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Abstract Strongly coupled data assimilation allows observations of one Earth system component (e.g., the
ocean) to directly update another component (e.g., the atmosphere). The majority of the information transfer in
strongly coupled atmosphere-ocean systems is passed through vertical correlations between atmospheric
boundary layer and ocean mixed layer fields. In this work we use correlations from a global, coupled model to
study vertical observation-space localization techniques for strongly coupled data assimilation. We generate
target correlations using a bootstrapping approach from a single 24 hr forecast from a realistic global, weakly
coupled atmosphere-ocean cycling system with an 80-member ensemble, which is the ensemble size currently
used by the NOAA operational global data assimilation system. We compare data assimilation methods with
different localization schemes using single-update, offline experiments. We develop a new strategy for optimal
observation space localization, called Empirical Optimal R-localization (EORL), to give an upper bound on the
improvement we can expect with any localization scheme. We then evaluate Gaspari-Cohn localization, which
is a commonly used parametric localization function and review its performance with respect to the optimal
localization scheme. We investigate how the performance of these localization strategies changes with
increasing ensemble sizes. Our results show that strongly coupled data assimilation has the potential to be an
improvement over weakly coupled data assimilation when large ensembles are used. We also show that the
Gaspari-Cohn localization function does not appear to be a particularly good choice for cross-fluid vertical
localization.

Plain Language Summary Accurate Earth system forecasts rely on accurate estimates of the current
state of the system. This initial state is estimated through a process called data assimilation, which combines the
previous forecast with current observations. This process relies on accurate estimates of uncertainty in both the
model and the observations. Inaccurate estimates of model and observation uncertainty can result in a
degradation of future forecasts. A technique called localization is widely used to minimize the impact of distant
observations due to unreliable uncertainty estimates over long distances. In this work we study localization in
the context of a global, coupled atmosphere-ocean model. In particular, we look at strongly coupled data
assimilation, where observations of the ocean are used to update the atmospheric model state and vice versa.
This is in contrast to weakly coupled data assimilation, where observations of the ocean are only used to update
the ocean model state. We investigate different types of localization and find that a commonly used localization
function does not perform particularly well in strongly coupled model initialization.

1. Introduction

Coupled model development is an active area of research for operational weather prediction centers including the
European Center for Medium Range Weather Forecasting and the National Oceanographic and Atmospheric
Administration in the United States (de Rosnay et al., 2022; NOAA Science Advisory Board, 2021). In addition,
recent outlooks on the future of Earth system reanalysis products have recognized the need for consistent at-
mosphere and ocean state estimates, which may be achieved through coupled models (Frolov et al., 2023). As
coupled models are adopted in a growing number of applications, it is necessary to look closely at how we
initialize these systems. In the case of numerical weather prediction, forecast models are initialized from real
world observations of current conditions using a process called data assimilation (DA; Bengtsson et al., 1981;
Lorenc, 1986). For a coupled dynamical model, such as an atmosphere-ocean model, there are multiple ways to
assimilate observations. One option is to only assimilate observations of the atmosphere into the atmospheric
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model and observations of the ocean into the ocean model. This is called weakly coupled data assimilation
(WCDA; Penny & Hamill, 2017). In this case, all of the coupling between states comes through dynamical
coupling of the forecast model. The DA step provides no additional coupling between the states. Alternatively,
observations of both fluids can be used to update both model components directly. This is called strongly coupled
data assimilation (SCDA; Frolov et al., 2016; Sluka et al., 2016; Smith et al., 2017).

Previous studies have not conclusively demonstrated a universal advantage for either SCDA or WCDA. For
example, Lu et al. (2015) experimented with a very simple model with just a handful of degrees of freedom and
found improvements for strongly coupled methods over weakly coupled methods. However, this improvement
virtually disappeared when they introduced model error. Han et al. (2013) worked with a slightly more complex
model, in the form of a Lorenz (1963) atmosphere coupled to a simple pycnocline ocean model. In biased model
experiments they found that a prohibitively large ensemble size was needed to realize improvements for SCDA
over WCDA. Goodliff and Penny (2022) used a quasigeostrophic model and variational DA scheme and found
that WCDA and SCDA perform similarly in the atmosphere, while WCDA leads to the lowest error in the ocean.
Tang et al. (2021) assimilated sea surface temperature observations into a global atmosphere-ocean model and
found that WCDA and SCDA yield similar errors in the ocean. In the atmosphere, their results were state-variable
and location dependent. For example, they found that SCDA yielded smaller errors for the temperature, wind
velocity, and specific humidity in the Arctic region, while WCDA was generally preferable in the tropical region.

While the four studies above show mixed findings, there are physical reasons to believe that strong coupling may
be beneficial. Namely, a strongly coupled scheme may be able to capitalize on the strong air-sea interfacial
correlations in highly coupled regimes (Frolov et al., 2021) and may be able to make better use of satellite ob-
servations which are sensitive to both fluids. A number of studies argue unreservedly for the advantages of SCDA
over WCDA. These include studies in a coupled Lorenz-Jin model (Liu et al., 2013), an idealized single-column
atmosphere-ocean model (Smith et al., 2015, 2017, 2018), a linear inverse model (Hakim et al., 2022), a coupled
quasi-geostrophic model (Penny et al., 2019), and an intermediate complexity coupled global circulation model
(Sluka et al., 2016). Amidst the varied findings one thing is clear: the choice of coupled DA method depends on
the model, model bias, observations, observation density, and underlying DA framework (e.g., ensemble or
variational). Even within a single system the optimal method can vary spatially and by state variable (Tang
etal., 2021; Yoshida & Kalnay, 2018). Given the value of coupled model initialization in subseasonal to seasonal
forecasting and consistent reanalyses, it is important to investigate the potential benefits of SCDA and determine
the conditions under which SCDA may outperform WCDA.

Successful applications of DA rely on accurate specifications of uncertainty in the initial conditions, as well as the
uncertainty in the numerical forecast model and observations. In ensemble-based methods like EnKF and EnVar,
the initial time and model uncertainty are specified using covariances within and between state variables. The
cross-fluid correlations employed in strongly coupled initialization for atmosphere-ocean models are weak in an
average sense, but can fluctuate to much larger values as a result of local coupling (Frolov et al., 2021; Smith
et al., 2017). Ensemble forecasts, such as those used in NOAA's operational Global Ensemble Forecast System
(GEFS; Zhou et al., 2022) are used to understand uncertainty in the forecast and can be leveraged to model the
highly flow-dependent cross-fluid correlations necessary for SCDA. Due to computational limitations, ensemble
sizes are limited (e.g., GEFS uses 80 ensemble members) and are typically many orders of magnitude smaller than
the size of the state. This leads to significant sampling errors in the computed statistics. These sampling errors are
known to degrade the quality of the state estimate and are typically mitigated through a process called localization
(e.g., Gaspari & Cohn, 1999; Houtekamer & Mitchell, 2001; Morss & Emanuel, 2002). Localization is typically
incorporated into ensemble-based DA schemes either through the background error covariance matrix (model
space localization; Houtekamer & Mitchell, 2001), or the observation error matrix (observation space localiza-
tion; Hunt et al., 2007). In this study we focus on observation space localization.

In atmospheric models, localization is often distance-based and predicated on the assumption that variables which
are distant from each other will also have uncorrelated forecast errors. There is a long history of studies on
localization in the atmosphere or ocean (e.g., Anderson & Lei, 2013; Bishop & Hodyss, 2007; Gaspari &
Cohn, 1999; Houtekamer & Mitchell, 2001; Ménétrier et al., 2015; Necker et al., 2023). In contrast, localization
methods for cross-fluid assimilation between the atmosphere and the ocean is much less established. Several
studies have looked at this issue in reduced complexity models (Smith et al., 2018; Stanley et al., 2021). The
majority of the information transferred across the fluid interface is captured in vertical correlations between the
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atmospheric boundary layer and the ocean mixed layer (Frolov et al., 2016). Hence, understanding how to localize
vertical correlations is the first step toward SCDA. To our knowledge, the study described in this manuscript is the
first to investigate optimal vertical localization strategies for cross-fluid assimilation in a realistic atmosphere-
ocean coupled system.

In this manuscript we use correlations from a global, coupled model to study vertical observation-space locali-
zation techniques for SCDA. We compute correlations from a single 24 hr forecast from a realistic global, weakly
coupled atmosphere-ocean cycling system with an 80-member ensemble, which is the ensemble size currently
used by the NOAA global data assimilation system. We use bootstrapping to increase the effective ensemble size
and estimate target correlations. We then compare how well different localization schemes perform within single-
update, offline experiments. We propose two benchmarks, which represent two extremes of performance: (a) no
localization at all (this is generally understood to cause poor performance), and (b) optimal localization, which we
calculate empirically (to give an upper bound on the improvement we can expect with any localization scheme).
We then evaluate Gaspari-Cohn localization, which is a commonly used parametric localization function and
review its performance with respect to these two benchmark measures. We investigate how the performance of
these localization strategies changes with different ensemble sizes. Finally, we offer suggestions for important
avenues of future research to determine an appropriate and practical localization scheme for global, coupled
models.

2. Methods
2.1. Data

We evaluate vertical localization strategies using a single 24 hr ensemble forecast from a global, weakly coupled
cycling system. This ensemble forecast comes from a NOAA Unified Forecast System (UFS; Unified Forecast
System, 2023) research to operations project which couples the atmospheric model from the Finite Volume Cubed
Sphere Global Forecast System (FV3 GFS; Harris et al., 2021), Modular Ocean Model version 6 (MOM®6;
Adcroft et al., 2019), and the Los Alamos sea ice model (CICE; Hunke et al., 2017). The forecast ensemble size is
80 members. The atmosphere and ocean components are run at a 1-degree horizontal resolution. The FV3 GFS
and MOM6 models have different horizontal grid spacing, so to facilitate comparison, for the purposes of this
study each forecast is interpolated to a uniform 1-degree grid. The forecast is valid at 03Z 6th December 2015. We
use a 24 hr lead time for the forecast since it takes about 12 hr to equilibrate unbalanced atmospheric and oceanic
initial conditions (Laloyaux et al., 2018).

The initial atmospheric ensemble is defined by the 80 member operational GFS ensemble. The ocean is initialized
from the Next Generation Global Ocean Data Assimilation System (NG-GODAS; Kim et al., 2022) analysis and
the respective ocean and ice ensemble members are computed via perturbations added by the JEDI-based Sea-ice
Ocean and Coupled Analysis (JEDI-SOCA; JCSDA Project: SOCA, 2023) ensemble perturbation application,
which generates perturbations by sampling from the square root of the 3DV AR covariance function. The weakly
coupled ensemble, including the stochastic perturbations, is spun up for 10 days. We assume that the atmospheric
states are near statistical equilibrium at this point, while the ocean ensemble is likely under-dispersive with spread
primarily driven by the variability in the atmospheric forcing. However, we expect that any 1-degree ocean model
will have low internal (eddy-driven) variability, leading to insufficient internal spread. Thus we expect that the
variability in the ocean component is representative of variability in other realistic global coupled models at
similar horizontal resolution.

Throughout this work we focus on atmosphere and ocean temperature fields. We assimilate synthetic observa-
tions of surface level temperature fields. For simplicity the surface level fields are taken to be the value of the
temperature in the vertical level closest to the air-sea interface. That is, we take the lowest atmospheric level and
call its temperature the “atmospheric surface temperature.” Likewise, the temperature in the top level of the ocean
model is taken to be the “sea surface temperature.” Figure 1 shows the 24hr forecast ensemble mean and spread
temperature fields from the ensemble that will be used to evaluate localization strategies.

2.2. Target and Sample Correlations

In order to understand the effects of localization, we establish “target” correlations (Figure 2) using a large (2,000
member) ensemble that was bootstrapped from the 80 member ensemble described in the previous section
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Figure 1. Four panels show ensemble mean (left; degrees C) and ensemble standard deviation (right; degrees C) for
atmospheric surface temperature (top; AST) and sea surface temperature (bottom; SST) in the realistic 24 hr forecast used
throughout this investigation. The surface level fields are taken to be the value of the temperature in the vertical level closest
to air-sea interface. The forecast is valid for 6th December 2015 at 03Z and is produced using an 80 member ensemble.

(Tibshirani, 1994). We are unable to estimate the unknown true correlations. Instead, these bootstrapped cor-
relations serve as a useful target for investigating the performance of different localization methods. The boot-
strapping approach is similar to the approach used in Gasperoni et al. (2022) and serves to dampen spuriously
large correlations. The target correlations can be viewed as estimates of correlations from ensembles that are
much larger than what is currently used operationally. They form the basis of our evaluation of different localized

sample correlations.
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Figure 2. The panel on the left shows the correlation between atmospheric surface temperature (AST) and sea surface
temperature (SST). The correlations are not strictly positive, but negative values are rare. Stronger correlations, greater than
0.3, appear to be highly flow-dependent. The right panel shows correlations between atmospheric surface temperature and
the entire atmosphere-ocean temperature column (black). Correlations with sea surface temperature are shown in blue. These
correlation columns are shown for five locations in the Tropical Pacific (TP), South Pacific (SP), Southern Ocean (SO),
Indian Ocean (IO), and North Pacific (NP). Column locations are shown with black circles in the plot on the left. Three
columns with large cross-correlations (in the upper 10%) are shown (TP, SP, SO). One location with moderate cross-
correlation (close to the global mean) is chosen (I0), as well as one location with near-zero cross-correlation (NP). Across all
column locations, there is a discontinuity in correlation across the fluid boundary, consistent with the plot on the right.
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Our bootstrapping approach assumes local stationarity in the ensemble perturbations. Note that the ensemble
mean is not locally stationary, but when we remove the mean, we see that the structure of the perturbations is
similar in local neighborhoods. Thus, starting from the 80 member ensemble, we remove the ensemble mean at
each grid cell i to create an ensemble of perturbations, 77}, where the subscript b refers to the background state. At
each horizontal grid cell we gather ensemble perturbations from 5 X 5 columns centered on the grid cell in
question. This gives a collection of 2,000 (25 X 80) ensemble perturbations per grid point. From this collection of
perturbations we compute the target covariance matrix P, (Equation 1) and target correlation matrix C;,
(Equation 2).

1 X, ..,
Pi = o7 ) (1)

) = (ding(Py)Pi(dine() ™ @

To maintain a tractable scope, we focus exclusively on temperature-temperature correlations in the atmosphere
and ocean. However, this experimental procedure is general and can be applied to any observing system and state
variable pairs. Figure 2 (left) shows the correlation between background errors in sea surface temperature and
background errors in atmospheric surface temperature. Figure 2 (right) shows the vertical correlations between
background errors in surface temperatures and background errors in temperature throughout the entire
atmosphere-ocean column for five selected locations: Tropical Pacific (TP), South Pacific (SP), Southern Ocean
(SO), Indian Ocean (IO), and North Pacific (NP). A range of cross-interface correlations are shown: three lo-
cations have correlation strength in the upper 10% (TP, SP, SO), one location has a correlation strength that is
close to the global average (I0), and one location has low correlation strength (NP).

With the target correlations described above, we now estimate sample correlations, to be used as a proxy for the
correlations that would be used in practice. In our experiments we will test different approaches to localizing these
sample correlations, and then compare the results to the target. To compute our sample correlations, we sample

- -~ . N
normally distributed ensembles of background errors {1127 S}i_‘ . from the target covariance matrix P, as follows:

'757,5 = (PZ)VZS, with e ~ N(0,I) 3)

2.3. Vertical Localization

In this study we focus on R-matrix (or observation-space) localization, which inflates the observation error
variance for distant observations and is commonly used in both atmosphere and ocean DA (Sluka et al., 2016). An
alternative localization method which is commonly used in variational solvers is B-matrix (or model-space)
localization, which applies a cutoff function to the background covariance matrix. We defer investigation of B-
matrix localization to future studies and note that the requirement of maintaining positive definiteness of the
localized B-matrix is not present with R-matrix localisation. R-matrix localization allows for a different locali-
zation strategy for each observation type, and hence is helpful for coupled localization where a wide number of
different observations are used. In addition, R-matrix localization is used in many local DA schemes, such as the
Local Ensemble Transform Kalman Filter (LETKF; Hunt et al., 2007). With R-matrix localization, the solution
for each grid cell i is as follows:

(i) = S,P,H] (HP,H] +L,oR,)™ (3, — Hux, (i) @)

where x™™(i) is the increment at the ith grid cell and S, is the selection operator that selects the row of the state
vector corresponding to the ith grid point. The local observation vector, y;, corresponds to a subset of observations
in a region near grid cell i, and the local observation operator, H;, consists of the corresponding rows of the full
observation operator H. Likewise, R; and L; are the local observation error covariance and localization matrices
corresponding to local observations y;. The - symbol represents the Schur, or element-wise, product. For the
purposes of this investigation, observations are treated individually so that L, = L; and R; = R, are scalars and

L,oR,=L; xR,
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One common way to prescribe localization weights is through the use of distance-based functions, so that the
observation error variance of distant observations is inflated and the background state is only minimally updated
by the distant observation. For this investigation we use synthetic surface level observations (sea surface tem-
perature and atmospheric surface temperature). The vertical distance (log hPa) from an atmospheric grid cell i to
either of these observations is computed as follows:

d} =log(p;) —log(py) )

where p, is the pressure at grid cell i and p, is atmospheric surface pressure. The distance (m) from an ocean grid
cell i to either of the observations is simply the depth below the surface of the grid cell i. By considering only
surface level observations, we never need to measure distances across the two fluids and thus do not need to
contend with the different units used to measure distance in the atmosphere and ocean. In general to compute
distance-based localization weights for observations that are not located at the surface, one could use normalized
distances, as in Frolov et al. (2016).

Previous studies have constructed “optimal” localization methods to provide an upper bound on the performance
of practical and tractable localization schemes (e.g., Anderson & Lei, 2013; Destouches et al., 2021; Flower-
dew, 2015; Ménétrier et al., 2015; Necker et al., 2023). In particular, Necker et al. (2023) used an empirically
derived localization method to provide guidance on vertical localization in an atmospheric model. They develop
their Empirical Optimal Localization (EOL) for B-matrix localization. In this work we present a similar approach
for R-matrix localization and call it Empirical Optimal R-localization (EORL). In this approach, we allow the
localization weights that multiply the R-matrix to vary at each grid cell. We perform a separate scalar minimi-
zation at each grid cell to set the localization weight L; in Equation 4. Specifically, we minimize the error in the
Kalman gain with respect to a target Kalman gain, K*. As an example, consider a single horizontal location with
an observation operator H which is 1 at the surface and O elsewhere. The Kalman gain at vertical level i is as
follows:

K; = S;P,H (HP,H + L;oR) . (6)

Note that HP,H' = 02ufce 18 @ scalar, since the observation operator corresponds to a single surface-level

observation. Further, SP,H' = o,

surface,; 18 the (scalar) covariance between the state at level i and the

surface-level state. The observation error variance R = #° is also a scalar since we have a single observation.
Finally, the localization coefficient L; = L; is a scalar and is allowed to vary with vertical coordinate i. To
illustrate that the Kalman gain K varies with different choices of localization coefficient L; we abuse notation
and write the Kalman gain as a function of localization coefficient K,(L). To find the optimal localization
coefficient, we define a target Kalman gain K and find the localization coefficient which solves the following
minimization problem:

L; = minl|K,(L) - K; | ™)

The choice to focus on the error in the Kalman gain and the procedure for identifying the target K* are dis-
cussed in the following section. To perform the minimization, we use a hybrid root-finding method known as
Brent's algorithm (Press et al., 1992), as implemented in the scipy.optimize package in Python (Virtanen
et al., 2020). EORL provides an upper bound on the improvement we can expect to achieve with an R-matrix
localization scheme, but it relies on knowledge of the target correlations, which are unknown in a realistic
setting.

In practice, localization schemes should be easily implementable. This often prompts the use of a parametric
localization function. Hence, in addition to EORL, we investigate the performance of two optimal parametric
localization strategies based on the Gaspari-Cohn function. This function was first introduced as a piecewise,
compactly supported approximation to a Gaussian (Gaspari & Cohn, 1999). Its compact support means that
localized covariance matrices have many O entries and this sparsity is computationally advantageous in DA
systems. For these reasons, the Gaspari-Cohn localization function is widely used in DA studies and is currently
used in operational NOAA DA systems. To provide an upper bound on the performance of the Gaspari-Cohn
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Figure 3. This figure shows the reciprocal of the functions used to inflate the
observation error variances in R-matrix localization at a location in the
Tropical Pacific (12.5 N, 150.5 E). Three localization methods are shown for
each observation type with atmospheric surface temperature on the left and
sea surface temperature on the right. With EORL (dark blue, dotted),
localization weights are determined separately at each vertical level. With
GC (light blue, solid), a separate length scale is estimated for each
observation/fluid pair. GC-Atten (green, dashed) is also parametric, but
allows for different function magnitudes for each observation/fluid pair in
addition to different localization length scales.

SST localization functions, we estimate optimal parameters separately at each

horizontal location. The first parametric localization method we consider
simply uses the localization function f“€ from Gaspari and Cohn (GC;
Gaspari & Cohn, 1999). That is, we set the localization weight at each vertical
level i as follows:

L= l/fGC(diir) ®

where d; is the distance from the ith vertical level to the (surface-level)
observation and r is the optimal localization length scale. We set the locali-
zation length scale r separately at each horizontal localization using the

1 0
Localization weight

H minimization procedure described above.

The Gaspari-Cohn function has a magnitude of one when distance d; = 0.
While this is appropriate for within-fluid assimilation, where correlations are
close to one for neighboring vertical levels, it may not be appropriate for the
small and fluctuating cross-fluid correlations that characterize SCDA
(Figure 2). To understand this, note that linear filtering theory in Ménétrier
et al. (2015) tells us that the optimal localization weight depends on the
average (squared) correlation between two state variables. Further, the
optimal localization weight decreases with decreasing correlation strength.
Hence, we may expect that the optimal localization function for cross-fluid
assimilation will have a magnitude smaller than one. Thus, with our second
parametric localization method we allow the magnitude of the function to be
an arbitrary positive number and set the localization weights as follows:

L= c/f(dsr) ©)

where d; is the distance from the ith grid cell to the observation, c sets the magnitude of the function at distance
d; = 0, and r is the localization length scale. The parameters ¢ and r are set separately at each horizontal
localization using the direct-search simplex method (Nelder & Mead, 1965) which is capable of minimizing
multivariate functions. The implementation we use is from the scipy.optimize package in Python (Virtanen
et al., 2020). We call this approach Gaspari-Cohn with attenuation (GC-Atten). Figure 3 illustrates the locali-
zation weights resulting from these three schemes (EORL, GC, and GC-Atten) at a location in the Tropical Pacific
(12.5 N, 150.5 E).

2.4. Metrics for Evaluating Localization

To evaluate the performance of the localization schemes, we consider different metrics for measuring the distance
between target and localized sample correlations. Previous works on optimal localization strategies often focused
on B-matrix localization and measured error in the localized B-matrix with respect to the target B-matrix (e.g.,
Anderes et al., 2013; Ménétrier et al., 2015; Necker et al., 2023). This error metric is not appropriate here because
R-matrix localization does not regularize the B-matrix directly. Other possible metrics include measurements of
error in the analysis mean, error in the mean increment, and error in the Kalman gain. This study uses the Kalman
gain metric because (unlike errors in the analysis mean and mean increment) the Kalman gain metric is not a
function of errors in the mean state (Equation 10) and most clearly measures the correlation structures which are
the focus of this investigation. This is the strategy employed by Sakov and Bertino (2011) because it allows for the
comparison of B-matrix and R-matrix localization strategies.

To compute the error in the Kalman gain, we first need a target Kalman gain. The target Kalman gain, K*, is
computed from the target correlations discussed above as follows:

K* = P;H"(HP;H" +R*)™' (10)

STANLEY ET AL.

7 of 16



NI

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003783

where P; is the target background error covariance matrix and H is the observation operator. We select the
observation error variance to be equal to the variance of the ensemble at the observed location, that is,
R* = HPZHT. To facilitate comparisons among grid cells, we compute a relative error between the sample
Kalman gain, K, and the target Kalman gain, K*, as follows:

errg = || K = K*|I/||K*||? )

We choose to use the 2-norm. The relative error is bounded below by 0, which indicates a perfect update, K = K*.
When this error is equal to 1, we see that ||[K — K*|| = || K*|| = ||K* — 0]|, so using K is no more accurate than
simply persisting the background state with no update (K = 0). Taking this relative error one step further, we
compute the percent improvement over persistence, ¢, as follows:

¢ = (1 - |IK—K*|I*/|[K*[|*) x 100 (12)

Throughout the rest of this manuscript we will discuss our results in terms of percent improvement over
persistence. Percent improvement equal to zero indicates that our update did no better than a persistence, while
values close to 100 show optimal improvement. Negative values indicate that the update degraded the analysis
state and that it would have been better not to assimilate observations at all. Furthermore, in the case of cross-
component assimilation we can think of improvement over persistence as improvement for SCDA over
WCDA. While we do not have a WCDA system, since WCDA relies on the forecast step to provide the coupling,
we use the terms SCDA and WCDA to differentiate between a single update with a SCDA versus a WCDA
system. Consider the errors associated with the assimilation of only SST (and no atmospheric observations) into
the atmospheric component of the model. In a WCDA system, SST would not be assimilated into the atmosphere.
In other words, the atmospheric state would be persisted. By contrast, in a SCDA system, SST would be
assimilated into the atmosphere. Thus, any improvements because of the assimilation of SST into the atmosphere
can be thought of as improvement for SCDA over WCDA.

3. Experimental Design

To understand how the design of vertical localization impacts our ability to transfer innovations between fluids,
we conduct a series of experiments. First, we fit three optimal localization functions to estimate best possible
performance with a modest size ensemble (80 members). The non-parametric EORL localization provides an
upper bound for possible performance. We also present two optimal GC formulations to provide an upper esti-
mate of the performance with a popular parametric form of localization. We draw 1,000 ensembles, each con-
taining 80 members, compute the sample correlations, and report the average ¢ (Equation 12) at each location.

To ensure that our results capture a wide variety of air-sea coupling regimes, we use all (n = 24, 801) available
coupled atmosphere-ocean grid points that are further than 200 km from the coastline. In all experiments we
assimilate atmospheric surface temperature and sea surface temperature into both the atmosphere and the ocean
separately. That is, we consider four pairs of observations and fluids and conduct a separate assimilation
experiment for each observation/fluid pair, which we use to test the different localization strategies. Two of
these pairs are classified as within fluid assimilation (atmospheric surface temperature assimilated into the
atmosphere, sea surface temperature assimilated into the ocean) and the other two constitute cross-fluid
assimilation. In this study we are especially interested in the implementation of SCDA, and hence are
particularly interested in the cross-fluid pairs. Results from this experiment are shown in Figure 4 and discussed
in the following section.

For a second experiment, to understand how ensemble size impacts the results, we increase the ensemble size by
about a factor of three to 256 ensemble members. The setup is otherwise identical to the previous experiment.
Results are shown in Figure 5 and discussed in the following section.

In a further series of experiments, we investigate how the number of ensemble members affects the asymptotic
behavior of the optimal localization functions. We vary the number of the ensemble members exponentially (in
powers of two) from 4 to 256. At each ensemble size we compare results with EORL, Gaspari-Cohn, and no
localization. We compute the distribution of percent improvements as in the previous two experiments.
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Figure 4. Violin plots show the distribution of percent improvement over persistence for three different “optimal”
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localization methods with an 80 member ensemble. For each of the n = 24, 801 grid points we include the average of 1,000
trials. Thus the violin plots show spatial variability in performance. The median is marked on each violin plot with a small
white dot. Numerical values of the median are also written to the right of each violin plot. The top and bottom 0.5% of data
points are discarded as outliers and not shown. The violin plots are scaled so that, within each panel, each violin plot has the
equal area. Results are separated by observation/fluid pair with atmospheric surface temperature observations on the left, sea
surface temperature observations on the right, and atmospheric temperature states on top and ocean temperature states on
bottom. The diagonal subplots (shown in purple) correspond to within-fluid assimilation, while the off-diagonal plots (shown
in blue) correspond to cross-fluid assimilation. We also compute percent improvement over persistence when no localization
is used. These values are not shown because they fall outside of the bounds of this figure. The median percent improvement
over persistence with no localization is: (i) AST into ATM: 90%, (ii) SST into ATM: —295%, (iii) AST into OCN: —213%,

(iv) SST into OCN: 61%.
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Figure 5. Same as Figure 4, but with 256 ensemble members. The median percent improvement over persistence with no
localization (not shown) is: (i) AST into ATM: 96%, (ii) SST into ATM: 2%, (iii) AST into OCN: —23%, (iv) SST into

OCN: 88%.
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Finally, we recognize that in practical applications it might not be possible to find optimal EORL or GC pa-
rameters for each vertical column. To estimate the performance under such “practical” constraints, we examine
performance of the localization with fixed values of the GC parameters. We first use a single localization length
scale for the entire globe, which we set to be equal to the median of our estimated “optimal” length scales. We call
this scheme OneRad. As in the previous cases, we allow the localization radius to vary with each fluid/observation
pair. Previous studies have also proposed an adaptive approach to strong coupling, where observations of one
fluid are allowed to update another fluid when modeled correlations exceed a prescribed threshold (Yoshida &
Kalnay, 2018). Thus, we consider a second practical option, where we use Gaspari-Cohn localization with a single
localization radius for the entire globe as in OneRad, but the localization radius is set to zero (and no assimilation
is performed) when cross-fluid correlations are smaller than a prescribed threshold. We call this the Cutoff
method and assimilate cross-fluid observations when the sample correlation between atmospheric surface tem-
perature and sea surface temperature is at least 0.3. We use an ensemble size of 80 and compute ¢ as in the first
experiment.

4. Results

Figure 4 shows the global distribution of improvements over persistence, ¢, associated with the three localization
schemes from the first experiment. In this figure we see that the improvement over persistence is largest for
empirical optimal R-localization (EORL), followed by Gaspari-Cohn with attenuation (GC-Atten), followed by
Gaspari-Cohn (GC). For example, we can look at the median percent improvement over persistence (shown with a
white dot in the center of each violin plot), which is always larger with EORL than with either of the other
localization methods. This is to be expected based on the number of degrees of freedom in each of these methods.
EORL shows the upper bound on the improvement we can achieve with R-localization and has degrees of
freedom equal to the number of vertical levels at each horizontal location. The GC-based methods impose a
parametric form and hence have many fewer degrees of freedom, with just two degrees of freedom for GC-Atten,
and one degree of freedom for GC. For within-component assimilation we see that all three localization methods
perform quite similarly and all give close to 100% improvement, with even more improvements in the atmosphere
(AST into ATM) when compared to the ocean (SST into OCN). This supports the decision to use a parametric
localization function for within-fluid assimilation as there is not much to be gained by adding degrees of freedom.

For cross-component assimilation, the story is quite different. AST into OCN and SST into ATM (lower left and
upper right subplots) look qualitatively similar and both show significant and consistent improvement over
persistence with EORL. For example, with EORL almost none of the distribution is located at zero percent
improvement over persistence, and indeed most of the mass is concentrated between about 30% and 60%
improvement over persistence. This can also be interpreted as a significant improvement with SCDA over
WCDA, when EORL is employed. It is possible that EORL is better at capturing the structure of the atmospheric
boundary layer and marine mixed layer. Some of this improvement could be gained with a different parametric
form, which is an interesting avenue for future research.

Both of the parametric localization methods we consider here have a large density of points with no improvement
over persistence in cross-fluid assimilation, suggesting that there are grid points for which any assimilation of
cross-fluid observations would degrade performance. Note that there are no negative values in Figure 4. We can
explain this by considering the specific design of this experiment. When the Kalman gain K is identically zero we
see in Equation 12 that ¢ = 0 and there is no improvement over persistence. Intuitively this makes sense because
K = 0 means we are simply persisting the background state. One way to construct K = 0 is by setting the
localization radius to zero, since we update only the points with distance strictly less than the localization radius.
Thus, it is always possible to construct a localization radius which gives ¢ = 0. Assuming that the optimization
schemes we use to maximize ¢ are able to explore the space of localization radii well, we should never see
negative value of ¢.

There is slight improvement in ¢ with GC-Atten over GC, despite the marginal addition in complexity. This is
especially noticeable for the assimilation of sea surface temperature into the atmosphere. In general we see that, in
this system, the assimilation of sea surface temperature into the atmosphere is more often beneficial compared to
the assimilation of atmospheric surface temperature into the ocean. Although this is likely due to the way we set
the observation error variance for each observation type, the result is encouraging, as the modern observing
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Figure 6. Median percent improvement over persistence is shown with different ensemble sizes (in powers of 2 from 4 to
256). Results are shown for EORL (dark blue, dotted), GC localization (light blue, solid), and no localization (red, dot-
dashed). A solid gray vertical line marks 80 ensemble members, which is the size of current GEFS ensembles. Each
observation/fluid pair is shown in a different subplot, similar to Figures 4 and 5.

system is saturated with sea surface temperature observations (order of ~100 M in the 24 hr cycle) but is very
sparse when it comes to observations of the air temperature in the marine boundary layer.

Figure 5 shows the effects of increasing the ensemble size approximately three-fold. Effects on within-fluid
assimilation are small, suggesting that an ensemble size of 80 is sufficient for that purpose. The largest im-
provements in ¢ are seen in cross-fluid assimilation: the median ¢ with EORL increases from about 40%
(Figure 4) to 60% (Figure 5). For the parametric methods, we also see a marked increase in the median ¢, which
increases almost three fold from about 15% when 80 members are used (Figure 4) to about 40% when 256
members are used (Figure 5). However, even with this large ensemble size, there are many locations where there
is no improvement in ¢» with SCDA when compared to WCDA, as evidenced by the violin plots flaring out near
zero percent improvement over persistence in the lower left and upper right subplots.

Figure 6 shows that as we systematically increase the ensemble size, the performance continues to improve for all
assimilation and localization cases. In this experiment we choose not to include GC-Atten for clarity of exposition
and because we see similar results for GC and GC-Atten in the results of the first two experiments. There is a stark
divide between results from within-fluid and cross-fluid assimilation. While localization is certainly important for
within-fluid assimilation, particularly with small ensemble sizes, we can see that it is absolutely necessary for
cross-fluid assimilation. Indeed, without localization we see that assimilating observations is detrimental for all
but the largest ensemble size (Ne = 256) considered here (red curve in Figure 6). Further, we see a large
improvement with EORL when compared to GC in cross-fluid assimilation. EORL performs better than any
operational localization scheme could hope to do because it is trained on target correlations which are unknown in
realistic setups. We can see that special care will need to be taken when designing a vertical localization method
for realistic applications.

Figure 6 shows that for our experiments assimilating surface temperatures to update model temperature in a
single-update experiment, optimal localization with around 128 ensemble members is needed to achieve median
percent improvement over persistence of at least 50% for cross-fluid assimilation. For within-ocean assimilation
the same performance is achieved without any localization at all, and with half the number of ensemble members
(64). For within-atmosphere assimilation this performance is achieved without any localization with just 16
ensemble members. We need 8§ times more ensemble members for SCDA with perfect localization to realize the
same level of performance as atmosphere-only assimilation with no localization in our single update experiment
using correlations computed from a realistic global model. From these results, we can expect that SCDA will
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Figure 7. Violin plots show the distribution of percent improvement over persistence for two different “practical” localization
methods, OneRad and Cutoff, as well as an optimally tuned parametric localization method, GC, with 80 ensemble members.
The top and bottom 0.5% of data points are discarded as outliers and not shown. The violin plots are scaled so that, within
each panel, each violin plot has equal area. OneRad uses the standard Gaspari-Cohn localization function with a single
localization length scale for each observation/fluid pair. Localization length scales are chosen to be the median of the optimal
length scales estimated for an 80 member ensemble. The length scales used here are: (1) AST into ATM, 0.81 log hPa; (2)
SST into ATM, 0.10 log hPa; (3) AST into OCN, 30.5 m; (4) SST into OCN, 126.8 m. For within-fluid assimilation, Cutoff is
identical to OneRad. For cross-fluid assimilation, Cutoff uses the same localization length scales and OneRad and only
performs an update when the sample correlation between AST and SST is greater than 0.3. This cutoff is chosen to be
approximately the 90th percentile of the target correlations. GC is as in Figure 4 and is provided here for reference. The
dashed line at zero separates the locations where assimilation is helpful (positive values) and where it degrades performance
compared to persisting the forecast (negative values).

require dramatic increases in ensemble size, well beyond the 80 members currently used in the NOAA operational
global data assimilation system. Indeed, even with 256 ensemble members, we find greater errors in our
experimental single-update strongly coupled system than what we would expect from an operational-sized
atmosphere-only ensemble.

The optimal localization schemes investigated above perform better than any operational localization scheme
could hope to do because they are trained on target correlations which are unknown in realistic setups. This
motivates us to consider several practical localization schemes: OneRad where a single localization length scale
is used globally, and Cutoff where cross-fluid updates are made only when sample correlations exceed a
threshold of 0.3. As in Figures 4 and 5, the violin plots in Figure 7 show distributions of ¢ for different
localization methods. Two practical localization methods (OneRad and Cutoff) are shown in comparison to an
optimal localization scheme, GC. Results for both cross-fluid assimilation experiments show that using a single
localization radius globally leads to performance that is an improvement over persistence in just over half of the
locations (i.e., the median is just above zero), but can degrade the performance compared to persistence by over
100% in the worst cases. The cutoff method sharpens the distribution of ¢ so that nearly all of the locations
show no improvement over persistence. The median percent improvement is slightly worse with the cutoff
method when compared to using a single localization radius everywhere, but the cutoff method has a signif-
icantly better worst case performance. The decrease in median ¢ is likely due to sampling errors in the esti-
mation of the ensemble correlation strength. Unlike the optimal localization methods which never degrade
performance when compared to persistence, using either of these practical methods will lead to degradation of
performance in about half of the locations.

5. Discussion

In this work we evaluated vertical localization strategies for SCDA with different ensemble sizes. We tested three
different optimal localization strategies, two based on the Gaspari-Cohn localization function, and one which
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gives the greatest possible error reduction. Our results show that SCDA has the potential to be an improvement
over WCDA with correlations inferred from a realistic global model. However, localization will require some
serious thought, as a simple parametric R-localization is unlikely to be sufficient to properly attenuate the small on
average and highly flow-dependent cross-fluid correlations. In particular, Gaspari-Cohn parametric localization
does not appear to be an especially good choice for cross-fluid vertical localization, when the localization radius is
chosen globally. Realistic assimilation systems often allow localization radii to vary by latitude. In keeping with
this, we looked at the differences in localization radii by latitude (not shown). However, we did not find
meaningful differences between the optimal localization radii in different regions.

Our offline experiments make use of a single ensemble forecast from a realistic global coupled system,
estimate target covariances using a neighborhood bootstrapping approach, and then sample ensembles from
the target covariance model. This methodology allows us to investigate how to improve a DA system quickly
and without the overhead needed when setting up a cycling system. In particular, our approach provides a
clear routine for evaluating vertical localization in a coupled system. This framework is a valuable tool which
can be used in the future to test different practical and implementable vertical localization strategies. Using
this framework to inform localization strategies for other state variables, for example, atmospheric wind
speed, is an exciting avenue for future research. While we assume a Gaussian distribution for the background
errors, one could easily extend this experimental protocol for non-Gaussian background errors by employing a
more sophisticated sampling technique when drawing ensemble members from the target background error
distribution.

Although we focus on R-matrix localization, it is far from the only method to treat sampling errors in DA. Indeed,
there is a rich history of studies on the difference between R-matrix localization, as we use here, and B-matrix
localization, which localizes the background error covariance matrix directly (e.g., Lei & Whitaker, 2015;
Nerger et al., 2012; Sakov & Bertino, 2011). With B-matrix localization one must take special care to ensure that
the localized B-matrix is positive semidefinite (Gaspari & Cohn, 1999). This complication is avoided with R-
matrix localization in the case of a diagonal R-matrix, as we have here. Any positive localization weight will
ensure that R remains positive definite. A similar methodology to that presented here could also be used to look at
B-matrix localization.

Using only one forecast ensemble limits our ability to understand how localization will impact strongly coupled
assimilation at varying forecast lead times or in a cycling system. In particular, is possible that in a cycling system
with balanced states we might see higher cross-fluid correlation values and less need for expanded ensemble sizes.
This study also only included fields at a 1° resolution with this particular FV3-MOMSG6 coupled configuration.
Further studies are needed to explore how localization may impact results with other models or at other forecast
lead times and resolutions. For example, a cycling system could be used to test the benefit of SCDA in systems
where one field is densely observed (e.g., sea surface temperature) and is used to constrain another well-correlated
but poorly observed field like near surface atmospheric temperature. Finally, our chosen observing systems are
not representative of realistic observing systems in that they do not address issues of representativity or obser-
vation density. Our results in a simplified system encourage us to further investigate the following questions in
more complex configurations. For example,:

¢ How would these results change in a cycling experiment?

o How would these results change with B-matrix localization, or other types of localization methods?

o Do the results we found here generalize to other forecast lead times, state variables, resolutions, and models?

o How does observation density impact the performance of strongly coupled over weakly coupled data
assimilation?

6. Conclusions

Here, we conducted experiments applying different localization strategies to a constructed case study, designed to
represent a single analysis update to atmosphere and/or ocean temperature, from assimilation of surface level
temperature observations. A central difficulty of strongly coupled atmosphere-ocean data assimilation is that the
cross-fluid correlations are small on average and highly flow-dependent (Frolov et al., 2021). For example, in
Figure 2 for our experiments, the atmosphere-ocean cross-component temperature correlations are near-zero over
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most of the domain, with larger values occurring in localized regions associated with certain flow conditions. A
successful strongly coupled data assimilation, in which states from one component are updated from observations
of the other component, must then make use of the stronger correlations to make cross-component updates where
appropriate, while avoiding making harmful updates in the bulk of the domain, where cross-component obser-
vations are not informative.

One consequence of the tendency for low cross-component correlations across much of the domain in coupled
systems is that strongly coupled data assimilation is much more sensitive to sampling noise than within-fluid
data assimilation. Hence, in our experiments, the strongly coupled data assimilation required much larger
sample sizes, and were more sensitive to localization strategies than the within fluid updates. In particular, even
with perfect localization, we required 128 ensemble members to see median percent improvement of at least
50% for cross-fluid updates over within-fluid updates. We saw additional improvements when we increased the
ensemble size to 256, indicating that ensemble sizes much larger than the 80 members currently used in NOAA
GEFS may be needed.

An additional complication revealed by this work, is that it is unlikely that simple parametric localization, as is
standardly used for within-fluid data assimilation, is going to be sufficient for coupled data assimilation. For
example, in Figure 7, applying the GC localization function using a single set of parameters (i.e., without
optimizing it to each location) in the strongly coupled data assimilation updates resulted in degradations at up to
50% of the model locations with an 80 member ensemble. Instead, it is very likely that we will need to develop
methods that are optimized according to the local coupled strength.

Consequently, in order to realize the potential improvements associated with strongly coupled data assimilation in
an atmosphere-ocean model, we recommend focusing on developing better methods for addressing sampling
noise. This could be achieved by increasing the ensemble size, with this work suggesting at least 250 may be
necessary. Given the computational difficulties of increasing ensemble sizes through traditional approaches, it
may be necessary to augment current ensembles using methods such as machine learning, or re-sampling
methods. Additionally, computationally efficient optimal localization techniques are needed to enable
applying localization schemes in Kalman filter methods that dynamically respond to local coupling strength. In all
likelihood, advances on both of these fronts will be necessary before we can successfully apply strongly coupled
data assimilation in full-scale ensemble systems.

Data Availability Statement

The code used for the experiments and analysis in this work is available here: https://doi.org/10.5281/zenodo.
10966857. If this manuscript is accepted, all code and data will be transferred to Zenodo prior to publication.
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