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Abstract

Cyanobacteria biomass models are routinely used in Lake Erie to predict the occurrence and
location of algal blooms. However, current forecasts do not predict the microcystin toxins
produced by these blooms. In this study, we used an extensive dataset of microcystin
concentrations to generate weekly distribution maps in Lake Erie for the summers of 2018 and
2019. Using a 3D Eulerian tracer model (ETM), initialized with these maps, we simulated
microcystin transport over 7 days, under two conditions: (1) the initial microcystin is mixed
within the surface-mixed layer; (2) the initial microcystin is distributed throughout the entire
water column. Two scenarios were tested for each condition: one incorporating microcystin
production rates into hydrodynamic transport and one excluding them. Model performance was
evaluated against weekly sample data in predicting whether microcystin concentrations
surpassed specific thresholds (0.3, 1.0, 5.0, 10.0, and 20.0 pg/L), and in predicting trend
directionality over each week. Overall, the ETM with hydrodynamics alone captured the
transport of microcystins and predicted microcystin concentrations in 69% of the simulations.
Incorporating microcystin production into the model increased the accuracy of forecasts by an
additional 10%. Moreover, models with microcystin production successfully predicted
microcystin concentrations greater than 5 pg/L during a large bloom, high-microcystin year
(2019), while incorrectly forecasting concentrations above 5 pg/L during a small bloom year
(2018). With limited data to initialize the ETM, no single model configuration consistently
outperformed others. It is necessary to consider the full range of model configurations when
utilizing their outputs for making management decisions.



Introduction

Lake Erie, the most productive of the Laurentian Great Lakes, has experienced summertime
(July to October) cyanobacterial harmful algal blooms (CHABs) in the past two decades (Stumpf
et al., 2012; Bridgeman et al., 2013; Steffen et al., 2014). The re-emergence of CHABs in Lake
Erie after a period of decline is primarily linked to excessive nutrient input from non-point
agricultural sources (Watson et al., 2016; Martin et al., 2021). The most severe CHABs originate
in the shallow western basin of Lake Erie near the mouth of the Maumee River due to its close
proximity to nutrient loads and favorable temperature and light climate (Chaffin et al., 2011;
Kane et al., 2014). Lake Erie CHABs are dominated by Microcystis aeruginosa, a highly
buoyant colony-former capable of producing high concentrations of hepatotoxic microcystins
(MCs) (Steffen et al., 2014; Harke et al., 2016). While many socioeconomic and ecological
problems are associated with CHABs, MC contamination of recreational and drinking waters is
the most serious concern. One of the most well-known examples is the "do not drink" advisory
issued by the City of Toledo in August 2014, which affected half a million people and lasted for
three days (Jetoo et al., 2015), as a result of MC concentrations in tap water that exceeded the
World Health Organization guideline of 1 pg/L.

Several short-term forecast models have been developed to predict CHAB biomass, distribution,
and transport in Lake Erie. These models aim to provide early information on CHAB biomass for
decision support, which can help mitigate negative impacts at drinking water treatment plants
and beaches. The models are initialized from satellite images of CHAB biomass (Wynne et al.,
2010) and use hydrodynamic conditions predicted by a hydrodynamic model to forecast CHAB
transport and determine the bloom location and biomass several days into the future (Wynne et
al., 2013; Rowe et al., 2016). These short-term forecast models are developed using either a
Lagrangian or an Eulerian approach. For example, the Lake Erie Harmful Algal Bloom Forecast
system, maintained by the National Oceanic and Atmospheric Administration (NOAA), employs
a three-dimensional (3D) Lagrangian particle tracking model (referred to as the NOAA HAB
Tracker; available at https://coastalscience.noaa.gov/research/stressor-impacts-mitigation/hab-
forecasts /lake-erie/, accessed December 11, 2021). This model is used in combination with
satellite images to provide information on the bloom's current location and biomass, as well as its
forecasted position over the next 96 hours. A 3D Eulerian tracer model has also been tested to
predict CHAB biomass distribution and is planned to be linked to the operational version of the
Water Cycle Prediction System for the Great Lakes by Environment and Climate Change Canada
to produce daily forecasts of CHAB transport (Soontiens et al., 2019).

The Eulerian and Lagrangian approaches differ in how they describe fluid properties, such as
toxin concentration, within a field. The Lagrangian approach focuses on tracking the motion of
numerous discrete flowing particles and their associated properties as they move through the
field. The trajectories and properties of individual particles are changing as they evolve over
time. By releasing and observing a multitude of such particles, one can obtain a comprehensive



understanding of the fluid's dynamics and properties in the domain. Conversely, the Eulerian
approach adopts a fixed spatial frame of reference, describing the fluid properties at specific,
predetermined points within the field. Within this framework, one describes the temporal
evolution of fluid properties at a vast array of fixed locations across the domain to understand the
flow system. The Eulerian tracer models are more effective in representing continuous
concentration fields and is more compatible with lower-food web biological models, which are
also developed within the Eulerian framework (Xue et al., 2014; Rowe et al., 2017; Zhou et al.
2023). In contrast, the Lagrangian approach is better suited for representing properties that vary
across a population, such as buoyant velocities for Microcystis colonies. Moreover, the
Lagrangian approach is well-adapted for tracking exposure to environmental conditions over
time, which is essential for individual-based models of organisms (Li et al., 2014).

Recently, Zhou et al. (2023) conducted a comprehensive evaluation of Lagrangian and Eulerian
transport models for forecasting cyanobacterial harmful algal blooms (CHABs) in Lake Erie.
The study compared three types of 3D models: 1) a Lagrangian particle model (LPM), 2) an
Eulerian tracer model (ETM), and 3) a property-carrying particle model that utilizes a hybrid
Eulerian-Lagrangian approach. The results indicated that all three transport models demonstrated
similar levels of skill, with the ETM outperforming the others in the overall evaluation.
Consequently, we chose to use the 3D ETM for forecasting microcystin (MC) concentrations in
this study. This decision was also based on the fact that the Eulerian approach is more effective
at estimating changes in continuous fields of concentration driven by biophysical processes and
offers greater flexibility in incorporating numerical descriptions of biological processes.

Compared to forecasting CHAB biomass, predicting MC concentrations is more challenging.
There are relatively few observed MC data points (compared to remote sensing biomass data),
which creates a barrier for model development, calibration, and evaluation of model
performance. CHAB biomass cannot be used as a proxy for MC concentration, and remote
sensing cannot detect MCs (Stumpf et al., 2016). To overcome data limitations, recent research
has incorporated the MC-to-chlorophyll ratio from grab samples to forecast MC concentrations.
They averaged the ratio across all sites for a given date and then multiplied the mean ratio by
remote sensing-derived chlorophyll concentrations to back-calculate MC concentration (Liu et
al., 2020). Similarly, Qian et al. (2021) used a MC-chlorophyll empirical relationship in a
Bayesian hierarchical modeling framework to forecast MC concentrations. This approach
allowed Liu et al. (2020) and Qian et al. (2021) to estimate the spatially- and temporally-resolved
probability of MC exceeding certain advisory concentrations in the western basin of Lake Erie;
however, this approach has limitations. The MC-to-chlorophyll ratio can range from less than
0.05 to greater than 0.50 throughout the western basin on a single day, suggesting that the MC-
to-chlorophyll ratio varies as much spatially as it does temporally (Chaffin et al., 2021).
Furthermore, the MC-to-chlorophyll approach omits MC data that does not have a paired
chlorophyll measurement (such as drinking water intakes). Ideally, MC forecasts should rely on



measured MC concentrations rather than surrogates.

Additionally, when compared to CHAB biomass forecasts, there are other knowledge gaps in
developing an MC forecast. The modeling of CHAB biomass (and likely MCs) transport is
sensitive to the initial vertical distribution of the bloom. In CHAB biomass forecast modeling,
several studies suggest that applying surface chlorophyll concentrations to the surface mixed
layer produces the highest accuracy (Rowe et al., 2016; Soontiens et al., 2019). However, it
remains unknown whether the same process can be applied to forecasting MCs. Furthermore,
current CHAB biomass models and forecasts (i.e., the NOAA HAB Tracker) assume that
physical processes such as water currents and wind mixing dominate over biological mechanisms
(cell division and death) in explaining short-term bloom location and biomass (Rowe et al.,
2016). Nevertheless, a recent report showed that MC production rates decrease throughout the
bloom season (Chaffin et al., 2022). Therefore, it is crucial to evaluate the physical processes
influencing the accuracy of MC concentration forecasts and understand how incorporating
biological processes could improve these forecasts.

In this study, we used a comprehensive dataset of MC concentrations compiled from multiple
sources, including university researchers, federal and state agencies, water treatment plant
intakes, and citizen scientists. This data was used to create weekly maps of MC concentrations in
Lake Erie to initialize an Eulerian tracer model (ETM; see below for the model description),
aiming to predict the spatiotemporal patterns of MC during two CHAB seasons in 2018 and
2019. The MC simulations were analyzed with respect to concentration and extent, focusing on
the significance of mixing, whether initial microcystin is mixed throughout the entire water
column or within the surface-mixed layer, and biological processes, such as incorporating MC
production rates. This analysis aimed to explain the short-term variability of MC concentrations.

Method and Materials
Observational data

We requested MC concentration data from all institutions that routinely (weekly to biweekly)
collect grab samples from the western basin of Lake Erie. We received data from five sources,
totaling 366 data points in 2018 and 655 in 2019 (see Electronic Supplementary Material (ESM)
for Data Sources). The institutions that submitted data collected grab samples using different
water collection methods (Golnick et al., 2016) and analyzed microcystins (MCs) by enzyme-
linked immunosorbent assay (ELISA; Eurofins Abraxis, #520011, Warminster, PA, USA). We
did not request MC data analyzed by other analytical methods (i.e., LC-MS or HPLC) due to the
inherent differences in these methods (Chaffin et al., 2021). All health standards are based on
ELISA data. No attempt was made to normalize data for differences in sampling depth because
Golnick et al. (2016) reported no significant differences in chlorophyll-a concentrations among



different water sample collection methods in a side-by-side comparison study. Microcystin
concentrations in the western basin can range from less than 0.3 ug/L in the open waters of the
western basin to greater than 40 pg/L in Maumee Bay (Chaffin et al., 2021). Collectively, this
indicates that the bias introduced by different water sample collection methods is much smaller
than the spatial variability of MCs in western Lake Erie. Most organizations reported total MC
(as ug/L), but some provided MC data as particulate MC and dissolved MC concentrations (both
as ug/L), which we summed to calculate total MC concentration. Grab sample data were binned
by week and assigned a common collection date as occurring on Monday. The largest, regular
sample collection programs (e.g., NOAA and the University of Toledo) often occurred on
Mondays, except due to inclement weather. This was done to generate weekly MC maps using
all available data, which served to provide the initial conditions for the ETM to predict the MC
concentrations in the following week. It is important to note that the model results on the actual
sampling dates were used for model-observation comparisons for accuracy and reliability.

We used remotely sensed algal biomass images (from the NOAA imagery archive) to identify a
zero-MC concentration boundary in weekly maps. The zero-MC boundary was defined by the
edge of the visible satellite-derived boundary, determined through image classification. We
employed the inverse distance weighting (IDW) tool within ArcGIS to create an interpolated
raster of MC concentrations (i.e., MC concentration maps) using all collected data, which were
used to initialize the ETM. Figure 1 shows an example for August 19, 2019.

In addition to the weekly datasets mentioned above, a high-spatial-resolution one-day sampling
was conducted on August 7", 2019 (referred to as "HABs Grab," Chaffin et al., 2021). During
this event, 172 grab samples were collected, covering an area of 2,270 km?2 in the western basin
of Lake Erie within a six-hour measurement window (Fig. 1b). The "HABs Grab" provided a
high-resolution distribution of MC and served as the best data source for evaluating the impact of
hydrodynamic transport on MC spatial variability. On the other hand, consistent weekly
sampling of MC concentrations was conducted by the National Oceanic and Atmospheric
Administration's Great Lakes Environmental Research Laboratory and the Cooperative Institute
for Great Lakes Research (hereafter referred to as “GLERL”) at eight monitoring locations (Fig.
Ic). These data were used to evaluate the modeled seven-day forecast performance temporally.
The GLERL samples were most consistently collected on Mondays, with data generated from all
eight sites during most sampling cruises. More details about the GLERL dataset can be found in
the ESM Data Sources.

Note that the zero-MC boundary, identified using image classification, was also validated using
data from the "HABs Grab" that showed no detection of MC outside the satellite-derived
biomass boundary. The IDW method also worked well for the "HABs Grab" because there were
a large number of samples available (172 collected on one day) within the basin. However, the
IDW method may have limitations for weeks when only a handful of MC concentrations were



available, which introduced additional uncertainties to the model’s initial conditions. Although
the IDW method produced interpolated raster values between known sampling points and the
zero-MC edge, the model evaluation focused on the area bounded by the GLERL sampling
points.

Hydrodynamic model

The Finite Volume Community Ocean Model (FVCOM) is a three-dimensional (3D)
hydrodynamic, free-surface, primitive-equation model that solves the integral form of the
governing equations on an unstructured, sigma-coordinate mesh (Chen et al., 2003). FVCOM has
been applied in many coastal systems characterized by geometric complexity and highly variable
flow patterns, including various applications to the Great Lakes (Anderson et al., 2015; Rowe et
al., 2016; Xue et al., 2015, 2017, 2022; Huang et al., 2021).

The Lake Erie (LE)-FVCOM employs an unstructured grid mesh composed of 6106 nodes and
11509 elements (Fig. 1d). The mesh has a grid resolution of 2.5 km in the central basin, 1.5 km
in the western basin, and 0.5 km in Maumee Bay (western corner of the basin) and the area
around islands between the central and western basins. The model is vertically divided into 20
uniform sigma layers that provide vertical resolution ranging from approximately 0.1 m for the
shallow areas (= 2 m) to approximately 0.5 m for the deep regions (= 10 m) in the western basin
of Lake Erie. The open boundary conditions consist of primary inflow from the Detroit River and
outflow through the Niagara River, with specified hourly water levels using the NOAA gauges at
Gibraltar, Michigan (9044020) and Buffalo, New York (9063020). The LE-FVCOM is driven by
hourly atmospheric forcing from the High-Resolution Rapid Refresh (HRRR), a cloud-resolving
and convection-allowing weather forecast and data assimilation system running in real time at a
3-km grid resolution (Benjamin et al., 2016).

Eulerian tracer model

The ETM was developed from the FVCOM general ecosystem module (GEM), which
solves the advection-diffusion equation coupled to biological functions using a finite volume
approach. The advective transport and turbulent mixing of microcystin concentration (C) in the

ETM were governed by following equation:

+ —+U—+W£——( h )_Fc+WbZ_§=Csource_Csink (D
where u, v, and w are the x, y, and z components of the water velocity, K, is the vertical thermal
diffusion coefficient, wy, is the buoyant velocity, F. is the horizontal diffusion term, and Csyy-ce
and Cg;,, represents the sources (production) and sinks (loss) of C, respectively, due to the
biological processes. In this study, the source and sink terms were replaced by an MC production

function (described in the following section).



Microcystis regulates the buoyancy of its colonies, with most of them being positively buoyant in
Lake Erie (Den Uyl et al., 2021). The competition between algae buoyancy and turbulent mixing
1s an important factor in the vertical distribution of colonies within the water column. Wind-
driven turbulence can mix colonies deeper into the water column, while calm conditions allow
them to float back towards the surface (Medrano et al. 2013; Rowe et al., 2016). As the Eulerian
approach represents the characteristics of the population mean rather than describing
intrapopulation variability, a representative buoyant velocity of 90 pm/s was used in ETM. This
value represented the majority (70%) of the measured buoyant velocities based on the frequency
distribution histogram of estimated buoyant velocity described in Rowe et al. (2016).
Additionally, Zhou et al. (2023) reported a detailed sensitivity analysis (Zhou et al. 2023,
Sections 1, 2, and 3 in ESM) of buoyant velocities for the CHAB biomass forecast. They used a
high buoyant velocity of 180 um/s (representing Microcystis colonies with large diameters) and
non-buoyant velocity cases to compare with the model forecast using a buoyant velocity of 90
um/s that represented 70% of the measured buoyant velocities based on the frequency
distribution histogram. The results confirmed that using a representative buoyant velocity of 90
um/s provided the best model performance in the sensitivity analysis of buoyant velocities.

Microcystin production function

The changes in MC concentration caused by biological processes during the model simulation
were calculated using the following equation.

MC, = etXt+in(MCo) (2)

Where M Cyand M C, are the microcystin concentrations (ug/L) at time t and time O (model start
time), respectively. t is the simulation time (day). u is the intracellular microcystin production
rate constant (/day). A positive rate indicates a net production of MCs by algal cells, whereas a
negative value indicates a net loss of MCs due to degradation. i values for each week were
determined from a microcosm study that quantified MC production biweekly throughout the
2018 and 2019 CHAB seasons (Chaffin et al., 2022) (ESM Table S1). Briefly, 4 was quantified
for CHAB collected at two sites in the western basin (Maumee Bay and an offshore site) at
ambient nutrient and elevated phosphorus and nitrogen conditions and at in situ temperature and
light conditions (Fig. 1). The "actual" p might be somewhere in the middle between ambient and
elevated conditions. Because the ‘actual’ u was not quantified, we used the averaged u value
from the ambient and elevated nutrient conditions for ETM simulations. In addition, we
conducted two sensitivity analyses using the lower and higher quartiles from the range of
values between ambient and elevated nutrient conditions to identify the uncertainty in the MC
production rate and the sensitivity of model performance to the MC production rate (ESM Figure
S4). We used ¢ from the site in Maumee Bay for areas within 20 km of the Maumee River
mouth and u from the offshore site to represent the rest of the basin (Fig. 1d). Because u was
measured biweekly, we used the u value determined closest to the simulation start date.



Initial vertical distribution of microcystins

The short-term forecast of CHAB biomass and MC concentration is sensitive to the initial
vertical distribution of CHABs. In the modeling of CHAB biomass forecast, remotely sensed
surface chlorophyll concentrations can be used to improve the initial condition of the model by
applying it to the surface mixed layer (Rowe et al., 2016; Soontiens et al., 2019; Zhou et al.,
2023). However, the MC concentration map generated here is based on in situ data collected
from all water layers due to the limited observational data. The best approach to initializing
model vertical distribution with limited observations is still unknown, but the desired metric to
track is the total mass of toxins in the full water column. Water intakes generally draw in a well-
mixed water column sample that is not affected by surface scums. In this study, we tested the
performance of the model by initializing the model under two mixing conditions: (1) distributing
the initial microcystin from an MC concentration map throughout the entire water column, and
(2) distributing the initial microcystin from an MC concentration map within the surface-mixed
layer. Following Rowe et al. (2016), we conducted one-dimensional (1D) simulations to estimate
the SML depth in 33 selected locations, providing representative coverage of the most common
CHAB regions and an additional three stations in the deeper areas. Each 1D simulation was
initialized with 1000 neutrally buoyant particles uniformly distributed throughout the water
column. The simulation was set to run from 48 hours before the initialization time of each ETM
simulation up to the initialization time to allow the particle distribution sufficient time to adapt to
the varying diffusivity. The SML depth was then estimated as the depth at which the 1D
concentration profile decreased to half the surface concentration and was interpolated spatially to
the ETM nodes by the nearest neighbor method (Rowe et al., 2016).

Design of numerical experiments

The numerical experiments were designed in two parts. In the first part, we focused on the
specific event of the HABs Grab (a one-day sampling on August 7%, 2019) that had high spatial
resolution and coverage of MC measurements during a severe bloom in the western basin. For
this event, we conducted two ETM simulations (including or excluding MC production) from
July 29" to August 8™ to analyze the impact of hydrodynamic transport and MC production on
the spatial variability of MCs. We initialized the model with the latest available MC map (on
July 29™) before the 2019 HABs Grab. For the ETM simulation including MC production, we
used the average of the MC production rates measured for microcosm water collected on July
16™ and August 13™ for the area within 20 km of the Maumee River mouth. As there was no
sampling event for microcosm water at the Maumee Bay site that was close to July 29", we used
the MC production rate measured on microcosm water from the offshore site collected on July
30 for the rest of the basin.



In addition, we conducted a numerical Lagrangian particle tracking experiment to demonstrate
the flow patterns that impact the transport of microcystins (MCs) by displaying the trajectories of
fluid particles released from five representative regions on July 29", 2019 (Fig. 3a). For the
particle tracking experiments, we randomly released 60,000 particles in the western basin of
Lake Erie from 8:00-16:00 on July 29" and tracked them until August 7". We calculated particle
trajectories using 3D flow fields simulated by LE-FVCOM. It is important to note that the
objective of the particle tracking experiments was to illustrate the flow patterns and facilitate
understanding of the role of hydrodynamic transport in affecting MC distribution; therefore, the
particles in the simulation represent flow parcels rather than MC concentration. Spatiotemporal
changes in MC concentration were all simulated using the ETM. Particles were randomly
released within the water column. Note that we did not incorporate the random-walk process into
the particle tracking, and therefore the turbulent mixing processes were not represented in the
particle tracking. As a result, the particle trajectories only represent advection by currents.
Ideally, the random-walk process should also be included for the most accurate representation of
particle tracking.

In the second part of the numerical experiments, we focused on analyzing the statistical skill of
the ETM modeled seven-day forecast performance in simulating all weekly grab samples during
the 2018 and 2019 CHAB seasons. We conducted four types of ETM simulations to determine
the role of physical transport and biological processes in explaining the short-term variability of
MCs and to test the model sensitivity to different initial vertical distributions of MCs. The ETM
simulations were designed with two types of initial MC mixing conditions: (1) initializing the
ETM by applying MC maps within the surface-mixed layer (referred to as the SML model); and
(2) initializing the ETM by applying MC maps throughout the entire water column (referred to as
the WC model). Simulations for each mixing condition included two scenarios: one that
incorporated microcystin production rates into hydrodynamic transport, and another that did not.
In each type of experiment, we conducted 25 individual simulations covering the 2018 and 2019
CHAB seasons. Each simulation ran for 7 days or longer to reach the time point of the
subsequent available observation data for model-data comparison (data were from the "HABs
Grab" event and GLERL weekly sampling). Occasionally, model simulations were performed for
longer than seven days when the GLERL weekly sampling was not sampled on Mondays due to
inclement weather.

Model assessment

Model performance was evaluated using confusion matrices. A confusion matrix displays four
possible conditions including true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN). Confusion matrices have proven useful for evaluating and communicating
model performance in forecasting algal blooms (Anderson et al., 2015; Rowe et al., 2016; Liu et
al., 2020; Kim et al., 2021). The model outputs and the observed weekly MC measurements at
the eight GLERL sites were compared to several MC threshold values. A £20% buffer range was
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applied to the model output to account for the uncertainty of the ELISA method (Qian et al.,
2015) and to avoid being too stringent with the assessment. Each result was defined as correct if
the model output and the observed MC concentrations were both above (true positive, ESM Fig.
S1a) or both below (true negative, ESM Fig. S1b) the concentration threshold. A false positive
occurred when the model output was above the threshold, but the observed MC concentration
was below the threshold (ESM Fig. S1c), and a false negative corresponded to the model output
being below the threshold but the observed concentration being above it (ESM Fig. S1d). When
the model outputs were above (below) the threshold and observed below (above), but the 20%
buffer overlapped both the threshold and the observed MC concentrations (ESM Fig. Sle and
S1f), the model was considered correct, regarded as true positive (negative). Multiple MC
concentration thresholds from different criteria were tested in the skill assessments to examine
the model performance in forecasting different ranges of MC concentrations (0.3, 1.0, 5.0, 10.0,
and 20.0 pg/L). The 0.3 pg/L level was selected because it is the ELISA method reporting limit
(i.e., detectable levels of MC), and 0.3 pg/L is also the Ohio EPA's established drinking water
threshold of microcystin concentrations for children under 6 years of age and the group of
sensitive individuals. The value of 1 pg/L is the World Health Organization MC guideline for
drinking water. The upper range limit of the ELISA test method is 5 ng/L, above which samples
require dilutions, and 10 ug/L was selected because it is twice the ELISA range. The threshold
that is often used for the public to avoid all contact with the water is 20 pg/L.

The confusion matrix was used to evaluate whether the ETM could capture the observed weekly
trend of microcystin concentrations at the eight monitoring sites in the western basin of Lake
Erie. This trend was evaluated based on whether the microcystin concentrations increased,
decreased, or remained stable from week to week. The model was considered correct if the
modeled microcystin concentrations and observed microcystin concentrations changed in the
same direction (ESM Fig. S2a, d) or if the £20% buffer on the modeled concentrations
overlapped with both the initial and final observed data (ESM Fig. S2b, e). Conversely, the
model was considered incorrect if the model result and observed data showed an opposite trend
(ESM Fig. S2c, f). In addition, we also used a “persistence” forecast, which assumes a steady
MC pattern over time. The persistence forecast represented the best available information to
forecast for a hypothetical scenario if no new data were available. By comparing the ETM with
the persistence forecast, we could characterize the quality of the additional information provided
by the ETM.

Paired sample T-tests were conducted for the 0.3 pg/L, 1.0 pg/L, and trend analysis across all
models to determine if there were significant differences between the years (2018 and 2019),
models with and without MC production, and the SML and WC models. Higher concentration
thresholds were excluded from this analysis due to the lack of observed MC exceeding 5 pg/L in
the 2018 CHAB season.
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Results
Observed weekly MC data

The MC concentrations observed in 2019 were generally much higher than those in 2018 (ESM
Fig. S3). Despite the concentration differences, the temporal and spatial patterns observed were
similar. Both years had low concentrations (<1.0 pg/L) in early July, and the MC levels began to
sharply increase in the last week of July. The concentrations peaked during August in both years
and then decreased to low levels by late September. In 2018, only one sample exceeded 5 ug/L,
whereas in 2019, there were 26 samples above 5 pg/L, including six above 10 pg/L. The sample
sites closest to the Maumee River (WE6, 9, 2) had higher concentrations than the sites furthest
from shore (WE4 and WE13).

"HABs Grab"

The HABs Grab provided us with a unique opportunity to analyze the impact of hydrodynamic
transport and MC production on the spatial variability of MCs in the western basin of Lake Erie,
thanks to its sufficiently high spatial resolution and coverage. To discuss the evolution of MCs,
we included the latest available MC map (Fig. 2a) from before the HABs Grab and the spatial
distribution of MCs during the HABs Grab (Fig. 2b). On July 29", observations showed that
high MC concentrations (2-5 pg/L) originated near the west shore of the western basin and
extended to the center of the western basin, with a decrease of MC concentrations to 1-2 pg/L.
On the HABs Grab day, the highest MC concentrations (> 20 pg/L) were measured in the region
near the mouth of the Maumee River, and concentrations decreased along the south shore with
increasing distance to the east. A “finger-shaped” MC plume (1-5 pg/L) was observed in the
center of the western basin, pointing to the north shore of the western basin. The "finger" and the
high MC concentrations on the west shore of the western basin formed a semi-circular front
surrounding the outflow from the mouth of the Detroit River.

A 10-day numerical Lagrangian particle tracking experiment was conducted to identify the
impact of hydrodynamic transport on the spatial distribution of MCs. Particles were released in
five representative regions, marked in different colors, to reveal how hydrodynamic transport
affected their distribution (Fig. 3a). The Detroit River outflow influenced the transport, which
first flowed southward in the northern part of the basin and then turned counterclockwise to the
northeast to exit the western basin through the passage to the north of Pelee Island (Fig. 3b).
Water currents transported particles released in the brown and red rectangles (center and
northern areas of the basin, respectively) further east and to the Canadian coast, respectively,
corresponding to the “finger" pattern on August 7. Due to the low current speed at Maumee Bay
(Fig. 3b, western corner of the basin), most of the particles released in Maumee Bay (black
rectangle) remained in this region, with a small portion of particles moving northward along the
western shoreline of the basin. The high residence time in Maumee Bay provided favorable
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conditions to accumulate and retain high MC concentration due to MC production in this region.
Particles released in the northwest area (purple rectangle) moved slightly southward but were not
carried eastward like the particles in the red rectangle, indicating the two close regions belong to
two different flow regimes. The movement of particles released in the red and purple regions
explained the formation of a steep concentration gradient of MC at 41.70-41.95 degrees latitude
and -83.2 degrees longitude. Most of the particles released in the southern area (blue rectangle)
stayed inside the blue rectangle due to the low current speed and spread out in all directions
according to the horizontal mixing process. One small portion of particles moved northward and
joined the extension of the “finger”. Another small portion moved southeastward along the coast,
explaining the observed extension of MC along the south coast.

In addition to the Lagrangian particle tracking experiment, the two ETM simulations (with and
without MC production) successfully predicted the "finger" and semi-circular shaped front of
MCs (Fig. 2c and d). The main difference between the two simulations was the concentration of
MCs in Maumee Bay. Only the model with MC production ("WMC") predicted high MC
concentrations (> 20 pg/L, Fig. 2c) that were consistent with the observed MC (Fig. 2b). The
model without MC production ("WOMC") predicted MC concentrations of less than 5 pg/L in
Maumee Bay (Fig. 2d).

Weekly MC forecast skill assessment

Statistical skills were summarized by confusion matrices to evaluate model performance in
forecasting different levels of MC concentrations and weekly trends. Each comparison between
model-predicted and observed (measured at 8 GLERL sites) MC concentrations in the 2018 and
2019 CHAB seasons was classified into correct (true positive and true negative) and incorrect
(false positive and false negative) conditions and marked in corresponding colors (Figs. 4-7).
The accuracy was calculated as the ratio of correctly classified events to the total number of
events for each case and each site (listed on the X-axis and Y-axis of Figs. 4-7, ESM Figs. S4-
S5), and each CHAB season (Table 1 and ESMTable S2). This allowed for a better evaluation of
model performance in space and time.

0.3 ug/L threshold

The WC model with MC production (WC-WMC) had the highest accuracy at the 0.3 pg/L
thresholds, with 85.4%, 94.2%, and 90.0% in 2018, 2019, and both years combined, respectively
(Table 1). The WC-WMC model performed 8.3% to 8.6% better than the SML-WMC model,
which involved initializing the model by applying MC concentration maps within the surface
mixed layer and simulating MC production. The WC-WOMC model, which did not include
microcystin production, was about 10.6% to 20.8% better than the SML-WOMC model. The
WMC models outperformed the WOMC models, with a difference of 8.3% to 20.8%. Generally,
simulations at sites closer to the Maumee River (Sites WE9, 6, 2, 8, and 12) were more accurate
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than those further offshore (Fig. 4). Site WE4, the northernmost site, and more influenced by the
Detroit River than the Maumee River (Fig. 1c), had the lowest accuracy within every model
simulation (Fig. 4) due to the highly dynamic movement of the HAB front. Across all sites and
models, among the incorrect results, there was a general pattern of more false negatives in the
early bloom season and more false positives at the end of the year.

1.0 ug/L threshold

In 2018, at the 1.0 pg/L threshold, the persistence model had the highest accuracy (84.4%),
which was 9.4% higher than any other model configuration (Table 1). Among the four
experiments in 2018, the WC-WOMC model was the second-most accurate (75.0%). The two
WMC models (with MC production) generated a combined 14 false positives in July 2018,
whereas the two WOMC and persistence models generated only one false positive combined,
showing that the WMC models were less accurate in 2018 (a small bloom year) (Fig. 5).

In 2019, which was a big bloom year, the WC-WMC model had the highest accuracy rate of
87.5%, which was 2.9% better than other models (as shown in Table 1). However, the two
WOMC and persistence models had lower accuracy rates in 2019 due to generating more false
negatives during July and early August compared to the WMC models. During the peak bloom
of 2019 (between August 5 and August 19" simulation start times), all models had a high
accuracy rate ranging from 75% to 100% for comparison times. However, all models had false
positives at the end of the 2019 bloom (on September 3™ and September 24"). There were no
apparent spatial patterns in accuracy.

5, 10, and 20 ug/L thresholds

Evaluating higher concentration thresholds for 2018 is complicated by the fact that, except for
WE16 on August 20, all other samples had MC concentrations less than 5.0 pg/L (Fig. 6).
Throughout the CHAB season, the WOMC and persistence models accurately predicted true
negatives for all eight sites, with a 99% accuracy rate. The WC-WMC model, on the other hand,
generated 12 false positives, indicating that the model forecast MCs to exceed 5.0 pg/L 12 times,
but the observed value was less than 5.0 pg/L (Fig. 6). The SML-WMC model generated only
one false positive (Fig. 6).

In 2019, the persistence model had the highest accuracy, but the WC-WMC model’s accuracy

was only 1% lower than that of the persistence model (Table 1). The SML-WMC model had an
accuracy of 83.7% in 2019, while the WC-WMC model had an accuracy of 87.5%, which was

14



15.4% better than the WOMC counterpart models. However, the SML-WOMC model only
correctly predicted 2 out of 35 observations that exceeded 5.0 pg/L, and the WC-WOMC model
only correctly predicted 7 out of 35 observations for the 2019 CHAB season. In contrast, the
SML-WMC model correctly predicted 20 out of 35 observations that exceeded 5.0 ug/L, which
is 57.1%, and the WC-WMC model correctly predicted 26 out of 35 observations, which is
74.3% (Fig. 6).

At the 10 pg/L threshold, the SML-WMC model correctly forecasted that the concentration
would exceed 10 pg/L in 5 out of 9 observations. The WC-WMC model correctly forecasted this
in 7 out of 9 observations. However, the WOMC models missed every instance of MC exceeding
10 pg/L, and the persistence model only correctly predicted one instance of MC exceeding 10
pg/L (ESM Fig. S4). There were only two instances of MC concentrations that exceeded 20
pg/L, and both WMC models correctly forecasted those instances, while the WOMC models did
not (ESM Fig. S5). However, both WMC models generated several false positives for MC
concentrations that did not exceed 20 pg/L.

Trend analysis

For trend analysis, the WC-WMC model showed the highest accuracy, achieving 63.5%, 86.5%,
and 75.5% in 2018, 2019, and both years combined, respectively. This was between 3.8% and
5.5% better than the next most accurate model, as shown in Table 1. The SML-WMC model, on
the other hand, outperformed the SML-WOMC models by 3.2% and 20.2% for 2018 and 2019,
respectively. Similarly, the WC-WMC model was 4.1% and 22.1% more accurate than the WC-
WOMC models (Table 1).

Across all models (except the persistence model), site WE9, which is the closest site to the
Maumee River, had the most correct predictions (76%-80% accuracy). On the other hand, site
WE?2, located in the transition zone between the nutrient-rich waters of Maumee Bay and the
lower-nutrient waters further into the basin, had the lowest accuracy (44%-60%) (Fig. 7a-d). Of
particular interest is site WE12, which is located near the City of Toledo's drinking water intake.
The WC-WMC model had an overall accuracy of 88%, including 100% accuracy for 2019.

The persistence model would only be correct in trend analysis if observed MC concentrations
changed by less than 20% from week to week. However, the persistence model mostly produced
false positives and false negatives as shown in Figure 7e. In the latter half of both years, the
persistence model had more false negatives due to the declining observed MC concentrations.
Overall, the model had an accuracy range of 12% to 36% across all sites, indicating that MC
concentrations vary by more than 20% from week to week.
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Model scenario comparison

Across all models for the 0.3 pg/L, 1.0 pg/L, and trend analysis, the models had an accuracy of
69.7% (+ one standard error of 2.9%) in 2018 and 80.8% (£ 2.5%) in 2019 (Fig. 8a). According
to the paired sample T-test (p <0.001, t = -5.358, df = 13), this difference was significant. The
models with MC production rate incorporated were significantly more accurate (78.5%) than
models without MC production incorporated (69.1%) (p = 0.002; t = 3.934; df = 11; Fig. 8b).
Additionally, the WC models (77.3%) were significantly more accurate than SML models
(70.3%) (p = 0.003; t = -3.882; df = 11; Fig. 8c).

Discussion
Influences of hydrodynamic transport and MC production on MCs estimation

Our work has revealed that both hydrodynamic transport and MC production are important in
predicting MC concentrations. As shown by our "HABs Grab" day simulation, models with MC
production agreed with the high MC concentrations observed (>20 pg/L) in Maumee Bay,
whereas models without MC production failed to reproduce these high concentrations.
Furthermore, all models correctly predicted that water currents would transport the MCs to less
commonly affected locations (e.g., northward in Fig. 2c, d), highlighting the importance of
hydrodynamic transport of MCs. Our statistical skill assessment over all 2018 and 2019
simulations showed that models without MC production (WOMC) were 69% correct on average,
indicating that hydrodynamic transport alone can be used to forecast MC concentrations 7 days
into the future. However, incorporating MC production (WMC) rates into the hydrodynamic
transport of MCs improved the models by 10%. Additionally, only the models with MC
production correctly forecasted MC concentrations greater than 5 pg/L during the large bloom
year, but incorrectly forecasted concentrations greater than 5 pg/L (false positives) during the
small bloom year. While our study was the first to demonstrate the impact of incorporating
biological rates into models on CHAB toxin forecasts, it is important to consider spatial patterns
(nearshore vs. offshore), yearly differences (in bloom size), and seasonality (early bloom, peak
bloom, and late bloom) when interpreting spatial and temporal modeling results for a large
system like western Lake Erie.

Spatial patterns

Site WE9 is located only ~5 km from the Maumee River. While the nutrient concentrations and
water temperatures at this site favor cyanobacterial growth, the overall cyanobacterial biovolume
can be low compared to other sites (Bridgeman et al., 2013) due to water currents from the
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Maumee River preventing the high accumulation of cyanobacteria. During the peak bloom
period of 2018, the Maumee Bay area had a low retention time (Chaffin et al., 2021), which
resulted in low MC concentrations (ESM Fig. S3) due to flushing. Additionally, in most cases,
Maumee River Microcystis are not capable of producing microcystins (Kutovaya et al., 2012). In
contrast, during the peak bloom in 2019, Maumee Bay had long retention times (Chaffin et al.,
2021), allowing MCs to accumulate to high concentrations (up to 45 ug/L, ESM Fig. S3).

Site WE2 is located in the transition zone between the nutrient-rich waters of Maumee Bay and
the lower-nutrient waters further into the basin (refer to Fig. 1c). This zone has high nutrient
concentrations and more favorable light conditions than the shallow Maumee Bay (less than 2
meters) due to turbidity and increased depth (4-6 meters), which allow for high cyanobacterial
growth rates (Chaffin et al., 2011). Site WE2 frequently showed high accuracy in the threshold
analyses (Figs. 4-6), but the worst accuracy in the trend analysis, with less than or equal to 60%
correct predictions (Fig. 7). The difference can be explained by the consistently high microcystin
levels but variable concentrations from week to week at WE2 (ESM Fig. S3). Therefore, MCs
were consistently above the thresholds, but the direction of change was more difficult to predict
from week to week.

WEI12 is important due to its proximity to the City of Toledo's drinking water intake, which is
approximately 0.6 km away. The WC-WMC models at this site were accurate, with a correctness
rate of at least 88% for all thresholds and trend analyses. Additionally, the models with MC
production at WE12 ranked among the top three highest accuracies compared to the other sites.
This high accuracy may be attributed to the significant amount of MC data available in a small
area around the intake, which was used to initialize the simulations. The City of Toledo collected
MC data daily from the intake, while NOAA GLERL, University of Toledo, and charter boats
collected samples weekly around the intake. The results at WE12 demonstrate that a higher
density of input data can lead to more accurate forecasts.

2018 vs 2019 — low MCs vs high MCs

Much higher MC concentrations (ESM Fig. S3) and cyanobacterial biomass (Chaffin et al.,
2021) were observed in the western basin of Lake Erie in 2019 compared to 2018. Across all
models for the 0.3 pg/L, 1.0 pg/L, and trend analysis, the high MC year of 2019 had significantly
more accurate results than 2018 (Table 1). These results suggest that forecasting MCs may be
easier when concentrations are relatively higher when weekly data is available. Severe blooms
usually occur in a larger area and last longer, which can be easily captured by weekly
observations from a few sites in the western basin. In contrast, small blooms cover a smaller area
and have a shorter duration, making them easy to miss when sampling at limited stations.
Therefore, ETM performed well in the big bloom year with sufficient data to initialize the model,
but failed in the small bloom year.
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There were also differences between years regarding models with and without MC production
rates. During the low MC year of 2018, the WMC models had more false positives than the
WOMC models. For example, at the 1.0 pg/L threshold, the WC-WMC resulted in 26% false
positives (25 out of 96 results were false positives), while the WC-WOMC resulted in only 9.4%
(9 out of 96) false positives (Fig. 5). On the other hand, during the high MC year of 2019, the
WC-WMC model resulted in 5.7% (6 out of 104) false negatives, while the WC-WOMC model
resulted in 15.4% (16 out of 104) false negatives. Similar results were observed in the trend
analysis. In 2018, the WC-WMC model gave 27.1% (26 out of 96) false positives, whereas the
WC-WOMC model gave 8.3% (8 out of 96) false positives. At the 5 pg/L thresholds, the results
with and without MC production also differed between the two years, with false positives in the
WMC models in 2018 and false negatives in the WOMC models during 2019 (Fig. 6). The false
positives in 2018 suggest that our estimate of MC production was too high. We used the average
MC production rates reported in microcosms with ambient nutrients and elevated nutrients
(Chaffin et al., 2022). The false positives from the WMC models in 2018 may indicate that in
situ MC production was closer to that reported in the ambient nutrient treatments than the
average of the ambient and elevated nutrient treatments.

Seasonal effect - early bloom, peak bloom, late bloom.

There was a distinct temporal pattern in the results. In early July of both years, all sites had low
MCs (< 2 pg/L) and most samples were below detection (0.3 ng/L) or 1.0 pg/L (ESM Fig. S3).
MC concentrations increased in late July, remained relatively high (compared to early summer)
during August, and then decreased in September. If we apply the general definition of "early
bloom" to the first three simulations from early July to mid-July of both years, "peak bloom" to
the simulation from late July (starting from July 30", 2018 or July 29, 2019) to August, and
"late bloom" to the simulations in September, the seasonal patterns become more apparent. In
threshold analyses, the models without MC production and the persistence model had more false
negatives during the early bloom, especially for 2019, whereas the models with MC production
more correctly captured MCs exceeding 0.3 pg/L and 1.0 pg/L during the early bloom, indicating
the importance of biological factors in early bloom forecasting (Figs. 4, 5). Across all models,
the peak bloom period had the most correct model results compared to the early bloom and late
bloom. The late bloom had more false positives than the early bloom at 0.3 pg/L and 1.0 pg/L
(apart from the false positives in the WMC 2018 models discussed above).

Microcystins concentrations during the early bloom period were characterized by false negatives
in the models without MC production, indicating the challenge for models to capture toxin
concentrations during the initiation of the bloom. Microcystis overwinters on the lake bottom
(Preston et al., 1980; Kitchens et al., 2018) and passively inoculates the water column (via wind
resuspension) when water temperature, light, and nutrients allow for growth (Reynolds and
Bellinger, 1992; Verspagen et al., 2004). Other models of Lake Erie HABs also struggle to

18



capture bloom initiation (transition from diatoms to cyanobacteria), which is currently puzzling
because there is a lag period between nutrient loading in the spring and the summer occurrence
of HABs (Stumpf et al., 2012). For example, the process-based Western Lake Erie Ecosystem
Model (WLEEM) factors in hydrology, internal and external nutrient loads, and weather and
predicts HAB biovolume, but the model incorrectly initiates the HAB early by up to one month
(Verhamme et al., 2016). Recently, the model of Del Giudice et al. (2021) suggested that Lake
Erie HABs can initiate one month after the lake has reached 20°C due to a reduction in grazing.
Our models relied only on weekly observed MC data, water currents, and measured rates of MC
production, and did not account for bloom initiation triggers or benthic recruitment throughout
the simulation week. A better understanding of bloom initiation triggers is needed to forecast
better when a HAB will begin.

The late bloom period was characterized by false positives, which resulted from decreased
observed MC concentrations, but the models forecast an increase in concentration when
incorporating the prescribed MC production rates. Cooler water temperatures associated with the
late bloom bring about bloom demise as the Microcystis colonies settle to the lake bottom
(Thomas and Walsby, 1986; Visser et al., 1995; Verspagen et al., 2005). Additionally,
cyanophages can infect the Microcystis cells in the water column leading to cell lysis and
releasing MCs from cells to the aqueous environment (McKindles et al., 2020). Once MCs are
outside of the cell, they can be rapidly degraded by heterotrophic bacteria (Mou et al., 2013;
Thees et al., 2019). Hence, colony settling and cell lysis followed by MC degradation will
decrease MC concentrations. These biological factors were not accounted for in our models, and
phage infection and cell lysis were not quantified in the experiments (Chaffin et al., 2022). A
better understanding of bloom demise and triggers of cell lysis are needed to inform predictive
models better during the late bloom period.

Water column vs surface-mixed layer

In CHAB biomass forecast modeling, several studies have shown that the application of surface
chlorophyll concentrations to the surface mixed layer to generate model initial conditions
produces the highest accuracy in model simulations (Rowe et al., 2016; Soontiens et al., 2019).
Furthermore, Zhou et al. (2023) evaluated multiple models using this approach and confirmed
that the ETM performance was the best. However, in our case, the ETM simulation by applying
an MC concentration map throughout the entire water column (WC model) as an initial MC
condition performed significantly better than SML models, on average, at predicting MC
concentrations (Fig. 8).

While there is no consistent relationship between chlorophyll a concentration (or another metric
for HAB biomass) and MC concentrations (Stumpf et al., 2016), and most (> 95%) of MCs are
intracellular (Dyble et al., 2008; Palagama et al., 2020), it should be expected that MCs and
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chlorophyll are positioned similarly in the water column. The differing results between WC vs.
SML models for MCs (our study) and chlorophyll (Rowe et al., 2016; Soontiens et al., 2019) are
due to the data source used to initialize the simulations. Rowe et al. (2016), Soontiens et al.
(2019), and Zhou et al. (2023) used remote sensing surface chlorophyll concentrations. It is
dynamically consistent to apply such surface data to the surface mixed layer. Applying surface
chlorophyll data to the entire water column would overestimate the water column concentration
during surface scums. In addition, the remote-sensed data were available at much higher spatial
(300 m) and temporal resolutions (every few days). As a result, the ETM simulation showed
close agreement with the observed chlorophyll spatiotemporal pattern (Zhou et al., 2023).
Unfortunately, measurements for MC concentrations were much more limited. As we mentioned
before, the MC concentration had to be generated by compiling all available data that were
measured at different layers of water columns. In this case, applying the initial MC concentration
to the entire water column resulted in a relatively better performance.

Therefore, it is critical to understand that the performance of the WC and SML models is
affected by how the observed data were collected. Ideally, it would be most appropriate to
separate the observational data into near-surface data to be applied to the surface mixed layer and
apply the rest of the data to the layer below the surface to generate the initial MC condition.
However, this would require a significant amount of data, which is not feasible based on current
data availability.

Conclusion

Forecasts of MC concentrations in Lake Erie would be useful for beach managers and drinking
water treatment plant operators when making decisions on beach closures and water treatment,
respectively. In this study, we developed a novel approach to hindcast MC concentrations for
Lake Erie by using a compilation of weekly maps of MC concentrations created from multiple
sources of analytical data, a hydrodynamic model, and an Eulerian tracer model. The model
results revealed that both hydrodynamic transport and MC production were essential in
predicting MC concentrations, which differs from the assumption in CHAB biomass forecasts
that physical transport models largely explain the short-term variability of CHAB biomass
(Rowe et al., 2016). With very limited data to initialize the ETM, no single model configuration
consistently provided more accurate results. Therefore, one must consider all models (with and
without MC production, SML vs. WC, including other forecasts developed by other researchers)
when making management decisions in an ensemble modeling approach. It is also important to
consider the variable performance of different model configurations in different parts of the
basin.

The major limitation is that we currently lack accurate, high spatial resolution MC concentration
data to initialize ETM. Our model predictions would likely be improved with more accurate
initial conditions in 3-D space, as was shown for the HABs Grab. Until recently, the City of
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Toledo collected daily MC concentration data, but reduced monitoring to weekly samples to
meet changing Ohio EPA compliance requirements. We argue that high-spatial resolution, along
with high-temporal sampling frequency, MC data are useful for hindcasting and developing
models. These extra daily samples could be stored frozen and analyzed in batches at the end of
the CHAB season for research purposes.

Furthermore, our models with MC production were limited by very coarse measurements of MC
production (two sites, biweekly). While the models with MC production sometimes
overpredicted the MC concentrations and resulted in false positives, especially in 2018, the 10%
improvement over models without MC production is a promising result indicating that factoring
in biology can improve model forecasts. Likewise, the models would likely be improved by
higher temporal and spatial resolution estimates of MC production rate.

Moreover, using a buoyancy regulation model instead of a constant buoyant velocity (90 pm/s) is
a potential option to improve our model performance. Medrano et al. (2013) showed that
incorporating a buoyancy regulation model can more accurately capture Microcystis aeruginosa's
vertical distribution throughout the water column and the diurnal variation in MC concentrations.
Furthermore, investigating cell lysis to estimate MC biodegradation rates is another potential
option to improve model performance since MC concentrations resulted from the net effect of
production and degradation.

In conclusion, our modeling approach, and those of others (Liu et al., 2020, Qian et al., 2021) to
MC forecasting, would be improved with more MC observations and a more comprehensive
understanding of the biological mechanisms related to MCs through laboratory experiments.

Data and Code Availability

The OSU, UT, and charter boat captain data can be found on NOAA’s National Center for
Environmental Information (NCEI Accession 0276941), the NOAA GLERL lab data can be
found on their website(https://www.glerl.noaa.gov/res/HABs_and_Hypoxia/), and the PWS data
can be found by downloading it directly from Ohio EPA (https://epa.ohio.gov/divisions-and-
offices/drinking-and-ground-waters/public-water-systems/harmful-algal-blooms). The ETM code
and configuration used in this study is available from https://doi.org/10.5281/zenodo.8014770.
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Table 1. The accuracy of the four experiments and persistence model for the 2018 and 2019
season at the 0.3 pg/L, 1.0 pg/L, and 5.0 ug/LL microcystin concentrations thresholds and the
trend analysis. The model with the highest accuracy is bolded and underlined. SML = initial
microcystins were mixed within the surface mixed layer for the initial conditions; WC = initial
microcystins were mixed throughout the entire water column; WMC = ETM simulations with
microcystin production; WOMC = ETM simulations without microcystin production.

SML- SML- WC- WC- Persistence

Threshold = Year WMC WOMC WMC WOMC model
| | 2018 | 77.1% | 56.3% | 85.4% | 77.1% | 79.2%
0.3 pg/L 2019 85.6% 75.0% 942%  85.6% 89.4%
Both years 81.5% 66.0% 90.0%  81.5% 84.5%

2018 74.0% 67.7% 67.7% 75.0% 84.4%

1.0 pg/L 2019 81.7% 71.2% 87.5%  80.8% 84.6%
Both years 78.0% 69.5% 78.0% 78.0% 84.5%

5.0 pg/L 2018 97.9% 99.0% 86.5% 99.0% 99.0%
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Figure Captions:

Fig. 1. (a) An example of a microcystin concentration map (August 19®, 2019) for the western
basin of Lake Erie. (b) The sample collection locations of the HABs Grab on August 19", 2019.
(c) The weekly sample locations by GLERL. (d) An enlarged view of the ETM grid (in red) in
the western basin of Lake Erie with blue triangles marking the sampling locations used to collect
water for microcystin production experiments (Chaffin et al., 2022). The solid black line
distinguishes the areas within 20 km of the Maumee River mouth from the rest of the basin.

Fig. 2. (a) An MC concentration map generated from multiple MC data sources for July 29%,
2019. July 29" is the latest available observation prior to the HABs Grab on August 7%, 2019.
This MC concentration map was used to initialize the ETM simulation (b) An MC concentration
map generated based on the observation data from HABs Grab. Black dots on the maps ([a] and
[b]) represent the sampling locations on those days, respectively. (¢) and (d): Simulated average
MC concentrations from the surface to 2m depth on the HABs Grab day from the ETM with MC
production (WMC, panel c¢) and without MC production (WOMC, panel d).

Fig. 3. (a) Trajectories of fluid particles released from five representative regions (marked in
different colors) over the MC map on July 29%, 2019 (Fig. 2a) to show the impact of
hydrodynamic transport on the spatial distribution of MCs. (b) 10-day mean depth-averaged flow
field from July 29" to August 7%, 2019 simulated with LE-FVCOM.

Fig. 4. Summary confusion matrix of the model assessment at the 0.3 pg/L thresholds. Dark blue
= model was correct (true positive) in that both the output and observed microcystin
concentrations were above 0.3 pg/L, or the model output was above the threshold and observed
below, but the 20% buffer overlapped both the threshold and the observed MC concentration.
Light blue = model was correct (true negative) in that both the output and observed microcystin
concentrations were below 0.3 pg/L. Dark gray = model was incorrect (false positive) in that the
model was above 0.3 ug/L while the observed was below. White = model was incorrect (false
negative) in that the model output was below 0.3 pg/L but observed was greater. The percentages
listed on the X-axis and Y-axis are the accuracy (dark and light blue grids) for each date (across
all sites) and each site (across all dates). The Y-axis is arranged from the site farthest from the
Maumee River (WE16) to the closest (WE9).

Fig. 5. As Fig. 4 caption, but at the 1.0 pg/L threshold.
Fig. 6. As Fig. 4 caption, but at the 5.0 pg/L threshold.

Fig. 7. Summary confusion matrix of the model assessment for the trend analysis. For the ETM
simulation (SML-WMC, SML-WOMC, WC-WMC, WC-WOMC), Dark blue = model was
correct (true positive) in that both the output and observed microcystin concentrations increased.
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Light blue = model was correct (true negative) in that both the output and observed microcystin
concentrations decreased. Purple = MC concentrations on the simulation start date and final were
within 20%, indicating no increase or decrease within the allowed buffer, and the model was
considered correct. Dark gray = model was incorrect (false positive) in that the model increased
microcystin concentration while observed decreased. White = model was incorrect (false
negative) in that the model decreased microcystin concentration, but the observed concentration
increased. For the persistence model, the purple color showed the observed data changed less
than 20% from the previously observed data (correct), the dark gray showed the observed data
increased more than 20% from the previously observed data (false positive), and the white
showed the observed data decreased more than 20% from the previously observed data (false
negative). The percentages listed on the X-axis and Y-axis are the accuracy (dark and light blue
grids) for each date (across all sites) and each site (across all dates). The Y-axis is arranged from
the site furthest from the Maumee River (WE16) to the closest (WE9).

Fig. 8. Average accuracy (+ one standard error) for all models in the 0.3 pg/L, 1.0 pg/L, and the

trend analysis for (A) 2018 and 2019, (B) with and without microcystin production rates, (C) and
water column mixing scenario.
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legend for Persistence Model

I Incorrect (false positive),the observed MCs increased more than 20% from the previous observation

I Correct, the observed MCs changed less than 20% from the previous observation
| | Incorrect (false negative), modeled MCs decreased but observed increased | || |Incorrect (false negative), the observed MCs decreased more than 20% from the previous observation

legend for SML-WMC, SML-WOMC, WC-WMC, WC-WOMC

I Correct (true positive), both modeled and observed MCs increased

B Correct, +20% buffer on the modeled MCs overlapped with observed data
B Incorrect (false positive), modeled MCs increased but observed decreased

[ Correct (true negative), both model and observed MCs decreased
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