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Abstract Lakes provide important water resources and many essential ecosystem services. Some of Earth's
largest lakes recently reached record-low levels, suggesting increasing threats from climate change and
anthropogenic activities. Yet, continuous monitoring of lake levels is challenging at a global scale due to the
sparse in situ gauging network and the limited spatial or temporal coverage of satellite altimeters. A few
pioneering studies used water areas and hypsometric curves to reconstruct water levels but suffered from large
uncertainties due to the lack of high-quality hypsometry data. Here, we propose a novel proxy-based method to
reconstruct multi-decadal water levels from 1992 to 2018 for both large and small lakes using Landsat images
and ICESat (2003-2009) and recently launched ICESat-2 (2018+) laser altimeters. Using the new method, we
evaluate reconstructed levels of 342 lakes worldwide, with sizes ranging from 1 to 81,844 km?”. Reconstructed
water levels have a median root-mean-square error (RMSE) of 0.66 m, equivalent to 57% of the standard
deviation of monthly level variability. Compared with two recently reconstructed water level data sets, the
proposed method reduces the median RMSE by 27%-32%. The improvement is attributable to the new method's
robust construction of high-quality hypsometry, with a median R* value of 0.92. Most reconstructed water level
time series have a bi-monthly or higher frequency. Given that ICESat-2 and Landsat can observe hundreds of
thousands of water bodies, this method can be applied to conduct an improved global inventory of time-varying
lake levels and thus inform water resource management more broadly than existing methods.

1. Introduction

Lakes, including natural lakes and human-regulated reservoirs, provide many essential ecosystem services,
ranging from water and food supply (Alsdorf et al., 2007; Mclntyre et al., 2016), wildlife habitats (Wurtsbaugh
et al., 2017), cycling of pollutants and nutrients (Bastviken et al., 2011; Williamson et al., 2009), to recreational
opportunities like boating, fishing, and landscape aesthetics. The ecological and sociological functions of lakes
are largely modulated by water levels (Wurtsbaugh et al., 2017). Changes in precipitation, river inflow, evapo-
ration, or a combination thereof can lead to major shifts in lake level (Chen et al., 2017). Human activities, such as
damming, river diversion, and water withdrawal, can also impact lake levels (Al-Weshah, 2000; Chaudhari
etal., 2018; Crétaux et al., 2013; Micklin, 1988; J. Wang et al., 2013, 2017, 2018; Wurtsbaugh et al., 2017). Some
of Earth's largest lakes, such as Lakes Mead and Michigan-Huron in the United States, and the Aral Sea in Central
Asia, recently reached record-low levels, suggesting increasing threats from climate change and human activities
(Barnett & Pierce, 2008; Crétaux et al., 2013; Gronewold & Stow, 2014; J. Wang et al., 2018; Wurtsbaugh
et al., 2017; Yao et al., 2023). The water level declines of large lakes have widespread impacts including water
scarcity, crop failure, environmental degradation, and hydropower energy reduction (Tilzer & Serruya, 1990).
Alternatively, warming-induced increases in runoff from glacier retreat can partially contribute to rising lake
levels, such as in the Tibetan Plateau, indicating increased vulnerability of high mountain residents to glacial lake
outburst floods (Shugar et al., 2020; Yao et al., 2018). Therefore, accurate knowledge of lake level variability is
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critical for assessing changes in freshwater availability and water-related hazards, and for sustainable water
resource management to support the needs of both humans and the environment.

Despite its critical importance, continuous monitoring of lake levels is rare at the global scale due to observational
challenges (Crétaux et al., 2011). In situ measurements are spatially sparse and are in decline (Schwatke
et al., 2015). Satellite remote sensing provides a promising alternative for measuring lake level changes. Since the
1990s, radar altimetry has been used to measure inland water levels at sub-monthly to monthly intervals (Crétaux
et al., 2011). These radar altimeters provide level measurements with decimeter accuracy for large lakes (Gao
et al., 2012; X. Li et al., 2019). Several databases, including Hydroweb (Crétaux et al., 2011), the Global
Reservoir and Lake Monitor (G-REALM) (Birkett et al., 2011), and the Database for Hydrological Time Series of
Inland Waters (DAHITI) (Schwatke et al., 2015), provide time-varying lake levels at sub-monthly to monthly
intervals. However, owing to the coarse footprints of the radar altimeters (typically 10 km or so) and large inter-
track distance (>70 km), only a few hundred of the world's largest water bodies are continuously observed by
satellite radar altimeters for more than one decade over the past 30 years (Cooley et al., 2021).

Recent advances in laser altimeters have enabled more extensive monitoring of lake levels because of their
smaller footprints (e.g., <70 m) (Cooley et al., 2021; Ma et al., 2024; Madson & Sheng, 2021; Y. Wang
et al., 2023; Yuan et al., 2020; Zhang et al., 2011). The Ice, Cloud, and land Elevation Satellite (ICESat) provides
water level measurements for thousands of inland water bodies with an accuracy of a few centimeters from 2003
to 2009 at a 91-day interval (Schutz et al., 2005). To continue the legacy, its successor ICESat-2 was launched in
2018. Owing to improved accuracy and spatial resolution, ICESat-2 data were leveraged to estimate variations in
water levels during 2018-2020 for 227,386 water bodies worldwide (Cooley et al., 2021). More recently, Luo
et al. (2022) combined ICESat and ICESat-2 to estimate level variations for 6,567 lakes from 2003 to 2020.
However, their derived level time series suffers from a 9-year discontinuity due to the gap between ICESat and
ICESat-2 missions. Therefore, these existing attempts that directly rely on water levels from laser altimeters do
not provide continuous monitoring of lake levels for periods longer than 8 years.

Lake water levels also can be estimated indirectly via proxy approaches where lake area serves as a proxy for
water level. In contrast with water levels, lake areas are easier to observe via satellites. Satellite-derived lake areas
show strong correlations with water levels (Crétaux et al., 2016; Gao et al., 2012; Yao et al., 2019). Using the
series of Landsat satellites (Landsat 4, 5, 7, and 8), lake water areas can be constructed from the 1980s (or 1990s
depending on geographic locations) to the present at a 30-m resolution. Due to a relatively coarse temporal
resolution (16 days) and cloud contamination, high-frequency reconstruction of long-term lake areas has been
impeded until very recently. To increase the temporal frequency of lake area time series, advanced algorithms
have been developed to estimate lake areas from partially contaminated images (L. Feng et al., 2023; Schwatke
et al., 2019; Yao et al., 2019; Zhao & Gao, 2018). For example, Yao et al. (2019) constructed a high-frequency
long-term lake area data set Global Lake/Reservoir Area Time Series (GLATS) by leveraging both good-quality
and contaminated Landsat images. However, water areas alone do not provide direct information on water level
that is critical for various applications in hydrology (Cooley et al., 2021; Tokuda et al., 2021; Yao et al., 2018),
water resources management (Dawadi & Ahmad, 2012; Rosenberg, 2022), limnology (Bootsma & Hecky, 1993;
Hipsey et al., 2019), and ecological conservation (Wurtsbaugh & Sima, 2022). In particular, lake level is often the
most crucial variable that determines water storage variability (Cooley et al., 2021). Understanding lake water
budgets relies significantly on this factor (Yao et al., 2018). Therefore, proxy approaches require a prior area-level
relationship, referred to as lake hypsometry or a hypsometric curve, to convert lake areas to water levels.

Lake hypsometry can be constructed from lake bathymetry, although bathymetry data are sparse. ICESat and
ICESat-2 provide new opportunities for deriving lake hypsometry owing to high-resolution laser measurements
of Earth's surface elevation. These elevation measurements can be combined with lake contours (isobaths) to
derive the hypsometry. Y. Li et al. (2020) used ICESat and radar altimetry in combination with the Global Surface
Water (GSW) data set (Pekel et al., 2016) to construct lake hypsometry of 347 global reservoirs larger than
50 km?. Given the higher resolution (17 m), smaller along-track spacing (0.7 m), and more laser beams of ICESat-
2, it is now possible to construct lake hypsometry with improved accuracy and spatial coverage. Very recently, a
few studies leveraged ICESat/ICESat-2 and Landsat to estimate lake volume changes in thousands of lakes
worldwide at a decadal scale (Y. Feng et al., 2022; Y. Li et al., 2023; Luo et al., 2022; Yao et al., 2023). However,
high-quality hypsometry is limited to a few hundred lakes (Crétaux et al., 2016; Y. Li et al., 2023; Yao
et al., 2023). Thus, these pioneering studies often reconstructed water levels or volumes using simplified
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Table 1
Summary of Existing Global-Scale Studies on Water Levels or Volumes at a Decadal Scale Using ICESat or ICESat-2 Altimetry
Number of studied Number of lakes in Validated
Study lakes validation variable Hypsometry
Y. Feng 9,065 14 Level; volume  Simplified hypsometry for 9,065 lakes
et al. (2022)
Y. Li et al. (2023) 7,245 277 Volume Empirical models for 6,637 lakes and well-calibrated hypsometry for 347
lakes
Luo et al. (2022) 6,567 0 N/A None
Yao et al. (2023) 1,972 102 Volume Simplified hypsometry for 1,505 and well-calibrated hypsometry for 401
lakes

hypsometry or empirical methods (Table 1). For example, Y. Feng et al. (2022) combined ICESat, ICESat-2, and
Landsat-derived water areas from the GSW data set to estimate time-varying water levels and volumes for 9,065
lakes globally over the period 2003—2020. They used water areas from the GSW and an overall area-level slope
based on bootstrapping simulations to reconstruct water levels. However, the uncertainties of their reconstructed
levels appear to be large probably due to the lack of high-quality hypsometry and the validation was limited to 14
lakes. This is particularly concerning given the large influence of hypsometry on the accuracy of estimated levels
(Crétaux et al., 2016; Weekley & Li, 2021).

The overarching goal of this study is to develop and validate an improved proxy-based approach for recon-
structing multi-decadal lake levels over the period 1992-2018 using water areas mapped from 30-m Landsat
images and high-resolution laser altimeters ICESat-2 and ICESat. The method is described in detail in Section 3,
but a quick overview is provided here. Using near coincident measurements of lake water level from laser
elevation measurements (ICESat and ICESat-2) combined with water areca observations from Landsat, we
calculated a hypsometric function to define the area-level relationship. Then, the hypsometric function was used
to convert the multi-decadal water area time series (1992-2018) in the GLATS database to water levels. We
demonstrated the performance of this approach through validation of reconstructed water levels for 342 water
bodies worldwide, with sizes ranging from 1 to 81,844 km?, against observed long-term water levels from in situ
gauges or radar altimeters. Given that Landsat and ICESat-2 can jointly observe hundreds of thousands of water
bodies globally (Cooley et al., 2021; Khandelwal et al., 2022), the proposed method has the potential to improve
the global inventory of time-varying lake levels and thus informs water resource management to a greater extent.

2. Data Sets
2.1. ICESat and ICESat-2

We used the ICESat L2 Global Land Surface Altimetry product (GLAH14) and the latest release (version 6) of the
ICESat-2 L3A Land and Vegetation Height product (ATLOS) for deriving water levels. ICESat provides laser
pulses with a footprint of 70 m and an along-track sampling interval of 170 m at a 91-day repeat cycle (Abdalati
et al., 2010). ICESat-2 has the same repeat period with a finer footprint (17 m) and a smaller along-track interval
(0.7 m) (Markus et al., 2017). While ICESat has only one beam in the along-track direction, ICESat-2 has 6
beams, leading to higher accuracy and better spatial coverage (Abdalati et al., 2010; Markus et al., 2017). We
utilized measurements of terrain height and water surface elevation from both the GLAH14 and ATLOS8 products.
Specifically, the “d_elev” variable from GLAH14 and the “h_te_mean” variable from ATLOS were used. The
accuracy of water levels derived from GLAH14 and ATLOS is reported to be approximately 0.38 and 0.14 m,
respectively (Y. Feng et al., 2022; Ryan et al., 2020).

2.2. Landsat Images

To map water extents during the ICESat/ICESat-2 passes, the 30-m top-of-atmosphere images from Landsat 5
Thematic Mapper (TM), Landsat 7 Enhanced TM Plus (ETM+), Landsat 8 Operational Land Imager (OLI), and
Landsat 9 OLI sensors, were used. We used top-of-atmosphere reflectance products rather than surface reflec-
tance products, as suggested by existing studies on surface water extents (Allen & Pavelsky, 2018; Donchyts
et al., 2016; Pekel et al., 2016; Sheng et al., 2016; Yao et al., 2019). To avoid cumbersome data storage, all used
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Table 2
Summary of Reference Level Data Sets for Reconstructed Water Levels in Small and Large Lakes
Number of included small lakes Number of included large lakes
Reference data sets studied here studied here References
In situ measurements 48 80 N/A (see Data Availability Statement for data access)
Radar altimetry level 0 214 Birkett et al. (2011), Crétaux et al. (2011), and Schwatke
products et al. (2015)
Total 48 294

images were accessed and processed online from the cloud-based platform Google Earth Engine (Gorelick
et al., 2017).

2.3. Global Surface Water Data Set

We used the water occurrence map in the GSW data set version 1.3 (Pekel et al., 2016) to generate water masks,
similar to Cooley et al. (2021) (see Section 3.2.2 for more details). This water occurrence map was derived from
all Landsat images from 1984 to 2020 at a 30-m resolution. In this map, water occurrence was calculated as the
ratio of the total times of a pixel being classified as water to the total number of valid and non-contaminated
observations, ranging from 0 (permanent land) to 100% (permanent water).

2.4. Global Lake and Reservoir Area Time Series Data Set

We collated multi-decadal water area records from the GLATS data set (Yao et al., 2019). The GLATS provides
long-term high-frequency time series of global lake and reservoir areas over the period 1992-2018 using Landsat
images, including both contamination-free and partially contaminated images. Owing to leveraging contaminated
images to increase observation frequency, the temporal frequency of water area time series in the GLATS is
generally higher than bi-monthly (once per 2 months) with the exception of lakes during a prolonged frozen
season in high-latitude or high-altitude regions. The mean error of water areas is reported to be only 2.2%. The
GLATS currently includes 576 water bodies worldwide.

2.5. Reference Water Levels

To validate the reconstructed water levels, this study used water levels observed from in situ gauging stations and
radar altimeters. In situ level data were collected from multiple sources, such as the USGS National Water In-
formation System and the Australian Bureau of Meteorology (see “Data Availability Statement” for details).
When in situ level data were not available, we collected the radar-altimeter-derived water level products from
three major databases, including Hydroweb (Crétaux et al., 2011), DAHITI (Schwatke et al., 2015), and G-
REALM (Birkett et al., 2011). The overall accuracy of radar altimetry-derived water levels for inland water
bodies ranges from a few centimeters for large water bodies to several decimeters for small and narrow water
bodies. As the accuracy for small water bodies is relatively low, we discarded radar altimetry levels for small
lakes, defined as water area less than 50 km? (Y.Lietal.,2020; Tao et al., 2015; Yao et al., 2018), and only used in
situ levels for these smaller lakes instead (Table 2).

3. Methods

We identified 342 lakes for testing the performance of our proposed methodology (Section 3.1). This effort is
geared toward devising a novel method and evaluating its performance at a global scale, rather than generating a
detailed global data set for all water bodies observed by Landsat and ICESat-2. Our validation of the method on
342 global lakes is more extensive than most of the existing studies on lake level using satellite data (Table 1). For
each of these water bodies, lake hypsometry was first constructed using time-varying water levels derived from
ICESat and ICESat-2 and the corresponding water areas from Landsat images (Section 3.2). Water levels were
retrieved by intersecting laser elevation measurements with dynamic water masks generated from the GSW water
occurrence product (Section 3.2.2). The initial water area estimates at these water levels were delineated from
Landsat images using multiple water indices (Section 3.2.1). To reduce errors in water area, the derived water
levels were used to guide the refinements of initial water extents from Landsat images based on topographic
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Figure 1. Schematic of construction of lake hypsometry from laser altimeters and Landsat images.

constraints (Section 3.2.3). The constructed lake hypsometry was combined with time-varying lake water areas in
the GLATS data set to reconstruct multi-decadal lake levels (Section 3.3).

3.1. Studied Lakes

To test this proposed approach, we initially selected 400 lakes worldwide from the GLATS database as follows.
We first screened lakes without reference level data and then randomly selected 400 water bodies among the
remaining water bodies. Fifty-eight water bodies were further removed due to a lack of sufficient data for con-
structing lake hypsometry (see Section 3.2.4 for details). As a result, a total of 342 water bodies were finally
selected for validation. These selected water bodies have various sizes (1-81,844 km?), climate aridity (ranging
from arid, to semi-arid, semi-humid, and humid), and elevation (1-4,911 m above sea level). They also include
294 large lakes (>50 km?) and 48 small lakes (<50 km?), which allows us to validate both large and small lakes
across different climate regimes. Each selected water body has a multi-decadal water area record, as in the
GLATS database, and observed water level data from in situ gauging stations (128 lakes) or radar altimetry (214
lakes) (Table 2).

3.2. Deriving Lake Hypsometry

To construct hypsometry, synchronous measurements of lake areas and water levels (i.e., area-level duplets) are
required. We derived water levels from ICESat (2003-2009) and ICESat-2 (2018-2022) and the corresponding
water areas from Landsat images (Figure 1). Given the relatively low temporal frequencies of Landsat (16 days)
and laser altimetry satellites (91 days), monthly water areas and levels were used to generate area-level duplets,
which is also in line with existing studies (Busker et al., 2019; Y. Li et al., 2020). Details are given below.

3.2.1. Calculating Initial Water Extents and Areas

We followed a recently developed water mapping algorithm (Yao et al., 2019) to delineate time-varying water
extents to pair them with levels from ICESat and ICESat-2. For each lake, we first defined the region of interest
(ROI) as a buffer region that contains a reference extent of this water body as depicted in the circa-2000 global
lake inventory (Sheng et al., 2016). The ROI was up to triple the size of the reference extent to completely
encompass the largest possible inundation extent during recent decades (2003—-2022). We also ensured that the
ROI excludes any major water bodies except the studied one. The ROI was used to filter the months with ICESat
or ICESat-2 granules. All available Landsat images during these months were collected. These images were
masked out of clouds, shadows, snow and ice, and mosaicked using a monthly median composite (see Yao
et al. (2019) for details). The composited imagery increased the maximum coverage of good-quality observations
in that month. If the good-quality portion was less than 95% of the ROI, the composited imagery was dropped.
This filtering process balances the number and quality of images for constructing high-quality hypsometry (Y. Li
et al., 2020).
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Six commonly-used water indices, including the Normalized Difference Water Index (NDWI) (McFeeters, 1996),
the Modified Normalized Difference Water Index (Xu, 2006), the High Resolution Water Index (Yao et al., 2015),
the 2015 Water Index (WI2015) (Fisher et al., 2016), and two Automatic Water Extraction Indices (AWEInsh and
AWEIsh) (Feyisa et al., 2014) (see Yao et al. (2019) for their configurations), were used to produce an ensemble
of water area time series. Each water index was applied at the default threshold (here defined as zero) and the
adaptive threshold, respectively, to generate two sets of water area time series per water index method.
Considering the default threshold may not always yield accurate water delineation (J. Li & Sheng, 2012; J. Wang
etal., 2014), the adaptive threshold was determined by Otsu's segmentation (Otsu, 1979) on the water index pixels
within the ROI so that the adjusted threshold is likely to be more adaptive to the local conditions, such as aerosols
and water quality. In total, each time step has 12 initial water extents and areas.

3.2.2. Estimating Water Levels

For each ICESat or ICESat-2 granule within the lake ROI, the laser elevation measurements were converted to the
EGM2008 datum (Pavlis et al., 2012) to account for geoid variation. The geoid model of EGM2008 has an overall
accuracy of about 0.2 m (Bergé-Nguyen et al., 2021). Converted elevations were grouped on a monthly basis to
generate monthly water levels. As the ATLOS8 product provides elevation measurements of the terrestrial surface
including both water and land, the 30-m GSW water occurrence map derived from 37-year Landsat observations
(Pekel et al., 2016) was used to filter laser elevation points on the water surface. Unlike a recent study (Cooley
et al., 2021) which generated a fixed water mask based on water occurrence, we used a dynamic water mask that
best matches the actual water area for each month of the laser measurements. To do so, a total of 100 isobaths were
generated from the GSW water occurrence map based on 100 distinct water occurrence values. The isobath with
the closest area to the lower quartile of the initial water areas was selected as the water mask to filter laser
elevation points on water. The lower quartile made the water area conservative, which ensured all laser elevation
measurements on non-water surfaces, for example, due to classification errors, were screened (Cooley
etal., 2021). The median elevation value of the filtered laser points was used as the water level for that month. To
improve the accuracy, we dropped the water level in a month if less than six laser elevation points were available
or the standard deviation of elevations from all laser points was higher than 1 m.

3.2.3. Refining Water Extents and Levels

The 12 sets of water extents as described in Section 3.2.1 were correlated with the water level data from ICESat/
ICESat-2 and the set with the highest correlation was selected as the optimal set. However, remnant mapping
errors could remain due to disturbances, such as cloud shadows and aquatic vegetation. To reduce these errors, we
further refined the water extent based on topographic constraints, similar to Yao et al. (2019). The rationale was
that the shoreline of a lake at a certain water level should be completely contained in any isobath with a higher
level. Thus, we ranked the water extents based on the levels. We assumed that the errors caused by cloud shadows
and seasonal vegetation were random, the two higher isobaths and two lower isobaths were used to reduce the
commission and omission errors of the mapped water extent. The commission errors were identified as portions of
“water” in the current extent that were beyond both higher isobaths. Similarly, if the water extent contained an
“island” that was inundated by both two lower isobaths, the “island” was treated as an omission error and
reclassified as water (Figure 2). The refined water areas were used to generate updated dynamic water masks
using the GSW water occurrence map. We replaced the initial water areas with the refined water areas and
followed the same steps in Section 3.2.2.

3.2.4. Constructing the Hypsometric Curve

The time-varying water areas and levels were paired by time to calibrate the hypsometric curve as a polynomial
function (Crétaux et al., 2016) since area-level relationships can be non-linear (Figure 3b). We used the Akaike
information criterion (AIC) to select the best polynomial model. AIC has a penalty term on the number of model
parameters designed to minimize or avoid overfitting (Berk, 2008). However, a linear function was used in cases
when there are less than 10 points (area-level duplets) for the fit or the fit polynomial function was not monotonic
within the range of water areas or had a poor fit (R* < 0.6). We excluded a total of 58 (15%) lakes as they have less
than three points (area-level duplets) for fitting a hypsometric curve. According to existing studies (Busker
et al., 2019; Y. Li et al., 2020), if the hypsometry has a poor fit, the hypsometry should not be used due to high
uncertainty. We found that only 49 (14%) lakes had a poor fit (R* < 0.6). Most of these lakes were affected by ice
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Figure 2. Illustration of removing omission errors using two lower isobaths using a case study of Walker Lake (38.70°N, 118.71°W) in Nevada (Figure adapted from
Yao et al. (2019)). (a) Initial water extent (yellow line) in January 2007. (b) Identifying omission errors (e.g., island at the lake bottom) using two lower isobaths (green
line). (c) Refined water extent (yellow) after removing the errors. Removing commission errors follows a similar concept except using two higher isobaths (Figure not

shown).

cover, wetland vegetation communities, or exhibited small variations in water area, with a coefficient of variance
less than 2%. We chose to keep these lakes as we preferred to report the overall accuracy of all lakes with suf-

ficient data.
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Figure 3. Illustration of level reconstruction using a case study of Lake Kanopolis (38.64°N, 98.01°W) in Kansas, USA. (a) Lake area time series during the level

reconstruction period from Global Lake/Reservoir Area Time Series data set, as well as derived water levels from laser altimeters and mapped areas from Landsat for
hypsometry construction. (b) Calibrated hypsometric curve (black line) using the stepwise polynomial fitting. (c) Reconstructed lake levels overlapped by reference
levels from in situ measurements.
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3.3. Reconstructing Multi-Decadal Water Levels

For each water body, hypsometry was used to convert water area time series from 1992 to 2018, as archived in the
GLATS database (e.g., Figure 3a), to water levels. Lake level change was calculated through the hypsometric
curve (h = dA/dL) over two consecutive water areas using the following equation:

AL=h"" (Ap) — h! (An)

where AL denotes the water level change from an initial time (1) with lake area (A4,,) to a later time (#2) with lake
area (A,,). We note that the hypsometric curve may need to be extrapolated to estimate some possible lower or
higher water levels beyond the level range of the hypsometry (Busker et al., 2019; Schwatke et al., 2020; Weekley
& Li, 2021; Yao et al., 2018). We calculated lake level changes for each time step relative to the initial time step,
yielding a time series of relative lake levels (Figure 3c). Lake level anomalies were calculated from the relative
lake levels by subtracting the long-term mean during the period (1992-2018).

3.4. Evaluating Reconstructed Water Level Products From In Situ Observations and Radar Altimeters

The reconstructed water levels were validated against observed water levels from in situ gauging stations or radar
altimeters. The difference in overall accuracy between using in situ data and radar altimetry levels as reference
sources appears to be minor based on the examination of the United States, where both data sets have good
coverage (Figure S1). The referenced level data were aggregated into monthly medians, which were then used to
validate the estimated water levels. To remove the impacts of different datums and altimetry tracks, water level
anomalies were calculated for both estimated and referenced water levels over the overlapping period. The Root
Mean Square Error (RMSE) was used to evaluate the accuracy of estimated water level anomalies. To assess the
fidelity of the generated water level time series, RMSE normalized by the standard deviation of reference monthly
levels (nRMSE) was also calculated. As existing studies indicated hypsometry is critical for scaling areas to levels
(Crétaux et al., 2016), we assessed the impact of hypsometry on reconstructed levels, focusing on goodness of fit
(R?) of hypsometric curves and additional uncertainties caused by hypsometry extrapolation. Additionally, the
accuracy of the trends and seasonal amplitude derived from reconstructed water levels was validated using the in
situ data. The trend was calculated over the overlapping period using the Mann-Kendall method (Kendall, 1948).
The lake level anomalies were deseasonalized before calculating the trend. The seasonal amplitude was calculated
as the difference between maximum level and minimum level in a given year.

For comparison, we also validated the reconstructed water levels in two very recent studies (Y. Feng et al., 2022;
Y. Lietal., 2023). The accuracy of our reconstructed water levels was compared separately with each of these two
studies due to the difference in reconstructed water levels using altimetry-derived hypsometry. The comparison
between this study and Y. Feng et al. (2022) involved 313 lakes that were included in both studies, while the
comparison between this study and Y. Li et al. (2023) was limited to 82 lakes. Y. Li et al. (2023) constructed high-
quality hypsometry (R* > 0.5) for 347 lakes using radar and ICESat altimeters and used empirical models to infer
the hypsometry for the remaining 6,898 lakes archived in Global Reservoir and Dam database (GRandD, v1.3).
We only compared with reconstructed water levels using altimetry-derived hypsometry in Y. Li et al. (2023).

4. Results
4.1. Accuracy of Reconstructed Lake Levels

The reconstructed lake levels agree with the water levels directly observed from radar altimeters, with a median
RMSE value of 0.66 m (Figure 4a). For more than two-thirds of the studied water bodies, the reconstructed lake
levels have sub-meter accuracy. We note that sub-meter accuracy is considered good for reconstructed levels that
do not use direct observations from gauging stations or satellite altimetry (Zhan et al., 2021). Less than 15% of the
studied water bodies have large errors (>2 m) (Figure 5a). Large RMSE values (>2 m) are mostly found in
reservoirs and could be partially attributed to the difference in timing (e.g., a few days or weeks) between
reconstructed levels and referenced levels that were compared on a monthly basis. Additionally, reconstructed
lake level errors are mostly smaller than the standard deviation of monthly level variability (i.e., nRMSE <100%)
(Figures 4b and 5b), providing useful information on both seasonal and inter-annual level variability. The median
nRMSE is 57%. The overall performance between large and small water bodies is comparable in terms of both
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Figure 4. The uncertainty of reconstructed water levels for all water bodies, large lakes (>50 km?), and small lakes
(<50 km?), validated against observed levels from in situ gauging stations or radar altimeters, expressed as (a) the Root Mean
Square Error (RMSE) of the reconstructed water levels and (b) the normalized RMSE (nRMSE).

RMSE and nRMSE using the #-statistic (p > 0.1). For both large and small water bodies, the RMSE of recon-
structed levels is smaller than the standard deviation of level variability for over 70% of studied water bodies.

To facilitate potential applications of the proposed method, we also report the accuracy of the trend and seasonal
amplitude derived from reconstructed levels by validating them against the reference data during the overlapping
period. The estimated trending rates generally align well with the values obtained from the reference data, as
indicated by the R? value of 0.92 and slope of 0.94 (Figure 6a). The RMSE of the estimated trends is 0.10 m yr™".
However, concerning seasonal variations, the seasonal amplitude appears to be underestimated with a slope of
0.84 and an RMSE of 3.01 m (Figure 6b). These discrepancies in seasonal amplitude can be attributed to factors
such as insufficient temporal coverage and poorly fit hypsometry. For example, excluding 148 (43%) water bodies
with a poorly fit hypsometry (R* < 0.6) or temporal frequency less than bi-monthly (mostly in cold regions), the
RMSE reduces from 3.01 to 2.18 m and the R* increases from 0.65 to 0.85 (Figure 6¢). Additionally, the un-
derestimation is largely alleviated as indicated by an updated slope of 0.94. Thus, the remaining reconstructed
levels (57%) can provide reliable information on seasonal amplitude.

4.2. Impact of Hypsometry on Water Level Reconstruction

The hypsometry needs to be extrapolated to estimate lower or higher water levels beyond the level range of the
hypsometry. The median proportion of extrapolated levels is 29% for all studied lakes and slightly higher for small
water bodies (32%) owing to infrequent overlapping laser altimetry tracks over smaller water extents (Cooley
et al., 2021). For all water bodies, adding the extrapolated water levels increases the temporal frequency by a
median of one-third but leads to a moderate increase of the median RMSE from 0.59 to 0.66 m or normalized
RMSE from 53% to 57%, compared with the errors of interpolated water levels (Figures 7a and 7d). The median
RMSE and nRMSE values for all extrapolated levels are 0.78 m and 72%, respectively. For both large and small
water bodies, the RMSE and nRMSE of extrapolated levels are larger than those of interpolated levels
(Figures 7b, 7c, 7e, and 7f). Thus, we confirm that the hypsometry extrapolation increases uncertainty in
reconstructing water levels as reported previously (e.g., Crétaux et al., 2016), which should be considered when
analyzing the level time series.

The median R* of the constructed hypsometry is 0.92 for all water bodies. Small lakes have a slightly higher R?
with a median of 0.94 (Figure 8a). For a majority of both large and small lakes (>85%), the R* of the constructed
hypsometry is greater than 0.6. Only 14% of lakes have a poor hypsometry (R? < 0.6). However, errors (RMSE
and nRMSE) of reconstructed levels from poorly fit hypsometry exhibit a much larger spread (Figures 8b and 8c).
Roughly 45% of reconstructed levels with a poorly fit hypsometry have either a RMSE value larger than 2 m or a
nRMSE value larger than 200%. These indicate reconstructed levels from poorly fit hypsometry need to be
interpreted with care if they are used at all. Most of the poorly fit hypsometry are found in lakes with small relative
area variations (<5%), such as the Great Lakes of North America.
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Figure 5. Spatial portrayal of uncertainties in reconstructed water levels, expressed as the (a) RMSE and (b) nRMSE, with respective histograms shown in the insets.

To evaluate the relative performance of our reconstructed levels, we compared our reconstructed levels with
existing reconstructed level data from altimetry-derived hypsometry as in Y. Feng et al. (2022) and Y. Li
et al. (2023). Evaluated on 313 overlapping lakes, the median RMSE of Y. Feng et al. (2022) is 0.77 m, with an
interquartile range (IQR) of 0.84 m. The median RMSE of this study is 0.56 m, which is 0.21 m (27%) more
accurate than Y. Feng et al. (2022), and the interquartile range is less spread by 0.22 m (26%) (Figure 9a). This
improvement could be explained by the fact that the hypsometry of this study exhibits much stronger area-level
correlations than that of Y. Feng et al. (2022). For example, the median R? increased from 0.43 t0 0.93 (Figure 9b).
Compared with Y. Li et al. (2023) on 82 lakes, the median RMSE of this study is 0.39 m (32%) more accurate than
Y. Li et al. (2023) (Figure 9c). This improvement was likely owing to the incorporation of the more accurate
levels from ICESat-2 and refining water areas (Figure 9d) as most of the high-quality hypsometry in Y. Li
et al. (2023) was constructed using ICESat and GSW data set.
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4.3. Time Series of Reconstructed Lake Water Levels

Reconstructed lake water levels show strong agreement with reference levels in terms of both seasonal and
decadal variability (Figure 10). For instance, estimated water level in Lake Maraboon in Australia showed a
decline by 5.0 m over the period 1993—-1996 and then increased by 6.5 m between 1996 and 1999. These estimated
changes are relatively close to the reference level variations from in situ observations of 5.4 and 7.5 m,
respectively (Figure 10a). Our time series also captures differences in seasonal variability from year to year
(Figures 10b and 10d) and level extremes (Figure 10c). In some cases, reconstructed water levels are more
temporally consistent than the reference levels, since the latter suffer from missing data caused by the disfunction
of in situ gauging stations or mission gaps of radar altimeters (Figure 10a). While the reference levels from radar
altimeters in different databases are overall consistent, some discrepancies exist due to different data sources and
processing methods (Figures 10e and 10f). For example, the RMSE of reconstructed levels for Lake Mar Chiquita
in Argentina against the Hydroweb levels is 0.27 m, whereas the RMSE values are 0.34 and 0.86 m, respectively,
when validating against the G-RLEAM and the DAHITI levels (Figure 10f). Thus, the uncertainty in reference
levels from radar altimeters may impact our reported accuracy, although the impact was minimized by reporting
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Figure 9. Comparison of the accuracy of reconstructed levels between this study and existing studies. (a) Root Mean Square Error (RMSE) of reconstructed levels
between this study and Y. Feng et al. (2022). (b) R? of hypsometry between this study and Y. Feng et al. (2022). (¢) RMSE of reconstructed levels between this study and
Y. Lietal. (2023). (d) R? of hypsometry between this study and Y. Li et al. (2023). Comparison between this study and Y. Feng et al. (2022) involved 313 lakes, while 82
lakes were included in the comparison between this study and Y. Li et al. (2023).
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Figure 10. Reconstructed water levels and reference levels for Lake Maraboon (147.97°E, 23.70°S) in Australia, Lakes Folsom (98.20°W, 29.90°N) and Canyon
(121.13°W, 38.70°N) in the United States, Lake Kariba (27.93°E, —17.01°S) on the border of Zambia and Zimbabwe, Lake Angzicuo (87.15°E, 31.03°N) in China, and
Lake Mar Chiquita (—62.70°W, 30.59°S) in Argentina. The Root Mean Square Error (RMSE) shown in each panel is the RMSE of reconstructed levels against observed
levels from in situ gauges or radar altimeters. When validating against different level products from radar altimeters, the median of the RMSE values was reported first,
followed by the lowest RMSE and the highest RMSE in brackets.

the median of the RMSE values against all available level products, for example, 0.34 m for Lake Mar Chiquita. If
we assume that the “true” error is between the lowest error and highest error of validations against different
reference levels, the median RMSE of all reconstructed lake levels is in the range of (0.64 m, 0.71 m). This narrow
range is around the reported RMSE (0.66 m), indicating the uncertainty in reference levels likely has a negligible
impact on our reported accuracy.

The reconstructed water levels mostly achieve a temporal frequency greater than bi-monthly, during the 1992—
2018 study period (Figure 11). For water bodies in the tropical and sub-tropical regions where most of the
global population (>60%) resides, reconstructed levels cover every two out of three monthly steps on average.
However, relatively low temporal frequencies, for example, less than four times per year, are mostly found in
water bodies at high-latitude (>45°N) or high-altitude regions (e.g., Tibetan Plateau) (Figure 11) because of a
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Figure 11. Monthly coverage of reconstructed water levels (1992-2018). The inset shows the histogram.

prolonged freezing season when water bodies are covered by snow and ice and their extents and boundaries
cannot easily be detected from satellite images (Yao et al., 2019). Nevertheless, cold-region lakes typically
exhibit notable level changes during ice-free seasons (Crétaux et al., 2016) for which our method is applicable.
For example, reconstructed levels for two-thirds of studied lakes on the Tibetan Plateau cover over half of the
monthly steps during ice-free seasons. Therefore, resulting water levels from our method can also provide insights
into level variability and driving hydrological processes in poorly monitored cold regions.

5. Discussion

Despite the importance of lake level monitoring, global in situ data that are publicly accessible are in decline
(Schwatke et al., 2015). Existing inland water level data sets from satellites are limited by spatial coverage
(Birkett et al., 2011; Crétaux et al., 2011; Schwatke et al., 2015), short records (Cooley et al., 2021), or large gaps
in their time series (Luo et al., 2022). To overcome these limitations, our approach leveraged the extended spatial
coverage of high-resolution laser altimeters and the long duration of fine-resolution Landsat images to construct
time-varying lake levels spanning multiple decades without a major gap. Validated on 342 water bodies with sizes
ranging from 1 to 81,844 km?, our reconstructed multi-decadal water levels show sub-meter accuracy for roughly
two-thirds of the studied water bodies. We consider the sub-meter accuracy of water levels to be good,
considering that this is a proxy-based approach without direct observations from satellite altimeters (Zhan
et al., 2021). The reported accuracy here is comparable to the accuracy of water levels estimated from Landsat
imagery and in situ bathymetry (Weekley & Li, 2019). Thus, our method provides a promising alternative to
reconstructing multi-decadal water levels of both large and small water bodies that have not been consistently
monitored for decades.

The accuracy of reconstructed water levels from a proxy-based approach like this study depends on the data
quality of both lake areas and hypsometry. Recent advances in water area mapping from satellites largely
ameliorated the trade-off between spatial and temporal resolutions in mapping time-varying water areas by
recovering water areas from contaminated images, for example, those affected by clouds or observation gaps
(Schwatke et al., 2019; Yao et al., 2019; Zhao & Gao, 2018). The GLATS data set used in this study has a reported
error of only 2.2% in recovered areas from contaminated Landsat images (Yao et al., 2019). The improved water
area time series can be combined with hypsometry data to reconstruct water levels at a near-monthly resolution
spanning more than 30 years. However, high-quality lake hypsometry data are limited to a few hundred of lakes
due to low area-level correlations (Crétaux et al., 2016; Y. Li et al., 2023; Yao et al., 2023). As poorly fit
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hypsometry may introduce large uncertainties (e.g., Figures 8b and 8c), existing studies either screened out a large
number of altimetry-observed water bodies with poorly fit hypsometry (Busker et al., 2019; Y. Li et al., 2020), or
relied on simplified hypsometry to estimate levels with large uncertainties (Y. Feng et al., 2022; Yao et al., 2023).
Compared with recently reconstructed lake level data (Y. Feng et al., 2022), we increased the median R* of the
hypsometry from 0.43 to 0.92 (Figure 9b). The hypsometry for more than 85% of studied water bodies here
achieves a good fit (R* > 0.6), indicating our approach is more robust than existing methods.

Other factors affecting the accuracy of reconstructed levels include the availability of ICESat data and the ba-
thymetry changes due to sedimentation. The footprint size of ICESat-2 (~17-m) is finer than that of ICESat (~70-
m), thus some lakes may only have data from ICESat-2. Excluding ICESat data, the median RMSE and nRMSE of
reconstructed water levels are 0.74 m and 64%, which are slightly larger than the reported values (0.66 m and
57%). Sediment-induced bathymetry change in natural lakes should not be a significant factor at interannual to
decadal scales given notable sedimentation-induced bathymetry changes occur over very long timescales (e.g.,
over one thousand years) (Singh et al., 1972). Sedimentation rates in reservoirs are larger partially due to reduced
outflow (Lee & Foster, 2013). The mean annual reservoir sedimentation rate is reported to be 0.5%—1% of full
storage (Basson, 2009). For most reservoirs, the uncertainty of estimated water level changes due to sedimen-
tation should be no larger than 0.1%, 1%, and 10% at monthly, yearly, and decadal scales, respectively, if we
assume a similar relative error in water level from sedimentation. For reservoirs with severe sedimentation (e.g.,
due to high sediment load from rivers and landslides), the results may need to be interpreted with care.

The approach presented here can be used to estimate long-term level trends and intra-annual level variability, as
well as to assess climate change impacts on lake levels, for a water body individually or a group of water bodies
over a large domain. In particular, water levels at the basin scale are highly relevant to water resource man-
agement (Pascolini-Campbell et al., 2020). These scales are often sparsely monitored, or not monitored at all
(Crétaux et al., 2011). This approach can help fill this gap by producing higher-frequency multi-decadal water
levels for both large and small water bodies. Particularly, levels in small water bodies were often unmonitored
despite their local importance on water supply and outsized roles on surface water extent variability (Pi
etal., 2022) and carbon cycling (Holgerson & Raymond, 2016). As shown in Figure 11, the temporal frequency of
reconstructed levels is mostly higher than bi-monthly over the past 26 years in tropical and sub-tropical basins
where most of the global population (>60%) resides. Additionally, errors in reconstructed levels were typically
lower than the standard derivation of level variability during the reconstruction period, thus providing useful
information on seasonal and inter-annual level changes. This approach can be used to monitor the impact of
climate extremes on lake levels, which is becoming increasingly important. For example, the largest freshwater
body Lake Poyang in China went from nearly dry to the highest level on record during 2019-2020 (Wei
et al., 2020), while nearly all large lakes in East Africa reached extremely high levels by the end of 2019, never
seen over the last 20 years (Papa et al., 2022). By contrast, the largest US reservoir Lake Mead reached its lowest
level in August 2021, triggering the first-ever federal declaration of water shortages (Hung et al., 2022). Another
interesting application of this method is to derive lake bathymetry in combination with climate reconstructions for
reconstructing paleolake levels (Gill et al., 2015) which play a key part in understanding the past hydroclimate and
potentially projecting future variability.

The improved reconstruction of water levels here also provides new opportunities to expand and update existing
estimates on lake water storage, particularly given that lake level is often the most crucial variable that determines
water storage variability (Cooley et al., 2021). Despite recent advances on documenting long-term changes in lake
water storage (Y. Feng et al., 2022; Y. Li et al., 2023; Luo et al., 2022; Yao et al., 2023), water storage data are
unavailable for most small water bodies and poorly constrained for some large lakes due to simplified hyp-
sometries or empirical models (Table 1). The level reconstruction method here can be combined with lake area
data sets (Pi et al., 2022; Yao et al., 2019; Zhao & Gao, 2018) to fill this data gap. Furthermore, the improvements
in water storage estimates can be useful for constraining the uncertainties associated with attributing water storage
changes to natural and anthropogenic factors, which are often debated (Rodell et al., 2018; Wurtsbaugh
et al., 2017; Yao et al., 2023).

We further anticipate this method will become increasingly useful in particular as more data become available
from ICESat-2 and the more recent Surface Water and Ocean Topography (SWOT) mission (launched in
December 2022). SWOT will provide unprecedented measurements of both water areas and water levels for all
lakes larger than 0.01 km? at a 21-day cycle, owing to wide-swath Interferometric Synthetic Aperture Radar
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(InSAR) techniques (Biancamaria et al., 2016). New level measurements from SWOT and ICESat-2 would
improve relative ranges and goodness of fit (R*) of hypsometric curves, leading to more accurate level re-
constructions. Given that ICESat-2 and SWOT can observe hundreds of thousands of water bodies or more, the
method presented here may be applicable to monitor a large majority of these water bodies and thus inform water
resource management to a much greater extent than is achieved currently.

6. Conclusions

In this study, we developed a novel and transferrable approach to reconstruct high-frequency multi-decadal water
levels of natural lakes and reservoirs across the globe by leveraging the extended spatial coverage of high-
resolution laser altimeters and the long duration of fine-resolution Landsat images. Evaluation of 342 water
bodies worldwide demonstrated that most reconstructed lake levels have sub-meter accuracy with a median
RMSE of 0.66 m. Despite the short records of ICESat and ICESat-2 observations, the temporal frequency of
reconstructed lake levels is mostly higher than bi-monthly during the past 26 years, owing to utilizing a proxy-
based approach to scale water areas into levels. The constructed hypsometry exhibited strong correlations be-
tween water areas and levels with an R? value greater than 0.6 for over 85% of studied water bodies, suggesting
this method is more robust than existing methods for deriving high-quality lake hypsometry and long-term water
levels.

More broadly, this study provides important guidance for studying long-term water level and volume variability
using limited data from existing and future satellite missions. Particularly, we demonstrate that water levels can be
reconstructed beyond the short lifetime of satellite altimeters when combined with longer duration missions (e.g.,
Landsat series). Owing to its generalizable nature, the presented method can be easily adapted to other InNSAR and
lidar sensors, such as SWOT. Despite a 3-year planned lifetime of SWOT, this method can leverage short-term
level measurements via SWOT and enhance the capability of SWOT on long-term water level and volume studies.

Data Availability Statement

The Landsat images used in this manuscript were accessed from the Google Earth Engine platform at https://
earthengine.google.com. ICESat and ICESat-2 data were downloaded from the National Snow and Ice Data
Center at https://nsidc.org/data. Global Lake/Reservoir Area Time Series data set was obtained from Yao
et al. (2019), which is accessible at https://lakewatch.users.earthengine.app/view/glats. The GSW data set was
downloaded at https://global-surface-water.appspot.com/. In situ water levels were obtained from the USGS
National Water Information System at https://waterdata.usgs.gov/nwis/, the U.S. Army Corps at https://water.
usace.army.mil/ and https://nicholasinstitute.duke.edu/reservoir-data/, the Texas Water Development Board at
https://waterdatafortexas.org/reservoirs/statewide/, the International Date Centre on Hydrology of Lakes and
Reservoirs (HYDROLARE) at http://hydrolare.net/, the Canadian Water Office at https://wateroffice.ec.gc.ca/,
and the Bureau of Meteorology in Australia can be downloaded from http://www.bom.gov.au/waterdata/. Water
level products from radar altimeters were downloaded from the Hydroweb at http://hydroweb.theia-land.fr, the
Database for Hydrological Time Series of Inland Waters (DAHITI) at https://dahiti.dgfi.tum.de/en, and the
USDA G-REALM database at https://ipad.fas.usda.gov/cropexplorer/global_reservoir. The existing lake hyps-
ometry from ICESat and radar altimeters were downloaded from https://dataverse.tdl.org/dataset.xhtml?persis-
tentld=doi:10.18738/T8/TOSHIJG. The reconstructed water levels and lake hypsometry, as well as data used for
validation, are available on the zenodo data repository at https://doi.org/10.5281/zenodo.8190809.

References

Abdalati, W., Zwally, H. J., Bindschadler, R., Csatho, B., Farrell, S. L., Fricker, H. A., et al. (2010). The ICESat-2 laser altimetry mission.
Proceedings of the IEEE, 98(5), 735-751. https://doi.org/10.1109/JPROC.2009.2034765

Allen, G. H., & Pavelsky, T. M. (2018). Global extent of rivers and streams. Science, 361(6402), 585-588. https://doi.org/10.1126/science.
2at0636

Alsdorf, D. E., Rodriguez, E., & Lettenmaier, D. P. (2007). Measuring surface water from space. Reviews of Geophysics, 45(2), RG2002. https://
doi.org/10.1029/2006RG000197

Al-Weshah, R. A. (2000). The water balance of the Dead Sea: An integrated approach. Hydrological Processes, 14(1), 145—-154. https://doi.org/
10.1002/(SICI)1099-1085(200001)14:1<145::AID-HYP916>3.0.CO;2-N

Barnett, T. P., & Pierce, D. W. (2008). When will Lake Mead go dry? Water Resources Research, 44(3), W03201. https://doi.org/10.1029/
2007WR006704

Basson, G. R. (2009). Management of siltation in existing and new reservoirs. In General Report Q. 89. Proceedings of the 23rd Congress of the
International Commission on Large Dams CIGBICOLD (Vol. 2).

YAO ET AL.

16 of 19


https://earthengine.google.com
https://earthengine.google.com
https://nsidc.org/data
https://lakewatch.users.earthengine.app/view/glats
https://global-surface-water.appspot.com/
https://waterdata.usgs.gov/nwis/
https://water.usace.army.mil/
https://water.usace.army.mil/
https://nicholasinstitute.duke.edu/reservoir-data/
https://waterdatafortexas.org/reservoirs/statewide/
http://hydrolare.net/
https://wateroffice.ec.gc.ca/
http://www.bom.gov.au/waterdata/
http://hydroweb.theia-land.fr
https://dahiti.dgfi.tum.de/en
https://ipad.fas.usda.gov/cropexplorer/global_reservoir
https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/TO5HJG
https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/TO5HJG
https://doi.org/10.5281/zenodo.8190809
https://doi.org/10.1109/JPROC.2009.2034765
https://doi.org/10.1126/science.aat0636
https://doi.org/10.1126/science.aat0636
https://doi.org/10.1029/2006RG000197
https://doi.org/10.1029/2006RG000197
https://doi.org/10.1002/(SICI)1099-1085(200001)14:1%3C145::AID-HYP916%3E3.0.CO;2-N
https://doi.org/10.1002/(SICI)1099-1085(200001)14:1%3C145::AID-HYP916%3E3.0.CO;2-N
https://doi.org/10.1029/2007WR006704
https://doi.org/10.1029/2007WR006704

ADVANCING EARTH
AND SPACE SCIENCES

Water Resources Research 10.1029/2023WR035721

Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., & Enrich-Prast, A. (2011). Freshwater methane emissions offset the continental carbon
sink. Science, 331(6013), 50. https://doi.org/10.1126/science.1196808

Bergé-Nguyen, M., Cretaux, J.-F., Calmant, S., Fleury, S., Satylkanov, R., Chontoev, D., & Bonnefond, P. (2021). Mapping mean lake surface
from satellite altimetry and GPS kinematic surveys. Advances in Space Research, 67(3), 985—-1001. https://doi.org/10.1016/j.asr.2020.11.001

Berk, R. A. (2008). Statistical learning from a regression perspective (Vol. 14). Springer. https://doi.org/10.1007/978-0-387-77501-2_1

Biancamaria, S., Lettenmaier, D. P., & Pavelsky, T. M. (2016). The SWOT mission and its capabilities for land hydrology. Surveys in Geophysics,
37(2), 307-337. https://doi.org/10.1007/s10712-015-9346-y

Birkett, C., Reynolds, C., Beckley, B., & Doorn, B. (2011). From Research to Operations: The USDA Global Reservoir and Lake Monitor. In
Coastal altimetry (pp. 19-50). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12796-0_2

Bootsma, H. A., & Hecky, R. E. (1993). Conservation of the African Great Lakes: A limnological perspective. Conservation Biology, 7(3),
644-656. https://doi.org/10.1046/j.1523-1739.1993.07030644.x

Busker, T., de Roo, A., Gelati, E., Schwatke, C., Adamovic, M., Bisselink, B., et al. (2019). A global lake and reservoir volume analysis using a
surface water dataset and satellite altimetry. Hydrology and Earth System Sciences, 23(2), 669—-690. https://doi.org/10.5194/hess-23-669-2019

Chaudhari, S., Felfelani, F., Shin, S., & Pokhrel, Y. (2018). Climate and anthropogenic contributions to the desiccation of the second largest saline
lake in the twentieth century. Journal of Hydrology, 560, 342-353. https://doi.org/10.1016/j.jhydrol.2018.03.034

Chen, J. L., Pekker, T., Wilson, C. R., Tapley, B. D., Kostianoy, A. G., Cretaux, J., & Safarov, E. S. (2017). Long-term Caspian Sea level change.
Geophysical Research Letters, 44(13), 6993-7001. https://doi.org/10.1002/2017GL073958

Cooley, S. W., Ryan, J. C., & Smith, L. C. (2021). Human alteration of global surface water storage variability. Nature, 591(7848), 78-81. https://
doi.org/10.1038/s41586-021-03262-3

Crétaux, J.-F., Abarca-del-Rio, R., Bergé-Nguyen, M., Arsen, A., Drolon, V., Clos, G., & Maisongrande, P. (2016). Lake volume monitoring from
space. Surveys in Geophysics, 37(2), 269-305. https://doi.org/10.1007/s10712-016-9362-6

Crétaux, J.-F., Jelinski, W., Calmant, S., Kouraev, A., Vuglinski, V., Bergé-Nguyen, M., et al. (2011). SOLS: A lake database to monitor in the
near real time water level and storage variations from remote sensing data. Advances in Space Research, 47(9), 1497-1507. https://doi.org/10.
1016/j.asr.2011.01.004

Crétaux, J.-F., Letolle, R., & Bergé-Nguyen, M. (2013). History of Aral Sea level variability and current scientific debates. Global and Planetary
Change, 110, 99-113. https://doi.org/10.1016/j.gloplacha.2013.05.006

Dawadi, S., & Ahmad, S. (2012). Changing climatic conditions in the Colorado River Basin: Implications for water resources management.
Journal of Hydrology, 430, 127-141. https://doi.org/10.1016/j.jhydrol.2012.02.010

Donchyts, G., Baart, F., Winsemius, H., Gorelick, N., Kwadijk, J., & van de Giesen, N. (2016). Earth's surface water change over the past 30 years.
Nature Climate Change, 6(9), 810-813. https://doi.org/10.1038/nclimate3111

Feng, L., Pi, X., Luo, Q., & Li, W. (2023). Reconstruction of long-term high-resolution lake variability: Algorithm improvement and applications
in China. Remote Sensing of Environment, 297, 113775. https://doi.org/10.1016/j.rse.2023.113775

Feng, Y., Zhang, H., Tao, S., Ao, Z., Song, C., Chave, J., et al. (2022). Decadal lake volume changes (2003-2020) and driving forces at a global
scale. Remote Sensing, 14(4), 1032. https://doi.org/10.3390/rs14041032

Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping
using Landsat imagery. Remote Sensing of Environment, 140, 23-35. https://doi.org/10.1016/j.rse.2013.08.029

Fisher, A., Flood, N., & Danaher, T. (2016). Comparing Landsat water index methods for automated water classification in eastern Australia.
Remote Sensing of Environment, 175, 167-182. https://doi.org/10.1016/j.rse.2015.12.055

Gao, H., Birkett, C., & Lettenmaier, D. P. (2012). Global monitoring of large reservoir storage from satellite remote sensing. Water Resources
Research, 48(9), 2012WR012063. https://doi.org/10.1029/2012WR012063

Gill, E. C., Rajagopalan, B., & Molnar, P. H. (2015). An assessment of the mean annual precipitation needed to sustain Lake Sambhar in
Rajasthan, India, during mid-Holocene time. The Holocene, 25(12), 1923-1934. https://doi.org/10.1177/0959683615596817

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis
for everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031

Gronewold, A. D., & Stow, C. A. (2014). Water loss from the Great Lakes. Science, 343(6175), 1084—1085. https://doi.org/10.1126/science.
1249978

Hipsey, M. R., Bruce, L. C., Boon, C., Busch, B., Carey, C. C., Hamilton, D. P., et al. (2019). A General Lake Model (GLM 3.0) for linking with
high-frequency sensor data from the Global Lake Ecological Observatory Network (GLEON). Geoscientific Model Development, 12(1),
473-523. https://doi.org/10.5194/gmd-12-473-2019

Holgerson, M. A., & Raymond, P. A. (2016). Large contribution to inland water CO, and CH, emissions from very small ponds. Nature Geo-
science, 9(3), 222-226. https://doi.org/10.1038/nge02654

Hung, F., Son, K., & Yang, Y. C. E. (2022). Investigating uncertainties in human adaptation and their impacts on water scarcity in the Colorado
River Basin, United States. Journal of Hydrology, 612, 128015. https://doi.org/10.1016/j.jhydrol.2022.128015

Kendall, M. G. (1948). Rank correlation methods.

Khandelwal, A., Karpatne, A., Ravirathinam, P., Ghosh, R., Wei, Z., Dugan, H. A., et al. (2022). ReaLSAT, a global dataset of reservoir and lake
surface area variations. Scientific Data, 9(1), 1-12. https://doi.org/10.1038/s41597-022-01449-5

Lee, C., & Foster, G. (2013). Assessing the potential of reservoir outflow management to reduce sedimentation using continuous turbidity
monitoring and reservoir modelling. Hydrological Processes, 27(10), 1426-1439. https://doi.org/10.1002/hyp.9284

Li, J., & Sheng, Y. (2012). An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models: A case
study in the Himalayas. International Journal of Remote Sensing, 33(16), 5194-5213. https://doi.org/10.1080/01431161.2012.657370

Li, X., Long, D., Huang, Q., Han, P., Zhao, F., & Wada, Y. (2019). High-temporal-resolution water level and storage change data sets for lakes on
the Tibetan Plateau during 2000-2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth System Science
Data, 11(4), 1603-1627. https://doi.org/10.5194/essd-11-1603-2019

Li, Y., Gao, H., Zhao, G., & Tseng, K. H. (2020). A high-resolution bathymetry dataset for global reservoirs using multi-source satellite imagery
and altimetry. Remote Sensing of Environment, 244, 111831. https://doi.org/10.1016/j.rse.2020.111831

Li, Y., Zhao, G., Allen, G. H., & Gao, H. (2023). Diminishing storage returns of reservoir construction. Nature Communications, 14(1), 3203.
https://doi.org/10.1038/s41467-023-38843-5

Luo, S., Song, C., Ke, L., Zhan, P., Fan, C., Liu, K., et al. (2022). Satellite laser altimetry reveals a net water mass gain in global lakes with spatial
heterogeneity in the early 21st century. Geophysical Research Letters, 49(3), €2021GL096676. https://doi.org/10.1029/2021GL096676

Ma, S., Liao, J., Jing, R., & Chen, J. (2024). A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data. Big Earth
Data, 1-23. https://doi.org/10.1080/20964471.2023.2295632

YAO ET AL.

17 of 19


https://doi.org/10.1126/science.1196808
https://doi.org/10.1016/j.asr.2020.11.001
https://doi.org/10.1007/978-0-387-77501-2_1
https://doi.org/10.1007/s10712-015-9346-y
https://doi.org/10.1007/978-3-642-12796-0_2
https://doi.org/10.1046/j.1523-1739.1993.07030644.x
https://doi.org/10.5194/hess-23-669-2019
https://doi.org/10.1016/j.jhydrol.2018.03.034
https://doi.org/10.1002/2017GL073958
https://doi.org/10.1038/s41586-021-03262-3
https://doi.org/10.1038/s41586-021-03262-3
https://doi.org/10.1007/s10712-016-9362-6
https://doi.org/10.1016/j.asr.2011.01.004
https://doi.org/10.1016/j.asr.2011.01.004
https://doi.org/10.1016/j.gloplacha.2013.05.006
https://doi.org/10.1016/j.jhydrol.2012.02.010
https://doi.org/10.1038/nclimate3111
https://doi.org/10.1016/j.rse.2023.113775
https://doi.org/10.3390/rs14041032
https://doi.org/10.1016/j.rse.2013.08.029
https://doi.org/10.1016/j.rse.2015.12.055
https://doi.org/10.1029/2012WR012063
https://doi.org/10.1177/0959683615596817
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1126/science.1249978
https://doi.org/10.1126/science.1249978
https://doi.org/10.5194/gmd-12-473-2019
https://doi.org/10.1038/ngeo2654
https://doi.org/10.1016/j.jhydrol.2022.128015
https://doi.org/10.1038/s41597-022-01449-5
https://doi.org/10.1002/hyp.9284
https://doi.org/10.1080/01431161.2012.657370
https://doi.org/10.5194/essd-11-1603-2019
https://doi.org/10.1016/j.rse.2020.111831
https://doi.org/10.1038/s41467-023-38843-5
https://doi.org/10.1029/2021GL096676
https://doi.org/10.1080/20964471.2023.2295632

ADVANCING EARTH
AND SPACE SCIENCES

Water Resources Research 10.1029/2023WR035721

Madson, A., & Sheng, Y. (2021). Automated water level monitoring at the continental scale from ICESat-2 photons. Remote Sensing, 13(18),
3631. https://doi.org/10.3390/rs13183631

Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., et al. (2017). The Ice, Cloud, and land Elevation Satellite-2 (ICESat-
2): Science requirements, concept, and implementation. Remote Sensing of Environment, 190, 260-273. https://doi.org/10.1016/j.rse.2016.
12.029

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International
Journal of Remote Sensing, 17(7), 1425-1432. https://doi.org/10.1080/01431169608948714

MclIntyre, P. B., Liermann, C. A. R., & Revenga, C. (2016). Linking freshwater fishery management to global food security and biodiversity
conservation. Proceedings of the National Academy of Sciences of the United States of America, 113(45), 12880-12885. https://doi.org/10.
1073/pnas.1521540113

Micklin, P. P. (1988). Desiccation of the Aral Sea: A water management disaster in the Soviet Union. Science, 241(4870), 1170-1176. https://doi.
org/10.1126/science.241.4870.1170

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, (1), 62—66.
https://doi.org/10.1109/TSMC.1979.4310076

Papa, F., Crétaux, J.-F., Grippa, M., Robert, E., Trigg, M., Tshimanga, R. M., et al. (2022). Water resources in Africa under global change:
Monitoring surface waters from space. Surveys in Geophysics, 44, 1-51. https://doi.org/10.1007/s10712-022-09700-9

Pascolini-Campbell, M. A., Reager, J. T., & Fisher, J. B. (2020). GRACE-based mass conservation as a validation target for basin-scale
evapotranspiration in the contiguous United States. Water Resources Research, 56(2), e2019WR026594. https://doi.org/10.1029/
2019WR026594

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008
(EGM2008). Journal of Geophysical Research, 117(B4), B04406. https://doi.org/10.1029/2011JB008916

Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes.
Nature, 540(7633), 418—422. https://doi.org/10.1038/nature20584

Pi, X., Luo, Q., Feng, L., Xu, Y., Tang, J., Liang, X., et al. (2022). Mapping global lake dynamics reveals the emerging roles of small lakes. Nature
Communications, 13(1), 5777. https://doi.org/10.1038/s41467-022-33239-3

Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., & Lo, M. H. (2018). Emerging trends in global
freshwater availability. Nature, 557(7707), 651-659. https://doi.org/10.1038/s41586-018-0123-1

Rosenberg, D. E. (2022). Adapt Lake Mead releases to inflow to give managers more flexibility to slow reservoir drawdown. Journal of Water
Resources Planning and Management, 148(10), 02522006. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001592

Ryan, J. C., Smith, L. C., Cooley, S. W, Pitcher, L. H., & Pavelsky, T. M. (2020). Global characterization of inland water reservoirs using ICESat-
2 altimetry and climate reanalysis. Geophysical Research Letters, 47(17), €2020GL088543. https://doi.org/10.1029/2020GL088543

Schutz, B. E., Zwally, H. J., Shuman, C. A., Hancock, D., & DiMarzio, J. P. (2005). Overview of the ICESat mission. Geophysical Research
Letters, 32(21), L21S01. https://doi.org/10.1029/2005GL024009

Schwatke, C., Dettmering, D., Bosch, W., & Seitz, F. (2015). DAHITI — An innovative approach for estimating water level time series over inland
waters using multi-mission satellite altimetry. Hydrology and Earth System Sciences, 19(10), 4345-4364. https://doi.org/10.5194/hess-19-
4345-2015

Schwatke, C., Dettmering, D., & Seitz, F. (2020). Volume variations of small inland water bodies from a combination of satellite altimetry and
optical imagery. Remote Sensing, 12(10), 1606. https://doi.org/10.3390/rs12101606

Schwatke, C., Scherer, D., & Dettmering, D. (2019). Automated extraction of consistent time-variable water surfaces of lakes and reservoirs based
on Landsat and Sentinel-2. Remote Sensing, 11(9), 1010. https://doi.org/10.3390/rs11091010

Sheng, Y., Song, C., Wang, J., Lyons, E. A, Knox, B. R., Cox, J. S., & Gao, F. (2016). Representative lake water extent mapping at continental
scales using multi-temporal Landsat-8 imagery. Remote Sensing of Environment, 185, 129-141. https://doi.org/10.1016/j.rse.2015.12.041

Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S., Kennedy, M. C., et al. (2020). Rapid worldwide growth of glacial lakes
since 1990. Nature Climate Change, 10(10), 939-945. https://doi.org/10.1038/s41558-020-0855-4

Singh, G., Joshi, R. D., & Singh, A. B. (1972). Stratigraphic and radiocarbon evidence for the age and development of three salt lake deposits in
Rajasthan, India. Quaternary Research, 2(4), 496-505. https://doi.org/10.1016/0033-5894(72)90088-9

Tao, S., Fang, J., Zhao, X., Zhao, S., Shen, H., Hu, H., et al. (2015). Rapid loss of lakes on the Mongolian Plateau. Proceedings of the National
Academy of Sciences, 112(7), 2281-2286. https://doi.org/10.1073/pnas.1411748112

Tilzer, M. M., & Serruya, C. (1990). In M. M. Tilzer & C. Serruya (Eds.), Large lakes. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-
642-84077-7

Tokuda, D., Kim, H., Yamazaki, D., & Oki, T. (2021). Development of a coupled simulation framework representing the lake and river continuum
of mass and energy (TCHOIR v1.0). Geoscientific Model Development, 14(9), 5669-5693. https://doi.org/10.5194/gmd-14-5669-2021

Wang, J., Sheng, Y., Gleason, C. J., & Wada, Y. (2013). Downstream Yangtze River levels impacted by Three Gorges Dam. Environmental
Research Letters, 8(4), 044012. https://doi.org/10.1088/1748-9326/8/4/044012

Wang, J., Sheng, Y., & Tong, T. S. D. (2014). Monitoring decadal lake dynamics across the Yangtze Basin downstream of Three Gorges Dam.
Remote Sensing of Environment, 152, 251-269. https://doi.org/10.1016/j.rse.2014.06.004

Wang, J., Sheng, Y., & Wada, Y. (2017). Little impact of the Three Gorges Dam on recent decadal lake decline across China’s Yangtze Plain.
Water Resources Research, 53(5), 3854-3877. https://doi.org/10.1002/2016WR019817

Wang, J., Song, C., Reager, J. T., Yao, F., Famiglietti, J. S., Sheng, Y., et al. (2018). Recent global decline in endorheic basin water storages.
Nature Geoscience, 11(12), 926-932. https://doi.org/10.1038/s41561-018-0265-7

Wang, Y., Long, D., & Li, X. (2023). High-temporal-resolution monitoring of reservoir water storage of the Lancang-Mekong River. Remote
Sensing of Environment, 292, 113575. https://doi.org/10.1016/j.rse.2023.113575

Weekley, D., & Li, X. (2019). Tracking multidecadal lake water dynamics with Landsat imagery and topography/bathymetry. Water Resources
Research, 55(11), 8350-8367. https://doi.org/10.1029/2019WR025500

Weekley, D., & Li, X. (2021). Tracking lake surface elevations with proportional hypsometric relationships, Landsat imagery, and multiple
DEMs. Water Resources Research, 57(1), €2020WR027666. https://doi.org/10.1029/2020WR027666

Wei, K., Ouyang, C., Duan, H., Li, Y., Chen, M., Ma, J., et al. (2020). Reflections on the catastrophic 2020 Yangtze River Basin flooding in
southern China. The Innovation, 1(2), 100038. https://doi.org/10.1016/j.xinn.2020.100038

Williamson, C. E., Saros, J. E., Vincent, W. F., & Smol, J. P. (2009). Lakes and reservoirs as sentinels, integrators, and regulators of climate
change. Limnology and Oceanography, 54(6part2), 2273-2282. https://doi.org/10.4319/10.2009.54.6_part_2.2273

Waurtsbaugh, W. A, Miller, C., Null, S. E., DeRose, R. J., Wilcock, P., Hahnenberger, M., et al. (2017). Decline of the world’s saline lakes. Nature
Geoscience, 10(11), 816-821. https://doi.org/10.1038/nge03052

YAO ET AL.

18 of 19


https://doi.org/10.3390/rs13183631
https://doi.org/10.1016/j.rse.2016.12.029
https://doi.org/10.1016/j.rse.2016.12.029
https://doi.org/10.1080/01431169608948714
https://doi.org/10.1073/pnas.1521540113
https://doi.org/10.1073/pnas.1521540113
https://doi.org/10.1126/science.241.4870.1170
https://doi.org/10.1126/science.241.4870.1170
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1007/s10712-022-09700-9
https://doi.org/10.1029/2019WR026594
https://doi.org/10.1029/2019WR026594
https://doi.org/10.1029/2011JB008916
https://doi.org/10.1038/nature20584
https://doi.org/10.1038/s41467-022-33239-3
https://doi.org/10.1038/s41586-018-0123-1
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001592
https://doi.org/10.1029/2020GL088543
https://doi.org/10.1029/2005GL024009
https://doi.org/10.5194/hess-19-4345-2015
https://doi.org/10.5194/hess-19-4345-2015
https://doi.org/10.3390/rs12101606
https://doi.org/10.3390/rs11091010
https://doi.org/10.1016/j.rse.2015.12.041
https://doi.org/10.1038/s41558-020-0855-4
https://doi.org/10.1016/0033-5894(72)90088-9
https://doi.org/10.1073/pnas.1411748112
https://doi.org/10.1007/978-3-642-84077-7
https://doi.org/10.1007/978-3-642-84077-7
https://doi.org/10.5194/gmd-14-5669-2021
https://doi.org/10.1088/1748-9326/8/4/044012
https://doi.org/10.1016/j.rse.2014.06.004
https://doi.org/10.1002/2016WR019817
https://doi.org/10.1038/s41561-018-0265-7
https://doi.org/10.1016/j.rse.2023.113575
https://doi.org/10.1029/2019WR025500
https://doi.org/10.1029/2020WR027666
https://doi.org/10.1016/j.xinn.2020.100038
https://doi.org/10.4319/lo.2009.54.6_part_2.2273
https://doi.org/10.1038/ngeo3052

ADVANCING EARTH
AND SPACE SCIENCES

Water Resources Research 10.1029/2023WR035721

Waurtsbaugh, W. A., & Sima, S. (2022). Contrasting management and fates of two sister lakes: Great Salt Lake (USA) and Lake Urmia (Iran).
Water, 14(19), 3005. https://doi.org/10.3390/w14193005

Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Inter-
national Journal of Remote Sensing, 27(14), 3025-3033. https://doi.org/10.1080/01431160600589179

Yao, F., Livneh, B., Rajagopalan, B., Wang, J., Crétaux, J.-F., Wada, Y., & Berge-Nguyen, M. (2023). Satellites reveal widespread decline in
global lake water storage. Science, 380(6646), 743—749. https://doi.org/10.1126/science.abo2812

Yao, F., Wang, C., Dong, D., Luo, J., Shen, Z., & Yang, K. (2015). High-resolution mapping of urban surface water using ZY-3 multi-spectral
imagery. Remote Sensing, 7(9), 12336-12355. https://doi.org/10.3390/rs70912336

Yao, F., Wang, J., Wang, C., & Crétaux, J.-F. (2019). Constructing long-term high-frequency time series of global lake and reservoir areas using
Landsat imagery. Remote Sensing of Environment, 232, 111210. https://doi.org/10.1016/j.rse.2019.111210

Yao, F., Wang, J., Yang, K., Wang, C., Walter, B. A, & Crétaux, J.-F. (2018). Lake storage variation on the endorheic Tibetan Plateau and its
attribution to climate change since the new millennium. Environmental Research Letters, 13(6), 064011. https://doi.org/10.1088/1748-9326/
aab5d3

Yuan, C., Gong, P., & Bai, Y. (2020). Performance assessment of ICESat-2 laser altimeter data for water-level measurement over lakes and
reservoirs in China. Remote Sensing, 12(5), 770. https://doi.org/10.3390/rs12050770

Zhan, P., Song, C., Luo, S., Liu, K., Ke, L., & Chen, T. (2021). Lake level reconstructed from DEM-based virtual station: Comparison of
multisource DEMs with laser altimetry and UAV-LiDAR measurements. I[EEE Geoscience and Remote Sensing Letters, 19, 1-5. https://doi.
org/10.1109/LGRS.2021.3086582

Zhang, G., Xie, H., Kang, S., Yi, D., & Ackley, S. F. (2011). Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data
(2003-2009). Remote Sensing of Environment, 115(7), 1733—1742. https://doi.org/10.1016/j.rse.2011.03.005

Zhao, G., & Gao, H. (2018). Automatic correction of contaminated images for assessment of reservoir surface area dynamics. Geophysical
Research Letters, 45(12), 6092-6099. https://doi.org/10.1029/2018GL078343

YAO ET AL.

19 of 19


https://doi.org/10.3390/w14193005
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1126/science.abo2812
https://doi.org/10.3390/rs70912336
https://doi.org/10.1016/j.rse.2019.111210
https://doi.org/10.1088/1748-9326/aab5d3
https://doi.org/10.1088/1748-9326/aab5d3
https://doi.org/10.3390/rs12050770
https://doi.org/10.1109/LGRS.2021.3086582
https://doi.org/10.1109/LGRS.2021.3086582
https://doi.org/10.1016/j.rse.2011.03.005
https://doi.org/10.1029/2018GL078343

	description
	Leveraging ICESat, ICESat‐2, and Landsat for Global‐Scale, Multi‐Decadal Reconstruction of Lake Water Levels
	1. Introduction
	2. Data Sets
	2.1. ICESat and ICESat‐2
	2.2. Landsat Images
	2.3. Global Surface Water Data Set
	2.4. Global Lake and Reservoir Area Time Series Data Set
	2.5. Reference Water Levels

	3. Methods
	3.1. Studied Lakes
	3.2. Deriving Lake Hypsometry
	3.2.1. Calculating Initial Water Extents and Areas
	3.2.2. Estimating Water Levels
	3.2.3. Refining Water Extents and Levels
	3.2.4. Constructing the Hypsometric Curve

	3.3. Reconstructing Multi‐Decadal Water Levels
	3.4. Evaluating Reconstructed Water Level Products From In Situ Observations and Radar Altimeters

	4. Results
	4.1. Accuracy of Reconstructed Lake Levels
	4.2. Impact of Hypsometry on Water Level Reconstruction
	4.3. Time Series of Reconstructed Lake Water Levels

	5. Discussion
	6. Conclusions
	Data Availability Statement



