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Abstract

This study investigates the hydrologic utility of satellite precipitation estimates from the Global
Precipitation Measurement mission by comparing flood signals produced across the Continental
United States by a ten-year span of in-situ, ground-based radar and satellite-based precipitation
data. The flood characteristics generated with radar and satellite precipitation through a distributed
hydrologic model are contrasted against reference stream gauge data as a method of integrated
validation to assess and quantify error budgets between precipitation products by highlighting
precipitation products’ accuracy, hydrologic scaling effects, and the impact of the hydrologic
model. It is found that systematic and random errors associated with flood characteristics behave
similarly to trends previously seen in precipitation rate errors between precipitation products,
establishing a clear link through propagation of errors into the water cycle. Additionally, behaviors
associated with both water balance and routing schemes within the hydrologic model were shown
to affect outputs. Errors generated by water balance tend to cause overestimation of peak discharge
values, while errors associated with routing tend to cause underestimation of flood durations and

push flood timings earlier than the stream gauge reference.

Plain Language Summary

This study investigates how effectively rainfall estimates from the Global Precipitation
Measurement mission can generate models of floods observed by stream gauges across the
Continental United States. By comparing these modeled floods to actual gauge data, assessments
can be made regarding the overall trends in error associated with the rainfall products themselves,
the hydrologic model used, and the scales at which these errors are detected the most. It is found

that, overall, the trends in hydrologic error between the products behave similarly to previously
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established errors in rainfall between products, showing a clear link as these errors move through
the water cycle. The analysis also found that different components of the hydrologic model itself
can affect the characteristics of the floods modeled, with one tending to cause overestimation of

flood peaks and the other leading to underestimation of flood durations.

1 Introduction

In research and operations alike, hydrologic models are the keystone for flood assessment,
understanding, and forecasting. This remains especially true in the realm of flash floods, with one
well-known model being the Ensemble Framework for Flash Flood Forecasting (Flamig et al.,
2020) or EF5, an open-source distributed hydrologic modeling framework. To date, EF5 has been
established in tandem with the Multi-Radar Multi-Sensor (MRMS) system (Zhang et al., 2016) to
build an operational flash flood forecasting network over the CONUS: the Flooded Locations And
Simulated Hydrographs (FLASH) system (Gourley et al., 2017). The MRMS network of 176
ground-based radars provides high-quality precipitation data at a spatial resolution of 1-km and
temporal resolutions as low as 2 minutes, with FLASH subsequently operating at 1-km spatial and
10-minute temporal.

The same boast cannot be said across most of the world, however. Without reliable radar
coverage, researchers and forecasters instead turn to satellite precipitation products, such as those
provided through the Global Precipitation Measurement mission (GPM). This program generates
a global dataset of precipitation at half-hourly temporal and 0.1-degree spatial resolution, from
90N to 90S latitude, through use of the Integrated Multi-satellitE Retrievals for GPM (IMERG)
algorithm Version 6 (Huffman et al., 2014). Great lengths of research have been undertaken to

assess and intercompare satellite precipitation product returns to those provided by ground-based
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products (Gebregiorgis et al., 2018; Kirstetter et al., 2012; Kirstetter et al., 2020; Derin et al., 2021;
Derin and Kirstetter, 2022), but until recently less has been done to forward the need for “integrated
hydrologic validation” of GPM (Hou et al., 2014). A foray into this was made in Woods et al.
(2023) where MRMS and IMERG were used as precipitation forcings through EFS5, and their
extracted flood characteristics were directly compared. This approach also took heed to answer
calls put forward in the greater hydrologic community, premier of which by Clark et al. (2021), to
assess hydrologic models and hydrograph outputs through new methods less reliant on “bulk
metrics”, as these traditional approaches become increasingly limited when expressed
simultaneously over large sample sizes and more diverse ranges of catchment and flood
characteristics (Clark et al., 2021; Lamontagne et al., 2020; Nanding et al., 2021; Newman et al.,
2015).

The research put forth here continues this premise, but with the addition of observational
flood data provided by the United States Geological Survey (USGS) as a benchmark. As such,
focus can now be shifted from initial relative assessment of the products to a more objective and
in-depth analysis of error trends and model behaviors. Error budgets and analyses have been done
previously between precipitation products (satellite and ground-based), but again have focused
less on how this propagates further into the water cycle. This information in the literature, however,
can still provide valuable insights towards what to expect from a more hydrology-focused error
budget. For example, studies have consistently highlighted increasing underestimation and random
error in estimates of satellite precipitation products at higher reference rain rates (Kirstetter et al.,
2013; Kirstetter et al., 2014; Uphadyaya et al., 2020). Links have also been shown between errors
generated by IMERG precipitation and errors in the performance of streamflow simulations when

compared to observations at basin scales (e.g. Hartke et al., 2023, investigating six years of data
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over lowa), so by association there are already grounds for significant propagation of errors into
the hydrologic system and subsequent flood characteristics, especially at the continental modeling
scale.

This study seeks to build upon the results and assessments made in Woods et al. (2023)
and bring them fully into the context of on-ground observations. The quality-controlled selection
of gauged USGS basins provides an unprecedented look at model behaviors across the entire
CONUS at once, as opposed to basin or region-scale studies. Additionally, the results of this
research not only aim to better understand the appearance and root causes of water cycle-related
simulation errors but also better inform algorithm developers and end-users alike about potential
ways to mitigate for and model these errors. This is especially important to undertake with both
precipitation products operating at their native resolutions, helping to establish clear benchmarks
in behavior without having to account for resampling. The approach put forth here and in Woods
et al. (2023) is novel in its ability to assess these precipitation products on their capability to model
distinct signals of features associated with floods (i.e. peak magnitude, flood duration, and event
timing) as opposed to directly comparing streamflow time series. Results from this process serve
to provide more robust and tangible information regarding the behavior of these products when
held up against observed reference data.

The rest of the paper is organized as follows: Section 2 describes the dataset generation
and methodology, Section 3 provides the results for and immediate discussion of each of the three

flood characteristics investigated, and Section 4 constitutes the final conclusions.

2 Data and Methods
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Figure 1. Map of gauge locations utilized across the Continental United States.

This study continues to build upon the body of work featuring numerous large-scale studies
utilizing a CONUS-wide MRMS precipitation reanalysis dataset (Zhang and Gourley, 2018;
Flamig et al., 2020; Gourley et al., 2017). Woods et al. (2023) focused on the use of the Version
06 IMERG Early run (IMERG-E) for a satellite forcing compared against the MRMS mosaic as a
ground-based benchmark to highlight the impact of satellite precipitation resolution and accuracy.
EF5 allows its user to arbitrarily select from and utilize several different options of both water
balance models and routing schemes to generate hydrologic outputs such as return period indexes,
streamflow discharge, and specific/unit discharge (i.e. the discharge at a pixel normalized by its

upstream basin area). Importantly, EF5 also allows the user flexibility in the format of its input
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precipitation forcing data. For this study, each precipitation forcing was run with EF5 using the
Coupled Routing and Excess STorage (CREST; Wang et al., 2011) distributed hydrologic model
combined with kinematic wave routing (Vergara et al., 2016). This scheme of EF5/CREST is the
same configuration utilized by the FLASH system for flash flood warning operations in the United
States National Weather Service and is built off extensive geospatial datasets of parameters which
remove the need for timeseries-centered model calibration (Vergara et al., 2016; Gourley et al,

2017; Flamig et al., 2020).

Table 1. Associated general basin characteristics of gauges selected for analysis.

Basin Characteristic Value Range
Area 21.11 — 45557.9 (km?)
Slope Index 0.00013 —0.08999
Relief Ratio 0.00043 - 0.16836
Basin Average Imperviousness 0.0-1.074 (%)
Basin Average Curve Number 48.2-89.4
Annual Precipitation 261.1 —2841.2 (mm)

This study utilizes a previously extensively quality-controlled selection of over 3000
gauges (Gourley et al., 2017), where any gauges deemed by the USGS to have any anthropogenic
influence, where at least 80% of the basin falls within an area where the MRMS radar beam height
is 1 km above ground level or less, as well as any basins where snowmelt processes are dominant

(i.e. basins where snowfall contributes to >30% of annual precipitation) were removed. The
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locations of these gauges can be seen in Figure 1, while the associated basin characteristics of
these gauges can be found in Table 1. Simulations were run across the CONUS for both
precipitation forcings at their native resolutions (i.e., MRMS-forced at 1-km spatial and 5-min
temporal, and IMERG-forced at 10-km spatial and 30-min temporal) from 2004 to 2011. United
States Geological Survey (USGS) data for each gauge was also taken as reference data for the time
period simulated. Each time series was post-processed to isolate individual flood events based on
its designated USGS “action-level” discharge value, which is the lowest threshold value provided
by the USGS at each specific basin denoting the water level at which a given event is considered
a flood. This also serves to denote the start time (i.e., the time point where discharge exceeded the
threshold) and end time (i.e., the point where discharge fell back below the threshold) of each
event. For an example of how this may look graphically, see Figure 2 which provides a zoomed-
in look at an arbitrary USGS gauge in Indiana (Gauge 03358000). Each raw event was then
matched one-to-one between the simulated streamflow time series and the USGS observations,
respectively, using an algorithm of cross-referencing criteria. The algorithm first looks for and
matches events that overlap, i.e. where an observed event shares timesteps with a simulated event.
Where there is an unmatched observed event with no overlap, the algorithm then uses the start and
end times of the unmatched observed event to attempt to locate an unmatched simulated event in
proximity (i.e., within a window of 100 hours) that has both the closest start time and closest end
time to the observed event. These criteria also served to remove outliers where multiple simulated
events appear to be logged over the time period of one observed event, caused by the wobbling of
the timeseries above and below the flood threshold. Each individual simulated event that was
successfully matched to an individual observed event generates a fixed pair of overall peak

discharge values (observed and simulated), respective event durations, and overall event start and
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end times while the remaining unmatched events are archived. Differences in the simulated and
observed characteristics are used to compute errors with respect to the USGS reference and analyze
errors in the simulated flood characteristics. Specifically for each event, (1) the difference in peak
discharge indicates whether the simulation overestimates (positive error) or underestimates
(negative error) the observed flood peak; (2) the difference in flood duration indicates whether the
simulated flood is shorter (negative error) or longer (negative error) than the observed flood; (3) a
simulated flood that starts (ends) earlier (later) than the observed flood will be associated with a
positive (negative) start (end) time error. This new and representative dataset of more than 20,000
matched events per product serves as the basis of this study. Given the diversity of basins and
climatologies gathered in this study, errors in peak discharge, duration, and timing are expected to
characterize representative behaviors associated with the precipitation forcing (MRMS and
IMERG-E) as well as from the hydrologic model. Specifically, error samples will be used to

quantify separate systematic errors and random errors.

3 EF5 Simulation Comparison - Gauge 03358000

MRMS Reanalysis
IMERG Early
—— Action Level | |

Discharge (cms)

10°

2009-11-01 2009-11-15  2009-12-01 2009-12-15 2010-01-01 2010-01-15 2010-02-01 2010-02-15 2010-03-01
Date

Figure 2. An example of a modeled timeseries comparison, with included USGS action level.
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All three flood characteristics evaluated in Woods et al. (2023) will again be evaluated in
this study in the context of USGS observations: the flood magnitude (peak discharge), the flood
duration (total time elapsed from start to end), and the flood timing (the relative difference in start
and end times between products). This continues to delve into the growing sentiment in the greater
hydrologic community to move away from traditional methods of hydrologic evaluation, bulk
metrics such as the Nash-Sutcliffe Efficiency (NSE) or the Kling-Gupta Efficiency (KGE) (Nash
and Sutcliffe, 1970; Gupta et al., 2009), and focus on new methods of model assessment (Clark et
al., 2021). The idea here is that agreement between the products and observations on these flood
characteristics from discrete events can provide a far more robust assessment of modeling quality
across the study area than traditional methods. For a more in-depth explanation of this reasoning,

please refer to Woods et al. (2023).

3 Results and Discussion

3.1 Magnitude (Peak Discharge)

Critical to the development of flood mitigation strategies and engineered controls, as well
as for emergency managers and real-time flood forecasters, is the understanding of how well the
magnitude of a simulated flood behaves with respect to what is observed in the underlying basin.
Figure 3 provides a comprehensive representation of the accuracy of MRMS-forced and IMERG-
forced flood peak discharge simulations, respectively. Of the density scatter plots provided,
Figures 3a and 3c display peak discharge values whereas Figures 3b and 3d show specific peak

discharge. Note that specific peak discharge was calculated and provided as a means to filter out

10
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202  the natural dependence of peak discharge values with basin area; it is also a vital metric when

203  dealing with flash floods.

204
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206 Figure 3. Scatterplots of MRMS-forced simulated peak discharge (A), MRMS-forced simulated specific peak
207 discharge (B), IMERG-E-forced simulated peak discharge (C) and IMERG-E-forced simulated specific peak
208 discharge values compared against USGS reference values. The red diagonal line indicates the 1:1 line.
209
210 While the points tend to gather around the one-to-one line, a distinct conditional bias can

211  be seen across both products and discharge types, with an increasing overestimation of higher
212 (specific) discharges. Both MRMS and IMERG-E simulations overestimate with respect to USGS,

213 though a tighter spread can be seen in the MRMS simulations. This is to be expected, with MRMS

11
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214  operating at higher spatial and temporal resolutions than IMERG-E. Additional conditional bias
215 can also be seen in the peak discharges, with point densities tending to fall more vertical on the
216  plots as opposed to following the 1:1 line. To further dissect these results, the data was converted
217  into plots of conditional distributions (provided in Figure 4). This style of plot was highlighted in
218  Woods et al. (2023) as a more direct way of assessing conditional biases and random error. The
219  process examines an independent variable through binned quantiles (10™, 25%, 50, 75%, 90™) of
220  values from a chosen dependent variable. For the figure shown here (as well as in subsequent
221  sections) the conditional median (50" quantile) provides the first-order trend of the dependency,
222 the interquartile area (25" to 75™) estimates the uncertainty in the relationship between the
223 variables, and the 10™ and 90" quantiles describe the range of extreme values between the

224 variables.

Conditional Distributions of Peak and Specific Peak Discharge
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Figure 4. Conditional distribution plots of MRMS-forced and IMERG-E-forced peak discharges (A and C) and
specific peak discharges (B and D) compared against USGS references. The thick center line shows the 50 quantile
(median), with the dark grey section extending to the 75th and 25" quantiles, then light gray to the 90" and 10%. The

dashed line is the 1:1 line.

The conditional distribution investigation in Figure 4 reiterates what was seen in the
density scatterplots: distinct overestimation on the part of both MRMS and IMERG-E simulations
with respect to the USGS observations. Again, as expected, the uncertainties associated with
MRMS simulations (i.e., the overall spread of the quantiles) are smaller than those associated with
IMERG-E; the effects of resolution certainly play a role here. Interesting to note, however, is how
the specific peak discharge of both products (Figure 4b and Figure 4d) trend from overestimation
at lower values towards the 1:1 line and eventually into slight underestimation at the highest values
to the point where IMERG-E simulations begin to plateau out. This plateau effect was similarly
seen in Woods et al. (2023) and attributed to the coarser spatial and temporal resolutions of
IMERG, with these resolutions prohibiting the algorithm’s ability to resolve the highest levels of
instantaneous precipitation and therefore being unable to resolve the highest specific peak
discharges often associated with them. Seeing the effect appear when compared to the gauged
USGS reference corroborates this idea, suggesting that the shortcoming lies within the ability of
IMERG to resolve the highest values and locations of extreme precipitation events (i.e., those
responsible for flash floods associated with these high specific peak discharges) as opposed to

errors generated within the hydrologic model itself.

13
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2 3
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Figure 5. Error calculations for simulated flood peak discharge and specific peak discharge from MRMS
(red) and IMERG-E (blue) with respect to USGS. Solid lines represent systematic error while dashed lines represent

random error.

Building upon the quantile analysis, as well as to further inform on the abilities of the

products, an error analysis was conducted (Figure 5). For both products, and for both discharge

14
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types, the systematic error (simulated median minus observed median) and random error (75"
quantile minus 25" quantile) were calculated and plotted against the USGS reference values. In
Figure Sa, distinct increasing trends in systematic (positive bias) and random error are seen for
both MRMS-forced and IMERG-E-forced simulations with respect to increasing associated USGS
peak discharge values. This is likely associated with the behavior of EFS itself with the generation
of larger floods at larger basin sizes; there could potentially be issues with the water balance model
and the sheer volume of water, but it is also known that kinematic wave routing becomes less
effective than more dynamic routing schemes when modeling larger rivers (Vergara et al., 2016).
The effects of satellite product resolution and accuracy can be seen between the simulations
themselves, with IMERG-E simulations consistently showing higher systematic and random
biases compared to MRMS simulations.

When looking at specific peak discharge (Figure Sb) similar stories can be seen. While
both products now trend into underestimation of specific peak discharges compared to USGS,
simulations generated by IMERG-E still show more negative systematic bias than those generated
by MRMS. From a model perspective, this overall underestimation at the highest specific
discharges is likely associated with the water balance component, CREST, as opposed to routing.
To generate flash floods of these magnitudes there needs to be considerably high rainfall rates; if
precipitation products are already underestimating these rates, errors are likely going to propagate
even further when combined with basin characteristics and model physics. Random error provides
a new interesting look, however; at increasing values of specific discharge (> 1.5 cms/km?) the
random error associated with MRMS simulations overtakes the random error of those associated
with IMERG-E. This is likely due to smoothing effects of IMERG resolution as well as algorithm

limitations; MRMS, with its higher resolutions, has a better chance of capturing the high-intensity

15
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rainfall events normally associated with these extreme values of specific discharge better than
IMERG can, naturally leading to increased random error in the system. It is worth noting that
accuracies in flash flood discharge estimation have been shown to improve significantly as
precipitation products become more sophisticated (Gourley and Vergara, 2021), so future research
1s warranted to better dissect and diagnose the behavior of EF5 with the improvements that have
been made to both MRMS and IMERG precipitation products in the years after the time period of
this study. Namely, MRMS forcings generated with weather radar data that have been upgraded
and processed using dual-polarization technology (i.e., after 2013) and IMERG forcing data that
has been retrieved using the spaceborne sensors launched with the GPM constellation itself (i.e.,
after 2014). These updated products will only serve to enhance the results of this study and provide

for a more in-depth understanding of potential hydrologic model deficiencies.

3.2 Flood Duration

Further critical to emergency management efforts and flood operations is an understanding
of the expected duration of a flooding event, real or simulated. As such, the analyses utilized for
peak discharge were also undertaken for simulated flood duration. First, density scatterplots were
created and can be found in Figure 6. As with discharge, event durations were normalized by basin
area to generate specific duration values as an additional method of assessment. What can be seen
is surprising; overall, MRMS simulations of floods tend to underestimate their durations with
respect to their USGS counterparts. Longer flood durations are increasingly underestimated
(conditional bias). This conditional bias is related to basin size, as it is less significant with unit
flood durations (see also Figure 7b and 7d). This is likely explained by the routing scheme used;

the accuracy of the kinematic wave routing employed by this version of EF5 is known to degrade

16
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as basin size and river size increases, where more dynamic routing schemes typically perform
better (Vergara et al., 2016). What is seen from IMERG-E simulations (in Figures 6c and 6d) is
also interesting, with durations being closer to the 1:1 line with respect to USGS than MRMS
simulations. This behavior is likely due to the inherent overestimation of IMERG-E durations with
respect to MRMS, as was seen in Woods et al., 2023, meaning the underestimation exhibited by
EF5 is instead counteracted in the simulations by IMERG-E’s propensity to overestimate

precipitation durations and resulting floods.
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Figure 6. Density scatterplots of MRMS and IMERG-E simulated flood durations (A and C) and normalized
duration values based on associated basin area (B and D), all plotted against USGS references. The red line indicates

the 1:1 line.

The conditional distribution plots (Figure 7) tell a similar tale, with noticeable
underestimations seen for both products, but several additional features can be extracted. For
instance, despite the core of MRMS-simulated durations in the density plot showing
underestimation, there are distinct regions of overestimation at the shortest of flood durations (<5
hr). This feature is consistent across both products as well as both duration types, as well as both
products trending from overestimation to underestimation as flood durations increase. Unlike with
peak discharge, however, there is no noticeable difference in error spread between MRMS-
simulated durations and IMERG-simulated durations with respect to USGS. Both products also
behave similarly when normalized by basin area, though with a somewhat closer spread of
quantiles from MRMS simulations. This is more consistent with expectations regarding the higher

resolutions associated with MRMS.
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Conditional Distributions of Duration and Specific Duration
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328 Figure 7. Conditional distribution plots of MRMS and IMERG-E simulated event durations (A and C) and
329 normalized duration values (B and D), all plotted against USGS references. The thick center line shows the 50™

330 quantile (median), with the dark grey section extending to the 75th and 25" quantiles, then light gray to the 90" and

331 10", The dashed line indicates the 1:1 line.
332
333 Like with discharge, representations of error for duration and specific duration are shown

334  in Figure 8. When looking at the duration of events (Figure 8a), the errors remain fairly regular
335  (overestimation) for shorter events (< 10 hr) before a steep drop-off into large underestimation as
336  durations increase. The overestimation at lower durations is likely associated with EF5’s tendency
337  to start flood events earlier and with potentially longer trailing limbs and ends (seen in Section

338  3.3). The intense underestimation of longer durations is again likely an artifact generated by the
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breakdown of efficiency of kinematic wave routing at larger basins and rivers, the usual culprits
responsible for floods of these long lengths.

For intercomparison between the products themselves, some interesting features arise.
Random error is as expected, with consistently higher random error associated with IMERG-E-
forced simulations than MRMS-forced simulations, a byproduct of the difference in product
resolution. Systematic error is a different story; IMERG-E simulations overestimate more than
MRMS at shorter durations (again, a factor of resolution) but at longer durations MRMS is the
product with higher underestimation in simulations. This corroborates what was seen in the density
scatterplots (Figure 6) where IMERG-E simulated durations fall closer on the 1:1 line with respect

to USGS than MRMS simulated durations.
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350 Figure 8. Error calculations for simulated flood durations and specific durations from MRMS (red) and IMERG-E

351 (blue) with respect to USGS. Solid lines represent systematic error while dashed lines represent random error.
352
353 The errors associated with specific duration (Figure 8b) largely mirror what was seen with

354  duration; the systematic error of IMERG-E simulations remain slightly less negative than those

355  generated by MRMS while the random error of IMERG-E simulations remain higher than those
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of MRMS. Due to the quasi-linear nature of the systematic biases we see from the products for

specific duration, it will be simple to make an error model in the future.

3.3 Flood Timing

Perhaps the most critical information for flood and flash flood forecasting generated by
this study are the computations of event timings. When events are logged and matched as part of
the overall methodology, they are naturally associated with timestamps for both the start of the
event and end of the event. As such, the difference between the observed and simulated start (and
end) times can also be calculated and logged. For this process, the absolute start and end times for
MRMS and IMERG-E simulations were subtracted from their associated USGS event absolute
start and end times, giving either a positive or negative time difference value in hours. A positive
(negative) value in this regard indicates that the simulated event occurs earlier (later) than its
reference counterpart.

Histograms of both products with respect to USGS can be found in Figure 9. For both
MRMS and IMERG-E simulations most events are associated with both positive start and positive
end times, meaning that the simulated events for both products tend to start early and end early
with respect to their matched USGS event. This is likely associated with the routing component of
EF5, with water overall moving through the system faster than what is observed at the gauge.
MRMS-forced simulations values also have an average start time closer to zero and with a smaller
standard deviation than those forced by IMERG-E, which remains consistent with the higher
temporal resolution available to the product. The end times for both products behave similarly
statistically, however, which is interesting to note. Larger time deltas are likely associated with

longer duration floods, which in turn are associated with larger basins and flow lengths — an area
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where the kinematic wave routing scheme utilized in this study’s EF5 scheme becomes less

effective (Vergara et al., 2016).

A B
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Figure 9. Histograms of the time deltas of matched flood start times (blue) and end times (orange) for MRMS
simulations, IMERG-E simulations, and USGS observations, with associated means and standard deviations. A
positive (negative) value indicates that the simulated event (MRMS or IMERG-E) event occurs earlier (later) than

its USGS absolute time counterpart.

In investigating the conditional distribution plots, found in Figure 10, these same trends
can be seen. Since the size of a basin is naturally associated with flood timing, area was chosen to
be the dependent variable to draw for the quantiles of start time and end time. All four sets of
quantiles track well with the overlying conclusions from Figure 9, that both products tend to
simulate floods that start and end earlier than the reference. This also corroborates the idea that the
higher means and standard deviations seen with end time are more often associated with the largest
basins, scales where kinematic wave routing begins to struggle. Simulations forced by IMERG-E
are shown to have significantly higher extreme error quantiles associated with smaller basin sizes

than those forced by MRMS, an effect similarly seen in Woods et al., 2023, understood to likely
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be associated with the coarse resolution of IMERG-E being unable to generate more precise
precipitation-flood responses. At larger basin sizes, these errors shown by IMERG-E simulations
can be attributed to systematic biases and uncertainty caused by basin-scale aggregations, with an
increasing importance falling on precipitation spatial distributions (Woods et al., 2023), but similar
trends from MRMS simulations at large basins suggests routing from the model itself is likely also

a contributor in this case.

Conditional Distributions of Event Timing
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Figure 10. Conditional distribution plots of calculated event delta start (A and C) and delta end (B and D) times
compared against associated basin areas. The thick center line shows the 50" quantile (median), with the dark grey
section extending to the 75" and 25" quantiles, then light gray to the 90" and 10%. The dashed red line is the zero
line, signifying matching timing of events. A positive (negative) value indicates that the simulated event (MRMS or

IMERG-E) event occurs earlier (later) than its USGS absolute time counterpart.
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Despite increasing uncertainty with basin size (as well as significant extreme quantiles
associated with IMERG-E simulations), median values and 25%/75" error quantiles remain
remarkably tame for both products at areas <1000 km?. End time values lose effectiveness sooner,
before reaching 500 km? in both cases, and the overall spread ends noticeably wider than final
spreads for start time. Regardless, event start time is inherently a more important statistic to predict
accurately more often, especially in the case of flood forecasting and emergency response.

The error budgets of the products with regard to event timing (Figure 11) are in agreement
with overall trends seen throughout this analysis but are able to provide important insight into
accuracies at different scales. Before discussion, however, it is important to establish an
understanding of what timing error means in this context. Throughout this section, the positive and
negative deltas have been associated with absolute times. With regards to error, this instead
translates to positive values signifying an overall trend towards earlier times (both start and end)
while negative values signify an overall trend towards later times. As can be seen across both time
delta plots, the overwhelming majority of errors for both products tend to push start and end times
earlier than USGS. This effect is likely caused by routing within the EF5 model, with water more
likely to flow faster through the system (especially at larger basin areas) than more slowly. For
end times there also exists a small window at basins < 100 km? where IMERG-E simulations have
negative systematic error values, meaning that at smaller basins IMERG-E-forcings tend to try to
pull end times later. Overall, this suggests that there is an inherent competition between routing
and resolution being exhibited; this trend to counteract end times and extend the total duration of

events ties into what was seen in the previous section (Section 3.2) and Figure 6, where IMERG-
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432 E produces more consistent simulated event durations with respect to USGS than the

433 underestimation of durations simulated by MRMS.

434
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436 Figure 11. Error calculations for start time and end time deltas from MRMS-simulated (red) and IMERG-E-
437 simulated (blue) events with respect to USGS, plotted against associated basin area. Solid lines represent systematic
438 error while dashed lines represent random error.
439
440 For delta start errors, what can be seen is consistent with the other characteristics previously

441  discussed; IMERG-E simulations showcase both higher systematic and higher random error values
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than those simulated by MRMS. Both products, however, perform well at smaller basins with
minimal systematic error; welcome news for the potential to utilize IMERG-E for operational flood
prediction purposes. With small basins naturally more susceptible to flash flooding, having a
reliable benchmark for predicting the timing of when these events will begin significantly
improves the ability of forecasters and emergency managers to protect life and property.
Contrary to delta start, errors seen with delta end are more favorable to IMERG-E
simulations, with MRMS simulations showing higher systematic errors at all basin sizes. MRMS
simulations still maintain a lower random error, up until the larger basins where the random error
of the two products becomes noisier and essentially evens out. Another interesting feature is the
sharp decrease in random error from IMERG-E simulations from ~50 km? to ~75 km?; this likely
points to the location of the effective resolution of IMERG-E for flood simulation utility

(Guilloteau et al., 2017; Guilloteau et al., 2020).

3.4 Hydrologic Model Performance Analysis (Quadrant Plots)

Given the increased influence of simulated flood tendencies attributed to the hydrologic
model itself with respect to USGS observations that have been highlighted so far in this study,
further error characterization into EF5 was undertaken. Model influence on outputs was expected,
to a degree, which was a core reasoning behind why Woods et al. (2023) elected to directly
compare only simulated events against each other, with MRMS simulations serving as the
reference, in order to specifically remove any effects from the hydrologic model and focus solely
on the influence of the precipitation products themselves. The ability to include USGS data as the

reference in this study allows for a more robust analysis and diagnosis of both hydrologic outputs
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and model tendencies, benefitting extensively from what was found in the simulation-only
research.

More insight can be gained by characterizing the joint peak and duration errors that can be
influenced by the precipitation forcings and the hydrologic model components (i.e., water balance
and routing) . A quadrant plot displays the duration (x-axis) and peak discharge (y-axis) errors
(Figure 12), with each error quadrant signifying a different tendency within the hydrologic model
outputs. Points in the top left quadrant (positive peak errors and negative duration errors) indicate
simulated floods with higher peaks and shorter durations than USGS, a signal of influence from
kinematic wave where the water is being pushed through the system too quickly. In the top right
quadrant (positive peak errors and positive duration errors) points are found where both the peak
and the duration are higher than USGS, indicating positive water balance errors (i.e. there is too
much water in the system, with greater areas under the theoretical hydrograph). The bottom left
quadrant (both negative errors) is again dominated by water balance, but instead with too little
water simulated. The bottom right quadrant shows simulations with smaller peaks but longer

durations than the reference, signifying flood attenuation by the model.
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Figure 12. Density scatterplots of discharge and duration errors for MRMS and IMERG-E simulations with respect
to USGS observations. Total numbers of points in each quadrant are provided, as well as each quadrant’s percentage

of the total points.

In the MRMS plots, the highest percentage of points fall into the top left quadrant (41.2%),
highlighting increased influence on simulations by the kinematic wave scheme. This corroborates
what has been seen throughout this study, where MRMS simulations are routinely more likely to
underestimate flood durations than IMERG-E. There is influence from the water balance
dominated quadrants as well (56.7 %), meaning there are discrepancies with how or where water
is entering the system. In the case of IMERG-E simulations, these quadrants are where the majority
of points are found (65%), with most falling into positive water balance error (44%). For IMERG-
E this is to be expected because coarser spatial and temporal resolutions naturally tend to add
excess water to the system through a combination of both smoothing over larger pixel sizes and

more limited accuracy in precipitation values themselves, leading to hydrographs that are taller
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and longer than those of USGS. Kinematic wave is still a factor, but the increased tendency towards
water balance overestimation counteracts its effects and explains why IMERG-E maintains lower
systematic errors in simulated duration and flood timing than MRMS. Additionally, neither
product had a significant number of points in the bottom right quadrant, reiterating that the physics
of the model performs well, and that flood attenuation is not a factor here.

These results show that FLASH/EFS5's model design choice on kinematic wave was correct
because for the overwhelming majority of the territory the assumptions of this model apply. The
fact that the highest densities are near the (0,0) point speaks well of the modeling system. Such
small numbers of points are seen on the bottom right quadrant due to several factors. First,
kinematic wave does not have as much capability to attenuate the flood wave at higher resolutions;
it can, however, if the pixel resolution is coarser, which is a result of numerical
diffusion/attenuation (i.e., an artifact of the numerical approximation). Second, because for most
of the terrain over the CONUS, kinematic wave applies. And third, because most of the basins and
subsequent events being considered in this study do not have the geomorphology and hydraulics
necessary to lead to significant flood attenuation.

In order to determine if there were any additional unforeseen tendencies within the model,
the same approach was taken by contrasting the MRMS and IMERG-E simulations themselves.
MRMS-simulated values were subtracted from IMERG-E-simulated values, and the same
discharge-duration plots are provided in Figure 13. As expected, almost all of the points fall within
the water balance quadrants, with the distinct majority in overestimation (60.8%). When the
influence of the model itself is removed, the effects of resolution difference between precipitation
products is expected to be dominant; IMERG again naturally puts more water into the system than

its higher-resolution counterpart. There is still influence from underestimation, however, likely
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caused by a combination of spatial variability and variability in the accuracy of precipitation
estimates, which in turn is exacerbated by the algorithm’s smoothing of rainfall itself (i.e, the

correct volume of rainfall is not always falling over the right area or basin).

IMERG-E vs MRMS
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Figure 12. Density scatterplots of discharge and duration errors for IMERG-E with respect to MRMS. Total

numbers of points in each quadrant are provided, as well as each quadrant’s percentage of the total points.

Between duration (Figure 13a) and specific duration (Figure 13b) themselves, the plots
behave similarly, though there is a more asymptotic spread across the duration scatter than
specific duration. Both plots maintain higher densities closer to the (0,0) point, with that spread

becoming even tighter when normalized by basin area.
4 Conclusions

In this study, precipitation forcings from IMERG-E and MRMS were run through the EF5
hydrologic modeling framework, broken down into discrete flood characteristics (magnitude,

duration, and timing) and compared against reference observation data from USGS stream gauges
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in order to develop an understanding of error trends and overall error budgets between the products.
While consistent overall with previously established results (Woods et al., 2023), this study
provides a more robust outlook into the hydrologic behaviors and accuracies of the products
themselves and how they translate into the greater push towards integrated hydrologic validation
of the GPM mission itself.

For flood peak discharge and specific peak discharge, both IMERG-E and MRMS
simulations were shown to overestimate values with respect to the USGS reference, with IMERG-
E simulated peak values being attributed to greater uncertainties. IMERG-E was also shown to
have more difficulty resolving higher-end simulated specific peak discharge values than MRMS,
which is attributed to the coarser spatial and temporal resolutions of the product as well as the
lower accuracy ceiling associated with these resolutions. From a model perspective, this overall
underestimation at the highest specific discharges is also likely associated with the water balance
component. Both products showed similar error trends, with increasing systematic and random
errors as basin size increases. MRMS simulations also had consistently lower systematic and
random errors than IMERG-E simulations, with the exception of specific peak discharge where
MRMS was higher.

When looking at the simulated flood durations, interesting interactions surfaced: MRMS
consistently underestimated simulated durations with respect to USGS, with underestimation
further increasing with basin size, while IMERG-E simulations were found to more closely fit the
1:1 line. In this scenario, the overall underestimation created by the products with respect to USGS
is being counteracted by the inherent overestimation of simulated flood durations by IMERG-E
with respect to MRMS (Woods et al., 2023). The consistent underestimation is associated with the

accuracy of the kinematic wave routing scheme, which is known to degrade as basin size and river
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size increases, where more dynamic routing schemes typically perform better. The error budgets
of the products reflect this interaction, with IMERG-E simulations having a higher systematic error
than MRMS simulations at smaller basin sizes but transferring to a less negative error than MRMS
as basin size increases. Overall, however, IMERG-E simulations retained higher random errors
than MRMS simulations across the board.

In the case of flood timing, simulated events for both products tend to both start early and
end early with respect to their matched USGS event, a net earlier shift in timing for both products.
Additionally, IMERG-E simulations are shown to have significantly higher extreme error quantiles
associated with smaller basin sizes than MRMS simulations, an effect associated with the coarser
resolution of IMERG-E being unable to generate more precise precipitation-flood responses. In
regard to the systematic and random errors, both products have a tendency to push start and end
times earlier than USGS, though IMERG-E simulations showcase both higher systematic and
higher random error values than MRMS simulations. At larger basin sizes, these errors shown by
IMERG-E simulations can be attributed to systematic biases and uncertainty caused by basin-scale
aggregations, but similar trends from MRMS simulations at large basin sizes suggests routing from
the hydrologic model itself is likely also a contributor in this case. Both products, however,
perform well at smaller basins with minimal systematic error, a result that directly affects the
potential to utilize IMERG-E for operational flood prediction purposes.

With instances of model behavior being shown to have an effect on simulation outputs at
all three phases of this investigation, an additional analysis into the model’s tendencies was also
undertaken, where it was found that MRMS simulations were more likely to be impacted by the
kinematic wave routing component while IMERG-E simulations were more likely to be impacted

by water balance. For IMERG-E this is to be expected because coarser spatial and temporal
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resolutions naturally tend to add excess water to the system, leading to hydrographs that are taller
and longer than those of USGS. The increased tendency towards water balance overestimation
counteracts the tendency of kinematic wave to push water through the system too quickly and
explains why simulations forced by IMERG-E maintain lower systematic errors in duration and
flood timing than those forced by MRMS. Additionally, it was shown across both products that
the physics of the model performs well, and that flood attenuation is not a factor in the results.
Based on these findings, it is recommended that further, more concentrated studies be
undertaken into the tendencies of EFS in order to more accurately diagnose and quantify its
tendencies. Additional research is also being planned to assess how more recent product and
algorithm improvements translate into flood simulations, allowing for a trend to be established
regarding the state of improving hydrologic validation in advance of the Atmosphere Observing

System (AOS) mission.
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This reanalysis was performed on the raw, publicly available NEXRAD data archive available

from Amazon Web Services (https://aws.amazon.com/public-datasets/nexrad/).
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