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Abstract
Harmful algal blooms caused by toxin-producing species of the diatom genus Pseudo-nitzschia have been

linked to anomalously warm ocean conditions in the Northern California Current System. This study compares sum-
mertime concentrations of Pseudo-nitzschia spp. and the toxin they produce, domoic acid, during a marine heatwave
year (2019) and a climatologically neutral year (2021). An Imaging FlowCytobot was installed on a fishery survey
vessel alongside environmental sensors to continuously sample phytoplankton and oceanographic parameters. This
was paired with targeted manual sample collections for nutrients, chlorophyll, and domoic acid. Accumulations of
Pseudo-nitzschia spp. were associated with upwelling zones and established hotspot regions: the Juan de Fuca Eddy,
Heceta Bank, and Trinidad Head. Overall, however, Pseudo-nitzschia spp. and domoic acid concentrations were low
during both summers and appear to have been limited by nitrate. Nutrient availability may therefore modulate the
response of Pseudo-nitzschia spp. to warm anomalies. Comparison of these results with 2015, another marine
heatwave year but one that produced record concentrations of Pseudo-nitzschia spp. and domoic acid, suggests
that the timing of marine heatwave conditions in the nearshore relative to seasonal upwelling plays a key role in
determining whether a Pseudo-nitzschia spp. harmful algal bloom will occur.

Multi-scale changes in ocean conditions in the northern
California Current System (NCC; Cape Mendocino, California
to southern British Columbia; Checkley and Barth 2009) have

increased concern over the frequency and intensity of harmful
algal blooms (HABs). Seasonal upwelling fuels phytoplankton
blooms in the nearshore that sustain important fisheries but
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can also fuel HABs of the diatom genus Pseudo-nitzschia
(Trainer et al. 2000; Smith et al. 2018). Many Pseudo-nitzschia
species can produce the neurotoxin domoic acid (DA), which
is transferred through marine food webs. Pseudo-nitzschia
HABs cause illness and death in marine mammals and sea-
birds, and amnesic shellfish poisoning in humans (Todd 1993;
Lefebvre et al. 2002). While there is no consensus on the uni-
versal drivers of Pseudo-nitzschia HABs (Anderson et al. 2021),
there does appear to be a link to anomalously warm ocean con-
ditions such as El Niño, warm phases of the Pacific Decadal
Oscillation, and marine heatwaves in the NCC (McCabe
et al. 2016; McKibben et al. 2017). Given that warm anomalies
in the NCC are expected to increase in frequency, duration,
and intensity due to climate change (Cai et al. 2014; Scannell
et al. 2016; Barkhordarian et al. 2022), it is also likely that
Pseudo-nitzschia HABs will continue to worsen.

The most well-studied example of a Pseudo-nitzschia HAB
associated with a warm anomaly is the 2015 event that
occurred during the 2014–2016 Northeast Pacific marine
heatwave (Bond et al. 2015; Di Lorenzo and Mantua 2016).
This event set records for levels of DA in Dungeness crabs (Met-
acarcinus magister) and Pacific razor clams (Siliqua patula), which
resulted in prolonged closures of these fisheries in California,
Oregon, and Washington (McCabe et al. 2016). The anoma-
lously warm waters associated with the marine heatwave
allowed Pseudo-nitzschia australis, a highly toxigenic species, to
expand its geographic range northward and grow at faster rates
(McCabe et al. 2016). Because of the unique ability of P. austra-
lis to both rapidly uptake and utilize a variety of nitrogen
sources, it was able to outcompete the rest of the phytoplank-
ton community and bloom along the entire West Coast of the
United States following the spring transition to upwelling con-
ditions (Cochlan et al. 2008; Kudela et al. 2010; McCabe
et al. 2016). Anomalous nutrient stoichiometry during the
upwelling season, where nitrogen was available for DA synthe-
sis but silicate was disproportionately limiting, was associated
with the unprecedented levels of particulate DA produced by
P. australis cells (Ryan et al. 2017; but also see Cochlan
et al. 2023). To understand whether the 2015 HAB is represen-
tative of Pseudo-nitzschia’s response to future warm anomalies
in the NCC, more instances of warm anomalies need to be
investigated. In particular, the interplay between warm anoma-
lies and in situ nutrient availability over large spatial scales will
be useful in determining the effects of a changing NCC on
Pseudo-nitzschia HABs.

Ocean acidification is another intensifying stressor that can
interact with nutrient availability to influence Pseudo-nitzschia
HABs. The NCC already experiences seawater pH and pCO2

(partial pressure of carbon dioxide) conditions not predicted
for surface waters in other regions until the end of the 21st

century. This is due to the upwelling of subsurface North
Pacific water masses with high pCO2 levels from the combina-
tion of in situ respiration and the uptake of anthropogenic
CO2 (Hauri et al. 2009; Feely et al. 2016). Climate change is

anticipated to intensify upwelling-favorable winds in the NCC
(Rykaczewski et al. 2015; Pozo Buil et al. 2021), which would
enhance the vertical transport of cold, CO2- and nutrient-rich
subsurface water and amplify ocean acidification in the near-
shore (Gruber et al. 2012; Capone and Hutchins 2013). Most of
our knowledge of the effects of ocean acidification on Pseudo-
nitzschia growth and DA production comes from controlled lab-
oratory monoculture studies, but these studies have sometimes
yielded conflicting results. For example, Pseudo-nitzschia growth
rates have been shown to both increase (Sun et al. 2011; Tatters
et al. 2012) and decrease (Wingert and Cochlan 2021) when
cells were nutrient-replete and maintained at high pCO2 condi-
tions. There is a growing need to evaluate the interactive effects
of pCO2 and nutrient availability on Pseudo-nitzschia growth
and toxin production in the field.

Together, these studies suggest that the combined effects of
increased warm anomalies and ocean acidification will increase
the risk of Pseudo-nitzschia HABs in the NCC, but that the
response will be modulated by nutrient availability. Yet, few
datasets exist to explore these relationships in situ. Several fac-
tors have likely contributed to this paucity of available data.
Nutrient and carbonate chemistry measurements are both labor-
intensive and expensive to obtain, and as such, they are rarely
collected (and analyzed) alongside Pseudo-nitzschia and DA mea-
surements by most monitoring programs. For Pseudo-nitzschia
observations, sampling capacity is limited by the labor-intensive
microscopy methods that are employed by most monitoring
programs. Furthermore, paired observations of Pseudo-nitzschia,
DA, temperature, pCO2, and nutrients are rarely collected on
temporal and spatial scales that are sufficient for identifying rela-
tionships in the dynamic upwelling environment of the NCC.
Advances in the development and application of autonomous
instrumentation are, however, beginning to alleviate these data
gaps by making it technically feasible to continuously monitor
phytoplankton communities and carbonate chemistry in the
marine environment.

The objective of this study was to use snapshot surveys
with high spatial resolution to investigate how summertime
concentrations of Pseudo-nitzschia and DA varied in the NCC
between two years: one impacted by a marine heatwave
(2019) and the other climatologically neutral (2021). The data
collection platform was a fishery survey vessel that conducted
transects throughout the entire NCC during both years. An
Imaging FlowCytobot (IFCB; Olson and Sosik 2007) was
installed to sample phytoplankton from the ship’s underway
seawater system, where a thermosalinograph and a General
Oceanics pCO2 Measuring System (Pierrot et al. 2009) were
already operational. Sensor data were complemented by
targeted manual sampling for nutrients, chlorophyll, particu-
late DA, and Pseudo-nitzschia species identification to provide
further ecological context. A machine learning image classifier
was developed to quantify Pseudo-nitzschia and the rest of the
NCC’s summer phytoplankton assemblage from IFCB data.
Comparison between these summer surveys serves as a case
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study to gain insight into how Pseudo-nitzschia responds to
multiple stressors, specifically warm anomalies and ocean
acidification, and the role of nutrients in modulating that
response across the NCC. Results from the marine heatwave-
impacted survey year are also compared to 2015, the year of the
massive HAB that was linked to the 2014–2016 Northeast Pacific
marine heatwave, to identify similarities and differences in
Pseudo-nitzschia’s response to these two warm anomalies.

Methods
Study area

The NCC is part of the California Current eastern boundary
upwelling system. Along-coast wind stress is primarily respon-
sible for upwelling of nutrients in the spring and summer that
fuels the growth of phytoplankton. Relative to the more
southerly regions of the California Current, seasonal upwell-
ing in the NCC is weaker and occurs later in the year over a
shorter duration (Bograd et al. 2009; Jacox et al. 2018). There
are other physio-chemical mechanisms, however, that contrib-
ute to the elevated phytoplankton standing stock observed in
the region (Hickey and Banas 2008). Numerous submarine
canyons enhance the upwelling of nutrient-rich water onto
the continental shelf (Connolly and Hickey 2014), and a
range of physical features retain phytoplankton on the shelf,
including wide shelves, coastlines without large capes, wind
intermittency, and density fronts (Small and Menzies 1981;
Hickey et al. 2005; Hickey and Banas 2008). In addition, nutri-
ents from riverine input, primarily delivered by the Strait of
Juan de Fuca (outlet for the Salish Sea estuary; Davis
et al. 2014) and the Columbia River (Chase et al. 2007), con-
tribute to the high rates of primary productivity in the NCC.

Pseudo-nitzschia HABs in the NCC have been associated
with three retentive oceanographic features: the Juan de Fuca
Eddy, Heceta Bank, and Trinidad Head (Trainer et al. 2009,
2020; Hickey et al. 2013). The Juan de Fuca Eddy forms just
off the entrance of the Strait of Juan de Fuca during the sum-
mer (Freeland and Denman 1982; MacFadyen et al. 2008).
This feature facilitates nutrient inputs to the region through
the doming of the nutricline and enhanced cross-shelf advec-
tion of outflow from the Strait of Juan de Fuca (MacFadyen
et al. 2008). Heceta Bank, located off central Oregon, is a large
submarine bank that extends � 50 km offshore between
43.8�N and 44.6�N. A low-velocity zone is located inshore of
the bank, resulting in retention of water and accumulation
of biomass in surface waters (Barth et al. 2005). Finally, the
Trinidad Head region spans two coastal headlands: Cape
Mendocino and Cape Blanco (40.4�N–42.8�N). Upwelling is
intensified at these coastal headlands, but on their lee sides,
retentive eddies can form (Barth et al. 2000). The retentive
circulation pattern of this region has been a persistent source
of Pseudo-nitzschia HABs since 2015 (Trainer et al. 2020;
Harvey et al. 2023). The distribution and transport of these
HABs can also be affected by the Columbia River plume,

which can both retain (Kudela et al. 2010) and mitigate
blooms by inhibiting their shoreward advection to coastal
beaches where toxic Pseudo-nitzschia cells can be ingested by
razor clams (Hickey et al. 2005).

Data collection
High spatial resolution phytoplankton and environmental

data were collected during the 2019 and 2021 Integrated Eco-
system and Pacific Hake Acoustic Trawl Survey (hereafter,
Hake survey) onboard the National Oceanic and Amospheric
Adminstration (NOAA Ship Bell M. Shimada. The Hake survey
occupies 88 transects, spanning the entire US West Coast and
provides a fishery-independent estimate of Pacific Hake
(Merluccius productus) age-structured biomass and distribution,
as well as information on critical ecosystem attributes. The
survey takes place every other year during the summer
months and coincides with a period of high HAB risk in the
NCC (Trainer et al. 2009, 2020, Hickey et al. 2013).

Continuous in situ phytoplankton, pCO2, and sea surface
temperature (SST) and sea surface salinity data were autono-
mously collected by an IFCB, a General Oceanics pCO2 Measur-
ing System, and a thermosalinograph, respectively, installed
on the ship. Sensor measurements were collected in the NCC
(40–49�N) from July 9, 2019 to August 19, 2019 and July
26, 2021 to September 22, 2021. All sensors sampled from the
scientific seawater supply, which had an intake at 5-m depth,
thereby sampling the well-lit surface mixed layer where phy-
toplankton are typically most abundant. The IFCB sampled
at a rate of � 5 mL seawater every 20 min, the pCO2 Measur-
ing System sampled every 3 min, and the thermosalinograph
sampled every 10 s.

Discrete samples were manually collected from the scientific
seawater supply to characterize macronutrients, chlorophyll,
particulate DA, and Pseudo-nitzschia species composition. The
macronutrients measured were nitrate + nitrite (NO3

� + NO2
�;

hereafter, “nitrate”), orthophosphate (PO4
3�; hereafter, “phos-

phate”), and orthosilicic acid (Si[OH]4; hereafter, “silicate”).
More discrete samples were collected in 2019 (n = 166) than in
2021 (n = 60), but the spatial coverage in the nearshore upwell-
ing zone was equivalent. All discrete samples were analyzed for
macronutrients, chlorophyll, and particulate DA, but only a
subset with elevated concentrations of particulate DA and/or
the genus Pseudo-nitzschia were analyzed with scanning elec-
tron microscopy to determine the species composition.
Detailed information regarding continuous sensor data collec-
tion and the methods used to analyze discrete samples is avail-
able in the Supporting Information.

Contextual indicators of ocean conditions
Time series of indicators of marine heatwaves, upwelling,

and river discharge from the Columbia River were examined
to provide temporal context for the survey data. Marine
heatwave impacts to the survey region were assessed using
NOAA’s 1/4� Daily Optimum Interpolation Sea Surface
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Temperature (OISST). OISST is a long-term climate data record
that incorporates observations from different platforms (satel-
lites, ships, buoys, Argo floats) into a regular global grid. OISST
data (1982–2022) were used to calculate daily anomalies, and
anomalously warm events that last for five or more days with
temperatures warmer than the 90th percentile based on a
30-yr historical baseline period were classified as marine
heatwaves following the methods of Hobday et al. (2016).
OISST anomaly data were matched with the dates and coordi-
nates of the surveys. OISST data were also used by NOAA’s
California Current Marine Heatwave Tracker tool (https://
oceanview.pfeg.noaa.gov/projects/mhw) to identify the per-
centage of the exclusive economic zone in marine heatwave
status according to Hobday et al. (2016). These time-series data
were obtained for Washington (46–48�N), Oregon (42–46�N),
and Northern California (38–42�N) for 2015 and 2019. Nutri-
ent flux estimates from along-coast wind-driven upwelling
were provided by the Biologically Effective Upwelling Trans-
port Index (BEUTI; Jacox et al. 2018), which estimates vertical
transport of nitrate into the surface mixed layer. The
BEUTI value per 1� latitude was matched with dates and coor-
dinates of the surveys, and the climatological average of
those dates (1988–2022) was calculated. BEUTI values were
also used to compare upwelling conditions in 2015 and 2019
in Washington (47�N), Oregon (44�N), and Northern California
(41�N). Finally, a proxy for nutrient flux from the Columbia
River was provided by discharge data from the mouth of the
Columbia River (US Geological Survey stream gage #14246900,
Port Westward). Discharge during 2019 and 2021 were com-
pared to the seasonal climatology (1990–2022) to evaluate any
anomalies.

Data processing and analyses
A random forest machine learning classification model was

developed to automate the taxonomic identification of IFCB
images. The final classification model included 22 classes that
represented the most abundant phytoplankton in the NCC
during the summer. Of these, three were Pseudo-nitzschia classes
with different chain lengths, six were dinoflagellates, one was a
silicoflagellate, and the remaining 12 were other diatoms
(Supporting Information Table S1). Average precision and sensi-
tivity scores were 0.94 (SE = 0.01) and 0.88 (SE = 0.01), respec-
tively, across all classes. Abundances of cells in each class were
determined using the effective volume analyzed by the IFCB. A
more detailed description of classifier development is available
in the Supporting Information.

Timestamps were used to pair IFCB samples collected every
� 20 min with latitude and longitude coordinates, sensor data
(temperature, salinity, pCO2), and discrete samples (macronu-
trients, chlorophyll, particulate DA, Pseudo-nitzschia species
microscopy). IFCB matchups were exact for temperature and
salinity data and lagged by up to 3 min for the pCO2 data.
Because the time interval between discrete sample collections

was longer (� 6–12 h), matches with IFCB samples lagged by
up to 10 min.

Paired IFCB-derived Pseudo-nitzschia abundance and particu-
late DA samples were used to calculate DA cell quotas. DA cell
quotas are affected by numerous chemical variables, including
major limiting nutrients, and can provide information on envi-
ronmental conditions that promote toxin production. Despite
distances of up to 3.8 km between paired samples, the DA
cell quotas calculated in this study were within the ranges
reported by previous studies on Pseudo-nitzschia from the
NCC (Supporting Information Fig. S4; Garrison et al. 1992;
Ryan et al. 2017; Wingert and Cochlan 2021).

The mean valve width of Pseudo-nitzschia cells in each IFCB
sample was calculated from IFCB images by extracting the
“MinorAxisLength” feature using the blob and features extrac-
tion procedure (v2) from https://github.com/hsosik/ifcb-
analysis. These values were converted to real dimensions using
an estimated conversion factor of 3.81 pixels μm�1 deter-
mined from IFCB images of red-fluorescent bead standard
(5.7 μm) collected during both Hake surveys. Linear regression
analysis was performed to investigate if Pseudo-nitzschia cell
size influenced particulate DA levels.

Pearson correlation analysis was conducted to evaluate the
environmental factors associated with elevated concentrations
of Pseudo-nitzschia and particulate DA. Pairwise correlations
between Pseudo-nitzschia and temperature, salinity, and pCO2

were calculated using the continuous sensor dataset (n = 2693),
but any correlation involving particulate DA or nutrients used
the smaller discrete dataset (n = 145) due to the lower sampling
frequency of these variables. An index of nutrient limitation
was calculated using ecological stoichiometric nutrient ratios
for marine diatoms (N : Si : P; 16 : 15 : 1, Brzezinski 1985).
These ratios were log-transformed to prevent biases associated
with which element was in the denominator (Isles 2020), such
that high values of Si : N and P : N indicated nitrate limitation
relative to silicate and phosphate, respectively. Pearson correla-
tions were calculated using data collected in 2019, 2021, and
both years combined.

Outlying Mean Index analysis (Dolédec et al. 2000) was
used to characterize the realized ecological niche of Pseudo-
nitzschia relative to the 19 other taxa composing most of the
phytoplankton community. The realized ecological niche is
the set of favorable conditions under which a species survives,
grows, reproduces, and can be observed, and can be described
with two indices: marginality and tolerance. Species with high
marginality occur in less common habitats in the studied
region, whereas those with low marginality occur in typical
habitats in the region. High tolerance values are associated
with taxa occurring in a wide range of environmental condi-
tions (generalist taxa), while low values of tolerance imply
that the taxa are distributed across a limited range of envi-
ronmental conditions (specialist taxa). Outlying Mean Index
analysis was conducted using paired phytoplankton, temper-
ature, salinity, and pCO2 continuous sensor data (n = 2693);
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more details regarding this analysis are available in the
Supporting Information.

Results
Oceanographic conditions

A marine heatwave impacted nearly the entire survey
region in 2019, whereas SST conditions were near-normal dur-
ing the 2021 survey (Fig. 1a,b). On average, SSTs during the
survey period were � 2�C warmer in 2019 (15.4�C � 2.5;
Fig. 1c) compared to 2021 (13.2�C � 2.4; Fig. 1d), with the
largest SST anomalies of 3�C or more observed along
the coasts of northern Washington (� 47–48�N) and Oregon
(� 43.5–46�N; Fig. 1a). Thus, 2021 provided a climatologically
neutral comparison to the effects of the 2019 marine
heatwave on summertime concentrations of Pseudo-nitzschia
and particulate DA.

Coastal upwelling signatures were observed during both
survey years, as evidenced by cooler, saltier, higher pCO2, and
higher nutrient conditions close to shore (Figs. 1, 2). Upwell-
ing was particularly evident between 40�N and 45�N, consis-
tent with that region having the highest BEUTI values each
year (Fig. 2h). In general, BEUTI values were within normal
seasonal ranges and were similar between survey years.
Despite this, in 2019, the nearshore region from 45�N to 48�N
had a diminished coastal upwelling signature. Nutrients were
below detection limits at many of the stations sampled in this
region; 0% and 6% of these stations had detectable phosphate
and nitrate in 2019, respectively, in comparison to 32% and
55% in 2021 (values were determined from equivalent sam-
pling stations; Fig. 2).

The Juan de Fuca Eddy and the Columbia River plume
were evident in the survey data during both years. The Juan
de Fuca Eddy region can be identified by cool temperatures,
high pCO2, and elevated nutrient concentrations off the
northern Washington coast during the summer (Figs. 1, 2).
The Columbia River plume can be identified by the low-
salinity water extending offshore and to the south from the
river mouth in northern Oregon (Fig. 1e,f). Discharge from
the Columbia River was seasonally low but within the nor-
mal range (Supporting Information Fig. S2). Within the river
plume, silicate levels were elevated, reaching a maximum
concentration of 308 μM in 2019, while nitrate and phos-
phate were often undetectable (Fig. 2e–g). In contrast, in
2021, the maximum concentration of silicate was an order of
magnitude lower (25 μM), while nitrate and phosphate were
detected at most stations.

During both years, nitrate was depleted with mean values
below 10 μM, but this depletion was pronounced in 2019.
Nitrate was detected in only 23% of samples in 2019 com-
pared to 72% of samples in 2021 (values were determined
from equivalent sampling stations; Fig. 2a,b). Ecological stoi-
chiometric ratios for marine diatoms (N : Si : P; 16 : 15 : 1)
indicated that nitrate concentrations were limiting relative to
silicate and phosphate throughout the NCC. Relative to

phosphate, nitrate limitation occurred in 93% and 88% of the
samples in 2019 and 2021, respectively (Fig. 2a–d). The few
samples with phosphate limitation were dispersed throughout
Heceta Bank and the Juan de Fuca Eddy region in 2019,
whereas they were mostly located south of the Juan de Fuca
Eddy along the Washington coast in 2021. Relative to silicate,
nitrate limitation occurred in all of the samples in 2019 and
occurred in 92% of the 2021 samples; those few silicate-
limited samples in 2021 were located in the Trinidad Head
region (Fig. 2a,b,e,f).

Patterns of Pseudo-nitzschia and particulate DA
Abundances of Pseudo-nitzschia during the 2019 and 2021 sur-

veys were quantified from the 2693 IFCB samples, comprising
over 2 million images of phytoplankton, using the machine
learning classification model (Supporting Information Table S1).
Pseudo-nitzschia did not comprise a substantial fraction of the
fluorescing phytoplankton biomass during 2019 (1%) or 2021
(2%). The fluorescing phytoplankton biomass was primarily
composed of other diatoms (2019: 78%, 2021: 86%), followed
by dinoflagellates and a tiny fraction of silicoflagellates. The
mean phytoplankton standing stock, as indicated by chloro-
phyll, was � 50% lower in 2019 (3.5 � 4.6 μg L�1) than in 2021
(6.9 � 8.6 μg L�1; values were determined from equivalent sam-
pling stations; Supporting Information Fig. S3). The highest
chlorophyll values were observed along the Oregon coast, espe-
cially Heceta Bank, with maximum concentrations of 21 and
42 μg L�1 in 2019 and 2021, respectively.

Pseudo-nitzschia and particulate DA were detected at
approximately a third of stations during each survey, but
at low concentrations (10–102 cells mL�1, < 66 pg mL�1) rela-
tive to previously reported values in the NCC (103–104

cells mL�1, > 66 pg mL�1; Trainer et al. 2009; McCabe
et al. 2016, McCabe et al. 2023). To facilitate comparisons
across the study region, particulate DA (pDA) concentrations
will be referred to as low (< 66 pg mL�1), moderate
(66 < pDA < 200 pg mL�1), and high (> 200 pg mL�1)
according to the criteria used by the Pacific Northwest HAB
Bulletin (McCabe et al. 2023). Regions of elevated abundance
of the genus Pseudo-nitzschia relative to surrounding waters
(hereafter, “Pseudo-nitzschia patches”) were detected by the
IFCB in active upwelling regions and in established hotspot
sites. Particulate DA was detected within most of these pat-
ches, but was not detected at every station where Pseudo-
nitzschia was observed by the IFCB (Fig. 3a,b).

In 2019, the highest density Pseudo-nitzschia patch was
observed in the Juan de Fuca Eddy (maximum = 121
cells mL�1), but only a few stations in the eddy region had
detectable particulate DA (Fig. 3a,c,e). A lower density Pseudo-
nitzschia patch (maximum = 69 cells mL�1) was dispersed
throughout the Heceta Bank region where SST anomalies from
the marine heatwave were highest (Fig. 1a). Nearly half of the
stations in this region had detectable levels of particulate DA,
of which 16% were either moderate or high values
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(maximum = 216 pg mL�1). During the more normal condi-
tions of summer 2021, the highest density Pseudo-nitzschia
patches were found in Heceta Bank (maximum = 148
cells mL�1) and the Trinidad Head region (maximum = 154
cells mL�1), but these patches only had low particulate DA
levels. A low density Pseudo-nitzschia patch was found in the
Juan de Fuca Eddy region (maximum = 29 cells mL�1;

Fig. 3b,d,f), but this patch had the highest particulate DA con-
centration measured in this study (maximum = 392 pg mL�1).

Both summers had similar ranges of DA cell quotas
(Supporting Information Fig. S1), and regions with high
quotas and high particulate DA generally overlapped. For
example, the highest DA cell quotas were found in Heceta
Bank in 2019 (305 pg cell�1) and in the Juan de Fuca Eddy

Fig. 1. (a, b) Sea surface temperature (SST) anomalies with marine heatwave-impacted areas outlined, and continuous sensor observations of (c, d)
SST, (e, f) sea surface salinity (SSS), and (g, h) pCO2 during the 2019 and 2021 Hake surveys. Timing of survey sample collection is shown in shaded
boxes on left panels.
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Fig. 2. Surface nutrient concentrations of (a, b) nitrate + nitrite (NO3
� + NO2

�), (c, d) phosphate (PO4
3�), and (e, f) silicate (Si[OH]4) during the 2019

and 2021 surveys. The maximum color bar ranges reflect stoichiometric relationships among nutrient types for marine diatoms (N : Si : P = 16 : 15 : 1)
to clearly indicate regions of nutrient limitation. During 2019, some silicate values exceeded the color bar’s scale’s maximum within 43.5�N to 47.5�N
(dashed box), so panel (g) shows the full range of these values. Values below the limit of detection are indicated by the small gray dots. (h) Estimates of
coastal upwelling-derived nitrate flux are provided by BEUTI at 1� latitude resolution during the survey dates (data were unavailable north of 47�N). The
climatological average of BEUTI values for the same dates is shown to provide comparison (1988–2022; shaded areas).
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Fig. 3. Particulate DA (pDA) and Pseudo-nitzschia (PN) concentrations during the 2019 and 2021 Hake surveys (timing of sample collection is shown in
shaded boxes on left panels). (a, b) Particulate DA concentrations are colored according to the low, moderate, and high toxin risk levels used by the
Pacific Northwest HAB Bulletin (McCabe et al. 2023). Sites with values below the detection limit (< 6.4 pg mL�1) are indicated by the small gray dots.
IFCB-derived Pseudo-nitzschia cell concentration (c, d) maps and (e, f) stem plots highlight the spatial extent of Pseudo-nitzschia patches and maximum
concentrations, respectively. (g, h) Pseudo-nitzschia species composition was determined with scanning electron microscopy at select stations demarcated
by numbered circles in (a–d).

Fischer et al. Harmful algae response to heatwave

8



region in 2021 (214 pg cell�1). High DA cell quotas were not
significantly driven by low Pseudo-nitzschia cell abundances
(R2 = 0.01, F[1, 155] = 1.46, p = 0.23; Supporting Information
Fig. S1b), indicating that Pseudo-nitzschia patch density was
not significantly related to DA cell quotas.

Scanning electron microscopy identified seven species
of Pseudo-nitzschia that were observed each year:
Pseudo-nitzschia pungens, P. australis, Pseudo-nitzschia heimii,
Pseudo-nitzschia pseudodelicatissima, Pseudo-nitzschia multi-
series, Pseudo-nitzschia fraudulenta, and Pseudo-nitzschia
delicatissima, ordered from most to least abundant. These
taxa have varying sizes and toxin risks (Supporting Information
Fig. S5a). A medium-sized species known to have moderate
toxin risk, P. pungens, dominated the Pseudo-nitzschia patches
with low particulate DA in the Juan de Fuca Eddy in 2019 (Stas.
1–3), Heceta Bank in 2021 (Stas. 13 and 14), and Trinidad Head
in 2021 (Stas. 15–17). One of the largest and most toxigenic
species, P. australis, dominated both of the Pseudo-nitzschia pat-
ches with high particulate DA concentrations in Heceta Bank
in 2019 (Stas. 6–8) and in the Juan de Fuca Eddy in 2021 (Stas.
10 and 11; Fig. 3g,h). Although P. australis was associated with
all of the Pseudo-nitzschia patches that had high particulate DA
in this study, IFCB-derived mean Pseudo-nitzschia cell width was
not a significant predictor of particulate DA (R2 = 0.01,
F[1, 155] = 1.26, p = 0.26; Supporting Information Fig. S5).

Statistical relationships between Pseudo-nitzschia and
oceanographic conditions

In 2019, 2021, and both years combined, Pseudo-nitzschia had
significant negative correlations with temperature and pCO2, and
a significant positive correlation with salinity at p < 0.01 (Fig. 4).
Yet, the correlation coefficients were considerably stronger for
temperature (r = �0.22) and salinity (r = 0.24), than for pCO2

(r = �0.08). Pseudo-nitzschia was generally positively correlated
with nutrients and negatively correlated with nitrate limitation
relative to silicate and phosphate, but none of these relationships
were significant. Particulate DA also had significant negative cor-
relations with temperature in 2019 and both years combined at
p < 0.01, and had positive correlations with nutrients, several of
which were significant at p < 0.05 (nitrate in both years, silicate in
2021, phosphate in both years). In general, particulate DA was
negatively correlated with nitrate limitation but was significant at
p < 0.05 on only one instance. Taken together, Pseudo-nitzschia’s
highly significant correlations with temperature and salinity, and
Pseudo-nitzschia’s and particulate DA’s positive relationships with
nutrients (albeit not always significant) were consistent with the
Pseudo-nitzschia accumulations observed in upwelling zones.
Pseudo-nitzschia’s and particulate DA’s negative correlation with
nitrate limitation was also consistent with the nitrate deficit that
characterized the surface waters of the NCC during both years.

Outlying Mean Index analysis indicated that the strength of
Pseudo-nitzschia’s negative relationship with temperature and
positive relationship with salinity was comparable to the
diatom genera Thalassiosira, Nitzschia, Navicula, Asterionellopsis,

and Eucampia (Supporting Information Fig. S6). The only taxa
with a stronger affinity for these conditions was Dictyocha spp.
None of the phytoplankton taxa had a positive affinity for
pCO2, but Pseudo-nitzschia had one of the more neutral affini-
ties. Marginality and tolerance analysis indicated that Pseudo-
nitzschia was a generalist taxon that occurred over a wide range
of the observed NCC conditions but thrived in specific locali-
ties within the studied area (i.e., upwelling zones; Supporting
Information Fig. S7). Outlying Mean Index analysis results are
described in greater detail in the Supporting Information.

Appearance and persistence of marine heatwave
conditions in 2015 and 2019

The development of marine heatwave conditions in the
coastal zone and upwelling conditions were compared between
2019 and 2015, the year of the massive Pseudo-nitzschia HAB
that was associated with the 2014–2016 marine heatwave. In
2015, most of the exclusive economic zone from Northern Cali-
fornia to Washington was in marine heatwave status through-
out the year (Fig. 5, left), with marine heatwave conditions
arriving at the coast in September 2014, where they persisted
for well over a year (McCabe et al. 2016). As a result, marine
heatwave conditions coincided with the onset of the upwelling
season. Nutrient influx from upwelling (approximated by

Fig. 4. Pearson correlation heat map showing the relationships between
Pseudo-nitzschia, particulate DA, and environmental factors for 2019, for
2021, and for both years. Environmental factors include nitrate limitation
relative to silicate (Si : N) and relative to silicate (P : N). Correlations
between Pseudo-nitzschia and sea surface temperature, salinity, and pCO2

were conducted using the continuous sensor dataset (2019, n = 1248;
2021, n = 1445; both years, n = 2693). All correlations involving particu-
late DA or nutrients were conducted using the smaller discrete dataset
(2019, n = 97; 2021, n = 48; both years, n = 145). Significance at
p < 0.05 and p < 0.01 is indicated by one and two asterisks, respectively.
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BEUTI) spanned mid-April through October in 2015 in North-
ern California and was strongest during the first few months
following the spring transition. During this time, cold upwelled
waters temporarily pushed the marine heatwave offshore, tem-
porarily reducing the percentage of the exclusive economic
zone in marine heatwave status (Fig. 5, left). This same general
pattern of upwelling-derived nitrate flux occurred in Oregon
and Washington waters but was weaker and shifted towards a
shorter period. The percentage of the exclusive economic zone
in marine heatwave status reached similar values in 2019 as it
did in 2015 but appeared for only a � 3-month period that
roughly spanned July through September (Fig. 5, right). Fur-
thermore, this timing aligned with the end of the upwelling
season, after most of the nutrient influx had already occurred.
Any bloom formation would have then been further con-
strained by the very thin mixed layer that characterized the
2019 marine heatwave (Amaya et al. 2020). As such, there was
a mismatch in the appearance of warm anomalies and nutrient
availability in nearshore waters in 2019 compared to 2015.

Discussion
Summertime concentrations of Pseudo-nitzschia and partic-

ulate DA in the NCC were generally low in 2019 and 2021,
despite the presence of marine heatwave conditions in 2019.

This is in stark contrast to the massive 2015 Pseudo-nitzschia
HAB, which was associated with the 2014–2016 Northeast
Pacific marine heatwave. The absence of any notable accumu-
lations of Pseudo-nitzschia and particulate DA appears to be
due to a nitrate deficit that characterized the surface waters of
the NCC during both summers. The Pseudo-nitzschia patches
that were observed were associated with upwelled waters and
established hotspot regions (i.e., the Juan de Fuca Eddy,
Heceta Bank, and Trinidad Head) that are known to be reten-
tive, and harbor relatively higher nutrient concentrations
compared to the surrounding waters. Results from this study
suggest that nutrient availability can dampen or suppress the
response of Pseudo-nitzschia to marine heatwaves.

Widespread nitrate depletion may have limited Pseudo-
nitzschia bloom formation

Several different macronutrients and micronutrients have
been observed to limit Pseudo-nitzschia bloom formation
(e.g., Maldonado et al. 2002), and this study finds strong evi-
dence that nitrate limited Pseudo-nitzschia growth during 2019
and 2021. The low nitrate values observed during the summer
Hake surveys were also observed by biweekly oceanographic
surveys in the coastal waters off central Oregon from July
through September (Newport Hydrographic Line; data not

Fig. 5. Timing of coastal upwelling-derived nutrient influx relative to the marine heatwave coverage of the exclusive economic zone (EEZ) in 2015 (left
column) and 2019 (right column). Estimates of coastal upwelling-derived nitrate flux in Washington (WA), Oregon (OR), and Northern California (N.CA)
are provided by BEUTI at 47�N, 44�N, and 41�N, respectively. The percentage of the EEZ off the coasts of Washington (46–48�N), Oregon (42–46�N),
and Northern California (38–42�N) that are in marine heatwave status is shown.
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shown), suggesting that these conditions persisted throughout
the summer. Nitrogen is essential for the growth of
Pseudo-nitzschia (and all phytoplankton) and is also required
to synthesize DA (Bates et al. 1998). In fact, pulses of nitrogen
from upwelling, river runoff after rain events, and
resuspended sediments after wind events have all been associ-
ated with Pseudo-nitzschia blooms in the California Current
System (e.g., Wetz and Wheeler 2004; Kudela et al. 2008;
Cheng et al. 2021). A lack of nitrate can have the opposite
effect on Pseudo-nitzschia growth. Previous occurrences of
summer nitrate limitation along the Oregon coast have been
shown to suppress growth of the phytoplankton community,
of which Pseudo-nitzschia was a dominant taxon (Frame and
Lessard 2009; Kudela and Peterson 2009). While it is apparent
that widespread nitrate limitation suppressed Pseudo-nitzschia
growth during both summer surveys, it is unclear why nitrate
depletion in 2019 was so severe.

Enhanced nitrate depletion in 2019 could not be explained
by reduced upwelling because BEUTI values (approximating
nitrate-flux from wind-driven upwelling) were within normal
summer ranges for both surveys (Fig. 2h). Average upwelling
also means that enhanced retention of nutrients in the Juan
de Fuca Eddy, which would prevent nutrients from leaking
from the eddy and being entrained in the southward flowing
California Current, cannot explain the nitrate depletion on
the Washington coast (MacFadyen et al. 2008). Nor can it be
explained by nitrate drawdown from enhanced phytoplank-
ton growth because chlorophyll levels were lower in 2019
compared to 2021 (Supporting Information Fig. S3). One
potential explanation is an interaction between upwelling and
the marine heatwave. The convergence of cold, nutrient-rich,
freshly upwelled waters from the coast with warmer waters
from offshore generates SST fronts. At these fronts, density dif-
ferences can cause upwelled waters to subduct below the
warmer waters, thereby reducing the surface expression of
nitrate flux (Kadko et al. 1991; Evans et al. 2015). A recent
study found that the 2019 marine heatwave constrained an
upwelling-induced phytoplankton bloom to Oregon’s near-
shore zone during the same time as the Hake survey and pro-
posed that water mass density differences reduced cross-shelf
transport and enhanced subduction of upwelled waters (Black
et al. in press). Enhanced subduction of upwelled waters
would be consistent with the strong downward heat fluxes
and very shallow mixed layer that characterized the 2019
marine heatwave (Amaya et al. 2020). This proposed mecha-
nism is consistent with the observed narrowing of the upwell-
ing zone (Fig. 1c) and lack of nitrate in surface waters (Fig. 2a)
from 45�N to 48�N in 2019, but further investigation is
needed to explore this during future marine heatwaves.

A warm anomaly does not necessarily equate to a Pseudo-
nitzschia HAB

McCabe et al. (2016) reports Pseudo-nitzschia and particu-
late DA concentrations from the 2015 Hake survey, which

captured part of the massive HAB that was linked to the
2014–2016 Northeast Pacific marine heatwave. This serves as a
comparison for values detected during the 2019 marine
heatwave in this study. During the 2015 survey, maximum
abundances of Pseudo-nitzschia were on the order of 103

cells mL�1 (McCabe et al. 2016), which is an order of magni-
tude higher than the maximum abundances observed during
the 2019 and 2021 surveys (Fig. 3e,f). Of note, Pseudo-nitzschia
was quantified using conventional microscopy in 2015,
whereas the IFCB was used in 2019, which may have contrib-
uted to some differences. An even starker difference, however,
is apparent by comparing particulate DA concentrations,
which were collected and measured using the same method
across years. In 2015, particulate DA reached 4000 pg mL�1

(McCabe et al. 2016), but in 2019 it reached only 300 pg mL�1

(Fig. 3a,b). Total DA was presumably higher due to contribu-
tions from the dissolved pool (Cochlan et al. 2023). Despite
the presence of marine heatwave conditions during both the
2015 and 2019 Hake surveys, Pseudo-nitzschia and particulate
DA values were considerably lower in 2019.

Fishery closure data due to DA contamination were consul-
ted to determine whether the 2019 Hake surveys may have
missed any HAB activity outside of the summer snapshot they
provided. In contrast to 2015, which had geographically
extensive and prolonged fishery closures, there was only one
fishery closure in 2019 on the Oregon coast that was due to
legacy toxins retained in razor clam tissues from the year
before (Harvey et al. 2020). Taken together, the Hake survey
and fishery closure data definitively show that despite the
presence of marine heatwaves in both 2015 and 2019, a
Pseudo-nitzschia HAB only occurred in the former year.

This study hypothesizes that the absence of a HAB in 2019
was due to a mismatch in timing of when the marine
heatwave made its way to the coast and when ample nutrients
from coastal upwelling were available to fuel a bloom in the
nearshore surface waters. Both the 2014–2016 and 2019
marine heatwaves produced surface waters in the Northeast
Pacific that were 2–3�C warmer than the climatological mean
(McCabe et al. 2016; Chen et al. 2021), but those surface
waters were also nutrient-depleted. While the warmer waters
allow highly toxigenic species like P. australis to expand their
geographic range northward and enhance growth rates, a
Pseudo-nitzschia HAB cannot develop without the large input
of nutrients from upwelling. The 2019 marine heatwave cov-
ered the majority of the NCC’s coastal zone from mid-July
through September, after most of the upwelling-derived nutri-
ent influx had occurred (Fig. 5). In contrast, the 2014–2016
marine heatwave arrived at the coastal zone in the autumn
(September 2014), well before the 2015 spring upwelling tran-
sition, where it persisted for over a year (Fig. 5; McCabe
et al. 2016). The overlap of marine heatwave conditions with
peak seasonal upwelling in 2015 would have provided replete
nutrient conditions for Pseudo-nitzschia growth at warm
anomaly-enhanced rates, as was observed in Monterey Bay
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(McCabe et al. 2016; Ryan et al. 2017). The persistence of the
2014–2016 marine heatwave along the coast also allowed
P. australis to expand its range northward before the nutrient
injection from upwelling (McCabe et al. 2016). These differ-
ences in the appearance of marine heatwave conditions in the
nearshore relative to upwelling suggest that warm anomalies
need to be present before and during the seasonal transition
to upwelling conditions for a Pseudo-nitzschia HAB to occur.

Complex responses of Pseudo-nitzschia growth and toxin
production to ocean acidification

Examining the effects of ocean acidification on Pseudo-
nitzschia is notoriously difficult because increased pCO2 can
benefit carbon acquisition for photosynthesis, while acidified
waters can exceed physiological tolerances and cause cellular
stress (Beardall and Raven 2004; Hutchins and Fu 2017).
Laboratory studies have reported varied responses of Pseudo-
nitzschia growth and toxin production to ocean acidification
and demonstrated that nutrient availability and growth stage
can modulate responses (e.g., Lundholm et al. 2004; Tatters
et al. 2012; Wingert and Cochlan 2021). It is even more difficult
to examine the response of Pseudo-nitzschia to ocean acidifica-
tion in situ, particularly in a dynamic upwelling system like the
NCC, due to variations in pCO2 from both physical and biologi-
cal processes and interactions with other environmental factors
that cannot be controlled.

Pseudo-nitzschia abundance had a significant negative
correlation with pCO2, although it was weak (Fig. 4). In fact, all
phytoplankton taxa were found to prefer low pCO2 conditions
(Supporting Information Fig. S6). At first blush, this seems
contradictory because both pCO2 and Pseudo-nitzschia were
associated with upwelling conditions. Two possible explana-
tions for this result are: (1) high primary production in upwell-
ing regions drawing down CO2, and (2) insufficient time for
Pseudo-nitzschia to respond to freshly upwelled water with high
pCO2 in the nearshore. Phytoplankton require CO2 for photo-
synthesis, thus low pCO2 levels in freshly upwelled waters can
be indicative of inorganic carbon drawdown due to high
primary production (e.g., Evans et al. 2015). Under upwelling
conditions, Ekman transport brings nutrient-rich (and high
pCO2) waters to the sunlit surface waters where phytoplankton
can utilize them for growth, but also exports phytoplankton
offshore (Wilkerson and Dugdale 1987; Mann 2000). This
results in a unimodal (“dome-shaped”) relationship between
upwelling-favorable wind stress and shelf chlorophyll concen-
trations (Botsford et al. 2003). In the NCC, this chlorophyll
curve is shifted towards the shelf side to reflect additional nutri-
ent sources not related to wind stress, such as the Strait of Juan
de Fuca and Columbia River (Stone et al. 2020). Indeed, cross-
shelf patterns of pCO2, Pseudo-nitzschia, and the phytoplankton
community during the 2019 and 2021 Hake surveys are consis-
tent with this dome-shaped relationship. The highest values of
pCO2 were in the nearshore where upwelled waters were fresh-
est, and declined with distance offshore, due to processes such

as phytoplankton uptake, outgassing, and mixing (Supporting
Information Fig. S4a; Fassbender et al. 2011). Both the highest
Pseudo-nitzschia abundances and phytoplankton biomass were
located between the nearshore and mid-shelf, reflecting the
balance of nutrient availability and offshore transport during
upwelling (Supporting Information Fig. S4b,c). Particulate DA
had a weak positive correlation with pCO2; however, this
relationship was not significant and was largely driven by a
small number of high particulate DA values. High pCO2 has
been found to enhance DA production in laboratory studies
(Sun et al. 2011; Tatters et al. 2012; Wingert and Cochlan 2021),
but such a conclusion cannot be drawn from the field data col-
lected during this study.

Autonomous instrumentation can provide new insights
into HABs

The integration of autonomous sensors on the Hake survey
generated high spatial resolution data to examine Pseudo-
nitzschia’s response to environmental stressors over large spatial
scales. By leveraging this fishery survey, data were collected for a
fraction of the cost that would have been incurred on dedicated
oceanographic research cruises. Sensor data identified Pseudo-
nitzschia patches associated with regional oceanographic fea-
tures, which were then targeted with discrete samples to identify
the species present and the nutrient conditions, as well as which
patches were “hot” with particulate DA (or not). This strategic
use of a limited number of the more labor-intensive, manually
collected, discrete samples further increased efficiency. This
paired sampling approach revealed that P. australis, a highly
toxigenic species, was dominant in the regions with the highest
particulate DA concentrations (i.e., Heceta Bank in 2019 and
the Juan de Fuca Eddy in 2021). These data also highlighted
Pseudo-nitzschia’s association with upwelled waters, which has
been shown on smaller sub-regional scales in the California
Current System (e.g., Trainer et al. 2012; Smith et al. 2018;
Sandoval-Belmar et al. 2023). Unlike other studies, however,
these high spatial resolution sensor observations revealed that
Pseudo-nitzschia has one of the highest affinities for upwelling
conditions compared to other members of the phytoplankton
community (Supporting Information Fig. S6). The consistent
spatial footprint of the Hake survey every two years will permit
the accumulation of a long-term time series to improve our
understanding of Pseudo-nitzschia’s response to an NCC increas-
ingly impacted by climate change.

A limitation to pairing autonomous sensor data from the
IFCB with discrete samples of particulate DA, nutrients, and
Pseudo-nitzschia species composition was a mismatch in the
timing. The IFCB collected a sample approximately every
20 min, while discrete samples of particulate DA and nutrients
were collected at predetermined sites and not always when
the IFCB collected a sample. Even though samples were only
paired if they were taken less than 10 min apart, this still
resulted in mismatches of up to 3.8 km. Due to the spatial het-
erogeneity of water masses, future sampling from fishery
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vessels should strive to collect IFCB and discrete samples from
the same station. These paired measurements will greatly
improve our ability to confidently draw conclusions regarding
the relationship between nutrient limitation, Pseudo-nitzschia,
and particulate DA in situ.

The snapshot of the NCC captured by the 2019 and 2021
Hake surveys enabled high spatial resolution mapping of the
phytoplankton community and important environmental fac-
tors over a large geographic domain but lacked high temporal
resolution. As such, this study relied on indices of ocean pro-
cesses, such as BEUTI, to provide temporal context for inter-
preting results. Pairing high spatial resolution data from
mobile observatories, such as the fishery survey vessels in this
study, with high temporal resolution data from fixed plat-
forms within the sampling domain is a powerful combination
that would better facilitate examination of the mechanisms
that lead to Pseudo-nitzschia bloom development, as well as
HAB monitoring and forecasting. To meet the objective of
data production and integration on the appropriate temporal
and spatial scales, coordination of HAB observing efforts by
multiple entities will be key. In the United States, this high-
level coordination is being facilitated by the National HAB
Observing Network (Hurst et al. 2020). Furthermore, new
insights into HAB dynamics are being revealed through
advancement of autonomous sensors. For example, the Envi-
ronmental Sample Processor is an electromechanical fluidics
system that can remotely and autonomously monitor HAB
species, DA, and other HAB toxins (Scholin et al. 2009; Doucette
et al. 2009; Moore et al. 2021), and more recently has been used
to collect and archive samples to examine the expression of
toxin biosynthesis genes (Den Uyl et al. 2022; Thukral et al. In
press). Some of these sensors are being integrated into uncrewed
vehicles (e.g., Tethys-class long-range autonomous underwater
vehicles, Saildrones), showing promise for increasing data avail-
ability across large spatial areas (Den Uyl et al. 2022; Preston
et al. 2024). With a framework to integrate new and existing
HAB observing capabilities effectively and efficiently, including
the targeted use of advanced autonomous sensors, data at the
necessary temporal and spatial scales will increasingly become
available to tease apart the effects of multiple stressors on HABs
in dynamic environments.

Conclusion
The interacting effects of multiple stressors in a dynamic

upwelling system may result in unforeseen changes to Pseudo-
nitzschia HABs in the NCC. Thus, studies that produce big data
on highly resolved spatial and temporal scales are needed to
unravel the complexity of Pseudo-nitzschia’s response to these
changing conditions in situ. This study demonstrates the
value of high spatial resolution data collected by autonomous
instrumentation installed on fishery survey vessels, showing
that widespread nitrate limitation suppressed the develop-
ment of Pseudo-nitzschia HABs during 2019 and 2021, despite

the presence of marine heatwave conditions in 2019. Compar-
ison between the conditions observed in 2019 and in 2015,
the year of the massive Pseudo-nitzschia HAB linked to the
2014–2016 Northeast Pacific marine heatwave, suggests that
the timing of warm anomalies in the coastal zone relative to
the onset of upwelling conditions may be important for HAB
development. This finding highlights the complexity of fac-
tors needed to sustain Pseudo-nitzschia HABs in upwelling sys-
tems, beyond the presence of warm anomalies. This study also
provides a glimpse into the power of IFCB data for examining
interactions between the genus Pseudo-nitzschia and the rest of
the phytoplankton community. As IFCB data accumulates in
the NCC, the opportunity for rigorously exploring the role of
biotic interactions in Pseudo-nitzschia bloom development will
increase. Future studies coupling autonomous data collection
from fixed and mobile platforms on expanded temporal
and spatial scales will build upon the data presented here to
elucidate the mechanisms behind the response of Pseudo-
nitzschia to climate stressors in the dynamic NCC system.

Data availability statement
Environmental sensor data that support the findings of this

study are openly available from NOAA Fisheries InPort at
https://www.fisheries.noaa.gov/inport/item/18471, GUID: gov.
noaa.nmfs.inport:18471. Imaging FlowCytobot data and dis-
crete data are available from the corresponding author upon
reasonable request.
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