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Abstract Regional hydrological sensitivity (i.e., precipitation change per degree local surface warming)
contributes substantially to the uncertainty in future precipitation projections over tropical oceans. Here, we
investigate the sensitivity of relative precipitation (P*, precipitation divided by the basin average precipitation)
to local sea surface temperature (SST) change by dissecting it into three components, namely the sensitivity of
P* to relative SST (SSTrel, SST minus the tropical mean SST) changes, the sensitivity of P* to surface
convergence changes, and the sensitivity of surface convergence to SST gradient changes. We show that the
relationships between P* and SSTrel, and between P*, surface convergence, and SST gradients are largely
constant during climate change. This allows us to constrain regional hydrological sensitivity based on present‐
day SST‐precipitation relationships. The sensitivity of surface convergence to SST gradient changes is a main
source of uncertainty in regional hydrological sensitivity and is likely underestimated in GCMs.

Plain Language Summary Understanding how precipitation will change over tropical oceans is
important because these changes influence the atmospheric circulation, which in turn affects the global climate
and weather patterns. Climate models disagree on their projections of precipitation changes over tropical oceans
in part due to a lack of understanding on how precipitation should respond to a given amount of local surface
warming. We find that the sensitivity of precipitation to future changes in local sea surface temperature (which
is commonly referred to as regional hydrological sensitivity) largely depends on the present‐day relationship
between precipitation and local sea surface temperature, as well as that between precipitation and the spatial
gradient in sea surface temperature, and both relationships are observable and thus can serve as constraints. We
find that inter‐model differences in regional hydrological sensitivity result primarily from differences in the
response of surface winds to sea surface temperature gradient changes.

1. Introduction
Tropical precipitation is a main component of the global hydrological cycle. Both tropical land and oceanic
precipitation changes have far‐reaching implications on the global climate system via atmospheric tele-
connections (e.g., Chen et al., 2020; Lu et al., 2023). The projection of future tropical precipitation is highly
uncertain at regional scales (Lee et al., 2021). The uncertainty in regional precipitation over tropical oceans is
often attributed to the uncertainty in sea surface temperature (SST) changes (Kent et al., 2015; Ma & Xie, 2013),
because precipitation changes spatially follow local SST changes (S.‐P. Xie et al., 2010). But SST is only half of
the equation. Chadwick (2016) showed that a considerable portion of the inter‐model spread in tropical pre-
cipitation changes persist when the models are driven by the same SST changes (Figures 1a and 1b). This suggests
that the uncertainty in regional precipitation changes (δP) is not only associated with local SST changes (δSST),
but likely precipitation sensitivity to local SST changes (δP/δSST) as well. However, regional hydrological
sensitivity (which describes precipitation change per degree local surface temperature change) has not been
thoroughly studied.

On the other hand, there has been great interest surrounding the global and tropical mean hydrological sensitivity
due to its substantial variance among climate models (DeAngelis et al., 2015; Su et al., 2017; Watanabe
et al., 2018; J. Zhang & Huang, 2023). The tropical mean hydrological sensitivity (often calculated as the per-
centage change in tropical mean precipitation per degree tropical mean surface warming) varies by roughly a
factor of three among the Coupled Model Intercomparison Project (CMIP) models (He & Soden, 2015). Means to
constrain the projected tropical mean hydrological sensitivity have been explored in recent studies (Ham
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et al., 2018; Park et al., 2022). In comparison, regional hydrological sensitivity has received far less attention.
However, because the broader impacts of tropical precipitation changes depend more on the regional distribution
rather than the tropical mean of such changes (Lu et al., 2023), understanding regional hydrological sensitivity is
important from both scientific and pragmatic points of view.

While regional hydrological sensitivity to future warming has been underexplored, it is useful to review pre-
cipitation sensitivity to internal SST variations, where climate models were found systematically biased (Good
et al., 2020). Because internal precipitation variability is driven by a multitude of factors, a major challenge in
quantifying precipitation sensitivity to internal SST variability is to derive a physically meaningful relationship
between precipitation anomalies and SST anomalies (Graham& Barnett, 1987; Lau et al., 1997; C. Zhang, 1993).
He et al. (2018) found that the equations that determine precipitation sensitivity to internal SST variability are the
same as those governing the climatological mean SST‐precipitation relationship. This means that the response of
precipitation per degree internal SST variation is determined by the variation in climatological precipitation per
degree climatological SST variation (i.e., the slope of climatological precipitation in SST space, Figures 2a and
2b). The implication of such a finding is that during internal climate variations, changes in SSTs result in a
geographical reshuffling of convective and non‐convective areas while the SST‐precipitation relationship re-
mains constant. This allows us to constrain models' precipitation sensitivity to internal SST anomalies by using
the observed climatological SST‐precipitation relationship.

Although precipitation responds differently to internal and anthropogenic SST variations (e.g., Kramer &
Soden, 2016), it has been reported that certain aspects of SST‐precipitation relationship should remain constant
during climate change. For example, Johnson and Xie (2010) examined the tropical mean SST‐precipitation
relationship and argued that the present‐day and future relationship between precipitation and relative SST
(SSTrel, defined as SST minus the tropical mean SST) is roughly the same (their Figure 3a). But this gets
complicated when the three tropical basins are examined separately. As shown in Figures 2a and 2b, the SSTrel‐
precipitation relationship is different and responds differently to warming among the three basins.

Why does the SSTrel‐precipitation relationship vary among regions and what drives its future changes? Because
the upper tropospheric temperature is largely uniform in the tropics, changes in precipitation are determined
predominantly by local changes in boundary‐layer moist static energy (MSE0, Xie et al., 2010). Given the fact
that the upper troposphere warms commensurately with the tropical mean MSE0 changes (Johnson & Xie, 2010),
one may expect a constant relationship between precipitation and relative MSE0 (MSE0rel, i.e., MSE0 scaled by
the tropical mean MSE0) under warming, which has been identified in GCMs (He, Lu, et al., 2024). Because
MSE0rel is essentially a function of SSTrel and boundary‐layer relative humidity (RH0), and given the constancy
in the MSE0rel‐precipitation relationship, spatial variations and future changes in the SSTrel‐precipitation rela-
tionship are determined by RH0. Inter‐basin differences in RH0 changes resulting largely from land‐sea moisture
transport cause diverging hydrological sensitivity among tropical basins (He, Lu, et al., 2024). The effect of this

Figure 1. Inter‐model standard deviation of precipitation changes (in mm/day) from the coupled 1pctCO2 (a) and uncoupled amipAll (b) simulations and the 2‐mode
model based on changes in the amipAll simulation (c)–(f). Panel c represents the total inter‐model spread captured by incorporating inter‐model variations in all
parameters and input variables in the 2‐mode model. Panels d represents the inter‐model spread associated with SC by only incorporating inter‐model variations in SC
while setting all other components of the 2‐mode model (including parameters a and A) to their corresponding multi‐model mean values. Panels e and f are the same as
d except that they represent the inter‐model spread associated with parameter a and A, respectively.
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on the SSTrel‐precipitation relationship can be accounted for by considering relative precipitation (P*, i.e., P
divided by the basin mean P), which appears constant with warming in SSTrel space (Figure 1d). Within each
basin, changes in surface convergence (SC) resulting from SST gradient changes (Duffy et al., 2020) drive RH0
changes and thus determine the sensitivity of P* to local sea surface warming (see Figure S1 in Supporting In-
formation S1, adapted from He, Lu, et al., 2024).

Therefore, the SSTrel‐P* relationship and its future changes can be understood by analyzing changes in the in-
teractions between SSTrel, SC, and P*. Specifically, both SSTrel and SC affect P*, and SSTrel affects SC via the
formation of SST gradients (Back & Bretherton, 2009b; Lindzen & Nigam, 1987) – all three processes are
incorporated into the SSTrel‐P* relationships shown in Figures 2c and 2d. Here, we aim to quantify these pro-
cesses by using a 2‐mode model where precipitation is expressed as a function of SST and SC, and the latter is
linked to SST gradients (Back & Bretherton, 2009a; Duffy et al., 2020). We hypothesize that the effects of SSTrel

and SC on P* and the effects of SST gradients on SC do not change under warming. If valid, this would allow us to
constrain regional hydrological sensitivity based on the present‐day SST‐precipitation relationship.

In this paper, we first describe a modified version of the 2‐mode model (Section 3), which allows us to delineate
regional hydrological sensitivity by partitioning it into three components, namely, (a) sensitivity of P* to SSTrel

changes (∂P∗
/∂SSTrel

), (b) sensitivity of P* to SC changes (∂P∗
/∂SC), and (c) sensitivity of SC to SST gradient

Figure 2. (a)‐(b) Basin precipitation averaged for 0.1 SSTrel bins from observations (a) and CMIP6 multi‐model mean
historical and ssp585 simulations (b). SSTrel bins that account for less than 0.5% of the basin area are shown in
semitransparent colors. (c)‐(d) Same as (a)‐(b) but for relative precipitation. (e)‐(f) ssp585 multi‐model mean changes in
relative precipitation (unit: 1) as a function of SSTrel and SC (e) and as a function of SSTrel and ‐∇

2SST (f). Panels e and f use
the same colorscale as that in Figure 4.
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changes. We then examine components (a) and (b) in Section 4 and component (c) in Section 5. The implications
and limitations of our results will be discussed in Section 6.

2. Data
We use monthly data from observations and CMIP simulations. All data sets are interpolated onto a common 1°
by 1° horizontal grid and a 19‐level pressure coordinate before they are analyzed.

The observed SST data is a merged product based on the Hadley Center SST data set version 1 and the National
Oceanic and Atmospheric Administration optimum interpolation SST analysis version 2 (Hurrell et al., 2008).
The data ranges from 1979 to 2021 and is archived at 1° resolution. To account for the uncertainty in individual
precipitation observations, we average three widely used precipitation data sets: (a) the Global Precipitation
Climatology Project (GPCP) data version two from 1979 to 2021 at 2.5° resolution (Adler et al., 2003), (b) the
Climate Prediction Center Merged Analysis of Precipitation (CMAP) data from 1979 to 2021 at 2.5° resolution
(P. Xie & Arkin, 1997), and (c) the Tropical Rainfall Measuring Mission Project (TRMM) 3B43 data version 7
from 1998 to 2019 at 0.25° resolution (Huffman et al., 2010).

We use 3D atmospheric variables, including horizontal and vertical winds, air temperature and geopotential
height from reanalysis data during the period of 1979–2021. To minimize the effect of uncertainty within indi-
vidual data sets, we average three widely used reanalysis data sets: (a) ERA5 (the fifth generation of the European

Figure 3. Relationships between present‐day a and b (a), present‐day and future a (b), present‐day and future A (c), present and future D (d) based on the historical and
ssp585 simulations. Small dots represent individual GCMs and vertical lines in corresponding colors represent the multi‐model mean. Inter‐model correlation
coefficients are shown by texts. Observations are represented by the large dots in panel a and by vertical lines in panels b, c, and d in lighter colors. The 95% uncertainty
range is represented by the crosses for the individual GCMs in a‐c and observations in panel a and is represented by the semitransparent shading for the observations in b‐
c. In panel d, the observed D values for the South Equatorial Indian Ocean and the eastern Pacific ITCZ region are virtually identical, both at roughly 0.95. Panel e is a
scatter plot of the inter‐model spatial correlation of present SC (x‐axis) and that of SC changes (y‐axis) over tropical oceans based on the uncoupled simulations.
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Center for Medium‐Range Weather Forecasts reanalysis) on a 30 km horizontal grid and 137 vertical levels
(Hersbach et al., 2020), (b) NCEP/DOE‐II (the National Center for Environmental Prediction and Department of
Energy Reanalysis II) at 2.5° resolution with 17 vertical levels (Kanamitsu et al., 2002), and (c) JRA‐55 (the
Japanese 55‐year Reanalysis) at roughly 1° resolution with 37 vertical levels (KOBAYASHI et al., 2015).

We analyze the historical and ssp585 simulations from 43 CMIP6 models. We use the last 30 years (1985–2014)
of the historical simulation to evaluate models against observations and to provide a baseline for future changes.
The projected future climate is calculated based on the last 30 years (2071–2100) of the ssp585 simulation, which
represents the upper boundary of the range of emission scenarios included in CMIP6 (Eyring et al., 2016).

In Figure 1a, the coupled precipitation changes are calculated as the difference between year 121–150 and year 1–
30 of the 1pctCO2 simulation, where the atmospheric CO2 concentration increases at 1% per year starting from
the pre‐industrial level. To exclude the effect of inter‐model differences in SSTs, we also analyze uncoupled
atmosphere‐only simulations where SSTs are kept the same across models. We use the amip simulation as the
uncoupled baseline, which is driven by observed (1979–2014) monthly SST and sea ice concentrations. The
uncoupled future simulation (amipAll) contains rising CO2 and projected changes in SST (from CMIP3,
1pctCO2) on top of the baseline. amipAll is constructed by linearly combining the amip‐4 x CO2 and amip‐
future4K simulations scaled to match the CO2 forcing in the 1pctCO2 simulation, following He, Lu,
et al. (2024). Nine CMIP5 models and 11 CMIP6 models are used for the 1pctCO2 and uncoupled simulations.
Table S1 in Supporting Information S1 lists the models and the realizations analyzed.

3. 2‐Mode Model
We apply a 2‐mode model to dissect precipitation driven by SST amplitude and SST gradient. The 2‐mode model
was originally created by Back and Bretherton (2009a). “2‐mode” refers to the fact that most of tropical pre-
cipitation is associated with either a shallow or a deep vertical velocity profile (Figure S2 in Supporting Infor-
mation S1). The shallow mode features maximum updraft in the boundary layer. The bottom‐heavy structure is
associated with strong boundary layer wind convergence which is driven by low‐level pressure gradients that
result from the gradients of the underlying SSTs (Back & Bretherton, 2009b; Lindzen & Nigam, 1987). The
shallow mode is the main form of precipitation in the Eastern Pacific convergence zone where SST gradients are
sharp. The deep mode peaks in the upper troposphere and can be attributed to atmospheric instability driven by a
high amount of near surface moist static energy (MSE, Back & Bretherton, 2009a). It is therefore strongest in the
warm pool regions but can also be affected by SST gradients, which influence low‐level MSE by generating
moisture convergence (Duffy et al., 2020). In the 2‐mode model, the effect of SST gradients is often represented
by boundary‐layer wind convergence (i.e., SC, calculated as − ∇(u925hPa, v925hPa), where u925hPa and v925hPa are
925 hPa horizontal winds) rather than SST gradients themselves (i.e., − ∇2SST) due to the spatial noisiness in the
latter. While SC is predominantly driven by SST gradients (Back & Bretherton, 2009b), the two do not align
perfectly (Figure S3 in Supporting Information S1). Here, the 2‐mode model is used to attribute precipitation to
SST and SC, and link between SC and SST gradients will be discussed separately in Section 5.

Our 2‐mode model largely follows that of Duffy et al. (2020), but with the incorporation of inter‐basin differences
in SST‐precipitation relationships which lead to substantial error reduction. We will use the 2‐mode model to
simulate P*, which is the constrainable component of tropical precipitation changes (as we will later show). The
main steps of the 2‐mode model are outlined below. We direct the readers to Back and Bretherton (2009a) and
Duffy et al. (2020) for details of the calculation, while pointing out the modifications made herein.

Tropical precipitation at the regional scale is balanced mainly by the column integrated vertical advection of dry
static energy (Back & Bretherton, 2009a):

LP∗ = ⟨ω
∂s
∂p
⟩
/[P] + r (1)

where L is the latent heat of condensation, P is precipitation, P* is relative precipitation (i.e., P divided by the
basin mean precipitation, [P]), ω pressure velocity, s dry static energy, p pressure, and < > a pressure weighted
vertical integral over an atmospheric column. The residual term (r) represents the sum of horizontal advection of
s, eddy transport of s, surface sensible heat flux, and the atmospheric radiative cooling (i.e., the difference
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between surface and top of the atmosphere radiation), all normalized by [P]. r has little spatial variation and is
roughly equal to 1.

Equation 1 links precipitation to vertical velocity (ω); the latter is dissected into a deep mode (subscript d) and a
shallow mode (subscript s):

ω ≈ odΩd + osΩs (2)

where Ω(p) describes the vertical profiles of each mode and o(x,y,t) describes the spatial and seasonal variation.
The deep and shallowmodes are determined based on a linear combination of the first two EOFmodes ofω, while
ensuring that the shallow mode has zero surface convergence and the deep mode is orthogonal to the shallow
mode (Back & Bretherton, 2009a).

Following previous 2‐mode models, we also separate r into deep and shallowmodes by linear multiple regression:

r ≈ odRd + osRs + R0 (3)

where Rd, Rs, and R0 are constant regression coefficients. While it is unclear how r is physically linked to od and
os, Equation 3 is calculated solely for the mathematical purpose that both terms on the rhs of Equation 1 are
dissected into deep and shallow modes. Combining Equations 1–3 yields the deep and shallow modes of P*:

LP∗ ≈ LP∗
d + LP∗

s + R0, where LP∗
d = (⟨Ωd

∂s
∂p⟩/[P] + Rd) od and LP∗

s = (⟨Ωs
∂s
∂p⟩/[P] + Rs) os. Spatial pat-

terns of the deep and shallow precipitation are shown in Figure S4 in Supporting Information S1.

The shallow mode of P* is related to SC by linear regression:

P∗
s ≈ AsSC + Cs (4)

where As and Cs are regression coefficients.

The deep mode of P* is related to SST amplitude and SC by multiple regression

P∗
d ≈ b × exp(a× SSTrel) + AdSC + Cd (5)

where a, b, Ad and Cd are regression coefficients, determined via a nonlinear least squares analysis based on the
trust region method (Conn et al., 2000). Note that SSTrel and SC are spatially correlated (at roughly 0.6 in
observation/reanalysis and CMIP6models), which likely affects the partition of Pd. We consider this an important
limitation of the 2‐mode model and will discuss its implications in Section 6.

Previous 2‐mode models assumed that the SSTrel‐driven Pd is zero below a certain SST threshold and grows
linearly with SST above the threshold. This appears somewhat inconsistent with the actual SST‐P relationship,
which shows gradual and nonlinear precipitation growth throughout the SST space (Figures 2a and 2b).
Therefore, we use an exponential function (i.e., b × exp (a × SSTrel)) to represent the SSTrel‐driven Pd. On the
other hand, we are dealing with two SSTrel parameters (i.e., a and b). The two parameters both contribute
positively to the SSTrel‐driven Pd but are negatively correlated among models (Figure 3a). The way a and b are
correlated indicates that this may be an artifact of the fitting process and that the two parameters may provide
similar functionalities. To simplify the interpretation of the parameters, we set b constant while only allowing a to
vary among models. Specifically, we estimate both a and b for the observations. But for CMIP6 models, b is
prescribed for each basin as the observed values for both present‐day and future simulations. This is consistent
with Good et al. (2020) who applied a similar exponential function and proposed that precipitation sensitivity to
SST should be represented by the coefficient within the exponent. Nevertheless, whether a or b is made the
effective SSTrel parameter does not affect our conclusions.

The main modification with respect to previous 2‐mode models is that the partition of deep and shallow modes
(Equations 2 and 3) and the subsequent attribution to SSTrel and SC (Equations 4 and 5) are done separately for
each basin rather than the entire tropical oceans. This is motivated by the fact that the three tropical basins have
different SST‐precipitation relationships (Figures 2a–2d). This results primarily from the basins' interaction with
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nearby land, which causes inter‐basin differences in boundary‐layer humidity and ultimately, differences in
boundary‐layer MSE for a given SST (He, Lu, et al., 2024). Consequently, the three basins have different profiles
of deep and shallow convection (Figure S2 in Supporting Information S1) and yield different coefficients in the 2‐
mode model (Figure 3a). With the addition of inter‐basin variations, the rmse for the estimated observed pre-
cipitation is substantially reduced to 0.89 mm/day, compared to that of 2.30 mm/day in Back and Breth-
erton (2009a) and 2.08 mm/day in Duffy et al. (2020). This suggests that incorporating regional variations in
boundary‐layer moisture that cannot be accounted for by local SSTs and SC could increase the accuracy of the 2‐
mode model.

Next, we dissect P* into components driven by SSTrel and SC:

P∗ ≈ P∗(SST) + P∗(SC) + Cd + Cs + R0/L (6)

where P*(SST ) = b × exp (a × SSTrel), and P*(SC) = (Ad + As)SC. Note that the observed precipitation is
partitioned by using atmospheric variables from reanalysis data. Therefore, inconsistencies between observation
and reanalysis data may result in poor fitting and potential underestimations of parameters. On the other hand, the
2‐mode model exhibits similar levels of accuracy when applied to observed and CMIP6 precipitation (Figure S5
in Supporting Information S1).

The 2‐mode model captures the CMIP6 multi‐model mean P* changes reasonably well (Figures 4a and 4b). The
most notable inconsistencies appear in the Equatorial regions, which is also an issue for the previous 2‐mode
model (Figure 2 of Duffy et al., 2020). Consistent with Duffy et al. (2020), SC plays a substantially greater
role in the projected tropical precipitation changes than SSTrel (Figures 4c and 4d). Note that Duffy et al. (2020)
attributed a portion of precipitation changes to the “wet‐get‐wetter” effect (their Figure 2d), which is absent here
because we only consider changes in P* rather than P.

Figure 4. (a)‐(b) ssp585 multi‐model mean P* changes from GCMs (a) and the 2‐mode model (b). (c)‐(d) Multi‐model mean
P* changes due to changes in SST (c) and SC (d) from the 2‐mode model. (e) Multi‐model mean P* changes from the 2‐mode
model by using GCMs' historical parameters (e).
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4. Precipitation Sensitivity to Anthropogenic SSTrel and SC Changes
As shown in Figures 3b and 3c, the present and future values of 2‐mode model parameters are similar in amplitude
and highly correlated among GCMs. Parameter a tends to be slightly lower at present‐day, while the opposite is
true for parameter A (A = Ad + As). Nevertheless, the differences between present‐day and future parameters are
substantially smaller than the parameters themselves. In Figure 4e, we estimate P* changes by using the present‐
day parameters to calculate P* in both historical and ssp585 simulations. The resulting P* changes are very
similar to those in Figure 4b, with some exceptions in the Atlantic basin. This means that the present‐day and
future P* can be estimated by the same 2‐mode model with only differences in SSTrel and SC. Therefore, we can
obtain P* sensitivity to local SSTrel and SC changes by calculating the SSTrel and SC derivatives of Equation 6:
∂P∗

/∂SSTrel
= ab × exp(a× SSTrel), and ∂P∗

/∂SC = A.

Because parameter b is constant across models, ∂P∗
/∂SSTrel

is a function of a and SSTrel. By comparing a of

GCMs and observations, we find that ∂P∗
/∂SSTrel

is underestimated by most GCMs (Figure 3b). This is

consistent with Good et al. (2020), who reported systematic underestimations of precipitation sensitivity to in-
ternal and seasonal SST variations by CMIP models. In addition, there is substantial inter‐model variation in a.
The uncertainty in a has greater impacts on ∂P∗

/∂SSTrel
at higher SSTs. For example, the Pacific ∂P∗

/∂SSTrel
varies by a factor of 1.7 among GCMs for SSTrel = 0 and a factor of 3.4 for SSTrel = 2°C (equivalent to present‐
day SST of roughly 29°C).

The observational estimate of ∂P∗
/∂SC is well represented by the CMIP6 multi‐model mean (Figure 3c). While

there are no systematic biases in ∂P∗
/∂SC, there is considerable inter‐model variance. ∂P∗

/∂SC varies by a factor
of 2.1, 2.2, and 2.8 for the Indian, Pacific, and Atlantic basins, respectively.

5. Linking SC to SST Gradients
In the uncoupled simulations where SST changes are the same across models, inter‐model differences in precip-
itation changes are entirely due to differences in regional hydrological sensitivity (i.e., δP/δSST). The 2‐mode
model captures most of the uncertainty in the uncoupled precipitation changes (compare Figures 1b and 1c).
This allows us to attribute the inter‐model differences in regional hydrological sensitivity to differences in
∂P∗

/∂SSTrel
, ∂P∗

/∂SC, and the sensitivity of SC to SST gradient changes [that is, ∂SC/∂(− ∇2SST)] by perturbing

one of these parameters at a time in the 2‐mode model. Although ∂P∗
/∂SSTrel

and ∂P∗
/∂SC vary substantially

among GCMs, their contributions to the uncertainty in precipitation changes are small (Figures 1e and 1f). Most of
the uncertainty in the uncoupled precipitation changes results from inter‐model differences in ∂SC/∂(− ∇2SST)
(Figure 1d).

We now explore constraints on ∂SC/∂(− ∇2SST) . To reduce the spatial noisiness of ‐∇2SST, we apply a nine‐

point smoothing, following previous studies (Back & Bretherton, 2009b; Duffy et al., 2020). The relationship
between SC and − 2SST is complex. On the one hand, strong SC is generally located where − ∇2SST is large (e.g.,
the eastern Pacific ITCZ and the Atlantic ITCZ, Figure S3 in Supporting Information S1). On the other hand, the
dissimilarity between SC and − ∇2SST is also evident. The spatial correlation between the observed two fields is
negative at − 0.19. This means that SC does not always respond to − ∇2SST locally and that ∂SC/∂(− ∇2SST)
cannot be summarized by a single parameter (unlike ∂P∗

/∂SSTrel
and ∂P∗

/∂SC).

Here, we focus on three regions, namely the South Equatorial Indian Ocean (Eq Ind, 10S‐0, 50 E− 100 E), the
eastern Pacific ITCZ (EP ITCZ, 5 N–13 N, 180 E− 90 W), and the Atlantic ITCZ (Atl ITCZ, 2 N–10 N, 40 W–
10 W), which host the strongest SC in each basin (Figure S3 in Supporting Information S1). Because the present‐
day SC and − ∇2SST are generally aligned in these regions, it makes sense to calculate the ratio (D) between the
regional average SC and − ∇2SST. The present and future values ofD are roughly the same (Figure 3e), indicating
a constant relationship between SC and − ∇2SST during climate change. In addition, the amplitude of D is
substantially smaller compared to observations in all three regions, consistent with Good et al. (2020) who found
systematic biases in the simulation of shallow convergence in CMIP models.
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Next, we examine whether the present‐day D can be used to directly constrain ∂SC/∂(− ∇2SST) . In the

South Equatorial Indian Ocean, D and ∂SC/∂(− ∇2SST) are uncorrelated (Figure S6a in Supporting Infor-

mation S1), likely because changes in SC are spatially shifted with respect to changes in − ∇2SST (Figures
S2e, S2f in Supporting Information S1). In the eastern Pacific ITCZ and the Atlantic ITCZ where changes in
SC and − ∇2SST are better aligned, moderate correlations are found between D and ∂SC/∂(− ∇2SST)
(Figures S6b, S2c in Supporting Information S1). These results indicate the feasibility of using present D as
a direct constraint of SC changes in certain regions but also point to the high degree of spatial complexity
in ∂SC/∂(− ∇2SST) .

Finally, we attempt to provide a holistic perspective on this issue with Figure 3e. Specifically, we analyze inter‐
model spatial correlation of present‐day SC in amip (x‐axis) and that of projected SC changes in amipAll (y‐axis).
It shows that models with similar present‐day SC tend to project similar SC changes when subject to the same SST
and SST changes. This indicates that models' skillfulness in projecting SC responses to − ∇2SST changes likely
depends on their ability to capture the present‐day SC‐∇2SST relationship.

6. Conclusions and Discussions
Using a modified 2‐mode model, we examine regional hydrological sensitivity by partitioning it into three
components, namely ∂P∗

/∂SSTrel
, ∂P∗

/∂SC, and ∂SC/∂(− ∇2SST) . Our results suggest that the relationships

between P* and SSTrel, between P* and SC, and between SC and SST gradients remain largely constant during
climate change. As a result, P* changes little in the SSTrel− SC space and SSTrel− ∇2SST space (compare
Figures 2e and 2f with Figure 4a). This confirms our hypothesis that regional changes in P* result from the
geographical reshuffling of SSTrel and SST gradients, while the fundamental relationships between SSTrel and P*
and those between SST gradients and P* remain constant. Therefore, a model's present SST‐P relationship is a
primary indicator of the accuracy in its projected regional hydrological sensitivity. Our results show an under-
estimation of ∂P∗

/∂SSTrel
and likely ∂SC/∂(− ∇2SST) , consistent with the low precipitation sensitivity to sea-

sonal and internal SST variations previously identified in CMIP models (Good et al., 2020).

In the 2‐mode model, the SST‐driven and SC‐driven Pd is estimated by multiple regression. However, because
SSTrel and SC are not entirely independent, the effects of SST amplitude and SC may not be cleanly separated by
statistical methods. The 2‐mode model partially addresses the problem by only allowing it to affect the attribution
of the deep mode, while the shallow mode is attributed to SC only. Nevertheless, the above limitation should not
affect our conclusion about the constancy in SSTrel‐P* and ∇2SST‐P* relationships (which js confirmed with
independent analysis in Figure 2f) and that these relationships provide constraints on regional hydrological
sensitivity.

Data Availability Statement
All observational and reanalysis data and the CMIP outputs used in this paper are publicly available at the
following websites. CMIP (Eyring et al., 2016): https://esgf‐node.llnl.gov/projects/cmip6/. GPCP (Adler
et al., 2003): https://psl.noaa.gov/data/gridded/data.gpcp.html. CMAP (P. P. Xie & Arkin, 1997): https://www.
psl.noaa.gov//data/gridded/data.cmap.html. TRMM (Huffman et al., 2010): https://disc.gsfc.nasa.gov/datasets/
TRMM_3B43_7/summary. ERA5 (Hersbach et al., 2020): https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis‐era5‐pressure‐levels‐monthly‐means?tab=form. NCEP/DOE‐II (Kanamitsu et al., 2002): https://psl.
noaa.gov/data/gridded/data.ncep.reanalysis2.html. JRA‐55 (KOBAYASHI et al., 2015): https://jra.kishou.go.jp/
JRA‐55/index_en.html. The 2‐mode coefficients and scripts used to analyze data and generate plots are stored in
the Zenodo online repository at https://zenodo.org/records/11227083 He, Deng, et al. (2024).
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