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ABSTRACT: Strong wind events cause significant societal damage ranging from loss of property and disruption of com-
merce to loss of life. Over portions of the United States, the strongest winds occur in the cold season and may be driven by
interactions with the terrain (downslope winds, gap flow, and mountain wave activity). In the first part of this two-part se-
ries, we evaluate the High-Resolution Rapid Refresh (HRRR) model wind speed and gust forecasts for the 2016–22 winter
months over Wyoming and Colorado, an area prone to downslope windstorms and gap flows due to its complex
topography. The HRRR model exhibits a positive bias for low wind speeds/gusts and a large negative bias for strong
wind speeds/gusts. In general, the model misses many strong wind events, but when it does predict strong winds,
there is a high false alarm probability. An analysis of proxies for surface winds is conducted. Specifically, 700- and
850-mb (1 mb5 1 hPa) geopotential height gradients are found to be good proxies for strong wind speeds and gusts at two
wind-prone locations in Wyoming. Given the good agreement between low-level height gradients and surface wind speeds
yet a strong negative bias for strong wind speeds and gusts, there is a potential shortcoming in the boundary layer physics
in the HRRR model with regard to predicting strong winds over complex terrain, which is the focus of the second part of
this two-part study. Last, the sites with the largest strong wind speed bias are found to mostly sit on the leeward side of
high mountains, suggesting that the HRRRmodel performs poorly in the prediction of downslope windstorms.

SIGNIFICANCE STATEMENT: We investigate the performance of the High-Resolution Rapid Refresh (HRRR)
model with respect to strong wintertime wind speeds and gusts over the complex terrain of Wyoming and Colorado.
We show that the overall performance of the HRRRmodel is low with regard to strong wind speed and wind gust fore-
casts across the investigated winter seasons, with a large negative bias in predicted strong wind speeds and gusts and a
small positive bias for weak wind speeds and gusts. The largest biases are found to be on the leeward side of high moun-
tains, indicating poor prediction of downslope winds. This study also utilizes National Weather Service forecasting met-
rics to understand their performance with respect to strong wind forecasts, and we find that they provide skill in
forecasting these events.

KEYWORDS: Wind; Wind gusts; Forecast verification/skill; Numerical weather prediction/forecasting

1. Introduction

While the fundamental forces that drive winds in Earth’s at-
mosphere have been understood for decades, the accurate
prediction of winds, in particular strong winds, has been a
challenge for the numerical weather prediction (NWP) com-
munity. Such strong winds occur within a variety of different
weather systems, including but not limited to tropical cyclones
(TCs; e.g., Emanuel 2000), thunderstorms (e.g., Ashley 2007;
Ashley and Mote 2005), midlatitude cyclones (e.g., Collier
et al. 1994), and even topographically forced flows, e.g., down-
slope winds and gap flows, such as those commonly referred
to as Santa Ana winds, chinook winds, and sundowner winds
(e.g., Klemp and Lilly 1975; Cao and Fovell 2018; Carvalho
et al. 2020). In most parts of the continental United States

(CONUS), winds associated with the first three categories are
often the most severe. The predictability of strong winds asso-
ciated with these events has been greatly improved in recent
years through a combination of model improvements and ad-
vanced observational capabilities (e.g., DeMaria et al. 2014;
McGovern et al. 2014). In general, winds associated with con-
vective storms have received considerable attention in the litera-
ture (e.g., Taszarek et al. 2020). On the contrary, the prediction
of strong to severe winds associated with non-thunderstorm
events (Pokharel et al. 2017) have received less attention.

In some parts of the CONUS, clear-sky non-“weather”-
related winds can and are often stronger than those associated
with thunderstorms, midlatitude cyclones, and TCs. In partic-
ular, Martner and Marwitz (1982) provided an in depth look
into the climatology of winds over southeastern (SE) Wyo-
ming, focusing on wind energy and wind speeds and directions
both seasonally and diurnally. They found that wintertime
wind speeds across SE Wyoming are ’50% stronger than inCorresponding author: Zachary J. Lebo, zachary.lebo@ou.edu
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the summer months. To demonstrate just how strong the wind
can be over theMountainWest of the United States, Fig. 1 shows
the mean, median, and 95th percentile wind speeds spanning
December–February based on the High-Resolution Rapid Re-
fresh (HRRR; Benjamin et al. 2016) model forecast hour 0 out-
put from 2016 to 2022.1 Many regions, especially over the higher
terrain, experience mean wind speeds in excess of 9 m s21 (ap-
proximately 20 mph) according to the HRRR. Moreover, espe-
cially across the higher terrain, median wind speeds are similar in
magnitude to the mean, while the 95th percentile wind speeds

in the most wind-prone locations exceed 14 m s21 (more than
30 mph). Motivation for this study lies in the fact that these
areas are collocated with major interstates, including Interstate
70 (I-70), I-80, I-25, and I-15, as well as the Denver International
Airport, thus presenting a serious hazard to both road and air
transportation.

The Front Range of Colorado (spanning from Fort Collins
to Colorado Springs and farther south) also frequently experi-
ences strong wind events. These areas experience strong
downslope windstorms (Klemp and Lilly 1975; Abatzoglou
et al. 2021). Downslope windstorms are typically formed due
to synoptic conditions that interact with high terrain and are
formed via two different mechanisms on the synoptic scale
(Mercer et al. 2008). The first mechanism leads to strong
downslope winds occurring ahead of a fast-moving shortwave
trough, often accompanied by a surface lee trough forming

FIG. 1. (a) Mean December–January–February (DJF) wind speeds over Wyoming based on the 2016–22 HRRR forecast hour 0 output;
gray lines indicate the elevation. (b) As in (a), but for the median wind speed. (c) As in (a), but for the 95th percentile wind speed. Major
interstates are overlaid and labeled accordingly. Laramie, Arlington, Bordeaux, and Casper in Wyoming and Craig in Colorado are la-
beled as LAR, ARL, BRX, CPR, and CAG, respectively. Note that the color bar in (c) differs owing to the different magnitudes.

1 We use HRRR-simulated winds here as opposed to observa-
tions to better convey the spatial heterogeneity in wind speeds,
which cannot be fully appreciated with the observation network
over the complex terrain. As shown below, these winds are likely
an underestimate of the actual strong wind speeds over the region.
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across the High Plains. The second mechanism of downslope
windstorm formation is associated with cold air advection be-
hind a surface cold front that has moved across the region.
The accepted theory (Mercer et al. 2008) is that the overturn-
ing of a large-amplitude vertically turning gravity wave leads
to the formation of downslope wind events. This can be trig-
gered by flow over a mountain range (i.e., the Rockies). Gap
winds, on the other hand, are formed by the acceleration of
air through lower terrain or a canyon in a mountain range.

These terrain-induced strong wind events have been known to
cause property damage and fuel the rapid spread of grass fires, as
recently illustrated in the rapid expansion of the Marshall Fire in
December 2021. Fovell et al. (2022) recently showed that forecast
models, even with a day lead time, failed to predict a strong
downslope windstorm in this case, which they attributed to errors
on the synoptic scale (e.g., errors in the jet stream and trough
locations). Furthermore, Bergen and Murphy (1978) found that
improved short-term forecasting of windstorms in Boulder,
Colorado, could substantially reduce property and business
losses. Understanding model performance with regard to strong
winds over these regions could allow for better warning and de-
creased societal/economic impacts.

To improve predictions of strong wind events, one must first
understand why models struggle to accurately predict them.
Kunz et al. (2010) used a regional numerical weather prediction
(NWP) model and found that the grid spacing is too coarse to
represent strong wind events, and higher-resolution models are
needed to more accurately predict strong wind events. For ex-
ample, the Global Forecasting System (GFS) has a nominal grid
spacing of 13 km, with most data products available publicly at
even coarser resolutions, resulting in a smoothed and coarsened
representation of terrain. This could result in errors simulating
strong wind events, similar to the errors in NWP forecasts of
precipitation, especially over high and complex terrain (e.g., He
et al. 2019; Rahimi et al. 2022; Wyngaard 2004; Gutiérrez and
Fovell 2018). More specifically, the inaccurate and simplified/
smoothed terrain over Wyoming and Colorado could also impact
the forecasting of gap flows (e.g., Brennan et al. 2010) and down-
slope windstorms (e.g., Oltmanns et al. 2015), both of which are
influenced by the terrain.

Unlike the GFS and regional models commonly used for
NWP in the United States, e.g., the North American Mesoscale
Model (which has a grid spacing of 12 km, with a nest of 3 km),
the HRRR model has a high horizontal resolution (3 km) and a
higher temporal frequency of new model runs (hourly as op-
posed to every 6 h). Although the grid spacing used in the
HRRR is more capable of more accurately representing the com-
plex terrain of Wyoming and other Rocky Mountain states, the
accuracy of HRRR wind speed forecasts have not been specifi-
cally analyzed over the Wyoming and Rocky Mountain region.
While wind speeds have not been evaluated over this region,
there have been studies conducted to evaluate the accuracy and
performance of HRRRwind forecasts over other regions. For ex-
ample, a study conducted by Cao and Fovell (2016) looked into
the ability to simulate Santa Ana winds in San Diego County,
California. This study found that the Weather Research and
Forecasting (WRF) Model (which is the basis for the HRRR)
was able to capture details of the selected Santa Ana events,

although the wind speed was generally overestimated. Cao and
Fovell (2018) showed that this overestimate could be attributed
to model physics, including the planetary boundary layer (PBL)
scheme, surface layer (SL) scheme, and land surface model
(LSM). Moreover, Zhong and Whiteman (2008) also found that
there was sensitivity to the model parameterizations over the
Salt Lake Valley using the Regional Atmospheric Modeling
System (RAMS; Pielke et al. 1992) at grid spacings of 250 and
1000 m. They found that the LSM had a significant impact due to
the differing representation of surface roughness. More recently,
Fovell and Gallagher (2022) studied the performance of HRRR
wind speeds and wind gusts (wind gusts were derived from a gust
factor rather than the HRRR-forecasted wind gust which our
study looks at). They found that strong wind speeds and wind
gusts are underforecasted by the HRRR compared to Automated
Surface Observing Systems (ASOS) and the New York State
Mesonet. Moreover, Fovell and Gallagher (2020) showed that
biases in the HRRR-predicted winds extend through the bound-
ary layer. While these studies are important, they did not focus on
the Rocky Mountain region and/or did not evaluate the winter-
time climatological performance of an operational model with the
highest horizontal resolution (in the United States), i.e., the 3-km
HRRR or NAM nest models.

The above review identified a gap in our understanding and
prediction of strong to severe wind events across the complex
terrain of the Rocky Mountains of the United States in NWP
models (which are primarily related to gap flows and down-
slope windstorms). These events have important societal and
economic risks, and thus it is important to both understand
how well state-of-the-art NWP models are at predicting high
wind events and analyze the physical reasons why or why not.
This paper (Part I) is the first in a two-part series targeted at
addressing these objectives and is mainly focused on an evalua-
tion of HRRR-forecasted winds over multiple winter seasons in
the Rocky Mountains of the United States, a region conducive to
gap flows and downslope windstorms, especially in Wyoming and
Colorado. Collins et al. (2024, hereafter Part II) describes a suite
of sensitivity simulations targeted at understanding the shortcom-
ings of HRRR-forecasted winds and to identify a more applicable
model physics configuration for this region.

The remainder of this paper is organized as follows. Section 2 de-
scribes the observations and HRRRmodel data used in the analy-
sis and the methodology. Section 3 describes the performance of
theHRRRwind speed andwind gust forecasts, and a discussion of
other model fields related to strong low-level winds is also pre-
sented. HRRR model performance as a function of forecast hour
is presented in section 4. Furthermore, in section 5, an analysis of
the strongwind speed biases in theHRRRmodel in relation to the
complex terrain in the study domain is presented. This paper con-
cludes with section 6, which provides the conclusions and discusses
themotivation for the subsequent work presented in Part II.

2. Data and methodology

a. HRRR overview

The HRRR model is an operational NWP model with an
hourly update cycle, initialized utilizing the Rapid Refresh
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(RAP) model, and a horizontal grid spacing of 3 km, making
it currently one the highest-resolution NWP model used oper-
ationally in the United States (the other being the NAMNest,
also at 3 km). Key advantages of this model are that its high
horizontal resolution allows for convection in the model with-
out a cumulus parameterization as well as a better representa-
tion of terrain (both the heterogeneity of the terrain height
and slope), which has large impacts over Wyoming and Colo-
rado owing to the complex terrain and the role the terrain
plays in gap flow and downslope wind events, as described in
detail in section 1. In theory, this high resolution compared to
other operational NWP models is expected to improve the
prediction of terrain-driven strong wind events.

The HRRR model is initialized at hourly intervals; how-
ever, when initialized at 0000, 0600, 1200, and 1800 UTC, it is
run for a longer duration (48 h beginning with version 4) com-
pared with the other times (18 h). For this study, we analyzed
the 0000, 0600, 1200, and 1800 UTC HRRR forecasts. While
we analyze many of the forecast hours, the majority of the
evaluation presented here is conducted utilizing forecast hour 6
as the basis for our analysis. This forecast hour is utilized as it
would provide adequate lead time for a forecaster to warn
strong wind events.

The time frame for this study spans December, January, and
February from 2016 to 2022 (HRRR versions 2–4; version 1 is not
utilized as versions 2–4 extend to 18 h, while version 1 extends to
15 h (see Table 4 in Dowell et al. 2022). These months are chosen
to coincide with the peak in occurrence of strong winds over the
region (see Fig. 6 in Abatzoglou et al. 2021) as well as the likeli-
hood of such strong winds coinciding with snow on the ground,
thus creating potentially hazardous blowing snow conditions.

Two different wind fields are evaluated in this study from
the HRRR model: the 10-m wind speed and wind gust (which
is intended to be a gust potential and often should exceed ob-
served wind gusts). The HRRR wind gust potential is post-
processed by the Earth System Research Laboratory (ESRL)
utilizing the following equation:

ygust 5 y sfc 1 max{ f (z)[y(k) 2 y sfc]}: (1)

To compute the wind gust potential (ygust; Benjamin et al. 2020),
the depth of the well-mixed PBL is calculated. This is done by
identifying the altitude where the virtual potential temperature
equals or exceeds the 2-m surface virtual potential temperature.
Once this depth is computed, at each model level k in the PBL,
the wind speed y(k) is used to compute the excess wind speed rel-
ative to the (10-m) surface speed y sfc. This excess is multiplied by
a coefficient that is a function of height [f(z), where z refers to
AGL height], which decreases linearly from 1 at the surface to
0.5 at 1 km above ground level (AGL). For all heights higher than
1 km AGL, 0.5 is used. Then the maximum of this weighted wind
excess is added to the 10-m wind to obtain the wind gust potential.
A direct comparison of the wind gust potential to observed wind
speeds at any given time is not consistent. Therefore, to reflect
the fact that the HRRR wind gusts are intended to represent the
“potential” gusts, we compare the potential wind gusts at the
HRRR model output times to the maximum observed wind gusts
over a 1-h period surrounding the model forecast time.

Prior to 2018, the 10-m wind speed was assumed to be equiva-
lent to the wind speed at the lowest model level [approximately
7 m above ground level (AGL) at sea level]. Beginning in 2018,
the HRRR now uses the 10-m wind output from theMYNN sur-
face layer scheme, which utilizes a neutral-log relationship to de-
rive the zonal and meridional components of the wind at 10 m
from the lowest-model-level wind field (Nakanishi and Niino
2006). Our focus on multiple years will allow us to determine if
this change in the diagnoses of the 10-m wind speed has changed
model performance.

b. MADIS overview

The wind speed and wind gust observations utilized in this
study are from the National Oceanic and Atmospheric Adminis-
tration (NOAA)Meteorological Assimilation Data Ingest System
(MADIS) dataset (Miller et al. 2007). This dataset is composed of
numerous different data networks, including but not limited to,
the National Weather Service (NWS), ASOS, as well as transpor-
tation and other state and regional networks. This high-density
network allows for an ample regional analysis and evaluation ef-
fort of the HRRR dataset over the target area, namely, Wyoming,
Colorado, and portions of the surrounding states. Shown in Fig. 2
is a density plot of the 2446 sites utilized for the HRRR evaluation
effort of this study. There is clear spatial heterogeneity in the
distribution of the surface sites, with far more locations confined
to metropolitan areas (e.g., Denver, Colorado, and Cheyenne,
Wyoming) as well as interstates (e.g., the I-70 corridor in Colo-
rado). In addition to an analysis of all sites in the database, which
could provide biased results owing to the spatial distribution of
sites, we also analyze individual sites known to have a high
frequency of strong winds, namely, Laramie (LAR), Arling-
ton (ARL), and Bordeaux (BRX), Wyoming, which are de-
noted in Fig. 1.

For the model–observation comparison, the HRRR model
output is bilinearly interpolated to the locations of the obser-
vations. Using hourly HRRR output, we only consider obser-
vations that occur within 65 min of the top of the hour.
Owing to the differing heights of wind speeds in the HRRR
compared to actual observations, HRRR wind speeds are ad-
justed from 10 to 6.1 m for all stations in which the anemome-
ter height is 6.1 m (e.g., RAWS)2 following the methodology
of Cao and Fovell (2016), Eq. (2) therein, which uses an as-
sumed logarithmic wind profile in the near-surface region to
adjust heights. Furthermore, all wind speeds and wind gusts in
the observations greater than 50 m s21 are removed; while
such wind speeds are possible in the study domain, given the
locations of the observation sites (e.g., not on mountain tops),

2 The MADIS dataset does not contain specific information on
the height of the anemometers. While standards are in place for
these sites, we cannot be assured that they are followed. For exam-
ple, the MADIS dataset includes some WYDOT sites, which fol-
low no standard to the best of the authors’ knowledge. In such
instances, without visual inspection of each site, we cannot be ab-
solutely certain of the heights. In general, this will only quantita-
tively impact the results of this work, as anemometers are not
expected to be higher than assumed in this study. If in fact the ane-
mometers are lower than assumed, this would only further in-
crease the negative bias in strong wind speeds shown below.
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such data points are likely erroneous. It should be noted that
ASOS METARs set winds less than 3 kt (1 kt ’ 0.51 m s21)
to 0. However, as the focus of this study is on strong wind
events, this adjustment should be less of a concern in our
study but certainly could enhance the weak wind biases.

c. Verification statistics

To measure the HRRR performance with regard to wind
speeds and gusts, we compute the coefficient of determination
(r2) and bias between the HRRR-forecasted winds and observed
winds. Moreover, several other forecast verification statistics are
used, as adapted and modified from Wilks (2020). To compute
these statistics, the observed and HRRR wind speeds are catego-
rized into a contingency table in the format of Fig. 3. We focus on
the strong winds for their hazardous nature and because, as will
be shown below, if we focus on the weak wind speeds, our conclu-
sions will differ as the model inherently performs reasonably well
given how often they occur (the number of weak wind speed hits
would overwhelm the results), although they are a nuisance
in general. Four categories are created based on a threshold of
20 m s21. The 20 m s21 (approximately 45 mph) filter is com-
monly used by the Wyoming Department of Transportation
(WYDOT) and the NWS Cheyenne office (CYS) to begin warn-
ing severe wind events over this region. This threshold results in
the following categories: weak wind speed (,20 m s21) hit, missed
strong wind speed, false alarm strong wind speed, and strong wind
speed (.20 m s21) hit. These four categories are then utilized to
compute the hit rate, miss rate, false alarm rate, and false alarm
ratio for strong winds, which are defined as follows:

hit rate

5
strong wind speed hit

strong wind speed hit 1 missed strong wind speed
, (2)

miss rate

5
missed strong wind speed

strong wind speed hit 1 missed strong wind speed
, (3)

false alarm ratio

5
false alarm strong wind speed

false alarm strong wind speed 1 strong wind speed hit
,

(4)

false alarm rate

5
false alarm strong wind speed

false alarm strong wind 1 weak wind speed hit
: (5)

The hit rate indicates the fraction of observed strong winds
that were correctly predicted by the model, while the miss
rate represents the fraction of strong winds that were not pre-
dicted. The false alarm ratio indicates the fraction of pre-
dicted strong winds that did not occur. Finally, the false alarm
rate represents the fraction of weak winds that were incor-
rectly forecasted as strong winds. A well performing model
would result in a high hit rate, as well as a low false alarm
rate, ratio, and miss rate.

We further compute the bias between the observations and
the HRRR model output utilizing the following equation
(where N refers to the number of observations):

bias 5
1
N
∑
N

i51
(xobservations 2 xHRRR): (6)

3. HRRR evaluation

a. Wind speed

1) CORRELATION AND BIAS

We begin this study by examining the HRRR wind speed
for the 6th forecast hour (note that an analysis of the forecast
hour is provided in section 4). Displayed in Fig. 4 are joint
probability distribution functions (PDFs) of the observed
wind speeds compared to HRRR-forecasted wind speeds for
each of the analyzed years [2016/17–2021/22 winter seasons;
(Figs. 4a–f), respectively], as well as a combination of all years
(Fig. 4g), including all available observation sites and HRRR
initialization times of 0000, 0600, 1200, and 1800 UTC. Here,
the model performance is examined in terms of r2 and biases,
as shown in the upper right corner. The r2 values are similar
across all years (ranging from 0.25 to 0.31) with the exception

FIG. 2. Density plot of MADIS sites utilized for the HRRR analysis.
The sites are binned into 0.58 3 0.58 grid boxes.

FIG. 3. Example contingency table for the HRRR model evalua-
tion of strong winds and wind gusts.
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of 2018/19 (0.20). Further, biases across all years are also simi-
lar, with a range of 0.07–0.58 m s21, with the largest bias oc-
curring during 2020/21. Therefore, the change in the diagnosis
of the 10-m wind in the HRRR that occurred in 2018/19 ap-
pears to have had a negligible impact on the model’s perfor-
mance thereafter. Interestingly though, 2018 is the year with
the lowest r2 and third highest bias, coinciding with the fewest

high wind warnings issued by the NWS offices in the study do-
main (Iowa Environmental Mesonet 2022). Given the general
similarity across all years, the majority of the subsequent anal-
ysis will be focused on the combination of all years (Fig. 4g),
which results in an r2 value of 0.26 and a bias of 0.29 m s21. It
is important to note that due to the large fluctuations in winds
in nature and the high spatiotemporal variability, a low r2 is

FIG. 4. Joint PDFs (%) of wind speeds (m s21) for DJF of the (a) 2016/17, (b) 2017/18, (c) 2018/19, (d) 2019/20, (e) 2020/21, and
(f) 2021/22 seasons and (g) all years combined. The r2 values and biases (m s21) are shown in the top right of each panel. The solid
black lines represent the 1:1 line, as well as the 2:1, 1:2, 5:1, and 1:5 lines. The red lines show the best fit line for each panel.
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not necessarily unexpected when comparing simulated versus
observed wind speeds, and this is motivation for the use of
contingency tables and additional metrics, as described in
section 2.

While the bias across all years is rather small (#0.58 m s21),
the following analysis will focus on how this bias is affected by
the disproportionately high occurrence of weak winds compared
to strong winds, the latter of which is the focus of this study. For
wind speeds in excess of 20 m s21, the HRRR model has a bias
of 213.70 m s21, while the bias is much smaller for wind speeds
below this threshold, i.e., 0.31 m s21. In other words, the wind
speed bias is wind speed dependent (e.g., Fovell and Gallagher
2020, 2022). Moreover, for the strongest observed winds, i.e.,
wind speeds in excess of 40 m s21, which can cause significant
damage, the HRRR model rarely predicts winds in excess of
10 m s21. In fact, according to Fig. 4g, there are a very small
number of instances in which the HRRR correctly forecasts
wind speeds greater than 20 m s21 (only 128 times).

Given the identified wind speed–dependent bias in HRRR-
simulated wind speeds, we further extend the HRRR model
and observation comparison by examining the forecast bias in
1 m s21 bins, which is shown in Fig. 5 for all years combined.
For observed wind speeds less than 4 m s21, the HRRR
model has a small positive bias. Moving to the stronger winds,
the bias becomes increasingly more negative. That is, as the
observed wind speeds get stronger, the HRRR generally per-
forms worse. For the most extreme cases with wind speeds be-
tween 40 and 50 m s21, the HRRR generally underpredicts
the wind speeds by 30–40 m s21. Such drastic underprediction

would be considered a forecast miss. The inability of the
HRRR model to predict the most extreme winds is in line
with the results of Fovell et al. (2022) for the Marshall Fire in
Colorado, except that here we demonstrate that this issue is
present across a much larger spatial domain and over a longer
period of time, indicative of a systematic bias in the HRRR
model’s prediction of strong winds.

2) CONFUSION MATRIX ANALYSIS

As noted above, winds naturally exhibit high spatiotemporal
variability. As such, a model with an Eulerian grid will likely
not be able to accurately predict the wind speed at each point in
space and time. However, with regard to NWP model forecasts
of high winds, we are less concerned about the exact wind speed
and more concerned about the predicted wind speed exceeding
some threshold, e.g., the threshold for advisory or warning issu-
ance. As such, we shift our analysis to confusion matrices of
wind speeds binned between 0 and 20 m s21 and between
20 and 50 m s21 (Fig. 6). As a reminder, the 20 m s21 (approxi-
mately 45 mph) filter is commonly used by WYDOT and the
NWS CYS office to begin warning severe wind events over this
region. Moreover, the 50 m s21 (approximately 112 mph) upper
limit is imposed because, as discussed in section 2, all data with
values exceeding this threshold are removed from the dataset.
These thresholds are specific to the study domain and may not
be applicable to other regions due to differing mechanisms driv-
ing strong winds. This approach enables us to focus on the abil-
ity of the HRRR model to predict the relatively rare strong
winds compared to its ability to predict the far more common
calmer conditions.

Overall, Fig. 6 shows that across all years and sites in the
study area, as expected, the vast majority of the observations
fall in the 0–20 m s21 category (13 713 891 total instances),
with just 0.13% of the data points falling in the 20–50 m s21

category (19 064 total instances). While that may not seem
like a large number of strong winds, this 0.13% of the data
represent times of unsafe driving conditions, potential wind
damage, rapid wildfire expansion. When the observed wind
speeds exceed 20 m s21, the HRRR model only predicts
128 of these instances accurately, missing approximately
19 000 of them. In other words, if interested in below-
advisory-level winds speeds, the HRRR predicts the occur-
rence of such instances very well (missing just 0.01% of
them), but for the strong winds, it performs quite poorly
(missing 99% of them).

4
 (

m
 s

-1
)

ARL
LAR
BRX

FIG. 5. HRRR wind speed bias at 1 m s21 wind speed intervals
for all years combined. The vertical line denotes the demarcation
(i.e., zero bias) between positive and negative biases for weak and
strong winds, respectively. For reference, overlaid are the HRRR
wind speed biases for selected wind-prone sites: ARL, LAR, and
BRX (blue, red, and green, respectively). Vertical bars are 61
standard deviation.

FIG. 6. Contingency table for observed wind speeds and HRRR-
simulated wind speeds. Red shaded boxes indicate correct fore-
casts, while blue shaded boxes indicate incorrect forecasts. Darker
shades correspond to more instances occurring in the category. Re-
fer to Fig. 3 for guidance on interpreting the contingency table.
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Taking a closer look at the HRRR performance through
the forecast evaluation metrics described in section 2c, we find
that the hit rate is ,0.01 (miss rate of 0.99). This provides even
further quantitative evidence that the strong winds are under-
forecasted by the HRRR. Moreover, the false alarm ratio and
false alarm rate, which are 0.81 and ,0.01, respectively. These
results provide another perspective on the aforementioned
biases in HRRR-predicted wind speeds, namely, approximately
81% of the time that the HRRR model predicts strong winds, it
is a false alarm, whereas ,1% of the time that weak winds are
observed the model predicts strong winds. The latter statistic in-
dicates good model performance, whereas the former statistic
indicates poor model performance. It is important to highlight
the fact that part of the reason for the disparity in the evaluation
metrics is the disproportion of weak to strong winds. However,
the take home message is that if the HRRR predicts strong
winds, it is highly likely that they will not occur based on the
analysis in this study for Wyoming and Colorado.

3) SITE-SPECIFIC ANALYSIS

A potential shortcoming of the analysis thus far is the spa-
tial distribution of observing sites (Fig. 2) compared to the
spatial distribution of strong winds (Fig. 1). The bias in site lo-
cation to population centers could affect the results owing to
the generally weak wind speeds in these areas, especially com-
pared to other regions of the study domain (cf. Figs. 1 and 2).
As such, we target the subsequent analysis on three sites with
climatologically strong winds and a high occurrence of high
wind warnings (see Fig. 1): LAR, ARL, and BRX. We note
that ARL and BRX areWYDOT sites, and there is no standard
height for those anemometers. For simplicity in our analysis, we
assume a height of 10 m and note that if they are lower, the neg-
ative strong wind bias would only be increased in magnitude.
Figure 5 shows that the wind speed forecasts from the HRRR
model may be less biased at these sites than others. To analyze
this conclusion in a more statistical manner, contingency tables
for these three sites are shown in Fig. 7.

We begin by looking at the hit rate for strong wind speeds at
all three sites. LAR (Fig. 7a) has a hit rate of 0.24 (miss rate of
0.76), while ARL (Fig. 7b) has a hit rate of 0.72 (miss rate of
0.28), and BRX (Fig. 7c) has a hit rate of 0.30 (miss rate of 0.70).
These results are further motivation for a site-specific analysis be-
cause the HRRR actually performs quite well at the ARL loca-
tion, especially compared to the hit rates of the other sites and all
sites together. This good performance may be related to the high
elevation of the ARL site and lack of influence of downsloping
and gap flow. Moreover, this is promising for forecasters as the
ARL site could be used as an indicator of strong winds, even if
the HRRR does not suggest such winds will occur elsewhere;
however, care must be taken in using the ARL site as a proxy for
high winds over a larger domain so as not to induce increased
false alarms. We also find a generally smaller miss rate when ana-
lyzing these selected wind-prone locations compared to all sites
in the domain of interest.

Moving onto a discussion of false alarms, LAR has a false
alarm ratio and rate of 0.36 and 0.02, respectively, i.e., approxi-
mately 36% of the time the HRRR predicts a strong wind event

for LAR, it is a false alarm, and when a weak wind event occurs,
only 2% of the time is it incorrectly identified as a strong wind
event. The large difference in these indices is again due to the
substantially higher number of weak wind instances compared to
the strong wind events. At ARL, which was shown above to have
a higher hit rate compared to the other sites, the false alarm ratio
is substantially lower at 0.10, whereas the false alarm rate is some-
what higher, at 0.11. These indices are essentially identical owing
to the similar number of correctly forecasted weak and strong
wind instances, and their closeness to 0 indicates generally good
model performance for this site. Furthermore, at BRX, the false
alarm ratio is 0.10, and the false alarm rate is 0.02. In general,
these results show that for the 3 selected wind-prone locations,
the model rarely (,10% of the time at most) predicts strong
winds when weak winds occur; however, at two locations, LAR
and BRX, when the HRRRmodel predicts strong winds, approx-
imately a third of the time it does not occur, which provides fur-
ther evidence of the forecast challenge with regard to strong
winds in the study domain and suggests that attention needs to
be given to understanding why the HRRR model exhibits this
low performance at these two sites but not at ARL. The differ-
ences in altitude and surrounding topography of these sites could
provide evidence to understand this shortcoming in the HRRR
model, which is discussed in section 5 (topography) and Part II
(model sensitivity to grid spacing and physics parameterizations).

4) WIND SPEED PROXIES

The above analysis demonstrates clear biases in the HRRR
model forecasts of winds over the domain of interest. We also

FIG. 7. Contingency tables for observed wind speeds and
HRRR-simulated wind speeds at specific locations in Wyoming
prone to strong winds: (a) LAR, (b) ARL, and (c) BRX.
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elucidate potential forecasting issues related to the low hit
rate of strong winds but also the high false alarm ratio. The
natural objective then becomes to explain why the model
underperforms in this context and provide guidance for im-
proving the forecasts of high winds. Inherently, forecasting
surface variables is challenged by topography and its repre-
sentation in the model but also the myriad of land surface
models, surface layer parameterizations, and PBL parameter-
izations used in NWP forecast models. A thorough analysis of
the sensitivity of simulated winds over the domain of interest
to these parameterizations is the focus of Part II.

In this study, we focus on an analysis of other fields that
could be used as a proxy for fast low-level winds but are not
as affected by the aforementioned low-level/surface parame-
terizations and model grid spacing. Such proxies are already
used in some forecast offices in theMountainWest (e.g., Hammer
2015; Finch 2015), and in general, proxies are commonly used in
forecasting applications (Hannigan and Godek 2020; Reymann
et al. 1998). While several metrics were explored (e.g., 700-mb
winds, 80-m winds, PBL depth; not shown; 1 mb 5 1 hPa), only
one presented significant skill with regard to forecasting strong
winds in the study domain, which is already used by the NWS
CYS office (Hammer 2015; Finch 2015), that is, 850- and 700-mb
height gradients between Craig, Colorado (CAG), and Casper,

Wyoming (CPR) (Fig. 8). These two height gradients are utilized
as a proxy to forecast when strong wind speeds occur at BRX and
ARL, respectively. For consistency with the above analysis,
HRRR height gradients for forecast hour 6 are used in compari-
son with observed winds.

At ARL, there is a stronger correlation between large
height gradients and strong wind speeds, especially for the
700-mb height gradient (i.e., r2 of 0.49 at 700 mb; Fig. 8d ver-
sus 0.34 at 850 mb; Fig. 8b). For BRX, this relationship is less
robust for the 700-mb height gradient, but shows a stronger
relationship when the 850-mb height gradient is applied (i.e.,
r2 of 0.40 at 850 mb versus 0.09 at 700 mb). This finding justi-
fies the use of 700-mb height gradients for ARL and 850-mb
height gradients for BRX, owing to their differences in eleva-
tion. Namely, ARL is located at an elevation of 2368 m,
whereas BRX is 1562 m. For a standard atmosphere, this re-
sults in surface pressures of 760 and 839 mb. As such, 700 mb
is not far above the surface at ARL, and 850 mb is just below
the surface at BRX.

However, to determine whether these height gradient prox-
ies provide skill over the HRRR-forecasted winds at the spe-
cific locations, an analysis of the confusion matrix for each
site is needed. At ARL (BRX), the height gradient threshold
performed better at 700 mb (850 mb), thus this level was
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FIG. 8. (a) Scatterplot of the observed 10-m wind speeds (m s21) compared to the CAG-CPR HRRR 850-mb geo-
potential height gradient (m) at BRX. (b) As in (a), but for ARL. (c),(d) As in (a) and (b), but for the 700-mb geo-
potential height gradient (m). Overlaid on (a) and (d) are dashed lines denoting the height gradient threshold used
for each location by the CYS NWS office.
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utilized for the statistics. Height gradient thresholds of 70 and
60 m were used for the 700- and 850-mb height gradients, re-
spectively (based on the findings of Hammer 2015; Finch
2015). A summary of the forecast statistics for the HRRR-
forecasted winds and the height gradient proxy are shown in
Table 1. At ARL, the HRRR results in an r2 of 0.57, while at
BRX, r2 is 0.49, both of which are slightly higher than that for
the height gradient proxy. Further, when comparing forecast
statistics, the HRRR results in a higher hit rate at ARL (0.72
versus 0.17). This result is consistent at BRX with a hit rate of
0.30 for the HRRR compared to 0.14 for the height gradient
proxy. At both sites, the false alarm rate and ratio for the height
gradient proxy are less than or equal to those for the HRRR-
simulated wind speeds. Therefore, while the false alarms
decrease, care must be taken when applying these height gra-
dient proxies to predict wind speeds, as wind speeds below the
20 m s21 threshold commonly occur in conjunction with large
gradients, leading to misses.

b. Wind gust evaluation

The above discussion highlighted biases in HRRR-forecasted
wind speeds over the domain of interest. However, wind gusts
can also be particularly hazardous owing to their temporal vari-
ability and magnitude (e.g., Fovell and Gallagher 2022). Thus,
we turn our attention to an evaluation of HRRR-forecasted
wind gusts.

STATISTICAL ANALYSIS

Displayed in Fig. 9 are joint PDFs of HRRR-predicted poten-
tial wind gusts (see section 2 for a discussion of how the potential
wind gusts are computed for the HRRR model; hereafter, when
referring to wind gusts, we these are potential gusts from the
HRRR model and actual observed gusts from the observations)
compared to observations for all years examined (Figs. 9a–f), as
well as a combination of all years (Fig. 9g), which is similar to
Fig. 4 for wind speeds. The results of the joint PDF analysis are
consistent across all years, and thus, the majority of this analysis
will once again be focused on the combination of all years
(Fig. 9g). Overall, similar to the wind speed analysis, the HRRR
does not perform well with respect to wind gusts, i.e., the
HRRR overestimates low wind gusts but significantly underesti-
mates strong wind gusts. These underestimations from the
HRRR are more significant as the HRRR wind gust is a poten-
tial wind gust and is intended to be larger than the actual

observed wind gusts. However, when compared to the wind
speed analysis, the HRRR-forecasted wind gusts are slightly im-
proved over the wind speeds, with r2 values ranging from 0.16
to 0.35, compared to the wind speed r2 values of 0.20–0.31.
When looking at all years combined, the r2 value is 0.26, which
is the same as that for the wind speeds, and the biases are simi-
lar between the wind speed and gust forecasts (0.07–0.58 m s21

and 0.06–0.53 m s21, respectively).
We can further see the improvement in the wind gust pre-

diction compared with the wind speed forecasts in Fig. 10,
which is similar to Fig. 5 for wind speeds. Similar to wind
speeds, as the observed wind gusts become stronger and more
severe, the HRRR bias becomes increasingly more negative.
Comparing this result to the wind speeds (Fig. 5), there is a
slight decrease in the bias at low speeds (below 20 m s22), de-
creasing from 0.31 m s22 for wind speeds to 20.14 m s22 for
wind gusts. However, for wind speeds and gusts in excess of
20 m s21, the HRRR model exhibits biases of 213.70 and
211.32 m s21, respectively. This indicates that for the stron-
gest winds (i.e., wind speeds/gusts in excess of 20 m s21), the
HRRR performs better with regard to wind gusts than wind
speeds, albeit the bias is still quite large in magnitude, and this
reduction in magnitude may be related to the use of a potential
wind gust in the HRRR model, which again is intended to ex-
ceed the actual observed gusts. Our results are in agreement
with those of Fovell and Gallagher (2022), i.e., strong wind gusts
are underestimated, and slow wind gusts are overestimated by
the HRRR. However, Fovell and Gallagher (2022) only focused
on April 2019 and 2020 and the CONUS, whereas we focused
on the high terrain of Wyoming and Colorado and over longer
time periods. While these study periods and regions differ, the
results are consistent, suggesting that these biases may be sys-
tematic to the HRRR model and should be a focal point of fu-
ture studies to determine the extent of this underestimation.

Analogous to the wind speed analysis and owing to the
high spatiotemporal variability of wind gusts, the wind gust re-
sults can be interpreted through confusion matrices binned be-
tween 0 and 20 m s21 and between 20 and 50 m s21 (Fig. 11).
Throughout all years examined in this study, the majority of
wind gusts fall in the 0–20 m s21 category, with ’1% of the in-
stances falling in the 20–50 m s21 category (which is 10 times
more instances than for wind speeds). Similar to the wind
speed analysis, the majority of the data points fall within the
0–20 m s21 category, and thus the percent correct is ’99%.

TABLE 1. Comparison of verification statistics for HRRR-simulated 10-m wind speeds compared to observations, as well as the
HRRR-simulated isobaric height gradient proxy. Dashes indicate that the calculation cannot be performed. Height gradients at BRX
(60 m) are derived at 850 mb, while at ARL (70 m), they are for 700 mb.

HRRR-simulated 10-m wind speeds HRRR-simulated height gradient

r2
Total
bias Bias . 20 m s21

Hit (miss)
rate

False
alarm
rate

False
alarm
ratio r2

Total
bias Bias . 20 m s21

Hit (miss)
rate

False
alarm
rate

False
alarm
ratio

LAR 0.31 21.57 0 0.24 (0.76) 0.02 0.36 } } } } } }

ARL 0.57 21.69 27.03 0.72 (0.28) 0.11 0.10 0.49 } } 0.17 (0.83) 0.01 0.03
BRX 0.49 23.21 210.83 0.30 (0.70) 0.02 0.10 0.40 } } 0.16 (0.84) 0.02 0.08
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While this is fairly high, when looking at the 20–50 m s21 cat-
egory, the hit rate is 0.22 (miss rate of 0.78), which is actually
a drastic increase over the hit rate for strong wind speeds
(0.01). However, even with this improvement, the HRRR still

misses ’ 32 000 of the strong wind gust data points, placing
these instead in the 0–20 m s21 category.

We further analyze the performance of the HRRR wind
gust forecasts by an evaluation of the false alarm ratio and

FIG. 9. As in Fig. 4, but for wind gusts.
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rate, which are 0.26 and 0.001, respectively. This means that
approximately 26% of the time the HRRR model predicts
strong wind gusts, it is a false alarm, whereas only 0.1% of the
time does the model predict strong wind gusts when weak
gusts are observed. Compared to the wind speed analysis,
these results indicate a small improvement with regard to the
false alarm ratio (decrease from 0.81 for strong wind speeds
to 0.26 for strong wind gusts) and a slightly worse false alarm
rate (increasing to 0.001). However, the main conclusion for
strong wind speeds remains, namely that it is unlikely that the
model will indicate strong wind gusts when weak wind gusts
are observed, but if the model does predict strong wind gusts,
it is likely that these are false alarms, at least for the domain
of interest in this study.

We once again investigate performance at strong wind prone
locations, namely, LAR, ARL, and BRX for the HRRR-
simulated wind gusts. We use Fig. 12 to compute the hit rate,
false alarm rate, and false alarm ratio. Overall, the HRRR
performs quite well across all three locations with hit rates of
0.63 (LAR), 0.91 (ARL), and 0.64 (BRX). There is also a low
false alarm ratio across all sites, but a high false alarm rate.
This indicates that when the model predicts strong wind gusts,
it is not wrong often, but the model results in numerous instan-
ces in which there are predicted strong wind gusts when the
wind gusts are in fact in the “slow” category. The wind gust

forecasts perform better that those of the wind speeds at these
three locations, seen by the improvement in these statistics at
all locations. There is an increase in the hit rate at LAR of
0.24 to 0.63, at ARL of 0.72 to 0.91, and at BRX of 0.30 to 0.64.
Further, at all sites, there is an increase in the false alarm rate
but a decrease in the false alarm ratio compared to the wind
speed forecasts.

The wind speed analysis indicated the potential for isobaric
height gradients to be used as a proxy for strong wind speeds;
therefore, we repeat the analysis using the wind gusts, as shown
in Fig. 13. The results are quite similar to those presented for
the wind speeds. Specifically, the 850-mb height gradient is fairly
well correlated with strong surface wind gusts at BRX owing to
its lower elevation (r2 of 0.42), whereas the 700-mb height gradi-
ent performs better at ARL (r2 of 0.53). A summary of the fore-
cast metrics for the HRRR-simulated wind gusts and the height
gradient proxy is shown in Table 2. Here, similar to the results
above for the wind speeds, the HRRR-simulated wind gust
forecasts result in large r2 values than the NWS metrics (0.67
versus 0.53 at ARL and 0.50 versus 0.42 at BRX). Moreover,
the HRRR has higher hit rates, but also higher false alarm rates
and ratios compared to the height gradient proxy. Thus, the
same conclusion from the wind speed analysis regarding the
care that must be taken when applying such proxies is applica-
ble to wind gusts as well.

4. Forecast hour evaluation

The above analysis focused solely on the 6-h forecast time
from the HRRR model. This was chosen as this forecast hour
allows for adequate lead time for forecasters to warn events.

s
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FIG. 10. As in Fig. 5, but for wind gusts.

FIG. 11. As in Fig. 6, but for wind gusts.

FIG. 12. As in Fig. 7, but for wind gusts.
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However, the aforementioned wind speed biases could de-
pend on the forecast time, with the hypothesis that the
HRRR-forecasted wind speeds and gusts should exhibit re-
duced errors for shorter forecast lead times and increased er-
rors for longer lead times.

We begin with a look into how the wind speed r2 values
change as the forecast hour increases, which is shown in Table 3.
Clearly, for a forecaster, utilizing long lead times allows for more
ample warning, but the question arises as to the cost of using
guidance for longer lead times, especially given that issues with
misses and false alarms discussed in section 3. As expected, the r2

values decrease as the forecast hour increases. Forecast hour 3
has an r2 value of 0.30, while the r2 value of forecast hour 18 de-
creases to 0.19. However, these changes are marginal, and again

low r2 values are not uncommon in wind speed prediction. As
such, the biases can provide more information regarding the per-
formance of the model. For the dataset analyzed in this study, as
the lead time increases, the magnitude of the wind speed biases
for winds. 20 m s21 increases in magnitude (from213.10 m s21

at forecast hour 3 to 214.70 m s21 by forecast hour 18). We fur-
ther analyze the hit rate, miss rate, false alarm rate, and ratio, to
allow for a complete analysis of differing forecast hour perfor-
mance. As the lead time increases, the hit rate remains very low
(from 0.03 at forecast hour 3 to 0.02 by forecast hour 18), while
the false alarm ratio increases (from 0.70 at forecast hour 3 to
0.83 by forecast hour 18). Therefore, regardless of the metric
used to analyze the wind speed forecasts, the HRRR performs
worse with increasing lead time.

(A)

CAG - CPR 850 mb Height Gradient (m)

10
-m

 W
in

d 
G

us
t (

m
 s

-1
) r2: 0.42

BRX
0.22 x + 3.17

85
0 

m
b

(B)

CAG - CPR 850 mb Height Gradient (m)

10
-m

 W
in

d 
G

us
t (

m
 s

-1
) r2: 0.36

ARL
0.20 x + 7.72

0.13 x + 6.99
(C)

CAG - CPR 700 mb Height Gradient (m)

10
-m

 W
in

d 
G

us
t (

m
 s

-1
) r2: 0.10

70
0 

m
b

0.30 x + 3.99
(D)

CAG - CPR 700 mb Height Gradient (m)

10
-m

 W
in

d 
G

us
t (

m
 s

-1
) r2: 0.53

FIG. 13. As in Fig. 8, but for wind gusts.

TABLE 2. Comparison of verification statistics for HRRR-simulated 10-m wind gusts compared to observations, as well as the
HRRR-simulated isobaric height gradient proxy. Dashes indicate that the calculation cannot be performed. Height gradients at BRX
(60 m) are derived at 850 mb, while at ARL (70 m), they are for 700 mb.

HRRR simulated 10-m wind gusts HRRR-simulated height gradient

r2
Total
bias Bias . 20 m s21

Hit (miss)
rate

False
alarm
rate

False
alarm
ratio r2

Total
bias Bias . 20 m s21

Hit (miss)
rate

False
alarm
rate

False
alarm
ratio

LAR 0.39 22.45 23.64 0.63 (0.37) 0.67 0.07 } } } } } }

ARL 0.67 21.20 4.01 0.91 (0.09) 0.20 0.08 0.53 } } 0.14 (0.86) 0.01 0.02
BRX 0.50 22.61 28.57 0.64 (0.36) 0.11 0.12 0.42 } } 0.12 (0.88) 0.08 0.32
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We further conduct an analysis of the isobaric height gradi-
ent proxies with differing forecast hours (Fig. 14; only results
at 850 mb for ARL and 700 mb for BRX are shown owing to
the superior performance based on the above analysis). The
r2 values decrease with increasing forecast lead time, decreas-
ing from 0.52 to 0.45 for 3–18-h lead times at 700 mb for ARL
and 0.40 (at forecast hour 3 and 6) to 0.30 (at forecast hour 18)
at 850 mb for BRX. However, these decreases in r2 are again
rather small, but the r2 values remain larger than the values
for all sites shown in Table 3. Moreover, the trend of lower hit
rates and false alarm rates/ratios for the height gradient proxy
is consistent across the different forecast lead times, and the re-
sults are similar for wind gusts (not shown).

5. Relation between wind forecast errors and
complex terrain

Thus far, our analysis of errors in HRRR-predicted strong
winds and gusts has considered all sites in the study domain or
select sites conducive to strong winds and for which forecast
proxies are commonly used to estimate the occurrence of strong
winds. What we have yet to show is how the HRRR-predicted
strong wind biases are related to the terrain in the study domain.
To show this, we take the strong wind bias computed for each
observational site and locate the sites exceeding the 90th per-
centile of the strong wind bias distribution, thus representing
the sites with the largest underprediction of strong winds. These
sites are mapped in Fig. 15a. Note that for this analysis, the
threshold for strong winds was reduced from 20 to 10 m s21 (as
is also done in Part II) to ensure that there were a sufficient
number of data points in the strong wind category for a robust
analysis.

The results of this analysis indicate that the strong wind
bias is not affected by oversampling of the Denver metro area
(refer to Fig. 2 and the large number of observational sites in
that are relative to the rest of the domain), with about half
the sites exceeding the 90th percentile of the strong wind bias
distribution in the Denver metro area and the other half being
distributed elsewhere in the study domain. Moreover, a gen-
eral trend indicated in Fig. 15b is the location of these sites on
the leeward (eastern) side of steep topography. For example,
the black (90th percentile and above) points along the Front
Range of Colorado are west of the urban corridor, where the
topography is quite steep. Evidence of the relation between
large negative biases in the prediction of strong winds and ele-
vation gradients is shown in Fig. 15b, which compares all-
wind bias (blue) and strong wind bias (green and black) at
each site with the corresponding topographical gradient. Here
we quantify the gradient in the terrain simply as the elevation

difference between each site and the maximum elevation in
the east–west direction within a specified window (0.258), with
negative values indicating points on the eastern or leeward
side of a topographical boundary, and vice versa. We restrict
this analysis to the east–west direction owing to the prevailing
wind direction being from the west in strong wind events.
Corroborating the results from above, the all wind biases are
generally positive, and the strong wind biases are generally
negative. However, moving to increasingly more negative
strong wind biases, sites generally exist below the 0-m eleva-
tion difference line, indicating that they are on the leeward
side of the terrain. The specific locations of the sites with
the largest strong wind bias magnitude are highlighted in
Fig. 15a in yellow for reference.

This underperformance on the leeward side of steep topo-
graphy suggests that the HRRR model struggles with simulat-
ing strong downslope windstorms, as suggested by Fovell et al.
(2022) for the Marshall Fire in Boulder, Colorado, but here
shown for a much longer time frame. Thus, it appears that the
underestimate of downslope winds in the Marshall Fire is not
an outlier but actually a systematic issue with the HRRR’s
forecasts of these events. The question remains though as to
why the model struggles to accurately predict these strong
winds, and a focus of Part II is to understand the sensitivity to
the model to changes in resolution and model physics to bet-
ter capture such events.

6. Conclusions

The first part of this study worked to evaluate the HRRR
model with respect to strong winds (both wind speeds and
gusts) over complex terrain, specifically focused on winter-
time winds over Wyoming and Colorado. Moreover, the ter-
rain itself can be a driver of these strong winds. This study
aimed to understand the performance of the HRRR model
regarding wind speed and gust forecasts as well as the poten-
tial applicability of proxies for estimating strong wind speeds
used at local NWS offices, e.g., isobaric height gradients. The
HRRRmodel was chosen as it is one of the highest-resolution
operation NWP models available and is currently utilized by
the NWS.

Wind speeds from the HRRR model were evaluated for six
winter seasons (2016/17, 2017/18, 2018/19, 2019/20, 2020/21, and
2021/22). Generally, the HRRR slightly overestimates weak wind
speeds but significantly underestimates strong wind speeds. This
result is consistent across all winter seasons (indicating that wind
speed forecast errors are not model version dependent), with a
combined r2 value of 0.26 and a bias of 0.29 m s21. Furthermore,
of the almost 20000 strong wind observations (.20 m s21) that

TABLE 3. The r2 values, biases for different forecast hours computed for observed wind speeds both greater than and less 20 m s21,
hit rate, and false alarm rate.

Forecast hour r2 Bias , 20 m s21 Bias . 20 m s21 Hit rate (miss rate) False alarm rate False alarm ratio

F3 0.30 0.38 213.10 0.03 (0.97) ,0.01 0.70
F6 0.29 0.31 213.70 0.01 (0.99) ,0.01 0.81
F12 0.22 0.26 214.26 0.02 (0.98) ,0.01 0.83
F18 0.19 0.27 214.70 0.02 (0.98) ,0.01 0.83
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FIG. 14. As in Fig. 8, but for different forecast lead times. Forecast lead time increases from top
to bottom. Data are shown for 700 mb at ARL and 850 mb at BRX.
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occurred during these six winter seasons in the study domain, the
HRRR model only accurately forecasted 294 instances correctly,
resulting in a very low hit rate (0.01). At the same time, the
HRRR model is found to exhibit a high false alarm ratio and
high miss rate (0.99).

Motivated by proxies already in use at some NWS offices
(e.g., Hammer 2015; Finch 2015), attempts were made to iden-
tify other HRRR model fields that could be used as indicators

of strong surface winds, including 700-mb wind speeds, PBL
height, 80-m wind speeds, and isobaric height gradients. Only
the latter, namely the 850- and 700-mb height gradients between
Craig, Colorado, and Casper, Wyoming, provided viable results
in terms of a proxy for strong surface winds at two wind-prone
locales in SE Wyoming. With respect to wind speeds and wind
gusts, BRX exhibits a larger r2 value of 0.40 at 850 mb than
700 mb (0.09). While ARL exhibits a larger r2 value of 0.49 at
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FIG. 15. (a) Map of sites exceeding the 90th percentile of the strong wind bias distribution (black;
yellow indicates the outliers of the 90th percentile) across all seasons analyzed in this study, as well as
the location of all sites in the 0th–90th percentiles (gray). The locations of the sites are overlaid on a
contourmap showing the surface elevation. (b) Site-specificwind speed biases relative to elevation dif-
ference around each site. Shown are the biases for all winds (black) and for strongwinds only (green),
with the sites exceeding the 90th percentile of the strong wind speed bias distribution highlighted
(black).Horizontal and vertical lines denote no elevation gradient and no bias, respectively.
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850 mb than 0.34 at 700 mb. While these values are higher than
the r2 values for HRRR-simulated winds at all observation sites,
they are in fact similar to the r2 values at the respective loca-
tions. In general, the wind gust evaluation provided qualitatively
similar results to that for wind speeds, albeit with a slight uptick
in the performance of HRRR-forecasted wind gusts compared
to wind speeds. Moreover, we find that for both wind speeds
and wind gusts, the height gradient proxy leads to lower hit rates
than the HRRR-simulated winds at these locations, although
this comes with lower false alarm rates and ratios. As such, care
should be taken when applying the height gradient metrics to
forecast wind speeds and wind gusts because strong height gra-
dients at 700 and 850 mb can occur in conjunction with below-
advisory-level winds. However, the good correlation between
the HRRR isobaric height gradients and wind speeds/gusts is
motivation for an in depth analysis into why the HRRR is not
accurately mixing high-momentum air in the boundary layer
and thus misrepresenting strong downslope windstorms, which
is the topic and focal point of Part II.

The final analysis of this study investigated the performance
of different forecast hours/lead times. Longer lead times would
provide forecasters with more time to provide more advanced
warnings to the public. As expected, as the forecast hour in-
creases from 3 to 18 h, there is a decrease in the r2 values, and
the magnitude of the bias for strong wind speeds increases.
However, the isobaric height gradients were found to correlate
well with strong surface winds at two wind-prone locations in
SE Wyoming across all forecast lead times, albeit with a slight
decrease in performance as the forecast lead time increases.

A potential uncertainty in this analysis, and as mentioned
in section 2, is the anemometer height at each observational
site in the MADIS dataset. While standards are in place for
some data streams, this is not the case for every type of data
contained in the dataset, e.g., state department of transporta-
tion sites may have varying heights, and anemometers may be
closer to the ground at hydrometeorology sites. While errors
in our assumptions of the heights of the anemometers would
change the quantitative results of this work, we argue that the
qualitative results would remain largely unchanged, especially
for the strong wind biases, which were the focus of this work.
For example, given the negative strong wind bias shown in
this work, if the anemometer at an observational site was de-
termined to be lower than assumed, this would indicate that
the HRRR-predicted winds are even more strongly negatively
biased when adjusted to the lower altitude (assuming a loga-
rithmic wind profile that decreases toward the surface). Thus,
we view the strong wind biases reported in this work as the
lower limit in terms of magnitude. In addition, owing to the
differences in anemometer heights and the complications this
adds to model evaluation studies, increased consistency not
across data types is encouraged in the future.

This study investigated the performance of HRRR wind
speed and gust forecasts across Wyoming and Colorado (a re-
gion conducive to downslope and gap flow wind events). Our
focus was on the systematic biases in these forecasts. Future
work should focus on understanding how the wind biases dif-
fer for varying types of strong wind events and expand our un-
derstanding as to why model biases may vary under different

synoptic conditions using techniques such as self-organizing
maps (SOMs; e.g., Juliano and Lebo 2020). It is also impor-
tant to note that due to differences in the mechanisms driving
strong winds in the study domain (related to complex terrain)
compared to other regions of the world, caution should be ex-
ercised when applying the results of this study to areas with-
out downslope windstorms and gap flows, and future studies
should expand the domain of interest to include other causes
of severe winds. This is of particular importance given the
finding that the HRRR model’s largest underprediction of
strong winds tends to occur on the leeward side of high moun-
tains, suggesting poor performance when predicting down-
slope windstorms.

It is somewhat contradictory that the HRRR model has
such large biases in strong wind speeds, yet the isobaric height
gradients provide a reasonably good proxy for strong surface
winds. This indicates that the reason behind the HRRR wind
biases is inherently tied to the boundary layer and surface
physics but could also be attributed to the 3-km grid spacing
still being too coarse to fully represent the complex hetero-
geneous terrain of Wyoming and Colorado, as indicated by
the most underperforming sites being located on the leeward
side of the steep terrain in the study domain. Therefore, in
Part II, we focus on addressing these potential factors influenc-
ing wind forecasts through winter-long sensitivity simulations.
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