG-E simulations with respect 481 

to USGS observations. Total numbers of points in each quadrant are provided, as well as each quadrant’s percentage 482 

of the total points. 483 

 In the MRMS plots, the highest percentage of points fall into the top left quadrant (41.2%), 484 

highlighting increased influence on simulations by the kinematic wave scheme. This corroborates 485 

what has been seen throughout this study, where MRMS simulations are routinely more likely to 486 

underestimate flood durations than IMERG-E. There is influence from the water balance 487 

dominated quadrants as well (56.7 %), meaning there are discrepancies with how or where water 488 

is entering the system. In the case of IMERG-E simulations, these quadrants are where the majority 489 

of points are found (65%), with most falling into positive water balance error (44%). For IMERG-490 

E this is to be expected because coarser spatial and temporal resolutions naturally tend to add 491 

excess water to the system through a combination of both smoothing over larger pixel sizes and 492 

more limited accuracy in precipitation values themselves, leading to hydrographs that are taller 493 
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and longer than those of USGS. Kinematic wave is still a factor, but the increased tendency towards 494 

water balance overestimation counteracts its effects and explains why IMERG-E maintains lower 495 

systematic errors in simulated duration and flood timing than MRMS. Additionally, neither 496 

product had a significant number of points in the bottom right quadrant, reiterating that the physics 497 

of the model performs well, and that flood attenuation is not a factor here.  498 

These results show that FLASH/EF5's model design choice on kinematic wave was correct 499 

because for the overwhelming majority of the territory the assumptions of this model apply. The 500 

fact that the highest densities are near the (0,0) point speaks well of the modeling system. Such 501 

small numbers of points are seen on the bottom right quadrant due to several factors. First, 502 

kinematic wave does not have as much capability to attenuate the flood wave at higher resolutions; 503 

it can, however, if the pixel resolution is coarser, which is a result of numerical 504 

diffusion/attenuation (i.e., an artifact of the numerical approximation). Second, because for most 505 

of the terrain over the CONUS, kinematic wave applies. And third, because most of the basins and 506 

subsequent events being considered in this study do not have the geomorphology and hydraulics 507 

necessary to lead to significant flood attenuation.  508 

 In order to determine if there were any additional unforeseen tendencies within the model, 509 

the same approach was taken by contrasting the MRMS and IMERG-E simulations themselves. 510 

MRMS-simulated values were subtracted from IMERG-E-simulated values, and the same 511 

discharge-duration plots are provided in Figure 13. As expected, almost all of the points fall within 512 

the water balance quadrants, with the distinct majority in overestimation (60.8%). When the 513 

influence of the model itself is removed, the effects of resolution difference between precipitation 514 

products is expected to be dominant; IMERG again naturally puts more water into the system than 515 

its higher-resolution counterpart. There is still influence from underestimation, however, likely 516 
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caused by a combination of spatial variability and variability in the accuracy of precipitation 517 

estimates, which in turn is exacerbated by the algorithm’s smoothing of rainfall itself (i.e, the 518 

correct volume of rainfall is not always falling over the right area or basin).  519 

 520 

 521 

Figure 12. Density scatterplots of discharge and duration errors for IMERG-E with respect to MRMS. Total 522 

numbers of points in each quadrant are provided, as well as each quadrant’s percentage of the total points. 523 

 524 

 Between duration (Figure 13a) and specific duration (Figure 13b) themselves, the plots 525 

behave similarly, though there is a more asymptotic spread across the duration scatter than 526 

specific duration. Both plots maintain higher densities closer to the (0,0) point, with that spread 527 

becoming even tighter when normalized by basin area.  528 

4 Conclusions 529 

 In this study, precipitation forcings from IMERG-E and MRMS were run through the EF5 530 

hydrologic modeling framework, broken down into discrete flood characteristics (magnitude, 531 

duration, and timing) and compared against reference observation data from USGS stream gauges 532 
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in order to develop an understanding of error trends and overall error budgets between the products. 533 

While consistent overall with previously established results (Woods et al., 2023), this study 534 

provides a more robust outlook into the hydrologic behaviors and accuracies of the products 535 

themselves and how they translate into the greater push towards integrated hydrologic validation 536 

of the GPM mission itself.  537 

  For flood peak discharge and specific peak discharge, both IMERG-E and MRMS 538 

simulations were shown to overestimate values with respect to the USGS reference, with IMERG-539 

E simulated peak values being attributed to greater uncertainties. IMERG-E was also shown to 540 

have more difficulty resolving higher-end simulated specific peak discharge values than MRMS, 541 

which is attributed to the coarser spatial and temporal resolutions of the product as well as the 542 

lower accuracy ceiling associated with these resolutions. From a model perspective, this overall 543 

underestimation at the highest specific discharges is also likely associated with the water balance 544 

component. Both products showed similar error trends, with increasing systematic and random 545 

errors as basin size increases. MRMS simulations also had consistently lower systematic and 546 

random errors than IMERG-E simulations, with the exception of specific peak discharge where 547 

MRMS was higher.  548 

 When looking at the simulated flood durations, interesting interactions surfaced: MRMS 549 

consistently underestimated simulated durations with respect to USGS, with underestimation 550 

further increasing with basin size, while IMERG-E simulations were found to more closely fit the 551 

1:1 line. In this scenario, the overall underestimation created by the products with respect to USGS 552 

is being counteracted by the inherent overestimation of simulated flood durations by IMERG-E 553 

with respect to MRMS (Woods et al., 2023). The consistent underestimation is associated with the 554 

accuracy of the kinematic wave routing scheme, which is known to degrade as basin size and river 555 
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size increases, where more dynamic routing schemes typically perform better. The error budgets 556 

of the products reflect this interaction, with IMERG-E simulations having a higher systematic error 557 

than MRMS simulations at smaller basin sizes but transferring to a less negative error than MRMS 558 

as basin size increases. Overall, however, IMERG-E simulations retained higher random errors 559 

than MRMS simulations across the board.  560 

 In the case of flood timing, simulated events for both products tend to both start early and 561 

end early with respect to their matched USGS event, a net earlier shift in timing for both products. 562 

Additionally, IMERG-E simulations are shown to have significantly higher extreme error quantiles 563 

associated with smaller basin sizes than MRMS simulations, an effect associated with the coarser 564 

resolution of IMERG-E being unable to generate more precise precipitation-flood responses. In 565 

regard to the systematic and random errors, both products have a tendency to push start and end 566 

times earlier than USGS, though IMERG-E simulations showcase both higher systematic and 567 

higher random error values than MRMS simulations. At larger basin sizes, these errors shown by 568 

IMERG-E simulations can be attributed to systematic biases and uncertainty caused by basin-scale 569 

aggregations, but similar trends from MRMS simulations at large basin sizes suggests routing from 570 

the hydrologic model itself is likely also a contributor in this case. Both products, however, 571 

perform well at smaller basins with minimal systematic error, a result that directly affects the 572 

potential to utilize IMERG-E for operational flood prediction purposes. 573 

 With instances of model behavior being shown to have an effect on simulation outputs at 574 

all three phases of this investigation, an additional analysis into the model’s tendencies was also 575 

undertaken, where it was found that MRMS simulations were more likely to be impacted by the 576 

kinematic wave routing component while IMERG-E simulations were more likely to be impacted 577 

by water balance. For IMERG-E this is to be expected because coarser spatial and temporal 578 
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resolutions naturally tend to add excess water to the system, leading to hydrographs that are taller 579 

and longer than those of USGS. The increased tendency towards water balance overestimation 580 

counteracts the tendency of kinematic wave to push water through the system too quickly and 581 

explains why simulations forced by IMERG-E maintain lower systematic errors in duration and 582 

flood timing than those forced by MRMS. Additionally, it was shown across both products that 583 

the physics of the model performs well, and that flood attenuation is not a factor in the results. 584 

 Based on these findings, it is recommended that further, more concentrated studies be 585 

undertaken into the tendencies of EF5 in order to more accurately diagnose and quantify its 586 

tendencies. Additional research is also being planned to assess how more recent product and 587 

algorithm improvements translate into flood simulations, allowing for a trend to be established 588 

regarding the state of improving hydrologic validation in advance of the Atmosphere Observing 589 

System (AOS) mission.  590 
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