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Abstract 

Cyanobacteria biomass models are routinely used in Lake Erie to predict the occurrence and 

location of algal blooms. However, current forecasts do not predict the microcystin toxins 

produced by these blooms. In this study, we used an extensive dataset of microcystin 

concentrations to generate weekly distribution maps in Lake Erie for the summers of 2018 and 

2019. Using a 3D Eulerian tracer model (ETM), initialized with these maps, we simulated 

microcystin transport over 7 days, under two conditions: (1) the initial microcystin is mixed 

within the surface-mixed layer; (2) the initial microcystin is distributed throughout the entire 

water column. Two scenarios were tested for each condition: one incorporating microcystin 

production rates into hydrodynamic transport and one excluding them. Model performance was 

evaluated against weekly sample data in predicting whether microcystin concentrations 

surpassed specific thresholds (0.3, 1.0, 5.0, 10.0, and 20.0 µg/L), and in predicting trend 

directionality over each week. Overall, the ETM with hydrodynamics alone captured the 

transport of microcystins and predicted microcystin concentrations in 69% of the simulations. 

Incorporating microcystin production into the model increased the accuracy of forecasts by an 

additional 10%. Moreover, models with microcystin production successfully predicted 

microcystin concentrations greater than 5 μg/L during a large bloom, high-microcystin year 

(2019), while incorrectly forecasting concentrations above 5 μg/L during a small bloom year 

(2018). With limited data to initialize the ETM, no single model configuration consistently 

outperformed others. It is necessary to consider the full range of model configurations when 

utilizing their outputs for making management decisions. 
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Introduction 

Lake Erie, the most productive of the Laurentian Great Lakes, has experienced summertime 

(July to October) cyanobacterial harmful algal blooms (CHABs) in the past two decades (Stumpf 

et al., 2012; Bridgeman et al., 2013; Steffen et al., 2014). The re-emergence of CHABs in Lake 

Erie after a period of decline is primarily linked to excessive nutrient input from non-point 

agricultural sources (Watson et al., 2016; Martin et al., 2021). The most severe CHABs originate 

in the shallow western basin of Lake Erie near the mouth of the Maumee River due to its close 

proximity to nutrient loads and favorable temperature and light climate (Chaffin et al., 2011; 

Kane et al., 2014). Lake Erie CHABs are dominated by Microcystis aeruginosa, a highly 

buoyant colony-former capable of producing high concentrations of hepatotoxic microcystins 

(MCs) (Steffen et al., 2014; Harke et al., 2016). While many socioeconomic and ecological 

problems are associated with CHABs, MC contamination of recreational and drinking waters is 

the most serious concern. One of the most well-known examples is the "do not drink" advisory 

issued by the City of Toledo in August 2014, which affected half a million people and lasted for 

three days (Jetoo et al., 2015), as a result of MC concentrations in tap water that exceeded the 

World Health Organization guideline of 1 μg/L. 

 

Several short-term forecast models have been developed to predict CHAB biomass, distribution, 

and transport in Lake Erie. These models aim to provide early information on CHAB biomass for 

decision support, which can help mitigate negative impacts at drinking water treatment plants 

and beaches. The models are initialized from satellite images of CHAB biomass (Wynne et al., 

2010) and use hydrodynamic conditions predicted by a hydrodynamic model to forecast CHAB 

transport and determine the bloom location and biomass several days into the future (Wynne et 

al., 2013; Rowe et al., 2016). These short-term forecast models are developed using either a 

Lagrangian or an Eulerian approach. For example, the Lake Erie Harmful Algal Bloom Forecast 

system, maintained by the National Oceanic and Atmospheric Administration (NOAA), employs 

a three-dimensional (3D) Lagrangian particle tracking model (referred to as the NOAA HAB 

Tracker; available at https://coastalscience.noaa.gov/research/stressor-impacts-mitigation/hab-

forecasts /lake-erie/, accessed December 11th, 2021). This model is used in combination with 

satellite images to provide information on the bloom's current location and biomass, as well as its 

forecasted position over the next 96 hours. A 3D Eulerian tracer model has also been tested to 

predict CHAB biomass distribution and is planned to be linked to the operational version of the 

Water Cycle Prediction System for the Great Lakes by Environment and Climate Change Canada 

to produce daily forecasts of CHAB transport (Soontiens et al., 2019).   

 

The Eulerian and Lagrangian approaches differ in how they describe fluid properties, such as 

toxin concentration, within a field. The Lagrangian approach focuses on tracking the motion of 

numerous discrete flowing particles and their associated properties as they move through the 

field. The trajectories and properties of individual particles are changing as they evolve over 

time. By releasing and observing a multitude of such particles, one can obtain a comprehensive 
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understanding of the fluid's dynamics and properties in the domain. Conversely, the Eulerian 

approach adopts a fixed spatial frame of reference, describing the fluid properties at specific, 

predetermined points within the field. Within this framework, one describes the temporal 

evolution of fluid properties at a vast array of fixed locations across the domain to understand the 

flow system. The Eulerian tracer models are more effective in representing continuous 

concentration fields and is more compatible with lower-food web biological models, which are 

also developed within the Eulerian framework (Xue et al., 2014; Rowe et al., 2017; Zhou et al. 

2023). In contrast, the Lagrangian approach is better suited for representing properties that vary 

across a population, such as buoyant velocities for Microcystis colonies. Moreover, the 

Lagrangian approach is well-adapted for tracking exposure to environmental conditions over 

time, which is essential for individual-based models of organisms (Li et al., 2014). 

 

Recently, Zhou et al. (2023) conducted a comprehensive evaluation of Lagrangian and Eulerian 

transport models for forecasting cyanobacterial harmful algal blooms (CHABs) in Lake Erie. 

The study compared three types of 3D models: 1) a Lagrangian particle model (LPM), 2) an 

Eulerian tracer model (ETM), and 3) a property-carrying particle model that utilizes a hybrid 

Eulerian-Lagrangian approach. The results indicated that all three transport models demonstrated 

similar levels of skill, with the ETM outperforming the others in the overall evaluation. 

Consequently, we chose to use the 3D ETM for forecasting microcystin (MC) concentrations in 

this study. This decision was also based on the fact that the Eulerian approach is more effective 

at estimating changes in continuous fields of concentration driven by biophysical processes and 

offers greater flexibility in incorporating numerical descriptions of biological processes. 

 

Compared to forecasting CHAB biomass, predicting MC concentrations is more challenging. 

There are relatively few observed MC data points (compared to remote sensing biomass data), 

which creates a barrier for model development, calibration, and evaluation of model 

performance. CHAB biomass cannot be used as a proxy for MC concentration, and remote 

sensing cannot detect MCs (Stumpf et al., 2016). To overcome data limitations, recent research 

has incorporated the MC-to-chlorophyll ratio from grab samples to forecast MC concentrations. 

They averaged the ratio across all sites for a given date and then multiplied the mean ratio by 

remote sensing-derived chlorophyll concentrations to back-calculate MC concentration (Liu et 

al., 2020). Similarly, Qian et al. (2021) used a MC-chlorophyll empirical relationship in a 

Bayesian hierarchical modeling framework to forecast MC concentrations. This approach 

allowed Liu et al. (2020) and Qian et al. (2021) to estimate the spatially- and temporally-resolved 

probability of MC exceeding certain advisory concentrations in the western basin of Lake Erie; 

however, this approach has limitations. The MC-to-chlorophyll ratio can range from less than 

0.05 to greater than 0.50 throughout the western basin on a single day, suggesting that the MC-

to-chlorophyll ratio varies as much spatially as it does temporally (Chaffin et al., 2021). 

Furthermore, the MC-to-chlorophyll approach omits MC data that does not have a paired 

chlorophyll measurement (such as drinking water intakes). Ideally, MC forecasts should rely on 
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measured MC concentrations rather than surrogates. 

 

Additionally, when compared to CHAB biomass forecasts, there are other knowledge gaps in 

developing an MC forecast. The modeling of CHAB biomass (and likely MCs) transport is 

sensitive to the initial vertical distribution of the bloom. In CHAB biomass forecast modeling, 

several studies suggest that applying surface chlorophyll concentrations to the surface mixed 

layer produces the highest accuracy (Rowe et al., 2016; Soontiens et al., 2019). However, it 

remains unknown whether the same process can be applied to forecasting MCs. Furthermore, 

current CHAB biomass models and forecasts (i.e., the NOAA HAB Tracker) assume that 

physical processes such as water currents and wind mixing dominate over biological mechanisms 

(cell division and death) in explaining short-term bloom location and biomass (Rowe et al., 

2016). Nevertheless, a recent report showed that MC production rates decrease throughout the 

bloom season (Chaffin et al., 2022). Therefore, it is crucial to evaluate the physical processes 

influencing the accuracy of MC concentration forecasts and understand how incorporating 

biological processes could improve these forecasts. 

 

In this study, we used a comprehensive dataset of MC concentrations compiled from multiple 

sources, including university researchers, federal and state agencies, water treatment plant 

intakes, and citizen scientists. This data was used to create weekly maps of MC concentrations in 

Lake Erie to initialize an Eulerian tracer model (ETM; see below for the model description), 

aiming to predict the spatiotemporal patterns of MC during two CHAB seasons in 2018 and 

2019. The MC simulations were analyzed with respect to concentration and extent, focusing on 

the significance of mixing, whether initial microcystin is mixed throughout the entire water 

column or within the surface-mixed layer, and biological processes, such as incorporating MC 

production rates. This analysis aimed to explain the short-term variability of MC concentrations. 

 

Method and Materials 

Observational data 

We requested MC concentration data from all institutions that routinely (weekly to biweekly) 

collect grab samples from the western basin of Lake Erie. We received data from five sources, 

totaling 366 data points in 2018 and 655 in 2019 (see Electronic Supplementary Material (ESM) 

for Data Sources). The institutions that submitted data collected grab samples using different 

water collection methods (Golnick et al., 2016) and analyzed microcystins (MCs) by enzyme-

linked immunosorbent assay (ELISA; Eurofins Abraxis, #520011, Warminster, PA, USA). We 

did not request MC data analyzed by other analytical methods (i.e., LC-MS or HPLC) due to the 

inherent differences in these methods (Chaffin et al., 2021). All health standards are based on 

ELISA data. No attempt was made to normalize data for differences in sampling depth because 

Golnick et al. (2016) reported no significant differences in chlorophyll-a concentrations among 



 

6 

 

different water sample collection methods in a side-by-side comparison study. Microcystin 

concentrations in the western basin can range from less than 0.3 µg/L in the open waters of the 

western basin to greater than 40 µg/L in Maumee Bay (Chaffin et al., 2021). Collectively, this 

indicates that the bias introduced by different water sample collection methods is much smaller 

than the spatial variability of MCs in western Lake Erie. Most organizations reported total MC 

(as µg/L), but some provided MC data as particulate MC and dissolved MC concentrations (both 

as µg/L), which we summed to calculate total MC concentration. Grab sample data were binned 

by week and assigned a common collection date as occurring on Monday. The largest, regular 

sample collection programs (e.g., NOAA and the University of Toledo) often occurred on 

Mondays, except due to inclement weather. This was done to generate weekly MC maps using 

all available data, which served to provide the initial conditions for the ETM to predict the MC 

concentrations in the following week. It is important to note that the model results on the actual 

sampling dates were used for model-observation comparisons for accuracy and reliability. 

 

We used remotely sensed algal biomass images (from the NOAA imagery archive) to identify a 

zero-MC concentration boundary in weekly maps. The zero-MC boundary was defined by the 

edge of the visible satellite-derived boundary, determined through image classification. We 

employed the inverse distance weighting (IDW) tool within ArcGIS to create an interpolated 

raster of MC concentrations (i.e., MC concentration maps) using all collected data, which were 

used to initialize the ETM. Figure 1 shows an example for August 19th, 2019. 

 

In addition to the weekly datasets mentioned above, a high-spatial-resolution one-day sampling 

was conducted on August 7th, 2019 (referred to as "HABs Grab," Chaffin et al., 2021). During 

this event, 172 grab samples were collected, covering an area of 2,270 km2 in the western basin 

of Lake Erie within a six-hour measurement window (Fig. 1b). The "HABs Grab" provided a 

high-resolution distribution of MC and served as the best data source for evaluating the impact of 

hydrodynamic transport on MC spatial variability. On the other hand, consistent weekly 

sampling of MC concentrations was conducted by the National Oceanic and Atmospheric 

Administration's Great Lakes Environmental Research Laboratory and the Cooperative Institute 

for Great Lakes Research (hereafter referred to as “GLERL”) at eight monitoring locations (Fig. 

1c). These data were used to evaluate the modeled seven-day forecast performance temporally. 

The GLERL samples were most consistently collected on Mondays, with data generated from all 

eight sites during most sampling cruises. More details about the GLERL dataset can be found in 

the ESM Data Sources. 

 

Note that the zero-MC boundary, identified using image classification, was also validated using 

data from the "HABs Grab" that showed no detection of MC outside the satellite-derived 

biomass boundary. The IDW method also worked well for the "HABs Grab" because there were 

a large number of samples available (172 collected on one day) within the basin. However, the 

IDW method may have limitations for weeks when only a handful of MC concentrations were 



 

7 

 

available, which introduced additional uncertainties to the model’s initial conditions. Although 

the IDW method produced interpolated raster values between known sampling points and the 

zero-MC edge, the model evaluation focused on the area bounded by the GLERL sampling 

points. 

 

Hydrodynamic model  

The Finite Volume Community Ocean Model (FVCOM) is a three-dimensional (3D) 

hydrodynamic, free-surface, primitive-equation model that solves the integral form of the 

governing equations on an unstructured, sigma-coordinate mesh (Chen et al., 2003). FVCOM has 

been applied in many coastal systems characterized by geometric complexity and highly variable 

flow patterns, including various applications to the Great Lakes (Anderson et al., 2015; Rowe et 

al., 2016; Xue et al., 2015, 2017, 2022; Huang et al., 2021). 

 

The Lake Erie (LE)-FVCOM employs an unstructured grid mesh composed of 6106 nodes and 

11509 elements (Fig. 1d). The mesh has a grid resolution of 2.5 km in the central basin, 1.5 km 

in the western basin, and 0.5 km in Maumee Bay (western corner of the basin) and the area 

around islands between the central and western basins. The model is vertically divided into 20 

uniform sigma layers that provide vertical resolution ranging from approximately 0.1 m for the 

shallow areas (≈ 2 m) to approximately 0.5 m for the deep regions (≈ 10 m) in the western basin 

of Lake Erie. The open boundary conditions consist of primary inflow from the Detroit River and 

outflow through the Niagara River, with specified hourly water levels using the NOAA gauges at 

Gibraltar, Michigan (9044020) and Buffalo, New York (9063020). The LE-FVCOM is driven by 

hourly atmospheric forcing from the High-Resolution Rapid Refresh (HRRR), a cloud-resolving 

and convection-allowing weather forecast and data assimilation system running in real time at a 

3-km grid resolution (Benjamin et al., 2016). 

 

Eulerian tracer model 

The ETM was developed from the FVCOM general ecosystem module (GEM), which 

solves the advection-diffusion equation coupled to biological functions using a finite volume 

approach. The advective transport and turbulent mixing of microcystin concentration (C) in the 

ETM were governed by following equation: 
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where u, v, and w are the x, y, and z components of the water velocity, �� is the vertical thermal 

diffusion coefficient, 
� is the buoyant velocity, �� is the horizontal diffusion term, and ������� 

and ����� represents the sources (production) and sinks (loss) of C, respectively, due to the 

biological processes. In this study, the source and sink terms were replaced by an MC production 

function (described in the following section).  
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Microcystis regulates the buoyancy of its colonies, with most of them being positively buoyant in 

Lake Erie (Den Uyl et al., 2021). The competition between algae buoyancy and turbulent mixing 

is an important factor in the vertical distribution of colonies within the water column. Wind-

driven turbulence can mix colonies deeper into the water column, while calm conditions allow 

them to float back towards the surface (Medrano et al. 2013; Rowe et al., 2016). As the Eulerian 

approach represents the characteristics of the population mean rather than describing 

intrapopulation variability, a representative buoyant velocity of 90 µm/s was used in ETM. This 

value represented the majority (70%) of the measured buoyant velocities based on the frequency 

distribution histogram of estimated buoyant velocity described in Rowe et al. (2016). 

Additionally, Zhou et al. (2023) reported a detailed sensitivity analysis (Zhou et al. 2023, 

Sections 1, 2, and 3 in ESM) of buoyant velocities for the CHAB biomass forecast. They used a 

high buoyant velocity of 180 µm/s (representing Microcystis colonies with large diameters) and 

non-buoyant velocity cases to compare with the model forecast using a buoyant velocity of 90 

µm/s that represented 70% of the measured buoyant velocities based on the frequency 

distribution histogram. The results confirmed that using a representative buoyant velocity of 90 

µm/s provided the best model performance in the sensitivity analysis of buoyant velocities. 

 

Microcystin production function 

The changes in MC concentration caused by biological processes during the model simulation 

were calculated using the following equation. 

 

��� =  !×�#$�(%�&)       (2) 

Where ���and ��' are the microcystin concentrations (µg/L) at time t and time 0 (model start 

time), respectively. t is the simulation time (day). µ  is the intracellular microcystin production 

rate constant (/day). A positive rate indicates a net production of MCs by algal cells, whereas a 

negative value indicates a net loss of MCs due to degradation. µ values for each week were 

determined from a microcosm study that quantified MC production biweekly throughout the 

2018 and 2019 CHAB seasons (Chaffin et al., 2022) (ESM Table S1). Briefly, µ  was quantified 

for CHAB collected at two sites in the western basin (Maumee Bay and an offshore site) at 

ambient nutrient and elevated phosphorus and nitrogen conditions and at in situ temperature and 

light conditions (Fig. 1). The "actual" µ might be somewhere in the middle between ambient and 

elevated conditions. Because the ‘actual’ µ  was not quantified, we used the averaged µ value 

from the ambient and elevated nutrient conditions for ETM simulations. In addition, we 

conducted two sensitivity analyses using the lower and higher quartiles from the range of µ 

values between ambient and elevated nutrient conditions to identify the uncertainty in the MC 

production rate and the sensitivity of model performance to the MC production rate (ESM Figure 

S4). We used µ  from the site in Maumee Bay for areas within 20 km of the Maumee River 

mouth and µ  from the offshore site to represent the rest of the basin (Fig. 1d). Because µ  was 

measured biweekly, we used the µ value determined closest to the simulation start date.  
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Initial vertical distribution of microcystins 

The short-term forecast of CHAB biomass and MC concentration is sensitive to the initial 

vertical distribution of CHABs. In the modeling of CHAB biomass forecast, remotely sensed 

surface chlorophyll concentrations can be used to improve the initial condition of the model by 

applying it to the surface mixed layer (Rowe et al., 2016; Soontiens et al., 2019; Zhou et al., 

2023). However, the MC concentration map generated here is based on in situ data collected 

from all water layers due to the limited observational data. The best approach to initializing 

model vertical distribution with limited observations is still unknown, but the desired metric to 

track is the total mass of toxins in the full water column. Water intakes generally draw in a well-

mixed water column sample that is not affected by surface scums. In this study, we tested the 

performance of the model by initializing the model under two mixing conditions: (1) distributing 

the initial microcystin from an MC concentration map throughout the entire water column, and 

(2) distributing the initial microcystin from an MC concentration map within the surface-mixed 

layer. Following Rowe et al. (2016), we conducted one-dimensional (1D) simulations to estimate 

the SML depth in 33 selected locations, providing representative coverage of the most common 

CHAB regions and an additional three stations in the deeper areas. Each 1D simulation was 

initialized with 1000 neutrally buoyant particles uniformly distributed throughout the water 

column. The simulation was set to run from 48 hours before the initialization time of each ETM 

simulation up to the initialization time to allow the particle distribution sufficient time to adapt to 

the varying diffusivity. The SML depth was then estimated as the depth at which the 1D 

concentration profile decreased to half the surface concentration and was interpolated spatially to 

the ETM nodes by the nearest neighbor method (Rowe et al., 2016). 

 

Design of numerical experiments  

The numerical experiments were designed in two parts. In the first part, we focused on the 

specific event of the HABs Grab (a one-day sampling on August 7th, 2019) that had high spatial 

resolution and coverage of MC measurements during a severe bloom in the western basin. For 

this event, we conducted two ETM simulations (including or excluding MC production) from 

July 29th to August 8th to analyze the impact of hydrodynamic transport and MC production on 

the spatial variability of MCs. We initialized the model with the latest available MC map (on 

July 29th) before the 2019 HABs Grab. For the ETM simulation including MC production, we 

used the average of the MC production rates measured for microcosm water collected on July 

16th and August 13th for the area within 20 km of the Maumee River mouth. As there was no 

sampling event for microcosm water at the Maumee Bay site that was close to July 29th, we used 

the MC production rate measured on microcosm water from the offshore site collected on July 

30th for the rest of the basin. 
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In addition, we conducted a numerical Lagrangian particle tracking experiment to demonstrate 

the flow patterns that impact the transport of microcystins (MCs) by displaying the trajectories of 

fluid particles released from five representative regions on July 29th, 2019 (Fig. 3a). For the 

particle tracking experiments, we randomly released 60,000 particles in the western basin of 

Lake Erie from 8:00-16:00 on July 29th and tracked them until August 7th. We calculated particle 

trajectories using 3D flow fields simulated by LE-FVCOM. It is important to note that the 

objective of the particle tracking experiments was to illustrate the flow patterns and facilitate 

understanding of the role of hydrodynamic transport in affecting MC distribution; therefore, the 

particles in the simulation represent flow parcels rather than MC concentration. Spatiotemporal 

changes in MC concentration were all simulated using the ETM. Particles were randomly 

released within the water column. Note that we did not incorporate the random-walk process into 

the particle tracking, and therefore the turbulent mixing processes were not represented in the 

particle tracking. As a result, the particle trajectories only represent advection by currents. 

Ideally, the random-walk process should also be included for the most accurate representation of 

particle tracking. 

 

In the second part of the numerical experiments, we focused on analyzing the statistical skill of 

the ETM modeled seven-day forecast performance in simulating all weekly grab samples during 

the 2018 and 2019 CHAB seasons. We conducted four types of ETM simulations to determine 

the role of physical transport and biological processes in explaining the short-term variability of 

MCs and to test the model sensitivity to different initial vertical distributions of MCs. The ETM 

simulations were designed with two types of initial MC mixing conditions: (1) initializing the 

ETM by applying MC maps within the surface-mixed layer (referred to as the SML model); and 

(2) initializing the ETM by applying MC maps throughout the entire water column (referred to as 

the WC model). Simulations for each mixing condition included two scenarios: one that 

incorporated microcystin production rates into hydrodynamic transport, and another that did not. 

In each type of experiment, we conducted 25 individual simulations covering the 2018 and 2019 

CHAB seasons. Each simulation ran for 7 days or longer to reach the time point of the 

subsequent available observation data for model-data comparison (data were from the "HABs 

Grab" event and GLERL weekly sampling). Occasionally, model simulations were performed for 

longer than seven days when the GLERL weekly sampling was not sampled on Mondays due to 

inclement weather. 

 

Model assessment 

Model performance was evaluated using confusion matrices. A confusion matrix displays four 

possible conditions including true positives (TP), true negatives (TN), false positives (FP), and 

false negatives (FN). Confusion matrices have proven useful for evaluating and communicating 

model performance in forecasting algal blooms (Anderson et al., 2015; Rowe et al., 2016; Liu et 

al., 2020; Kim et al., 2021). The model outputs and the observed weekly MC measurements at 

the eight GLERL sites were compared to several MC threshold values. A ±20% buffer range was 
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applied to the model output to account for the uncertainty of the ELISA method (Qian et al., 

2015) and to avoid being too stringent with the assessment. Each result was defined as correct if 

the model output and the observed MC concentrations were both above (true positive, ESM Fig. 

S1a) or both below (true negative, ESM Fig. S1b) the concentration threshold. A false positive 

occurred when the model output was above the threshold, but the observed MC concentration 

was below the threshold (ESM Fig. S1c), and a false negative corresponded to the model output 

being below the threshold but the observed concentration being above it (ESM Fig. S1d). When 

the model outputs were above (below) the threshold and observed below (above), but the 20% 

buffer overlapped both the threshold and the observed MC concentrations (ESM Fig. S1e and 

S1f), the model was considered correct, regarded as true positive (negative). Multiple MC 

concentration thresholds from different criteria were tested in the skill assessments to examine 

the model performance in forecasting different ranges of MC concentrations (0.3, 1.0, 5.0, 10.0, 

and 20.0 μg/L). The 0.3 μg/L level was selected because it is the ELISA method reporting limit 

(i.e., detectable levels of MC), and 0.3 μg/L is also the Ohio EPA's established drinking water 

threshold of microcystin concentrations for children under 6 years of age and the group of 

sensitive individuals. The value of 1 μg/L is the World Health Organization MC guideline for 

drinking water. The upper range limit of the ELISA test method is 5 μg/L, above which samples 

require dilutions, and 10 μg/L was selected because it is twice the ELISA range. The threshold 

that is often used for the public to avoid all contact with the water is 20 μg/L. 

 

The confusion matrix was used to evaluate whether the ETM could capture the observed weekly 

trend of microcystin concentrations at the eight monitoring sites in the western basin of Lake 

Erie. This trend was evaluated based on whether the microcystin concentrations increased, 

decreased, or remained stable from week to week. The model was considered correct if the 

modeled microcystin concentrations and observed microcystin concentrations changed in the 

same direction (ESM Fig. S2a, d) or if the ±20% buffer on the modeled concentrations 

overlapped with both the initial and final observed data (ESM Fig. S2b, e). Conversely, the 

model was considered incorrect if the model result and observed data showed an opposite trend 

(ESM Fig. S2c, f). In addition, we also used a “persistence” forecast, which assumes a steady 

MC pattern over time. The persistence forecast represented the best available information to 

forecast for a hypothetical scenario if no new data were available.  By comparing the ETM with 

the persistence forecast, we could characterize the quality of the additional information provided 

by the ETM. 

 

Paired sample T-tests were conducted for the 0.3 μg/L, 1.0 μg/L, and trend analysis across all 

models to determine if there were significant differences between the years (2018 and 2019), 

models with and without MC production, and the SML and WC models. Higher concentration 

thresholds were excluded from this analysis due to the lack of observed MC exceeding 5 μg/L in 

the 2018 CHAB season. 
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Results 

Observed weekly MC data 

The MC concentrations observed in 2019 were generally much higher than those in 2018 (ESM 

Fig. S3). Despite the concentration differences, the temporal and spatial patterns observed were 

similar. Both years had low concentrations (<1.0 μg/L) in early July, and the MC levels began to 

sharply increase in the last week of July. The concentrations peaked during August in both years 

and then decreased to low levels by late September. In 2018, only one sample exceeded 5 μg/L, 

whereas in 2019, there were 26 samples above 5 μg/L, including six above 10 μg/L. The sample 

sites closest to the Maumee River (WE6, 9, 2) had higher concentrations than the sites furthest 

from shore (WE4 and WE13). 

 

"HABs Grab"  

The HABs Grab provided us with a unique opportunity to analyze the impact of hydrodynamic 

transport and MC production on the spatial variability of MCs in the western basin of Lake Erie, 

thanks to its sufficiently high spatial resolution and coverage. To discuss the evolution of MCs, 

we included the latest available MC map (Fig. 2a) from before the HABs Grab and the spatial 

distribution of MCs during the HABs Grab (Fig. 2b). On July 29th, observations showed that 

high MC concentrations (2-5 μg/L) originated near the west shore of the western basin and 

extended to the center of the western basin, with a decrease of MC concentrations to 1-2 μg/L. 

On the HABs Grab day, the highest MC concentrations (> 20 µg/L) were measured in the region 

near the mouth of the Maumee River, and concentrations decreased along the south shore with 

increasing distance to the east. A “finger-shaped” MC plume (1-5 μg/L) was observed in the 

center of the western basin, pointing to the north shore of the western basin. The "finger" and the 

high MC concentrations on the west shore of the western basin formed a semi-circular front 

surrounding the outflow from the mouth of the Detroit River. 

 

A 10-day numerical Lagrangian particle tracking experiment was conducted to identify the 

impact of hydrodynamic transport on the spatial distribution of MCs. Particles were released in 

five representative regions, marked in different colors, to reveal how hydrodynamic transport 

affected their distribution (Fig. 3a). The Detroit River outflow influenced the transport, which 

first flowed southward in the northern part of the basin and then turned counterclockwise to the 

northeast to exit the western basin through the passage to the north of Pelee Island (Fig. 3b). 

Water currents transported particles released in the brown and red rectangles (center and 

northern areas of the basin, respectively) further east and to the Canadian coast, respectively, 

corresponding to the “finger" pattern on August 7th. Due to the low current speed at Maumee Bay 

(Fig. 3b, western corner of the basin), most of the particles released in Maumee Bay (black 

rectangle) remained in this region, with a small portion of particles moving northward along the 

western shoreline of the basin. The high residence time in Maumee Bay provided favorable 
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conditions to accumulate and retain high MC concentration due to MC production in this region. 

Particles released in the northwest area (purple rectangle) moved slightly southward but were not 

carried eastward like the particles in the red rectangle, indicating the two close regions belong to 

two different flow regimes. The movement of particles released in the red and purple regions 

explained the formation of a steep concentration gradient of MC at 41.70-41.95 degrees latitude 

and -83.2 degrees longitude. Most of the particles released in the southern area (blue rectangle) 

stayed inside the blue rectangle due to the low current speed and spread out in all directions 

according to the horizontal mixing process. One small portion of particles moved northward and 

joined the extension of the “finger”. Another small portion moved southeastward along the coast, 

explaining the observed extension of MC along the south coast. 

 

In addition to the Lagrangian particle tracking experiment, the two ETM simulations (with and 

without MC production) successfully predicted the "finger" and semi-circular shaped front of 

MCs (Fig. 2c and d). The main difference between the two simulations was the concentration of 

MCs in Maumee Bay. Only the model with MC production ("WMC") predicted high MC 

concentrations (> 20 μg/L, Fig. 2c) that were consistent with the observed MC (Fig. 2b). The 

model without MC production ("WOMC") predicted MC concentrations of less than 5 μg/L in 

Maumee Bay (Fig. 2d). 

 

Weekly MC forecast skill assessment  

Statistical skills were summarized by confusion matrices to evaluate model performance in 

forecasting different levels of MC concentrations and weekly trends. Each comparison between 

model-predicted and observed (measured at 8 GLERL sites) MC concentrations in the 2018 and 

2019 CHAB seasons was classified into correct (true positive and true negative) and incorrect 

(false positive and false negative) conditions and marked in corresponding colors (Figs. 4-7). 

The accuracy was calculated as the ratio of correctly classified events to the total number of 

events for each case and each site (listed on the X-axis and Y-axis of Figs. 4-7, ESM Figs. S4-

S5), and each CHAB season (Table 1 and ESMTable S2). This allowed for a better evaluation of 

model performance in space and time. 

 

0.3 μg/L threshold 

The WC model with MC production (WC-WMC) had the highest accuracy at the 0.3 μg/L 

thresholds, with 85.4%, 94.2%, and 90.0% in 2018, 2019, and both years combined, respectively 

(Table 1). The WC-WMC model performed 8.3% to 8.6% better than the SML-WMC model, 

which involved initializing the model by applying MC concentration maps within the surface 

mixed layer and simulating MC production. The WC-WOMC model, which did not include 

microcystin production, was about 10.6% to 20.8% better than the SML-WOMC model. The 

WMC models outperformed the WOMC models, with a difference of 8.3% to 20.8%. Generally, 

simulations at sites closer to the Maumee River (Sites WE9, 6, 2, 8, and 12) were more accurate 
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than those further offshore (Fig. 4). Site WE4, the northernmost site, and more influenced by the 

Detroit River than the Maumee River (Fig. 1c), had the lowest accuracy within every model 

simulation (Fig. 4) due to the highly dynamic movement of the HAB front. Across all sites and 

models, among the incorrect results, there was a general pattern of more false negatives in the 

early bloom season and more false positives at the end of the year. 

 

 

1.0 μg/L threshold 

 

In 2018, at the 1.0 μg/L threshold, the persistence model had the highest accuracy (84.4%), 

which was 9.4% higher than any other model configuration (Table 1). Among the four 

experiments in 2018, the WC-WOMC model was the second-most accurate (75.0%). The two 

WMC models (with MC production) generated a combined 14 false positives in July 2018, 

whereas the two WOMC and persistence models generated only one false positive combined, 

showing that the WMC models were less accurate in 2018 (a small bloom year) (Fig. 5). 

 

 

In 2019, which was a big bloom year, the WC-WMC model had the highest accuracy rate of 

87.5%, which was 2.9% better than other models (as shown in Table 1). However, the two 

WOMC and persistence models had lower accuracy rates in 2019 due to generating more false 

negatives during July and early August compared to the WMC models. During the peak bloom 

of 2019 (between August 5th and August 19th simulation start times), all models had a high 

accuracy rate ranging from 75% to 100% for comparison times. However, all models had false 

positives at the end of the 2019 bloom (on September 3rd and September 24th). There were no 

apparent spatial patterns in accuracy. 

 

5, 10, and 20 µg/L thresholds 

Evaluating higher concentration thresholds for 2018 is complicated by the fact that, except for 

WE16 on August 20, all other samples had MC concentrations less than 5.0 μg/L (Fig. 6). 

Throughout the CHAB season, the WOMC and persistence models accurately predicted true 

negatives for all eight sites, with a 99% accuracy rate. The WC-WMC model, on the other hand, 

generated 12 false positives, indicating that the model forecast MCs to exceed 5.0 μg/L 12 times, 

but the observed value was less than 5.0 μg/L (Fig. 6). The SML-WMC model generated only 

one false positive (Fig. 6). 

 

In 2019, the persistence model had the highest accuracy, but the WC-WMC model’s accuracy 

was only 1% lower than that of the persistence model (Table 1). The SML-WMC model had an 

accuracy of 83.7% in 2019, while the WC-WMC model had an accuracy of 87.5%, which was 
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15.4% better than the WOMC counterpart models. However, the SML-WOMC model only 

correctly predicted 2 out of 35 observations that exceeded 5.0 μg/L, and the WC-WOMC model 

only correctly predicted 7 out of 35 observations for the 2019 CHAB season. In contrast, the 

SML-WMC model correctly predicted 20 out of 35 observations that exceeded 5.0 μg/L, which 

is 57.1%, and the WC-WMC model correctly predicted 26 out of 35 observations, which is 

74.3% (Fig. 6). 

 

At the 10 μg/L threshold, the SML-WMC model correctly forecasted that the concentration 

would exceed 10 μg/L in 5 out of 9 observations. The WC-WMC model correctly forecasted this 

in 7 out of 9 observations. However, the WOMC models missed every instance of MC exceeding 

10 μg/L, and the persistence model only correctly predicted one instance of MC exceeding 10 

μg/L (ESM Fig. S4). There were only two instances of MC concentrations that exceeded 20 

μg/L, and both WMC models correctly forecasted those instances, while the WOMC models did 

not (ESM Fig. S5). However, both WMC models generated several false positives for MC 

concentrations that did not exceed 20 μg/L. 

 

Trend analysis 

For trend analysis, the WC-WMC model showed the highest accuracy, achieving 63.5%, 86.5%, 

and 75.5% in 2018, 2019, and both years combined, respectively. This was between 3.8% and 

5.5% better than the next most accurate model, as shown in Table 1. The SML-WMC model, on 

the other hand, outperformed the SML-WOMC models by 3.2% and 20.2% for 2018 and 2019, 

respectively. Similarly, the WC-WMC model was 4.1% and 22.1% more accurate than the WC-

WOMC models (Table 1). 

 

Across all models (except the persistence model), site WE9, which is the closest site to the 

Maumee River, had the most correct predictions (76%-80% accuracy). On the other hand, site 

WE2, located in the transition zone between the nutrient-rich waters of Maumee Bay and the 

lower-nutrient waters further into the basin, had the lowest accuracy (44%-60%) (Fig. 7a-d). Of 

particular interest is site WE12, which is located near the City of Toledo's drinking water intake. 

The WC-WMC model had an overall accuracy of 88%, including 100% accuracy for 2019. 

 

The persistence model would only be correct in trend analysis if observed MC concentrations 

changed by less than 20% from week to week. However, the persistence model mostly produced 

false positives and false negatives as shown in Figure 7e. In the latter half of both years, the 

persistence model had more false negatives due to the declining observed MC concentrations. 

Overall, the model had an accuracy range of 12% to 36% across all sites, indicating that MC 

concentrations vary by more than 20% from week to week. 
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Model scenario comparison 

Across all models for the 0.3 μg/L, 1.0 μg/L, and trend analysis, the models had an accuracy of 

69.7% (± one standard error of 2.9%) in 2018 and 80.8% (± 2.5%) in 2019 (Fig. 8a). According 

to the paired sample T-test (p <0.001, t = -5.358, df = 13), this difference was significant. The 

models with MC production rate incorporated were significantly more accurate (78.5%) than 

models without MC production incorporated (69.1%) (p = 0.002; t = 3.934; df = 11; Fig. 8b). 

Additionally, the WC models (77.3%) were significantly more accurate than SML models 

(70.3%) (p = 0.003; t = -3.882; df = 11; Fig. 8c). 

 

Discussion 

Influences of hydrodynamic transport and MC production on MCs estimation 

Our work has revealed that both hydrodynamic transport and MC production are important in 

predicting MC concentrations. As shown by our "HABs Grab" day simulation, models with MC 

production agreed with the high MC concentrations observed (>20 µg/L) in Maumee Bay, 

whereas models without MC production failed to reproduce these high concentrations. 

Furthermore, all models correctly predicted that water currents would transport the MCs to less 

commonly affected locations (e.g., northward in Fig. 2c, d), highlighting the importance of 

hydrodynamic transport of MCs. Our statistical skill assessment over all 2018 and 2019 

simulations showed that models without MC production (WOMC) were 69% correct on average, 

indicating that hydrodynamic transport alone can be used to forecast MC concentrations 7 days 

into the future. However, incorporating MC production (WMC) rates into the hydrodynamic 

transport of MCs improved the models by 10%. Additionally, only the models with MC 

production correctly forecasted MC concentrations greater than 5 μg/L during the large bloom 

year, but incorrectly forecasted concentrations greater than 5 μg/L (false positives) during the 

small bloom year. While our study was the first to demonstrate the impact of incorporating 

biological rates into models on CHAB toxin forecasts, it is important to consider spatial patterns 

(nearshore vs. offshore), yearly differences (in bloom size), and seasonality (early bloom, peak 

bloom, and late bloom) when interpreting spatial and temporal modeling results for a large 

system like western Lake Erie. 

 

Spatial patterns 

Site WE9 is located only ~5 km from the Maumee River. While the nutrient concentrations and 

water temperatures at this site favor cyanobacterial growth, the overall cyanobacterial biovolume 

can be low compared to other sites (Bridgeman et al., 2013) due to water currents from the 
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Maumee River preventing the high accumulation of cyanobacteria. During the peak bloom 

period of 2018, the Maumee Bay area had a low retention time (Chaffin et al., 2021), which 

resulted in low MC concentrations (ESM Fig. S3) due to flushing. Additionally, in most cases, 

Maumee River Microcystis are not capable of producing microcystins (Kutovaya et al., 2012). In 

contrast, during the peak bloom in 2019, Maumee Bay had long retention times (Chaffin et al., 

2021), allowing MCs to accumulate to high concentrations (up to 45 µg/L, ESM Fig. S3). 

 

Site WE2 is located in the transition zone between the nutrient-rich waters of Maumee Bay and 

the lower-nutrient waters further into the basin (refer to Fig. 1c). This zone has high nutrient 

concentrations and more favorable light conditions than the shallow Maumee Bay (less than 2 

meters) due to turbidity and increased depth (4-6 meters), which allow for high cyanobacterial 

growth rates (Chaffin et al., 2011). Site WE2 frequently showed high accuracy in the threshold 

analyses (Figs. 4-6), but the worst accuracy in the trend analysis, with less than or equal to 60% 

correct predictions (Fig. 7). The difference can be explained by the consistently high microcystin 

levels but variable concentrations from week to week at WE2 (ESM Fig. S3). Therefore, MCs 

were consistently above the thresholds, but the direction of change was more difficult to predict 

from week to week. 

 

WE12 is important due to its proximity to the City of Toledo's drinking water intake, which is 

approximately 0.6 km away. The WC-WMC models at this site were accurate, with a correctness 

rate of at least 88% for all thresholds and trend analyses. Additionally, the models with MC 

production at WE12 ranked among the top three highest accuracies compared to the other sites. 

This high accuracy may be attributed to the significant amount of MC data available in a small 

area around the intake, which was used to initialize the simulations. The City of Toledo collected 

MC data daily from the intake, while NOAA GLERL, University of Toledo, and charter boats 

collected samples weekly around the intake. The results at WE12 demonstrate that a higher 

density of input data can lead to more accurate forecasts. 

 

2018 vs 2019 – low MCs vs high MCs 

Much higher MC concentrations (ESM Fig. S3) and cyanobacterial biomass (Chaffin et al., 

2021) were observed in the western basin of Lake Erie in 2019 compared to 2018. Across all 

models for the 0.3 μg/L, 1.0 μg/L, and trend analysis, the high MC year of 2019 had significantly 

more accurate results than 2018 (Table 1). These results suggest that forecasting MCs may be 

easier when concentrations are relatively higher when weekly data is available. Severe blooms 

usually occur in a larger area and last longer, which can be easily captured by weekly 

observations from a few sites in the western basin. In contrast, small blooms cover a smaller area 

and have a shorter duration, making them easy to miss when sampling at limited stations. 

Therefore, ETM performed well in the big bloom year with sufficient data to initialize the model, 

but failed in the small bloom year. 
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There were also differences between years regarding models with and without MC production 

rates. During the low MC year of 2018, the WMC models had more false positives than the 

WOMC models. For example, at the 1.0 μg/L threshold, the WC-WMC resulted in 26% false 

positives (25 out of 96 results were false positives), while the WC-WOMC resulted in only 9.4% 

(9 out of 96) false positives (Fig. 5). On the other hand, during the high MC year of 2019, the 

WC-WMC model resulted in 5.7% (6 out of 104) false negatives, while the WC-WOMC model 

resulted in 15.4% (16 out of 104) false negatives. Similar results were observed in the trend 

analysis. In 2018, the WC-WMC model gave 27.1% (26 out of 96) false positives, whereas the 

WC-WOMC model gave 8.3% (8 out of 96) false positives. At the 5 μg/L thresholds, the results 

with and without MC production also differed between the two years, with false positives in the 

WMC models in 2018 and false negatives in the WOMC models during 2019 (Fig. 6). The false 

positives in 2018 suggest that our estimate of MC production was too high. We used the average 

MC production rates reported in microcosms with ambient nutrients and elevated nutrients 

(Chaffin et al., 2022). The false positives from the WMC models in 2018 may indicate that in 

situ MC production was closer to that reported in the ambient nutrient treatments than the 

average of the ambient and elevated nutrient treatments. 

 

Seasonal effect - early bloom, peak bloom, late bloom. 

There was a distinct temporal pattern in the results. In early July of both years, all sites had low 

MCs (< 2 μg/L) and most samples were below detection (0.3 μg/L) or 1.0 μg/L (ESM Fig. S3). 

MC concentrations increased in late July, remained relatively high (compared to early summer) 

during August, and then decreased in September. If we apply the general definition of "early 

bloom" to the first three simulations from early July to mid-July of both years, "peak bloom" to 

the simulation from late July (starting from July 30th, 2018 or July 29th, 2019) to August, and 

"late bloom" to the simulations in September, the seasonal patterns become more apparent. In 

threshold analyses, the models without MC production and the persistence model had more false 

negatives during the early bloom, especially for 2019, whereas the models with MC production 

more correctly captured MCs exceeding 0.3 μg/L and 1.0 μg/L during the early bloom, indicating 

the importance of biological factors in early bloom forecasting (Figs. 4, 5). Across all models, 

the peak bloom period had the most correct model results compared to the early bloom and late 

bloom. The late bloom had more false positives than the early bloom at 0.3 μg/L and 1.0 μg/L 

(apart from the false positives in the WMC 2018 models discussed above).  

 

Microcystins concentrations during the early bloom period were characterized by false negatives 

in the models without MC production, indicating the challenge for models to capture toxin 

concentrations during the initiation of the bloom. Microcystis overwinters on the lake bottom 

(Preston et al., 1980; Kitchens et al., 2018) and passively inoculates the water column (via wind 

resuspension) when water temperature, light, and nutrients allow for growth (Reynolds and 

Bellinger, 1992; Verspagen et al., 2004). Other models of Lake Erie HABs also struggle to 
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capture bloom initiation (transition from diatoms to cyanobacteria), which is currently puzzling 

because there is a lag period between nutrient loading in the spring and the summer occurrence 

of HABs (Stumpf et al., 2012). For example, the process-based Western Lake Erie Ecosystem 

Model (WLEEM) factors in hydrology, internal and external nutrient loads, and weather and 

predicts HAB biovolume, but the model incorrectly initiates the HAB early by up to one month 

(Verhamme et al., 2016). Recently, the model of Del Giudice et al. (2021) suggested that Lake 

Erie HABs can initiate one month after the lake has reached 20℃ due to a reduction in grazing. 

Our models relied only on weekly observed MC data, water currents, and measured rates of MC 

production, and did not account for bloom initiation triggers or benthic recruitment throughout 

the simulation week. A better understanding of bloom initiation triggers is needed to forecast 

better when a HAB will begin. 

 

The late bloom period was characterized by false positives, which resulted from decreased 

observed MC concentrations, but the models forecast an increase in concentration when 

incorporating the prescribed MC production rates. Cooler water temperatures associated with the 

late bloom bring about bloom demise as the Microcystis colonies settle to the lake bottom 

(Thomas and Walsby, 1986; Visser et al., 1995; Verspagen et al., 2005). Additionally, 

cyanophages can infect the Microcystis cells in the water column leading to cell lysis and 

releasing MCs from cells to the aqueous environment (McKindles et al., 2020). Once MCs are 

outside of the cell, they can be rapidly degraded by heterotrophic bacteria (Mou et al., 2013; 

Thees et al., 2019). Hence, colony settling and cell lysis followed by MC degradation will 

decrease MC concentrations. These biological factors were not accounted for in our models, and 

phage infection and cell lysis were not quantified in the experiments (Chaffin et al., 2022). A 

better understanding of bloom demise and triggers of cell lysis are needed to inform predictive 

models better during the late bloom period. 

 

Water column vs surface-mixed layer  

In CHAB biomass forecast modeling, several studies have shown that the application of surface 

chlorophyll concentrations to the surface mixed layer to generate model initial conditions 

produces the highest accuracy in model simulations (Rowe et al., 2016; Soontiens et al., 2019). 

Furthermore, Zhou et al. (2023) evaluated multiple models using this approach and confirmed 

that the ETM performance was the best. However, in our case, the ETM simulation by applying 

an MC concentration map throughout the entire water column (WC model) as an initial MC 

condition performed significantly better than SML models, on average, at predicting MC 

concentrations (Fig. 8). 

 

While there is no consistent relationship between chlorophyll a concentration (or another metric 

for HAB biomass) and MC concentrations (Stumpf et al., 2016), and most (> 95%) of MCs are 

intracellular (Dyble et al., 2008; Palagama et al., 2020), it should be expected that MCs and 
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chlorophyll are positioned similarly in the water column. The differing results between WC vs. 

SML models for MCs (our study) and chlorophyll (Rowe et al., 2016; Soontiens et al., 2019) are 

due to the data source used to initialize the simulations. Rowe et al. (2016), Soontiens et al. 

(2019), and Zhou et al. (2023) used remote sensing surface chlorophyll concentrations. It is 

dynamically consistent to apply such surface data to the surface mixed layer. Applying surface 

chlorophyll data to the entire water column would overestimate the water column concentration 

during surface scums. In addition, the remote-sensed data were available at much higher spatial 

(300 m) and temporal resolutions (every few days). As a result, the ETM simulation showed 

close agreement with the observed chlorophyll spatiotemporal pattern (Zhou et al., 2023). 

Unfortunately, measurements for MC concentrations were much more limited. As we mentioned 

before, the MC concentration had to be generated by compiling all available data that were 

measured at different layers of water columns. In this case, applying the initial MC concentration 

to the entire water column resulted in a relatively better performance. 

 

Therefore, it is critical to understand that the performance of the WC and SML models is 

affected by how the observed data were collected. Ideally, it would be most appropriate to 

separate the observational data into near-surface data to be applied to the surface mixed layer and 

apply the rest of the data to the layer below the surface to generate the initial MC condition. 

However, this would require a significant amount of data, which is not feasible based on current 

data availability. 

 

Conclusion 

Forecasts of MC concentrations in Lake Erie would be useful for beach managers and drinking 

water treatment plant operators when making decisions on beach closures and water treatment, 

respectively. In this study, we developed a novel approach to hindcast MC concentrations for 

Lake Erie by using a compilation of weekly maps of MC concentrations created from multiple 

sources of analytical data, a hydrodynamic model, and an Eulerian tracer model. The model 

results revealed that both hydrodynamic transport and MC production were essential in 

predicting MC concentrations, which differs from the assumption in CHAB biomass forecasts 

that physical transport models largely explain the short-term variability of CHAB biomass 

(Rowe et al., 2016). With very limited data to initialize the ETM, no single model configuration 

consistently provided more accurate results. Therefore, one must consider all models (with and 

without MC production, SML vs. WC, including other forecasts developed by other researchers) 

when making management decisions in an ensemble modeling approach. It is also important to 

consider the variable performance of different model configurations in different parts of the 

basin. 

 

The major limitation is that we currently lack accurate, high spatial resolution MC concentration 

data to initialize ETM. Our model predictions would likely be improved with more accurate 

initial conditions in 3-D space, as was shown for the HABs Grab. Until recently, the City of 
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Toledo collected daily MC concentration data, but reduced monitoring to weekly samples to 

meet changing Ohio EPA compliance requirements. We argue that high-spatial resolution, along 

with high-temporal sampling frequency, MC data are useful for hindcasting and developing 

models. These extra daily samples could be stored frozen and analyzed in batches at the end of 

the CHAB season for research purposes.  

 

Furthermore, our models with MC production were limited by very coarse measurements of MC 

production (two sites, biweekly). While the models with MC production sometimes 

overpredicted the MC concentrations and resulted in false positives, especially in 2018, the 10% 

improvement over models without MC production is a promising result indicating that factoring 

in biology can improve model forecasts. Likewise, the models would likely be improved by 

higher temporal and spatial resolution estimates of MC production rate.  

 

Moreover, using a buoyancy regulation model instead of a constant buoyant velocity (90 μm/s) is 

a potential option to improve our model performance. Medrano et al. (2013) showed that 

incorporating a buoyancy regulation model can more accurately capture Microcystis aeruginosa's 

vertical distribution throughout the water column and the diurnal variation in MC concentrations. 

Furthermore, investigating cell lysis to estimate MC biodegradation rates is another potential 

option to improve model performance since MC concentrations resulted from the net effect of 

production and degradation.  

 

In conclusion, our modeling approach, and those of others (Liu et al., 2020, Qian et al., 2021) to 

MC forecasting, would be improved with more MC observations and a more comprehensive 

understanding of the biological mechanisms related to MCs through laboratory experiments. 

 

Data and Code Availability 

The OSU, UT, and charter boat captain data can be found on NOAA’s National Center for 

Environmental Information (NCEI Accession 0276941), the NOAA GLERL lab data can be 

found on their website(https://www.glerl.noaa.gov/res/HABs_and_Hypoxia/), and the PWS data 

can be found by downloading it directly from Ohio EPA (https://epa.ohio.gov/divisions-and-

offices/drinking-and-ground-waters/public-water-systems/harmful-algal-blooms). The ETM code 

and configuration used in this study is available from https://doi.org/10.5281/zenodo.8014770. 
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Table 1. The accuracy of the four experiments and persistence model for the 2018 and 2019 

season at the 0.3 µg/L, 1.0 µg/L, and 5.0 µg/L microcystin concentrations thresholds and the 

trend analysis. The model with the highest accuracy is bolded and underlined. SML = initial 

microcystins were mixed within the surface mixed layer for the initial conditions; WC = initial 

microcystins were mixed throughout the entire water column; WMC = ETM simulations with 

microcystin production; WOMC = ETM simulations without microcystin production. 

Threshold Year 

SML- 

WMC 

SML- 

WOMC 

WC- 

WMC 

WC- 

WOMC 

Persistence 

model 

0.3 µg/L 

2018 77.1% 56.3% 85.4% 77.1% 79.2% 

2019 85.6% 75.0% 94.2% 85.6% 89.4% 

Both years 81.5% 66.0% 90.0% 81.5% 84.5% 

1.0 µg/L 

2018 74.0% 67.7% 67.7% 75.0% 84.4% 

2019 81.7% 71.2% 87.5% 80.8% 84.6% 

Both years 78.0% 69.5% 78.0% 78.0% 84.5% 

5.0 µg/L 2018 97.9% 99.0% 86.5% 99.0% 99.0% 
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Figure Captions: 

Fig. 1. (a) An example of a microcystin concentration map (August 19th, 2019) for the western 

basin of Lake Erie. (b) The sample collection locations of the HABs Grab on August 19th, 2019. 

(c) The weekly sample locations by GLERL. (d) An enlarged view of the ETM grid (in red) in 

the western basin of Lake Erie with blue triangles marking the sampling locations used to collect 

water for microcystin production experiments (Chaffin et al., 2022). The solid black line 

distinguishes the areas within 20 km of the Maumee River mouth from the rest of the basin. 

 

Fig. 2. (a) An MC concentration map generated from multiple MC data sources for July 29th, 

2019. July 29th is the latest available observation prior to the HABs Grab on August 7th, 2019. 

This MC concentration map was used to initialize the ETM simulation (b) An MC concentration 

map generated based on the observation data from HABs Grab. Black dots on the maps ([a] and 

[b]) represent the sampling locations on those days, respectively. (c) and (d): Simulated average 

MC concentrations from the surface to 2m depth on the HABs Grab day from the ETM with MC 

production (WMC, panel c) and without MC production (WOMC, panel d).  

 

Fig. 3. (a) Trajectories of fluid particles released from five representative regions (marked in 

different colors) over the MC map on July 29th, 2019 (Fig. 2a) to show the impact of 

hydrodynamic transport on the spatial distribution of MCs. (b) 10-day mean depth-averaged flow 

field from July 29th to August 7th, 2019 simulated with LE-FVCOM. 

 

Fig. 4. Summary confusion matrix of the model assessment at the 0.3 μg/L thresholds. Dark blue 

= model was correct (true positive) in that both the output and observed microcystin 

concentrations were above 0.3 μg/L, or the model output was above the threshold and observed 

below, but the 20% buffer overlapped both the threshold and the observed MC concentration. 

Light blue = model was correct (true negative) in that both the output and observed microcystin 

concentrations were below 0.3 μg/L. Dark gray = model was incorrect (false positive) in that the 

model was above 0.3 μg/L while the observed was below. White = model was incorrect (false 

negative) in that the model output was below 0.3 μg/L but observed was greater. The percentages 

listed on the X-axis and Y-axis are the accuracy (dark and light blue grids) for each date (across 

all sites) and each site (across all dates). The Y-axis is arranged from the site farthest from the 

Maumee River (WE16) to the closest (WE9). 

 

Fig. 5. As Fig. 4 caption, but at the 1.0 μg/L threshold. 

Fig. 6. As Fig. 4 caption, but at the 5.0 μg/L threshold. 

Fig. 7. Summary confusion matrix of the model assessment for the trend analysis. For the ETM 

simulation (SML-WMC, SML-WOMC, WC-WMC, WC-WOMC), Dark blue = model was 

correct (true positive) in that both the output and observed microcystin concentrations increased. 
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Light blue = model was correct (true negative) in that both the output and observed microcystin 

concentrations decreased. Purple = MC concentrations on the simulation start date and final were 

within 20%, indicating no increase or decrease within the allowed buffer, and the model was 

considered correct. Dark gray = model was incorrect (false positive) in that the model increased 

microcystin concentration while observed decreased. White = model was incorrect (false 

negative) in that the model decreased microcystin concentration, but the observed concentration 

increased. For the persistence model, the purple color showed the observed data changed less 

than 20% from the previously observed data (correct), the dark gray showed the observed data 

increased more than 20% from the previously observed data (false positive), and the white 

showed the observed data decreased more than 20% from the previously observed data (false 

negative). The percentages listed on the X-axis and Y-axis are the accuracy (dark and light blue 

grids) for each date (across all sites) and each site (across all dates). The Y-axis is arranged from 

the site furthest from the Maumee River (WE16) to the closest (WE9). 

 

Fig. 8. Average accuracy (± one standard error) for all models in the 0.3 μg/L, 1.0 μg/L, and the 

trend analysis for (A) 2018 and 2019, (B) with and without microcystin production rates, (C) and 

water column mixing scenario.   




















