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Abstract 84 

 85 

Landscape fire is a widespread, somewhat unpredictable phenomena that plays an 86 

important part in Earth’s biogeochemical cycling. In many biomes worldwide fire also 87 

provides multiple ecological benefits, but in certain circumstances can also pose a risk to 88 

life and infrastructure, lead to net increases in atmospheric greenhouse gas 89 

concentrations, and to degradation in air quality and consequently human health. 90 

Accurate, timely and frequently updated information on landscape fire activity is 91 

essential to improve our understanding of the drivers and impacts of this form of 92 

biomass burning, as well as to aid fire management. This information can only be 93 

provided using satellite Earth Observation approaches, and remote sensing of active fire 94 

is one of the key techniques used. This form of Earth Observation is based on detecting 95 

the signature of the (mostly infrared) electromagnetic radiation emitted as biomass 96 

burns. Since the early 1980’s, active fire (AF) remote sensing conducted using Earth 97 

orbiting (LEO) satellites has been deployed in certain regions of the world to map the 98 

location and timing of landscape fire occurrence, and from the early 2000’s global-scale 99 
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information updated multiple times per day has been easily available to all. 100 

Geostationary (GEO) satellites provide even higher frequency AF information, more 101 

than 100 times per day in some cases, and both LEO- and GEO-derived AF products 102 

now often include estimates of a fires characteristics, such as its fire radiative power 103 

(FRP) output, in addition to the fires detection. AF data provide information relevant to 104 

fire activity ongoing when the EO data were collected, and this can be delivered with 105 

very low latency times to support applications such as air quality forecasting. Here we 106 

summarize the history of achievements in the field of active fire remote sensing, review 107 

the physical basis of the approaches used, the nature of the AF detection and 108 

characterization techniques deployed, and highlight some of the key current capabilities 109 

and applications. Finally, we list some important developments we believe deserve focus 110 

in future years. 111 

 112 

 113 

1. Introduction 114 

 115 

Landscape fire is a widespread natural disturbance agent involved in Earth’s 116 

biogeochemical cycling, but one that can be greatly influenced by human actions, 117 

including in relation to climate and environmental change. Fire provides multiple 118 

ecological benefits (McLauchlan et al., 2020) – but in certain circumstances also poses a 119 

risk to life and infrastructure (Duff and Penman, 2021). In areas of substantial 120 

landscape fire activity and in regions downwind, air quality can also be seriously 121 

degraded - leading to major human health impacts and hundreds of thousands of early 122 

deaths per year worldwide (Roberts and Wooster, 2021). Deforestation fires, other fire 123 

involving ‘permanent’ land cover conversion, and fires consuming peat soils can also 124 

result in a net release of carbon to the atmosphere, since unlike savannah or grassland 125 

fires the carbon released is not balanced by a roughly equivalent uptake over subsequent 126 

growing seasons (Sommers et al., 2014; Friedlingstein et al., 2020).  Active fire (AF) 127 

remote sensing from space is a key technique used to deliver information on local to 128 

global scale fire activity for all these applications and more in a timely and accurate 129 

manner.  Following a recent review of EO-based burned area mapping (Chuvieco et al., 130 

2019), here we focus on EO for active fires – a technique that has developed to now 131 
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provide information on fire activity occurring anywhere on Earth with very low data 132 

latency and updates multiple times per day. Conducted as part of the Global 133 

Observation of Forest Cover/Global Observation of Landcover Dynamics 134 

(GOFC/GOLD) Fire Programme (https://gofcgold.org/), this review summarizes the 135 

history of the AF remote sensing approach, details current capabilities and key 136 

applications, and identifies important developments deserving focus in the coming 137 

years.  Appendix 1 provides a glossary and acronym list covering many of the terms 138 

used, along with a definition of some of the most relevant physical and chemical 139 

quantities.  140 

Figure 1 shows the annual distribution of actively burning landscape fires detected 141 

via processing of data collected by the Moderate Resolution Imaging Spectroradiometer 142 

(MODIS) instrument onboard NASA’s Terra satellite.  The fires detected include for 143 

example wildfires, those planned for some land management objective such as support 144 

to agriculture or forestry, and those used to clear land – including forests - for future 145 

agriculture. The data of Figure 1 clearly illustrate that widespread landscape fire activity 146 

occurs on all continents except Antarctica, generally in regions with enough dry fuel and 147 

ignition sources from people or lightning. Globally an average of around 3.4% of Earth’s 148 

terrestrial surface area burns annually (Giglio et al., 2018), an estimate that may 149 

increase as more finely detailed EO-derived burned area (BA) data become available 150 

(Roy et al., 2019; Roteta et al., 2019). Landscape fires such as these play important roles 151 

in many ecological (Bond and Keeley, 2005; McLauchlan et al., 2020) and wider Earth 152 

system processes (Bowman et al., 2009), including in relation to the carbon cycle 153 

(Sommers et al., 2014). But their annual consumption of billions of tonnes of vegetation 154 

and organic soil also results in globally significant emissions of smoke to the atmosphere 155 

(van der Werf et al., 2017), even from individual fire events (Hirch and Koren, 2021), 156 

and this affects air quality (Jaffe et al., 2020), and human health (Roberts and Wooster, 157 

2021). Those fires resulting in permanent landcover change, such as deforestation, 158 

and/or which consume carbon-rich organic soil such as peat built up over long-159 

timescales also represent a net release of carbon to the atmosphere (e.g. Sommers et al., 160 

2014; Huijnen et al., 2015) and so contribute to rises in atmospheric greenhouse gas 161 

concentrations.  One of the earliest stimuli for use of satellite EO in studying landscape 162 

fires came from uncertainties on their net carbon budget impact (Seiler and Crutzen, 163 
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1980), though a century earlier von Danckelman had drawn attention to their role in 164 

large-scale aerosol radiative forcing (Bronnimann et al., 2009). 165 

 Satellite EO can be used to probe many fire characteristics, including burned area 166 

(Giglio et al. 2018; Chuvieco et al., 2019) and the concentration and composition of 167 

smoke plumes (e.g. Kaufman et al., 2002; Coheur et al. 2009; Ross et al., 2013). Active 168 

fire (AF) remote sensing such as that used to produce the data of Figure 1 primarily 169 

focuses on identifying the location, timing and radiative strength (Fire Radiative Power; 170 

FRP) of fires that are actually consuming vegetation and/or organic soil at the time the 171 

observations were made. The FRP is somewhat akin to a spatial integration of the 172 

intensity of the overall combustion zone, and is measured in Watts. AF remote sensing 173 

is based primarily on infrared (IR) spectral measurements, and we begin by 174 

summarizing the historical development of the approaches used to exploit these 175 

measures (Section 2). We then review the fundamental physics (Section 3) and 176 

strategies for AF detection (Section 4), detailing approaches for FRP retrieval and the 177 

extraction of related variables such as fire effective temperature and area (Section 5). 178 

We examine how such data relate to fuel consumption and atmospheric impacts 179 

(Section 6), fire characteristics and ecosystem variables (Section 7), and how they are 180 

increasingly provided via online portals and in ‘analysis ready’ formats (Section 8). 181 

Finally, to aid future planning, we examine types of sensors, datasets and research 182 

activities we consider important for further development of AF applications, so as to 183 

point the way to areas of further fruitful research (Section 9). 184 

 185 
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 186 

 187 

Figure 1.   One year of actively burning landscape fire radiative power (FRP), 188 

derived from MODIS observations made from the Terra satellite. Data are the mean 189 

FRP of all active fire pixels detected in each 0.5° grid cell, as defined by the MODIS 190 

MCD14ML Active Fire and Thermal Anomaly product generated for 2010 (Giglio et 191 

al., 2016).    192 

  193 

2. The Historical Development of Satellite Active Fire (AF) Methods 194 

  195 

The origins of active fire remote sensing extend back to 1960’s and 1970’s, with 196 

airborne thermal imaging of forest and coal seam fires (e.g. Hirsch, 1965; Ellyett and 197 

Flaming, 1973). Satellite-based studies commenced in the early 1980’s, primarily using 198 

data from the Advanced Very High Resolution Radiometer (AVHRR) operating onboard 199 

NOAA’s Polar-orbiting Operational Environmental Satellites (POES). AVHRR data 200 

played a key role in the development of AF detection methods (e.g., Flasse and Ceccato, 201 

1996; Giglio et al. 1999; Ichoku et al., 2003). Research was largely based on the strong 202 

‘active fire sensitivity’ of spectral bands located in the middle infrared (MIR) 203 

atmospheric window (3 – 5 µm) (Section 3), with the AVHRR 3.7 µm channel shown to 204 

discriminate areas of combustion covering < 1% of the pixel area (Dozier; 1981; Matson 205 

and Dozier, 1981; Muirhead and Cracknell, 1985; Flannigan and Vonder Haar, 1986; Lee 206 
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and Tag, 1990; Setzer and Periera, 1991; Justice et al., 1993).  The sensitivity of MIR 207 

measurements to sub-pixel thermal anomalies still underpins most AF remote sensing 208 

today, and AVHRR itself is still used (e.g., in the Brazilian ‘Queimadas’ fire monitoring 209 

system described in Appendix 2).  During the 1980’s the first AVHRR-based active fire 210 

initiatives were unable to use the full spatial resolution (1 km) data globally due to the 211 

limited ‘local area coverage’ (LAC) onboard storage capacity of POES. However, a global 212 

network of AVHRR ground stations collected the directly downlinked High Resolution 213 

Picture Transmission (HRPT) 1 km data broadcast from the POES within their coverage 214 

areas, and in 1992 the International Geosphere Biosphere Programme Data and 215 

Information System (IGBP-DIS) provided specifications for the first global 1 km data set 216 

(Eidenshink and Faundeen 1994). This led to the first ever day and night global AF data 217 

set, produced by Europe’s Joint Research Center (JRC; Ispra) covering April 1992 to 218 

December 1993 (Stroppiana et al. 2000). The nighttime only ESA World Fire Atlas 219 

(WFA) was developed at a similar time using initially ATSR-2 observations (Arino et al., 220 

1999). The call for such global fire products originated in the requirements set by the 221 

IGBP Global Change and Terrestrial Ecology (GCTE) Core Project and the response by 222 

IGBP Data and Information Systems (IGBP-DIS), and was taken up more 223 

comprehensively by the international community through the GOFC/GOLD program 224 

(Ahern et al., 2003, Csiszar et al. 2013). Most recently the nearly 40-year archive of 225 

global, lower (~ 3 × 5 km) spatial resolution subsampled AVHRR global area coverage 226 

(GAC) data has been mined to generate some of the longest AF records currently 227 

available, initially regionally (e.g. Wooster et al., 2012a) and now being extended 228 

globally. Figure 2 shows an example of a three-decade AVHRR-GAC AF analysis of 229 

southern Canadian provinces (Figure 2a), where extreme fires burned in Manitoba in 230 

May, July and August 1989 (Figure 2b). 231 
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 232 

 233 

 234 

Figure 2.   Example of (a) long term and (b) extreme landscape fire activity 235 

recorded in southerly Canadian provinces, as depicted via analysis of AVHRR GAC 236 

data. (a) AF detection time series derived using nighttime GAC data from 1985 to 237 

2016. (b) Example AVHRR GAC image of 24th July 1989 (09:00 UTC) taken during 238 

the extreme 1989 Manitoba fire season (see the peak in (a) and Hirsch, 1991). Cloudy 239 
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pixels are masked as grey and active fire pixels shown by the high MIR (3.7 µm) 240 

channel brightness temperature elevation over the ambient background (red areas).  241 

 242 

 243 

Work with AVHRR fundamentally changed our understanding of the global 244 

presence of fire, but the low sensor saturation temperature (c. 325K) of AVHRRs 3.7 245 

µm MIR band (Csiszar and Sullivan, 2002), significant POES orbital drift (Csiszar et 246 

al. 2003) as well as other issues (Giglio and Roy, 2020) provided limits to its utility. 247 

However, such work greatly influenced the presence of an AF detection and 248 

characterization capability within NASA’s Earth Observing System (EOS; Justice et al., 249 

1998), specifically that of the EOS flagship sensor - MODIS (Justice et al. 2002a). 250 

MODIS was designed with two 3.96 µm MIR channels having different saturation 251 

temperatures and dynamic ranges to support FRP retrieval as well as AF detection 252 

(Kaufman et al., 1998; Justice et al. 2002b). FRP retrieval (Section 5) enables the AF 253 

application to go beyond fire presence/absence mapping to quantify the amount of 254 

radiant energy a fire is emitting per unit time, which is now considered linearly related 255 

to rates of fuel (vegetation and/or organic soil) consumption and smoke emission (e.g. 256 

Kaufman et al., 1996; Ichoku and Kaufman, 2005; Wooster et al., 2005; Kaiser et al., 257 

2012; Nguyen and Wooster, 2021). The MODIS AF detection algorithms were built on 258 

the AVHRR experience and prototyped using MODIS airborne simulator data 259 

(Kaufman et al., 1998). They exploited the increased brightness temperature (BT) 260 

difference found between the MIR and long-wave infrared (LWIR) channel 261 

measurements at pixels containing actively burning fires (Section 3). The MODIS AF 262 

detection algorithm (Section 4) has been used by NASA to generate a suite of AF 263 

products having better than daily temporal resolution since the year 2000, and these 264 

remain to the present time one of the most widely used MODIS products.  Other 265 

satellites in the 1990’s and 2000’s also supported AF detection, including the Defense 266 

Meteorological Satellite Program nighttime low-light imaging Operational Linescan 267 

System (DMSP-OLS) (e.g. Cahoon et al., 1992; Elvidge et al., 2013) and the Tropical 268 

Rainfall Mapping Mission (TRMM) which relied on evolutions of AF detection 269 

methods first used with AVHRR (e.g. Giglio et al., 2000).         270 



11 

 

AF detection accuracy assessment is challenging due to the ephemeral and highly 271 

dynamic nature of landscape fire, difficulties in obtaining independent reference data 272 

coincident with the satellite observations, and because surface fires are complex to 273 

characterize in situ. However, for MODIS, the inclusion of the higher spatial resolution 274 

(15, 30 and 90 m) Advanced Spaceborne Thermal Emission and Reflection 275 

Radiometer (ASTER) instrument operating concurrently on the Terra satellite and 276 

itself able to be used for AF detection enabled simultaneous reference data to be 277 

collected. A systematic evaluation of the minimum fire sizes detectable by MODIS was 278 

produced (Morisette et al., 2005; Schroeder et al., 2008), and further refinements to 279 

the MODIS AF detection algorithm were informed by this validation. This culminated 280 

in the latest Collection 6 dataset reprocessing (Giglio et al., 2016). These developments 281 

also influenced algorithms used with subsequent low earth orbit (LEO) satellite 282 

sensors, such as the Visible Infrared Imaging Radiometer Suite (VIIRS) (Csiszar et al., 283 

2014) and Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR) 284 

(Wooster et al., 2012b; Xu et al., 2020). Inter-comparisons of AF data derived from 285 

observations made by different LEO sensors are commonly used to understand their 286 

varying performance characteristics (Figure 3), with one aim being to derive transfer 287 

functions enabling data from multiple sensors to be combined into single time-series.  288 

 289 

 290 

 291 

Figure 3. Nighttime active fire pixel counts detected in 0.1° grid cells in January 2019 292 

from (a) Sentinel3B SLSTR and (b) Terra MODIS. These sensors have similar local 293 

overpass times and show similar spatial patterns of AF detection, but the SLSTR data 294 

record shows far higher AF pixel counts. Analysis shows this is in part due to the 295 

detection of many lower FRP fires by SLSTR than MODIS. This is a result of the former 296 

sensors smaller pixel area growth around the swath compared to MODIS (Wooster et 297 
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al., 2012a; Xu et al., 2020), and the fact that lower FRP fires are typically the most 298 

numerous (e.g. Wooster and Zhang, 2004). 299 

 300 

A similar AF detection algorithm development cycle has occurred for geostationary 301 

(GEO) satellite AF products as with LEO products. Compared to LEO systems, GEO 302 

products offer higher temporal resolutions but coarser spatial resolutions, and each 303 

sensor only provides data over a specific region of the Earth (Figure 4). Geostationary 304 

AF products were first generated over the America’s using the Geostationary 305 

Operational Environmental Satellite Visible Infrared Spin Scan Radiometer 306 

Atmospheric Sounder (GOES-VAS) (e.g. Prins and Menzel, 1992; 1994; Weaver et al., 307 

1995), and this led to the development of the long-standing GOES WildFire Automated 308 

Biomass Burning Algorithm (GOES WFABBA) product (Prins et al., 1998). The GOES 309 

WFABBA products represent the longest geostationary AF dataset currently available, 310 

and in addition to AF location and time included an estimate of effective AF 311 

temperature and area - derived using the Dozier (1981) ‘bi-spectral’ approach (Section 312 

4). Wooster et al. (2005) and Roberts et al. (2005) first demonstrated the retrieval of 313 

FRP from geostationary EO data, doing so via an approach avoiding use of bi-spectral 314 

data (see Section 5), and went on to develop a full ‘fire thermal anomaly’ (FTA) AF 315 

detection and FRP retrieval algorithm for GEO systems. This was first applied to data 316 

from Meteosat Second Generation (Roberts and Wooster, 2008), and an operational 317 

version is now used to generate a series of geostationary AF detection and FRP retrieval 318 

products spanning much of the globe, including from Meteosat over Africa and Europe 319 

(Wooster et al., 2015), GOES-East and -West over the America’s (Xu et al., 2010; 2021) 320 

and Himawari over Asia (Xu et al., 2017). Similar product intercomparisons and 321 

evaluations have been conducted as for LEO AF products (e.g. Roberts et al., 2015).  322 
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 323 

 324 

 325 

 326 

 327 

 328 

Figure 4. Active fire data and coverage maps derived from observations made by 329 

the geostationary Meteosat Second Generation SEVIRI instrument (SEV), and the 330 

polar-orbiting Aqua MODIS (MYD) and VIIRS (VNP) at approximately the same 331 

time of day.  An approximately 80 × 100 km region of southern Africa is shown at 332 

top, where the coarser spatial detail of SEVIRI is apparent but also the higher per 333 

pixel FRP values due to the capturing of more fires within a pixel. The spatial 334 
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coverage of each of these systems obtained in a single hour is shown in the global 335 

map, with the location of the focus region highlighted.   336 

 337 

3. Basic Physics of Active Fire Remote Sensing 338 

 339 

AF detection and characterization is based on remote sensing of some of the 340 

approximately 20 MJ.kg-1 of energy released when vegetation and organic soil burns 341 

(Cheney and Sullivan, 2008). ‘High heat of combustion’ describes the maximum total 342 

energy release per unit of dry matter consumed, and so live, i.e., moist, fuels release 343 

somewhat less (Smith et al., 2013). Of the total energy released, only about 10 - 20% is 344 

released as (primarily IR) electromagnetic radiation (Freeborn et al. 2008, Kremens et 345 

al., 2012). This radiative energy release rate is far higher than from the same area of 346 

ambient land however, and its spectral distribution follows Planck’s Radiation Law and 347 

its derivative Wien's Displacement Law which serve as the physical basis for most AF 348 

remote sensing.  349 

 350 

Figure 5 shows the modeled blackbody emitted spectral radiance for surfaces at 300 K, 351 

600 K and 1000 K (typical temperatures of the Earth’s land surface, smoldering, and 352 

flaming combustion respectively; Kaufman et al. 1998; Sullivan et al. 2003; Dennison et 353 

al. 2006). The emitted spectral radiance from a 1000 K flaming fire in the longwave IR 354 

(LWIR) atmospheric window (8 – 14 µm) is more than an order of magnitude higher 355 

than from the ambient land surface, but in the MIR (3 – 5 µm) atmospheric window it is 356 

almost three orders of magnitude higher – demonstrating why MIR observations are so 357 

sensitive to the presence of actively burning fires. Cooler smoldering fires show lower 358 

but still very significant levels of MIR and LWIR emittance. The very strong radiative 359 

signal of areas of combustion in the MIR spectral region, and the contrast between this 360 

and that seen in the LWIR from the same location, and in the MIR from nearby ambient 361 

non-fire areas, mean that active fires can be detected in appropriately remotely sensed 362 

imagery even if they cover an extremely small fraction of a pixel. 363 

 364 

 365 
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 366 

Figure 5. Emitted spectral radiance for blackbodies at typical flaming (1000 K) and 367 

smoldering (600 K) temperatures along with that from an ambient 300 K surface.  368 

Note the logarithmic scale of the y-axis. The MIR and LWIR atmospheric window 369 

regions are shaded grey. 370 

 371 

To demonstrate that even small sub-pixel fires generate very detectable changes in the 372 

signal of the pixels they are contained within, Figure 6 shows an example of modelled 373 

top-of-atmosphere (TOA) spectral radiance for different pixel situations, fully taking 374 

into account both emitted and reflected radiation and atmospheric effects. The figure 375 

contrasts a 300 K savannah land surface pixel (green line) with the same pixel but also 376 
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containing 0.5 % areal coverage of flaming 1000 K combustion (red line). In the MIR 377 

spectral region (3 – 5 µm), there is around an order of magnitude difference between the 378 

spectral radiance of these two pixels, equivalent to an easily detectable brightness 379 

temperature (BT) difference of around 80 K - even though the fire covers less than 1% of 380 

the pixel area.  Whilst there is a dependency on issues such as day/night operation, and 381 

certain instrument-specifics, most AF detection algorithms can identify pixels in 382 

remotely sensed imagery that contain active fires if they have induced a minimum 5 to 383 

10 K increase in the pixels MIR brightness temperature compared to the non-fire 384 

background. As such, fires covering down to perhaps ∼ 0.01% of the pixel area are 385 

potentially identifiable. A far lower (but still likely detectable) signal difference between 386 

the fire and non-fire savannah pixels is apparent in the 10 – 12 µm LWIR spectral region 387 

of Figure 6, indicating that fires essentially have to cover a far larger portion of the 388 

pixel area to be identified using LWIR observations than MIR observations. These types 389 

of spatial and spectral contrast differences are the basis of most AF detection 390 

algorithms, with various additional tests employed to discriminate AF pixels from ‘false 391 

alarms’.  Pixels containing homogeneously warm (e.g. solar heated) land would be 392 

expected to have more similar MIR and LWIR BTs than would AF pixels, enabling the 393 

latter to be discriminated using this characteristic (see Section 4), whilst geographic 394 

masks can be used to screen out land-based gas flaring and active volcanoes for 395 

example. 396 

 397 

Figure 6 also shows the signal of a pixel containing sunglint over water, which is a key 398 

cause of potential false alarms since sunglint affected pixels can have similar MIR and 399 

LWIR signals to AF pixels. However, sunglints can be masked out based on their 400 

typically strong visible wavelength and/or near infrared (NIR) signals (e.g. Zhukov et 401 

al., 2006).  Sunglint does not occur at night, and so nighttime AF detection algorithms 402 

can often be deployed with increased sensitivity, including because nighttime ambient 403 

surface temperatures are typically lower and more homogeneous than by day - leading 404 

to potential increases in the contrast provided by AF pixels.  Some nighttime AF 405 

detection algorithms employ analysis of short-wave infrared (SWIR) signals (typically 406 

between 1.6 and 2.2 µm), which Figure 5 and 6 shows are also raised by the presence of 407 
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sub-pixel active fires. By day however such emitted SWIR signals can be masked by 408 

variations in solar reflected radiation unless the fire covers a substantial fraction of the 409 

pixel area. Such methods are thus best suited to use with higher spatial resolution 410 

imagery (e.g. Giglio et al., 2008). 411 

 412 

 413 

 414 

 415 

Figure 6.  Modeled top-of-atmosphere emitted spectral radiance for four pixels – 416 

containing ambient (300 K) savannah; the same but with a 1000 K actively burning 417 

fire covering 0.5% of the pixel area, specularly-reflected sunglint from a 300 K 418 

surface, and solar-heated bare soil at 320 K. Examples of typical spectral bands of a 419 

satellite based imaging radiometer used to detect AF pixels are shown at top (here 420 

those from the Sentinel-3 SLSTR sensor; Wooster et al., 2012a). Savannah pixels 421 

which contain a sub-pixel active fire are best separated from non-fire pixels in MIR 422 

spectral region, which is targeted by the SLSTR S7 spectral band. SLSTR also has a 423 

second (low-gain) MIR band (F1) to avoid saturation effects that impact S7 over 424 

warmer areas and active fires (see Section 10). 425 
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 426 

Few active fires completely fill a satellite image pixel, and extremely rarely at the 427 

scale of MODIS, SLSTR and VIIRS pixels. Thus subpixel AF situations such as is 428 

modelled in Figure 6 are by far the most common type. However, reliable detection of 429 

extremely small subpixel (e.g. < 0.01% pixel area), sub-canopy smouldering, or 430 

particularly cool (e.g. subsurface peat) fires remains a challenge. A fire of a given size 431 

and temperature will also occupy a smaller areal fraction of a larger pixel than a smaller 432 

pixel, reducing its detection reliability. However, moderate spatial resolution EO data 433 

such as provided by AVHRR, MODIS, VIIRS, and SLSTR are available with a daily or 434 

better update frequencies, enabling detection of active fires covering around 100 m² and 435 

in some cases even smaller (Schroeder et al., 2014; Zhang et al., 2017).  Figure 7 shows 436 

an AVHRR 1 km image captured over Indonesia during a period when flaming 437 

vegetation fires and cooler (often sub-surface) smoldering peat fires were widespread. 438 

These fires are generally strongly sub-pixel in size, and in agreement with Figures 5 439 

and 6 their influence on the MIR BT image (a) is far greater than in the LWIR BT image 440 

(b). The BT difference image (Figure 7c) best highlights the AF pixels, and this 441 

difference metric is the basis of most AF detection algorithms (Section 4). 442 

 443 

 444 

 445 

Figure 7.  Night-time AVHRR local area coverage (LAC) ∼ 1 km spatial resolution 446 

imagery of large-scale fires burning in primarily in peatlands across southern 447 

Kalimantan (Indonesia) on 24th August 1991. (a) MIR and (b) LWIR brightness 448 
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temperature (BT) data. The presence of a sub-pixel fire affects the BT more in the MIR 449 

than in the LWIR, and the MIR and LWIR BT difference shown in (c) most clearly 450 

highlights them.  451 

 452 

Figure 7 shows a largely cloud free situation. Unlike smoke, meteorological clouds 453 

obscure active fires from view, and can also contribute to sunglint-induced false alarms. 454 

Cloud masking is thus an important component of EO-based AF detection. Information 455 

on cloud masked areas is also essential for AF product users to understand whether a 456 

location is considered free of detectable fires, or whether there is uncertainty due to 457 

cloud cover. Atwood et al. (2015) demonstrate that AF detection can occur through even 458 

very thick smoke, but that some satellite AF product cloud masking procedures 459 

inadvertently mask out heavily smoke affected areas as being affected by cloud. 460 

Conservative cloud masks can also result in higher rates of AF omission, and so 461 

underestimation of regional-scale FRP totals (Freeborn et al., 2014; Hall et al., 2019; 462 

Liu et al., 2020).  However,  Wooster et al., (2018) demonstrate that considerable 463 

spatio-temporal detail on fire activity in strongly smoke and cloud affected regions can 464 

still be gained with suitable tailoring of AF product cloud masking procedures.  465 

 466 

To aid understanding of the exact source of the types of elevated spectral signals 467 

shown in Figure 6 over fire affected pixels, Parent et al. (2010) made high spectral 468 

resolution laboratory measurements of fire emitted radiation. Planckian thermal 469 

emission was seen coming from both the hot fuel and from luminous hot soot particles 470 

in the flames, but whilst the fuel typically had a high emissivity across the IR region, 471 

that of the flames depended strongly on soot concentration and flame depth (Àgueda et 472 

al., 2010; Johnston et al. 2014). However, even in low emissivity (e.g. thin, low soot 473 

concentration) flames showing low amounts of Planckian thermal emission, strong 474 

thermal emission in narrow spectral ‘emission line’ regions were seen from hot gases 475 

such as CO2 and H2O (Parent et al., 2010). EO sensors prioritized for AF remote sensing 476 

generally avoid use of such spectral regions however, since ambient atmospheric CO2 477 

and H2O absorb strongly at these same wavelengths and would tend to obscure the 478 

surface emitted signals when observing from space.  Atmospheric transmittance is taken 479 

into account of during the generation of certain AF products, but typically only in terms 480 
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ambient atmospheric gaseous constituents (e.g. Wooster et al., 2015; Section 5). In 481 

terms of aerosols, wildfire smoke is dominated by very small particles (i.e. PM2.5 and 482 

smaller) that are inefficient scatterers of MIR and LWIR radiation, and this is the reason 483 

that fires can be identified though even strongly smoke-affected regions as long as the 484 

data are not masked as cloudy (Atwood et al., 2015). However, thick smoke is likely to 485 

have some impact on the retrieved FRP, including via any black carbon component 486 

absorbing some of the fire-emitted thermal radiance. This is yet to be accounted for in 487 

FRP retrieval algorithms.  488 

 489 

4. Active Fire Detection Algorithms and Products 490 

 491 

4.1. Active Fire Detection Algorithms 492 

 493 

4.1.1  Early Work 494 

 495 

Dozier (1981) and Matson and Dozier (1981) undertook some of the earliest 496 

satellite-based studies of sub-pixel ‘thermal anomalies’. They explained the causes of the 497 

spectrally varying BTs seen in AVHRR data containing sub-pixel hot sources (e.g. Figure 498 

7), and these characteristics still underly almost all AF detection methods used today. 499 

They proposed a s0-called bi-spectral fire characterisation algorithm that used non-500 

linear simultaneous equations to estimate the fires sub-pixel effective temperature and 501 

area (see Section 5.1). Prior to application of this bi-spectral, other approaches are often 502 

used to identify the pixels to which it should be applied. 503 

 504 

4.1.2 Fixed threshold algorithms 505 

 506 

Fixed threshold AF detection algorithms apply relational operators and fixed 507 

thresholds to the BT data captured in individual spectral bands (e.g., TMIR > 320K) 508 

and/or to band differences (e.g., T MIR –TLWIR > 10 K). Their simplicity provides 509 

computational efficiency, but even carefully-tuned thresholds can in general only satisfy 510 

AF detection accuracy requirements under the specific regional/seasonal conditions for 511 

which they were derived (Kaufman et al., 1990; Pereira and Setzer, 1993), or they must 512 
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be applied under relatively stable ambient background temperature conditions (e.g. at 513 

night; Wooster et al., 2012b). Use of higher thresholds can help alleviate false alarms 514 

related to by ambient background temperature variations, as was the case with the ESA 515 

World Fire Atlas, but increase the chance of omitting smaller and/or cooler fires (Arino 516 

et al., 1999). 517 

 518 

4.1.3 Contextual algorithms 519 

 520 

Contextual algorithms incorporate dynamic thresholds, which adapt to local 521 

conditions to aid detection of smaller and/or cooler fires whilst minimizing false alarms. 522 

In this approach, candidate AF pixels are first detected using liberal fixed thresholds - 523 

generally applied to the TMIR and/or TMIR – TLWIR data.  False detections are then 524 

removed from this ‘potential AF pixel’ set by comparing the signal of each candidate AF 525 

pixel to that of neighboring non-fire pixels within a surrounding geographic window. 526 

Some of the first contextual AF detection algorithms were developed for use with 527 

AVHRR (e.g. Flasse and Cecatto (1996); Giglio et al., 1999) as part of the IGBP-DIS 528 

global fire initiative (Section 2).  Evolutions followed, including use of differently sized 529 

windows (e.g. Giglio et al., 2003, 2016; Zhukov et al., 2006), and spatial filters to 530 

improve rejection of non-fire pixels in the early stages and allow use of more liberal 531 

fixed thresholds able to better capture smaller/cooler fires (Roberts and Wooster, 532 

2008).   533 

Contextual algorithms still remain the most commonly used AF detection 534 

method. Since their initial development (Flasse and Ceccato, 1996; Giglio et al., 1999; 535 

Kaufman et al., 1998), they have been applied to data from numerous LEO sensors, 536 

including VIIRS (Schroeder et al., 2014; Csiszar et al., 2014; Zhang et al., 2017), MODIS 537 

(Kaufman et al.,1998; Giglio et al., 2016), the BIRD Hot Spot Recognition System 538 

(HSRS, Zhukov et al., 2006), the TRMM Visible and Infrared Scanner (VIRS, Giglio et 539 

al., 2000), SLSTR (Wooster et al., 2012b; Xu et al., 2020), and Landsat (Schroeder et al. 540 

2016; Kumar and Roy, 2018), and also GEO sensors such as those carried by Meteosat 541 

(e.g. Wooster et al., 2015; Amraoui et al., 2010; Di Biase and Laneve, 2018), GOES 542 

(Prins et al., 1998; Xu et al., 2010; Schmidt et al., 2017; Xu et al., 2021), Himawari (Xu 543 

et al., 2017; Wickramasinghe et al., 2016), and FengYun (Xu et al., 2011).    544 
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 545 

4.1.4 Multi-temporal algorithms 546 

 547 

The majority of AF detection algorithms are applied to single date imagery, with 548 

some adding basic temporal constraints to remove possible false alarms (e.g., Prins et 549 

al., 1998; Xu et al., 2010; Kumar and Roy, 2018). Some multi-temporal AF detection 550 

algorithms have been developed however. These either identify fire-related pixel-level 551 

thermal variations via multi-temporal change detection (e.g. Filizzola et al., 2017), or 552 

model the ambient pixel BT diurnal cycle and identify fire-related departures from this 553 

(e.g. Roberts and Wooster, 2014). Both approaches aim to identify an AF pixel via 554 

thermal differences compared to expectations, whilst accounting for temporal 555 

variability. In the multi-temporal change detection approach, statistical 556 

characterizations of a fire-relevant parameter (e.g., the MIR BT or MIR-LWIR BT 557 

difference) at each pixel location are calculated over a suitably long period; and such 558 

approaches have been applied to LEO (Marchese et al., 2017) and GEO (Laneve et al. 559 

2006; Filizzola et al., 2017) data. Model-based approaches exploit the latter’s higher 560 

temporal frequency to characterize the ambient BT diurnal cycle and then forecast this 561 

forward in time (Udahemuka et al., 2007; Hally et al., 2017). Optimal estimation 562 

techniques, such as Kalman filters, can build on this baseline to assimilate observed BTs 563 

and deploy statistical thresholds to confirm whether active fires are present based on 564 

departures from the modelled diurnal trend. Although computationally intensive, this 565 

approach has been applied to GEO data (van den Bergh and Frost, 2005; van den Bergh 566 

et al., 2009; Roberts and Wooster, 2014; Hally et al., 2016), and in some cases has been 567 

shown to detect fires unidentifiable using the more standard contextual approach (van 568 

den Bergh et al., 2009; Roberts and Wooster, 2014). 569 

 570 

4.1.5 Non-thermal infrared methods 571 

 572 

AF detection methods using visible (VIS), NIR and SWIR band data have been 573 

developed for nighttime use. The VIS-NIR band (0.5 - 0.9 µm) on the 2.7-km U.S. Air 574 

Force DMSP-OLS sensor (Elvidge et al., 1996) enabled nighttime detection of city lights, 575 

lightning flashes and active fires using a simple contextual algorithm that identified 576 
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pixels far brighter than its neighbors. Elvidge et al. (2013) extended the approach to 750 577 

m VIIRS day-night band (0.5 - 0.9 µm) data, combining it with that from the SWIR-to-578 

LWIR bands and using a Planck function fitting approach to more confidently 579 

discriminate fires from other visible light sources. Some nighttime AF detection 580 

algorithms also employ SWIR radiances measures where available. For example, Elvidge 581 

et al. (2015) combined Landsat-8 SWIR and LWIR data to discriminate flaming and 582 

smoldering peatland fires, whilst Fisher and Wooster (2019) used nighttime SLSTR 583 

SWIR and MIR data to discriminate gas flares from vegetation fires. 584 

Daytime SWIR algorithms have also been developed for use with medium spatial 585 

resolution sensors having no MIR capability. The most common approaches, developed 586 

for ASTER (Giglio et al., 2008) and then Landsat-8 (e.g., Schroeder et al., 2016, Kumar 587 

and Roy, 2018) rely on a fire-sensitive SWIR band and a comparatively insensitive NIR 588 

band to identify the increased SWIR radiance associated with fires (Figure 6). 589 

Commission errors can result from some highly reflective non-burning surfaces (e.g., 590 

certain buildings), but the joint availability of Landsat-8 and Sentinel-2 imagery 591 

provides ~3-day median global coverage (Li and Roy, 2017) and the potential for 592 

relatively infrequent but spatially detailed global AF detection.    593 

Finally, more experimental techniques requiring still novel sensors have been 594 

developed. For example, the identification of specific narrow-band NIR emission lines 595 

related to the thermal excitation of potassium (K) that occurs only in flaming fires has 596 

seen an early demonstration from space (Amici et al., 2011).  597 

 598 

 599 

5. Fire Radiative Power (FRP) and Fire Characterization 600 

 601 

5.1 FRP Retrieval 602 

 603 

Since the late 1990’s, AF detections have been increasingly accompanied by efforts at 604 

fire characterization, mostly in terms of retrievals of fire radiative power (FRP; usually 605 

expressed in MW). FRP is the rate at which the fires within a pixel are emitting thermal 606 

energy, integrated over all angles and wavelengths. An empirically-derived algorithm for 607 

direct estimation of FRP was first proposed and demonstrated with MODIS airborne 608 
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simulator data by Kaufman et al. (1998) - Equation [1].  An underlying assumption is 609 

that, since heat yields are relatively constant among vegetation types (Stott, 2000), 610 

remotely sensed FRP retrievals provide data useful for estimating rates of fuel 611 

consumption and smoke emission, as first demonstrated by Wooster et al. (2005) and 612 

Kaufman et al. (1998), Freeborn et al., (2008) and Ichoku et al. (2008) respectively. 613 

Equation [1] was used to retrieve FRP in the early (Collections 1 - 4) MODIS AF 614 

Products (Giglio et al., 2003), in units of emitted power per unit area of the pixel: 615 

 616 

��� = 4.34 × 10��
 ∑ ����,����
� − ����,��

� ) 617 

 [1] 618 

 619 

where ����,����  and ����,��  are the MIR BT (K) of the AF pixel and the mean of the 620 

surrounding “background” pixels respectively.  621 

  622 

Whilst Equation [1] performs well for MODIS, its empirical nature means it is specific to 623 

data from that sensor. It starts to underperform when applied to finer spatial resolution 624 

data that record higher BTs due fires covering a greater proportion of their pixel area 625 

(Section 3) (Wooster et al., 2003).  Wooster et al. (2003, 2005) derived a more 626 

physically based approach to FRP retrieval, based on a power-law approximation to the 627 

Planck function and which linearly related FRP (MW) to the AF pixels excess MIR 628 

spectral radiance above the background: 629 

 630 

��� =
��� !".#.$

.$%&'
()���,���� − )���,��),  631 

 [2] 632 

 633 

where σ is the Stefan-Boltzmann constant (5.67x10-8 J s-1 m-2 K-4) and ε and εMIR are the 634 

broadband and MIR spectral emissivities respectively (that cancel as the fire is generally 635 

considered a greybody or blackbody), )���  is the MIR spectral radiance of the AF pixel 636 

(W m-² sr-1 µm-1), and )���,�� is the estimate of what the AF pixel spectral radiance 637 

would be if it did not have a fire within it (typically taken as the mean or median MIR 638 
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spectral radiance of the surrounding background pixels), + (W m-² sr-1 µm-1 K-4) is a 639 

coefficient dependent upon the sensor’s MIR channel spectral response (Wooster et al., 640 

2005), and ,-./01 is pixel area (km2).  641 

Similar to its use in Equation [2], for MODIS Collection 5 an ,-./01  multiplier 642 

was added to Equation [1] to provide MODIS FRP outputs directly in MW, and from 643 

Collection 6 onwards the FRP retrieval method was shifted to Equation [2] (Giglio et al., 644 

2016).  Giglio et al. (2016) found an average 16% difference when comparing MODIS’ 645 

FRP retrievals based on Equations [1] and [2], with greater differences at lower FRPs 646 

reflecting the fact that the MIR radiance method tends to underestimate FRP for 647 

emitters < 600K (a lower temperature than that of most active combustion zones; 648 

Wooster et al., 2003; Dennison 2006). This underestimation is not necessarily 649 

disadvantageous, since it means that radiant heat from warm, recently burned areas not 650 

actively consuming fuel often do not contribute significantly to the total per-pixel FRP 651 

measure from which combustion rates are often derived (Wooster et al., 2005). 652 

However, it may prove more problematic in peatland fires, where underground 653 

combustion can lead to rather low surface temperatures in the burning areas (e.g. 654 

Elvidge et al., 2015; Fisher et al., 2020).  655 

 656 

Moving beyond the single-band FRP retrieval methods discussed above, another 657 

approach to FRP estimation is to exploit outputs of the ‘bi-spectral’ method introduced 658 

in Section 4.1.1, namely the effective fire temperature (��, K) and sub-pixel proportion 659 

(2�) of the Matson (1981) and Matson and Dozier (1981) approach: 660 

 661 

)��� = 3���2�4���5��6 + (1 − 2�))���,�� [3] 662 

 663 

)89�� = 389��489��5��6 + (1 − 2�))89��,�� [4] 664 

   665 

          ��� = :(��
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 667 

 668 



26 

 

where Lx is the AF pixel spectral radiance (W m-2 sr-1 µm-1) observed in the denoted 669 

spectral band x, 4<(�) is the Planck function (W m-2 sr-1 µm-1), 3  is the atmospheric 670 

transmittance, )=,�� is the ambient background spectral radiance (i.e. non-fire, W m-2 sr-671 

1 µm-1), σ is the Stefan-Boltzmann constant (5.67x10-8 J s-1 m-2 K-4) and �<,��  is the 672 

brightness temperature (K) of the ambient background in band x. 673 

 674 

Per-pixel errors of ��and 2�  can be large, especially for lower values of 2�, and errors of 675 

~100 K and ± 50% respectively at one standard deviation (ση) were demonstrated for 676 

even easily detectable active fires (2� >0.005; or 0.5% of the pixel area) by Giglio and 677 

Kendall (2001). This is mainly due to challenges in sufficiently precisely isolating the 678 

difference between the AF and ambient background pixel signals in the LWIR - where 679 

fire thermal emission is far less strong (Figures 5, 6 and 7), though errors in ��and 680 

2� may counteract each other somewhat when delivering FRP through Equation 5 681 

(Wooster and Rothery, 1997). Inter-band spatial misregistration effects can also impact 682 

bi-spectral estimation of ��and 2� (Shephard and Kennelly, 2003), though Briess et al. 683 

(2003) and Zhukov et al. (2006) tackled this by applying the approach at the fire cluster 684 

(rather than AF pixel) level. Overall, whilst the geostationary GOES WFABBA product 685 

(Prins et al., 1998) applied this approach for FRP estimation, it is not particularly 686 

recommended for use with moderate to low spatial resolution data (Giglio and 687 

Schroeder, 2014; Giglio and Kendall, 2001). Most LEO and GEO AF products now base 688 

their per-pixel FRP retrievals on the MIR radiance method of Equation 2 (Wooster et 689 

al., 2003; 2005). This includes those from VIIRS (Csiszar et al., 2014), Meteosat 690 

(Wooster et al., 2015), Himawari (Xu et al., 2017), GOES (Xu et al., 2010; 2021), SLSTR 691 

(Xu et al., 2021) and MODIS (Giglio et al., 2016). 692 

In 2020, the Committee on Earth Observation Satellites (CEOS) Land Product 693 

Validation (LPV) Subgroup indicated that the current validation level of satellite FRP 694 

products is less advanced than for burned area, partly due to the ephemeral nature of 695 

active fires and the logistical and technical difficulties posed when trying to get 696 

independent, simultaneous FRP observations to match satellite estimates. However, by 697 

exploiting repeated observations occurring near the MODIS swath edge, Freeborn et al. 698 

(2014a) showed that variations in the exact sub-pixel placement of the fire contribute 699 
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per-pixel MODIS FRP uncertainties that are normally distributed with ση = 26.6%, with 700 

simulations demonstrating that at the scale of fire clusters this reduces to less than ~5% 701 

for fires containing in excess of ~ 50 MODIS AF pixels. Such size-dependent FRP 702 

uncertainties should be considered during any intercomparion and/or validation of 703 

satellite-based FRP data.  704 

 705 

5.2 Fire Radiative Energy (FRE) Estimation 706 

 707 

Fire radiative energy (FRE, MJ) is the temporal integral of FRP between two 708 

points in time (>? and >@) (Wooster et al., 2005), defined for discrete, evenly spaced, 709 

temporal sampling as: 710 

 711 

��A =  ∑BC
BD

���B∆>   [6] 712 

 713 

where ��� is the fire radiative power (MW) at time > and ∆> is the time (secs) between 714 

FRP retrievals. In fire ecology, the term fire radiative energy [or flux] density (J m-2) is 715 

sometimes used (e.g. Kremens et al., 2010; Sparks et al. 2017), but should be limited to 716 

situations where estimates of radiant energy release at a point are required.   717 

FRE estimates are best achieved from GEO data, because high imaging 718 

frequencies provide the best temporal sampling (Freeborn et al., 2009; Roberts and 719 

Wooster, 2008; Li et al., 2018; Ellicott et al., 2009; Roberts et al., 2018a). However, the 720 

typically coarser pixel areas of GEO sensors mean they often fail to detect the lower FRP 721 

component of a region’s fire regime, and a single GEO imager provides neither global 722 

coverage nor high-quality observations at very high latitudes (Figure 4).  Numerous 723 

methods have attempted to estimate FRE from more infrequent LEO-derived FRP data, 724 

for example from the ~ four daily observations provided by MODIS that broadly sample 725 

the diurnal fire cycle (e.g. Boschetti and Roy, 2009; Freeborn et al., 2011). The most 726 

widely applied method represents the FRP diurnal cycle using a modified Gaussian 727 

(perhaps informed by past GEO-FRP data), tailoring its characteristics via MODIS 728 

observations when available (Ellicott et al., 2009, Vermote et al., 2009; Andela et al., 729 

2015; Yin et al., 2019). To counteract effects coming from the relatively small number of 730 
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daily MODIS observations, and the fact fires are differently detected depending on their 731 

position in the MODIS swath which has a 16-day repeat cycle (Freeborn et al., 2009), 732 

most LEO-derived FRE estimates are delivered at lower spatio-temporal resolutions 733 

(e.g., 0.25°; 8 days). 734 

 735 

 736 

6. Satellite Active Fire and FRP Products 737 

 738 

The number of routinely available GEO and LEO AF products has grown 739 

substantially over the last two decades (Table 1), with several LEO products having 740 

global and/or multi-decade coverage (Arino et al., 2012; Csiszar et al., 2014; Giglio et 741 

al., 2016; Xu et al., 2020). Most use contextual AF detection methods (Section 4.1.3), 742 

with the NASA MODIS AF products demonstrating an excellent approach where re-743 

processed Collections are periodically released based on algorithm refinements and 744 

updated calibration/geolocation information (Giglio et al., 2003; 2016). Such updates 745 

are mostly driven by routine product quality and validation assessments, along with 746 

science developments (Justice et al., 2002a; 2002b). 747 

Assessing the absolute accuracy and precision of AF products is difficult for 748 

reasons discussed in Section 5. In addition to daytime sunglints, non-burning hot areas 749 

and regions of high local thermal contrast can result in AF detection errors of 750 

commission in places such as deserts, urban areas, and forest clear cuts (e.g. Schroeder 751 

et al. 2008; Kumar and Roy, 2018). Such effects are potentially magnified in higher 752 

spatial resolution products (e.g. Schroeder et al., 2014; Zhang et al., 2017). AF detection 753 

errors of omission are generally related to surface obscuration by cloud (or thick smoke 754 

removed incorrectly during cloud masking), fires not burning at the observation time, or 755 

small and/or too cool fires having an FRP below the products minimum detection limit 756 

(Giglio 2007; Roy et al., 2008; Roberts et al., 2015; Hall et al., 2019). Commission 757 

errors for the best performing products range from a few percent to about 10%, 758 

depending on sensor and algorithm specifics. Some of the most mature (e.g., the NASA 759 

MODIS products) claim mean global commission errors of around 3% (Giglio et al., 760 

2016).  Mature geostationary AF products typically have similar commission errors to 761 

LEO products, but higher omission errors due to their larger area pixels and thus higher 762 
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minimum FRP detection limit (as is apparent in Figures 5 and 8). Conversely, the 763 

higher temporal frequency GEO AF products can sometimes identify fires that are not 764 

detected by LEO products, such as those ignited and burned out between LEO 765 

overpasses or in cloudy regions where the land surface is viewed briefly by the GEO data 766 

as the clouds move (Roberts and Wooster, 2008; Roberts et al., 2015; Hally et al., 2017).   767 

 768 

Table 1. LEO and geostationary orbit systems used to generate Active Fire (and for 769 

some also FRP) products. 770 

 771 

Instrument Spatial 

resolution of 

active fire 

data 

Geographic 

coverage 

Satellite 

Orbit 

Satellite / Agency 

MODIS 1 km Global  LEO Terra, Aqua/ NASA 

 

 

GOES ABI 

 

 

 

2 km 

75.2 ° W: North 

and South 

America 

135 ° W: 

Pacific Ocean, 

Hawaii, North 

and South 

America 

Geostationary GOES-E and -W 

/NOAA 

Himawari AHI 2 km 140.7 ° E: East 

Asia, Australia, 

Pacific Ocean 

Geostationary Advanced Himawari 

Imager (AHI), JAXA 

and JMA 

Meteosat 

SEVIRI 

3 km 0 °: Europe, 

Africa, 41.5 E  

Geostationary Eumetsat 

VIIRS 375 m, 750 m  Global  LEO S-NPP, JPSS1/NOAA 

20 NASA/NOAA      

NOAA AVHRR 1 km Global  LEO POES / NOAA 

METOP / Eumetsat  
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(A)ATSR 1 km Global (but only 

nighttime AF 

product) 

LEO ERS-2* and 

ENVISAT 

SLSTR 1 km Global LEO Sentinel-3/ Eumetsat 

and ESA 

HSRS 350 m Global (but on-

demand     

products) 

LEO Firebird 

Constellation / DLR 

 772 

*ERS-1 also carried an ATSR sensor, but its MIR channel failed soon after launch. 773 

 774 

          (a)             (b)            (c) 775 

 776 

Figure 8.  Active fire detections made on 31st August 2017 (red) in a region of southern 777 

Africa using (a) Terra MODIS and Aqua MODIS, (b) Meteosat SEVIRI observations 778 

made near-simultaneously with MODIS, and (c) all SEVIRI data collected over that day 779 

(24-hrs). Background is a MODIS surface reflectance image (RGB: 2.1 µm, 0.8 µm and 780 

0.6 µm).   781 

 782 

7. AF Relationships to Fuel Consumption and Atmospheric Variables 783 

 784 

7.1 Fuel Consumption Estimation 785 

 786 
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One of the earliest applications of satellite data related to landscape fires was to     787 

estimate amounts of dry biomass consumed (FGH@-I/�J) (Seiler and Crutzen, 1980). The 788 

standard methodology is to combine satellite-derived burned area (BA) data with 789 

biome- and date-dependent fuel consumption per unit area (Fc) estimates, and this is 790 

the basis of the widely-used Global Fire Emission Database (GFED, van der Werf et al., 791 

2017). However, the method is unable to operate close to real time since BA data are 792 

typically only available after the fire event, and the Fc estimates rely on environmental 793 

models driven by meteorological and other data only available with a time delay.  As 794 

detailed in Section 5 however, FRP measures can provide almost real-time information 795 

directly proportional to rates of fuel consumption and smoke emission. FRE (MJ) 796 

estimates derived from laboratory-scale 1 Hz FRP measures of mainly cured dry grass 797 

fires were shown to be linked to dry biomass consumed via an ‘FRE combustion 798 

coefficient’ (Fc) of 0.37±0.02 kg MJ-1 (Wooster et al., 2005): 799 

 800 

 FGH@-I/�J (MN) = 0.37 × ��A (FP)      [7] 801 

 802 

Confirmation of similar ‘combustion coefficient’ values for other fuels was 803 

subsequently demonstrated in further small-scale fire experiments (e.g. Freeborn et al., 804 

2008; Kremens et al., 2012), and the FRE approach to fuel consumption estimation 805 

been applied to landscape-scale fires using EO data from e.g. Meteosat SEVIRI (Roberts 806 

et al. 2005; 2011; 2018a), GOES (Li et al., 2018) and MODIS (Ellicott et al., 2009; 807 

Vermote et al., 2009; Kaiser et al., 2012; Andela et al., 2015; Yin et al., 2019; McCarley 808 

et al., 2020). However, spaceborne FRP retrievals are subject to perturbations beyond 809 

those affecting small-scale field or laboratory studies, potentially altering the effective 810 

value of the FRE combustion coefficient. Mota and Wooster (2018) summarize such 811 

effects as coming from AF omission errors (Section 4.2), interception of surface-emitted 812 

radiation by overlying tree canopies (Roberts et al., 2018b, Mathews et al., 2016; 813 

Johnston et al., 2018), atmospheric effects (Wooster et al., 2015), fuel moisture 814 

variations (Smith et al., 2013), and potentially fire size-dependent variations in the 815 

radiative fraction of the fuel heat yield (Freeborn et al., 2008). Such effects may be 816 

responsible for the generally larger and biome-dependent FRE combustion coefficients 817 
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derived by Kaiser et al. (2012) derived from Global Fire Assimilation System (GFAS)-818 

based FRE estimates and GFED (burned area)-based fuel consumption totals. Despite 819 

remaining uncertainties, the FRP and FRE approach provides the only direct route to, 820 

respectively, rapidly estimating fuel consumption and smoke emission rates whilst a fire 821 

is burning, and the totals of these immediately after a fire has ceased. Further benefits 822 

may stem from removing the use of models that are sometimes difficult to parameterize, 823 

for example Nguyen and Wooster (2020) demonstrated one of the first EO-based 824 

mappings of fuel consumption per unit (Fc) area across Africa, based solely on Meteosat 825 

FRE data and 20 m spatial resolution BA mapping.  826 

 827 

7.2 Smoke Emissions Estimation from Active Fire Data 828 

 829 

Fire emissions estimation is one of the main applications for EO-derived data on 830 

active fires. Johnston et al. (2012) used GFED data and a global atmospheric model to 831 

estimate that hundreds of thousands of excess deaths annually are related to exposure to 832 

smoke from landscape fires, and Roberts and Wooster (2021) recently revised this 833 

estimate upwards based on the FRP-based smoke emissions estimates provided by 834 

GFAS. Emissions of a particular smoke species are typically estimated using: 835 

 836 

F< = A�< × FGH@-I/�J        [8] 837 

 838 

where F< is the mass of the emitted species x (g) and A�< its emission factor (g.kg-1).  839 

 840 

However, in part due uncertainties in the ‘combustion coefficient’ values of Equation 7 841 

associated with different satellite datasets and/or biomes (see Section 6.1) there is an 842 

interest in relating spaceborne FRP estimates directly to rates of smoke emission (Rx), 843 

first demonstrated by Ichoku and Kaufman (2005):  844 

 845 

�< = Q�
< × ���         [9] 846 

 847 
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where, �< is the rate of emission of species x (expressed in kg.s-1) and Q�
< is the emission 848 

coefficient for species x (kg.MJ-1). 849 

 850 

Values of Q�
<  are typically derived from comparisons between satellite-derived 851 

FRP datasets and the emitted species in question, primarily at present particulate 852 

matter (PM) amounts estimated via aerosol optical depth (AOD) measures (Ichoku and 853 

Kaufman, 2005; Mota and Wooster, 2018; Nguyen and Wooster, 2020). The approach 854 

has been successfully demonstrated for near real-time PM emissions estimation in the 855 

U.S. (e.g. Jordan et al., 2008), Canada (e.g. Henderson et al., 2008), and Europe (e.g. 856 

Sofiev et al., 2009), and for global-to-continental scale emissions estimation to support 857 

science studies (e.g. Vermote et al., 2009; Ichoku and Ellison, 2014; Mota and Wooster, 858 

2018; Nguyen and Wooster, 2020). Table 3 lists the major global fire emissions datasets 859 

derived from satellite AF datasets, including GFED since whilst it primarily uses burned 860 

area data it uses AF detections to aid BA estimation in certain circumstances (see 861 

Section 8). 862 

 863 

Table 3: Global fire emissions inventories and real-time monitoring systems based in 864 

part on satellite AF data. Note that those not updated in near real time are less 865 

appropriate for use in e.g. atmospheric monitoring and forecasting systems. Note 866 

that FREMv2 is based on FRP measures derived from GEO systems and so is not 867 

global. We focus on here on that derived from Meteosat over Africa. 868 

 869 

Emission 

Dataset 

Name, 

version, and 

access* 

Spatial 

Resolut

ion 

 

Highest 

Tempor

al 

Freque

ncy 

Satellite 

Active 

Fire Obs 

Used# 

Emissio

n 

Factor / 

Coeffici

ent 

Data 

Availabil

ity 

period 

 

Example 

Reference@ 

FINN_v1.5 
1 km 

Daily R0�< A�< 2002–

Present 

Wiedinmyer et al., 

2011 

FLAMBE-

ARCTAS 
1-4 km 

Hourly R0�< A�< 2000–

Present 

Reid et al., 2009 
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GBBEPx_v2 
0.25 deg 

Daily FRP A�< 2017–

Present 

Zhang et al., 2012 

Zhang et al., 2017 

GFAS_v1.2 
0.1 deg 

Daily FRP  A�< 2001–

Present  

Kaiser et al., 2017 

GFED_v3.1 
0.5 deg 

3-hourly BA, R0�< A�< 1997–2011 van der Werf et al., 

2010 

GFED_v4.1s 
0.25 deg 

3-hourly BA, R0�< A�< 1995–

Present 

van der Werf et al., 

2017 

FEER_v1.0-

G1.2 
0.1 deg 

Daily FRP Q�
<  2003–

Present 

Ichoku and Ellison, 

2014 

IS4Fires_v2.

0 
0.1 deg 

3-hourly FRP Q�
<  2000–

Present 

Sofiev et al., 2009 

QFED_v2.5 
0.1 deg 

Daily FRP Q�
<  2000–

Present 

Darmenov and da 

Silva, 2015 

FREMv2 Per-Pixel 

& 0.1 deg 

15 mins FRP Q�
<  2004-

Present 

Nguyen and Wooster, 

2020 

*Dataset websites as of March 2021:  870 

FINN (https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar); 871 

FLAMBE (not available); 872 

GFAS (https://www.ecmwf.int/en/forecasts/dataset/global-fire-assimilation-873 

system); 874 

GFED (http://www.globalfiredata.org/); 875 

FEER (https://feer.gsfc.nasa.gov/data/emissions/); 876 

IS4Fires (http://is4fires.fmi.fi); 877 

QFED (http://wiki.seas.harvard.edu/geos-878 

chem/index.php/QFED_biomass_burning_emissions); 879 

GBBEP (http://www.ospo.noaa.gov/Products/land/gbbepx/) 880 

#This includes the parameter type used in generating the emission dataset (and the 881 

sensor/satellite that acquired such observations enclosed in parenthesis):  R0�<=fire-882 

pixel count; FRP=fire radiative power 883 
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@The indicated references are respective representative examples but may not be the 884 

most relevant reference for each dataset. 885 

 886 

Figure 9 shows an emissions inventory intercomparison for seven of the datasets 887 

detailed in Table 3 (1-7 July 2016) available globally, both worldwide and for the peak 888 

fire month in northern and southern hemisphere Africa. Although it would have been 889 

best to show the same smoke aerosol species (in this case, total particulate matter; TPM) 890 

for all products, FLAMBE and QFED only provide PM2.5 so this is shown instead. 891 

Continued uncertainty in fire emissions estimates is evidenced by the more than two 892 

times difference among the TPM emissions estimates, and the larger differences when 893 

considering PM2.5. Other estimates, conducted as yet only for Africa, show similar 894 

ranges of estimation (Nguyen and Wooster, 2020). Nevertheless, there appears to be 895 

some improvement compared to the factor of 12 difference found even relatively 896 

recently (Zhang et al., 2014). Uncertainties stem from a combination of and/or 897 

propagation of errors that, depending on the exact method and calculations employed, 898 

come from the satellite-derived variables (e.g. AF pixel counts, FRP, and AOD), the 899 

aforementioned ‘combustion coefficient’ conversion factor, the representativeness of the 900 

emission factors (EFx), any required smoke injection height and velocity estimates, and 901 

the host of applicable model parameterizations/assumptions. Further research is 902 

needed to quantify the absolute magnitudes and sources of these uncertainties, and thus 903 

improve our current quantification of continental-to-global fire emissions. 904 

 905 

 906 



36 

 

 907 
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Figure 9: Landscape fire emissions estimates of total particulate matter (TPM) or 908 

particulate matter of 2.5 μm or less aerodynamic diameter (PM2.5), as contained within 909 

different fire emissions databases (Table 3). Left column: July 1-7, 2016 global 910 

distribution; Middle column: January 2016 northern sub-Saharan Africa distribution; 911 

Right column: July 2016 southern sub-Saharan Africa distribution. Total emission of 912 

the respective smoke species for the respective time periods is indicated on each panel. 913 

FREMv2 is based on geostationary data and so is not global. 914 

 915 

 916 

8. Relationships to Fire Regimes and Ecosystem Variables 917 

AF detections and FRP data are most commonly used to identify fire timing, 918 

location, intensity, and smoke emissions source strength. However, they have also been 919 

used to infer burned area, fire behavior and fire impacts on the terrestrial environment, 920 

both during and after fire events, and to help define areas characterized by different fire 921 

regimes. 922 

  923 

8.1 Burned Area 924 

Satellite data have been used for nearly 40 years to directly map burned area via a fires 925 

impact on surface reflectance (Chuveico et al., 2019). However, in the 1980’s and 1990’s 926 

BA estimates were often calculated using AVHRR-derived AF pixel counts (e.g. Matson 927 

et al. 1987; Matson and Holben 1987) – mainly because AVHRR data are sub-optimal 928 

for direct BA mapping (Giglio and Roy, 2020). However, AF errors of omission related 929 

to e.g. cloud cover or to fires that were not burning at the satellite observation time 930 

mean that AF pixel counts often provide an imperfect proxy for area burned. Figure 10 931 

shows an area of burned savanna imaged by 30 m Landsat data and overlain with 932 

contemporaneous MODIS AF detections. The latter document the spread of the fire but 933 

contain extensive spatial gaps, and even interpolation of the AF detections would not 934 

fully reconstruct the full BA extent.  935 

 936 
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 937 

 938 

 939 

Figure 10: MODIS 1 km active fire pixel detections (shown with a rainbow color scale 940 

indicating the day of detection over a three month period) superimposed on a Landsat 8 941 

OLI image (R: 2.2 µm, G: 0.86 µm, B: 1.6 µm, burned areas are apparent in magenta 942 

tones) acquired on the last day of the MODIS active fire detections (6th 943 

September, 2014) for 100 km × 100 km over the Caprivi Strip on the border between 944 

Angola and Namibia. 945 

 946 

Whilst Figure 10 shows a clear pattern between BA extent and matching AF pixel 947 

count, several studies (e.g. Giglio et al., 2013; Hantson et al., 2013) demonstrate the 948 

ratio to be biome-dependent. These include Roy et al. (2008) who found that for low 949 

percent tree cover and leaf area index (LAI) landscapes, the MODIS 500 m BA product 950 

defined a greater proportion of the landscape as burned than did the MODIS AF 951 

product; yet with increasing tree cover (>60%) and LAI (>5) the reverse was often true.  952 

Biome-specific calibrations have been undertaken to estimate BA from AF pixel counts 953 
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(Scholes et al., 1996; Giglio et al., 2013), with for example GFED using nighttime ATSR 954 

AF detections (Arino et al., 1999) to estimate BA for the pre-MODIS 1997-2000 period 955 

via: 956 

 957 

4,�,B =∝� ,��,B
TU     [12] 958 

 959 

where 4,�,B is the burned area in grid cell i and month t (0.25° grid cells),  ,��,B is the AF 960 

detection for the same cell and time, and ∝�  and V�  are dimensionless and spatially-961 

varying parameters estimated independently using regression of post-2000 ATSR AF 962 

pixel counts (Arino et al., 1999) with the 500 m MODIS BA product (Giglio et al. 2013).  963 

 964 

Some of the most recent iterations of GFED (e.g. v4.1s; van der Werf et al., 2017) also 965 

use satellite AF detections to estimate the additional BA associated with fires too small 966 

to be mapped with the MODIS 500 m BA product. Whilst this ‘small fire boost’ 967 

successfully increases BA in many regions, it can also lead to significant errors in 968 

locations subject to many AF detection errors of commission (Zhang et al., 2018). This 969 

points to the importance of understanding the regional and seasonal dependencies of AF 970 

detection errors. 971 

 972 

8.2 Rate of Spread and Intensity and Relationships to Fire Effects 973 

Some of the most ecologically important characteristics of an actively spreading 974 

landscape fire are the fire front rate of spread (ROS) and fireline intensity (FLI; Byram, 975 

1959) (Bond and Keeley, 2005). AF data have been related to both – though primarily 976 

those based on airborne rather than satellite observations (e.g. Pastor et al., 2006; 977 

Paugam et al., 2013). Most satellite AF data use has been limited to mapping wildfire 978 

progression across the landscape (e.g. Veraverbeke and Hook, 2013), and whilst ROS 979 

estimation has been attempted from LEO (Andela et al., 2019) and occasionally GEO 980 

(Liu et al., 2020) AF data, the low spatial and/or temporal resolution of the source data 981 

provides limitations. FLI represents the rate of heat release per unit time per unit length 982 

of the fire front (kW m-1; Alexander, 1982), and unlike FRP it includes the all heat 983 

transfer mechanisms. Thus any FRP-based FLI calculations need to assume a radiant 984 
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fraction, or simply provide the FLI radiative component only (e.g. Wooster et al., 2004; 985 

Riggan et al., 2004; Smith and Wooster, 2005). FRP-derived values of fire heat release 986 

may provide links to the effects on plant physiology, such as pre-and post-fire change in 987 

net photosynthesis, tree radial growth, or landscape-scale forest net primary production 988 

(NPP) change (e.g. Sparks et al., 2017; 2018; Figure 11). 989 

 990 

 991 

 992 

Figure 11. Radial tree growth and NPP patterns seen across different temporal and 993 

spatial scales in areas subject to varying levels of fire activity (as expressed by FRP and 994 

FRE per unit area values at (a) 2 yr old Pinus contorta saplings in laboratory 995 

experiments and (b) mature (>35 years old) Pinus ponderosa trees burned in stand-996 

scale prescribed fires respectively. Similar patterns were observed in (c) at the regional 997 

scale using net FRE per unit area and NPP measures derived from MODIS. See Sparks 998 

et al. (2017; 2018). 999 

 1000 

8.3. Fire regime characterization  1001 

 1002 

A fire regime describes the prevailing, long-term fire patterns and characteristics 1003 

of an area, emerging from feedback interactions between climate, vegetation, and the 1004 

regions natural and anthropogenically driven fires (Whitlock et al., 2010). A fire regimes 1005 

principle characteristics are fire frequency, seasonality, spread patterns, intensity and 1006 

fuel consumption (Bond and Keeley 2005; Gill 1975). Satellite AF data have been used to 1007 

provide contemporary views of landscape fire regimes and to distinguish parameters 1008 
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related to fire size, intensity, severity, and most commonly fire seasonality, frequency 1009 

and diurnal cycle. Each LEO sensor such as AVHRR, MODIS, and VIIRS typically image 1010 

areas a few times daily per satellite, enabling fire diurnal cycles to be roughly 1011 

characterized using either day/night ratios (Giglio et al. 2006; Langaas 1992) or 1012 

interpolation between observations (Andela et al. 2015; Ellicott et al. 2009). The TRMM 1013 

low-inclination, drifting orbit enabled fire diurnal cycles to be characterized from 8-yrs 1014 

of VIRS data (Giglio 2007), but the high temporal resolution (and constant ground 1015 

footprint areas) provided by geostationary sensors are optimum for diurnal cycle 1016 

characterization. GEO data have been applied for this purpose across the Americas (e.g. 1017 

Prins et al., 1998; Xu et al., 2010; Zhang et al., 2012), east and south-east Asia (e.g. 1018 

Hyer et al., 2013; Xu et al., 2017) and Africa (e.g. Roberts et al., 2009; 2018a) (Figure 1019 

12). 1020 

 1021 

 1022 
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Figure 12. Fire radiative power (FRP) diurnal cycle variability across Africa, as derived 1023 

from a year of the 96 daily FRP datasets provided by the geostationary Meteosat FRP-1024 

PIXEL product available from the EUMETSAT LSA-SAF (Wooster et al., 2015; Roberts 1025 

et al., 2015). Generally, the fire diurnal cycle is semi-Gaussian, with a day-time peak and 1026 

nighttime minima (see inset that shows normalized FRP values from SEVIRI and 1027 

MODIS), but the timing of the peak spatially varies. The metric shown is the ratio 1028 

between the summed FRP measured by SEVIRI at only the times of MODIS overpasses, 1029 

and that measured over the full 24-hr cycle. Changes in the timing of the diurnal cycle 1030 

peak are reflected in changes to this ratio. 1031 

 1032 

Satellite AF data indicate that fire diurnal cycles are mostly characterized by mid-1033 

afternoon (local solar time) peaks, with less activity (and with generally lower 1034 

intensities) between late evening and early morning (Giglio, 2007; Hyer et al., 2013; 1035 

Roberts et al., 2009). During droughts, increased combustion of deep organic soils 1036 

sometimes results in a less pronounced and/or temporally extended diurnal cycle (e.g. 1037 

Kaiser et al., 2012; Wooster et al., 2012a; 2018), whereas in agricultural regions a bi-1038 

modal diurnal cycle may be driven by local burning practices (Xu et al., 2017). New fire 1039 

seasons can also sometimes rapidly arise, driven by changes in fire policy and/or 1040 

enforcement (e.g. Zhang et al., 2020). Further fire regime characteristics derivable from 1041 

satellite AF data include size distributions, sometimes derived from FRP (e.g. Wooster 1042 

and Zhang, 2004) though more commonly from BA (e.g. Archibald et al., 2010).  Fire 1043 

type can sometimes be elucidated, with clusters of adjacent AF pixels deployed to 1044 

identify spatially contiguous flaming and smoldering areas (Langaas, 1992), and on an 1045 

instantaneous basis large AF pixel clusters can either be associated with long and 1046 

narrow fire lines such as found in savannas (e.g. Dwyer et al., 2000), or deep flaming 1047 

fronts with residual combustion behind, typical of Canadian forest fires (Cahoon et al., 1048 

2000).  Fire regimes in areas with higher fuel loads and which burn under hotter, drier, 1049 

and windier conditions generally exhibit higher upper limits of FLI (W.m-1), reaction 1050 

intensity (W.m-2), and heat release per unit area (J.m-2). These are key fire behavior 1051 

attributes influencing fires’ short- and long-term ecological impact, though thus far their 1052 

estimation is only rarely attempted from AF data (see Section 7). More commonly, FRE-1053 
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derived fuel consumption totals (Section 7) have been ratioed against BA data to derive 1054 

fuel consumption per unit area measures (e.g. Roberts et al., 2011; Mota and Wooster, 1055 

2018; Nguyen and Wooster, 2020), and have been used to help discriminate identical 1056 

fire regimes happening at different times of the year under variable meteorological 1057 

conditions (e.g., Andela et al., 2015; Boschetti and Roy 2009; Freeborn et al., 2016). 1058 

FRP distributions themselves have revealed regional as well as intra-biome fire regime 1059 

variations (Wooster and Zhang 2004; Ichoku et al., 2008; Giglio et al., 2006; Laurent et 1060 

al., 2019), though such differences may be due to variations in an unknown combination 1061 

of fire behavior attributes (e.g. radiant fraction, sub-pixel active fire area, fire intensity) 1062 

coupled with influences such as canopy overstory effects (Roberts et al., 2018b). 1063 

AF products are particularly well suited for characterizing fire seasons, or the 1064 

times of the year when large and intense fires are most prevalent. A variety of temporal 1065 

metrics (e.g., start and end dates, peak month, and fire season duration etc.) have been 1066 

derived from both AF pixel counts and FRP data, and used to map regional to global 1067 

variations in fire seasonality (e.g. Dwyer et al., 2000; Giglio et al., 2006). Locations 1068 

where the fire season leads or lags seasonal weather may indicate the degree of control 1069 

that humans exert on a regions fire regime (Le Page et al., 2010). For example, across 1070 

much of northern Africa, rural communities purposely ignite early season fires under 1071 

mild weather conditions to create a patchwork of fuel breaks in an attempt to limit the 1072 

uncontrolled spread of more intense and more ecologically damaging late season fires 1073 

(Laris, 2002). Agricultural residue burning periods similarly closely coincide with the 1074 

timing of crop-specific planting and harvesting (Korontzi et al., 2006; McCarty et al., 1075 

2009; Zhang et al., 2018; 2020) 1076 

Accumulating many years of AF observations allows retrieval of long-term attributes, 1077 

such as fire return interval (average number of years between successive fires), fire 1078 

frequency (the inverse of fire return interval), and measures of interannual fire 1079 

variability and trend. However, derived chronologies of annual fire occurrence have 1080 

been more commonly extracted from BA time-series (Devineau et al., 2010; Freeborn et 1081 

al., 2014b). Instead, the simplest and most common AF analog has probably been the 1082 

count of AF pixels detected per unit time and per unit area, referred to as both fire 1083 

frequency and fire density (Chuvieco et al., 2008; Csiszar et al., 2005; Di Bella et al., 1084 

2006; Soja et al., 2004). Temporal trends in AF pixel counts are most often used to infer 1085 
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changes in fire occurrence and when associated with time-series of climate, land cover, 1086 

and anthropogenic variables have been used to identify locations of shifting fire regimes 1087 

potentially associated with anthropogenic or climatic trends (Aragao and Shimabukuro, 1088 

2010; Arino et al. 2012; Gregoire and Simonetti, 2010; Pricope and Binford, 2012). 1089 

 1090 

9. Online AF Data Delivery and Mapping Systems 1091 

 1092 

Whilst certain of the AF products outlined in Section 6 have been available for 1093 

several decades, widespread product delivery in easily accessible formats has been 1094 

available for only around half this time. The MODIS Rapid Response System was the 1095 

first attempt to provide near real-time global AF data (Justice et al., 2002a), 1096 

subsequently evolving into the NASA Fire Information for Resource Management 1097 

System (FIRMS) (Davies et al., 2014). These developments are part of a growing trend 1098 

of “analysis ready data” (ARD), which aims to reduce the EO data pre-processing burden 1099 

on users and enable easier and more immediate analyses. AF data are made available 1100 

typically with very low data latency rates via these and other systems, generally within a 1101 

few hours or less of the observation time. 1102 

AF detections have been available in analysis ready form for more than two decades, 1103 

and this has helped spread their use in multiple applications. Many of these need not 1104 

expose the user to detailed knowledge of the methods and algorithms (outlined in 1105 

earlier Sections) that have been used to produce the AF data.  Applications include 1106 

strategic land and fire management, no-burning compliance monitoring, wildlife 1107 

conservation, detection of illegal logging and/or poaching within protected areas, 1108 

monitoring air pollution and improved understanding of fire regimes. As applications 1109 

for AF data have evolved and matured, users have further articulated their information 1110 

requirements (e.g., Trigg and Roy, 2007; Mouillot et al. 2014; Davies et al., 2014), which 1111 

in turn has led to more customized data products, more functional and accessible online 1112 

data mapping and delivery systems including a wider variety of variables, and most 1113 

recently also mobile accessible applications. Whilst some users simply wish to visualize 1114 

AF data on a map, and others want to download it for their own analyses, increasingly 1115 

there is a move to also provide broader contextual information in a single online 1116 

application (e.g. land cover; atmospheric composition; fire risk, BA).  1117 
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AF fire data delivery systems can be classified into three groups: 1) direct providers, 1118 

who process and distribute their own AF data; 2) brokers, who take AF data from a 1119 

direct provider and add value by customizing the information to serve specific user 1120 

communities; and 3) those that are both direct providers and brokers. The latter often 1121 

process data collected ‘locally’ in real-time via a so-called satellite direct reception (DR) 1122 

or direct broadcast (DB) station, but also acquire additional AF data from others to 1123 

provide broader geographic coverage. AF data users are now faced with a huge choice of 1124 

data portals, and Appendix 2 provides detail on four key examples currently operating. 1125 

We also include therein an example of how such data are used, in this case in support of 1126 

national park fire management. Users select their most appropriate information delivery 1127 

system based on data type and coverage, latency (time from satellite overpass to user 1128 

availability), ease of use, and how the AF data can be viewed and queried alongside 1129 

other types of information. GEO or DR-based LEO data feeds generally have some of the 1130 

lowest data latency times, but more recently even non-DR equipped data portals for 1131 

MODIS and VIIRS AF data, such as NASA FIRMS (part of NASA’s Land, Atmosphere 1132 

Near real-time Capability for EOS (LANCE)) offer AF data updates usually within 2.5 1133 

hours of the observation time, though some specifics of the near real-time (NRT) AF 1134 

products served may differ from those of the “standard” data products.  New data feeds 1135 

are following this trend, with AF detections and FRP data Sentinel-3 (Wooster et al., 1136 

2012b; Xu et al., 2020) produced in two versions, NRT within a few hours of data 1137 

capture (https://metis.eumetsat.int/frp/), and non-time critical (NTC) a few days later 1138 

(https://scihub.copernicus.eu/dhus/#/home) . 1139 

 1140 

10. Future Priorities in Active Fire Remote Sensing  1141 

 1142 

10.1 Dataset Priorities 1143 

NRT and higher spatial and temporal resolution satellite AF and FRP products 1144 

are a priority for the applications and science communities.  Errors of AF commission 1145 

and in particular omission should continue to be reduced, through sensor and algorithm 1146 

development, robust validation, and provision of improved ancillary datasets such as 1147 

masks optimized for the AF-application, e.g. cloud masks which do not mask out smoke 1148 

contaminated areas, appropriate land/water maps, and maps of static IR emitters (e.g. 1149 
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gas flares/volcanoes and potentially persistent false alarms due to e.g. specific industry 1150 

or building types). Such developments are required to meet the temporal (1-6 hours) 1151 

and spatial (0.25-3 km) resolution and FRP retrieval uncertainty (10% integrated over a 1152 

pixel) target specifications outlined by the Global Climate Observing System (GCOS) 1153 

Essential Climate Variable (ECV) programme (GCOS-200; 2016) and proposed by 1154 

GOFC/GOLD and the Committee on EO Satellites (CEOS) Land Product Validation 1155 

(LPV) working groups (Boschetti et al., 2009). The need for long-term, climate quality, 1156 

AF products offering global coverage remains paramount, and this entails systematic 1157 

product generation, quality control, algorithm maintenance and when necessary 1158 

reprocessing. Without reprocessing using updated calibration and geolocation 1159 

information, and improved algorithms refined in response to routine product quality 1160 

assessment periodic validations (Section 6), AF products become less suitable for 1161 

addressing climate science questions.  1162 

In addition to improving AF detection algorithms, efforts should focus on 1163 

developing AF products maximizing use of currently available data, such as through 1164 

blending GEO and LEO observations (e.g. Zhang et al., 2020).  A long-standing 1165 

GOFC/GOLD goal is the development of a global geostationary AF system, which is 1166 

increasingly relevant given the improved AF fire detection apability of the new 1167 

generation of GEO satellites. AF detection and FRP data have recently become available 1168 

in NRT from Meteosat, Meteosat Indian Ocean, Himawari and GOES-E and -W using 1169 

the same FTA algorithm originally developed for Meteosat SEVIRI (Roberts and 1170 

Wooster, 2008; Wooster et al., 2015; Xu et al.; 2017; 2021a). Similarly, the availability 1171 

of Landsat and Sentinel-2 imagery having pixel sizes in the tens of meters provides 1172 

detailed SWIR-based AF detection that may complement coarser spatial resolution but 1173 

more frequently available AF products, if only initially for validation of the latter. The 1174 

increasing number of very high spatial resolution (1-3 m) sensors should also be 1175 

evaluated for their potential use in AF detection.  Development of additional ancillary 1176 

datasets, such as those related to fuel load per unit area, and biome, season and fuel-1177 

moisture dependent trace gas and aerosol emissions factors (EFs), is required to further 1178 

improve fire emissions estimation. 1179 

 1180 

10.2 EO Sensor and Mission Priorities 1181 
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This review has reiterated that to provide optimum data for AF remote sensing, a 1182 

typical sensor requires co-registered channels in the MIR (3 – 5 µm) and LWIR (8 – 14 1183 

µm), a co-located VIS or NIR channel to aid daytime masking of false alarms and cloud. 1184 

The exact spectral placement of each channel is less prescriptive, but for example the 1185 

3.959 µm “fire channel” of MODIS was selected due to its relative insensitivity to 1186 

atmospheric water vapor absorption and avoidance of the CO2 absorption window 1187 

beyond ~ 4 µm (Kaufman et al., 1998).  Of key importance for FRP retrieval are MIR 1188 

measurements across a sufficient dynamic range to provide good quality, unsaturated 1189 

data over the highest intensity and/or largest fires, as well as over the ambient 1190 

temperature background. Without the former, the FRP of the most strongly emitting 1191 

fires cannot be gauged, and without the latter the AF pixels themselves may not even be 1192 

reliably detected.  The required upper end of the MIR channel dynamic range needs to 1193 

be set according to the sensors ground pixel footprint area, since the same fire will form 1194 

a greater proportion of a smaller rather than larger pixel (MODIS 1 km² pixels have ∼ 1195 

500 K saturation temperature vs. ABI 4 km² pixels have ∼ 400 K).  For the 60 m spatial 1196 

resolution MIR band of the proposed Hyperspectral Infrared Imager (HyspIRI) payload, 1197 

Realmuto et al. (2015) specified a 1200 K saturation temperature. As with MODIS and 1198 

SLSTR, such wide dynamic ranges sometimes require two MIR detectors, or one 1199 

detector operating with dual integration times or gain settings (e.g. BIRD HSRS and 1200 

VIIRS). Other beneficial sensor attributes include limiting pixel area growth across the 1201 

swath (as done with VIIRS and SLSTR; Schroeder et al., 2014; Xu et al., 2021b), a SWIR 1202 

channel operating at night to aid hotspot detection, discrimination of fires from higher 1203 

temperature targets such as gas-flares, and FRP estimation from the latter (Fisher and 1204 

Wooster, 2018; 2019). SWIR wavebands centered around 2.2 µm appear most effective, 1205 

and night-time use of a broad day-night (low light level) band (0.5 - 0.9 µm) similar to 1206 

that of VIIRS can also be considered. SWIR-based AF detection is also possible by day if 1207 

ground pixel footprints are small enough. 1208 

 High temporal resolution AF data is required for operational fire monitoring, 1209 

warning and fire-fighting applications, and to provide the most reliable estimation of 1210 

FRE via FRP temporal integration.  GEO systems meet this goal, with the newest such as 1211 

Himawari (Bessho et al. 2016, Xu et al. 2017), Meteosat Second Generation (soon to be 1212 
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superseded by Meteosat Third Generation [MTG]; Roberts and Wooster, 2008), GEO-1213 

KOMPSAT-2A and Feng-Yun 4A (Yang et al. 2017), and GOES-R (Schmit et al. 2017; Xu 1214 

et al. 2017; 2021) including MIR bands having suitably extended dynamic ranges, and 1215 

offering full-disk temporal resolutions as high as 10 minutes. However, their larger pixel 1216 

areas result in minimum FRP detection limits typically at least 4× higher than from the 1217 

nadir views of LEO sensors – so they generally cannot detect a substantial number of 1218 

fires that MODIS type sensors would identify if they viewed the same location at the 1219 

same time. MTG will offer 1 km data every 2.5 minutes over some areas, a first for the 1220 

AF application, and even in densely populated Europe this may provide sufficient 1221 

capability to usefully detect a significant number of newly ignited fires in advance of 1222 

public call ins. Use of highly elliptical orbits could be explored to provide a high latitude, 1223 

high temporal resolution AF capability.  An achievable future GEO goal that would cover 1224 

many of the applications supported by current LEO systems would be 500 m spatial 1225 

resolution geostationary-based AF detection, and the Chinese Meteorological Agency 1226 

(CMA) GF4 GEO satellite already includes a 400m MIR channel that demonstrates this 1227 

is possible (Lu et al., 2020).  1228 

 1229 

An option to provide high spatial detail, low commission error AF data at increased 1230 

temporal resolutions is via constellations of LEO systems placed to cover different 1231 

overpass times.  LEO capabilities continue to improve, and compared to MODIS 1232 

Sentinel-3 SLSTR offers a somewhat improved AF detection sensitivity due to its on 1233 

average smaller pixel footprint area (Xu et al., 2020; 2021; Figure 3), whilst VIIRS’ 375 1234 

m data offers a sensitivity around 10× better (Schroeder et al., 2014; Zhang et al., 2017).  1235 

Going beyond the spatial resolution of VIIRS may provide diminishing returns, since the 1236 

latter can already identify active areas of combustion of < 20 m2, and over some 1237 

landscapes high AF errors of commission can result from the IR clutter present in very 1238 

finely detailed thermal imagery (Schroeder et al., 2014; Zhang et al., 2017).  1239 

Performance trade-offs between the existing style of often larger satellites using cooled 1240 

sensor technology and lower cost smaller missions that might enable lower-cost 1241 

constellation development, possibly using uncooled detectors if their performance can 1242 

be demonstrated (e.g. WildFireSat; Johnston et al. 2020), should be examined.  1243 
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 1244 

 1245 

10.3 Other Research Priorities 1246 

Beyond datasets and sensors, there remain several primacies for ongoing 1247 

research in AF remote sensing. These include a better understanding of errors and 1248 

uncertainties in AF detection, FRP retrieval and fire emissions estimation, both spatially 1249 

(e.g. by biome, temporally (e.g. diurnally, seasonally) and with respect to different 1250 

sensors, products and observational (e.g. atmospheric and view angle) effects. 1251 

Validation of AF products remains challenging, due to the ephemeral and dynamic 1252 

nature of fire and to difficulties in obtaining co-located simultaneous and independent 1253 

reference observations. On a global scale this has been limited to joint use of ASTER and 1254 

Terra MODIS (see Section 1), and with Terra nearing its end of life there is a need to 1255 

develop a validation strategy covering a wider array of instruments and times of day. 1256 

Similarly, a uniform protocol to validate spaceborne FRP retrievals is required, 1257 

particularly as it is a designated GCOS ECV and one which is still at the lowest 1258 

validation stage according to the CEOS LPV validation hierarchy. Understanding the 1259 

lower FRP components of a regions fire regime and how this is included or excluded by 1260 

different AF data products remains important, as are ways to adjust for this when 1261 

necessary.  The ability to map fireline rates of spread remains a goal for many fire 1262 

management applications, as is the need to further promote assimilation of NRT AF 1263 

data into time-coupled weather-fire behavior modelling frameworks (Cohen and 1264 

Schroeder, 2013). Research on the conversion between FRP, FRE and fuel consumption, 1265 

trace gas and aerosol emissions continues to be a priority, as does the reconciling of 1266 

such estimates with those from alternative (e.g. burned area) based approaches. Finally, 1267 

the accuracy and usefulness of EO methods for flaming/smouldering fire discrimination 1268 

- including via use of phenomena such as detection of landscape fire potassium emission 1269 

lines - needs to be further examined, as does the need and ability to optimize any 1270 

applied emissions factors used in subsequent smoke emissions calculations.  1271 

 1272 

11. Summary and Conclusion 1273 

Observing landscape fires from space has a strong heritage, stretching back to the 1274 

1980’s with NOAA AVHRR. Since then, satellite active fire (AF) data have become very 1275 
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widely used by scientists and government agencies, and the number of spaceborne 1276 

sensors equipped with measurement capabilities relevant to the AF application, 1277 

including with ‘fire-optimized’ thermal channel dynamic ranges, has greatly increased. 1278 

The NASA MODIS AF product suite is the most widely utilized, and the ease of access to 1279 

these and other AF data through numerous data portals has proliferated beyond science 1280 

to allow routine monitoring and reporting - as evidenced by their deployment by the 1281 

media during the recent [2019] Amazonian fire activity increase (Kelley et al., 2021) and 1282 

during the 2019/2020 Australian black Summer bushfires (Abram et al., 2021).  1283 

Although these recent events have highlighted the relevance and importance of satellite 1284 

AF products (e.g. Escobar, 2019), they have also reinforced the need for the community 1285 

of data producers to more clearly communicate the limitations as well as benefits of 1286 

each AF product, so as to reduce interpretation inaccuracies. 1287 

AF products have evolved from reporting the timing and location of actively 1288 

burning fires to now include measures such as fire effective temperature, area and fire 1289 

radiative power (FRP).  Near real-time (NRT) EO data streams have allowed the FRP 1290 

method to be used to deliver smoke emissions source strength information to a variety 1291 

of atmospheric modelling systems, for example in support air quality forecasting. Future 1292 

satellite missions, including higher spatial resolution GEO systems and increased 1293 

numbers of AF-capable LEO systems, including the future possibly of small-satellite 1294 

constellations, provide further opportunities for advancing both science and operational 1295 

applications as their performance evolves. A key constraint remains the scarcity of 1296 

reference data suitable for validating contemporaneous AF detections and FRP 1297 

retrievals. Communities such as GOFC/GOLD and CEOS LPV are encouraged to 1298 

continue to lobby space agencies to develop and launch missions that include sensors 1299 

whose characteristics are optimized for the AF application, and often only relatively 1300 

small adjustments to the initially planned characteristics are required – as was the case 1301 

for example with Sentinel-3 SLSTR and Meteosat Third Generation.  Looking forward, 1302 

continuing climate and environmental change may potentially shift certain drivers of 1303 

landscape fire (Rogers et al., 2020). Apparent policy or policy enforcement shifts appear 1304 

able to rapidly alter fire characteristics over large regions (Sembhi et al., 2020), and the 1305 

health impacts of the poor air quality that can come with landscape burning is a growing 1306 
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concern. We can therefore expect the relevance and importance of satellite AF remote 1307 

sensing to continue to grow.   1308 

 1309 
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