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Abstract

Landscape fire is a widespread, somewhat unpredictable phenomena that plays an
important part in Earth’s biogeochemical cycling. In many biomes worldwide fire also
provides multiple ecological benefits, but in certain circumstances can also pose a risk to
life and infrastructure, lead to net increases in atmospheric greenhouse gas
concentrations, and to degradation in air quality and consequently human health.
Accurate, timely and frequently updated information on landscape fire activity is
essential to improve our understanding of the drivers and impacts of this form of
biomass burning, as well as to aid fire management. This information can only be
provided using satellite Earth Observation approaches, and remote sensing of active fire
is one of the key techniques used. This form of Earth Observation is based on detecting
the signature of the (mostly infrared) electromagnetic radiation emitted as biomass
burns. Since the early 1980’s, active fire (AF) remote sensing conducted using Earth
orbiting (LEO) satellites has been deployed in certain regions of the world to map the

location and timing of landscape fire occurrence, and from the early 2000’s global-scale
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information updated multiple times per day has been easily available to all.
Geostationary (GEO) satellites provide even higher frequency AF information, more
than 100 times per day in some cases, and both LEO- and GEO-derived AF products
now often include estimates of a fires characteristics, such as its fire radiative power
(FRP) output, in addition to the fires detection. AF data provide information relevant to
fire activity ongoing when the EO data were collected, and this can be delivered with
very low latency times to support applications such as air quality forecasting. Here we
summarize the history of achievements in the field of active fire remote sensing, review
the physical basis of the approaches used, the nature of the AF detection and
characterization techniques deployed, and highlight some of the key current capabilities
and applications. Finally, we list some important developments we believe deserve focus

in future years.

1. Introduction

Landscape fire is a widespread natural disturbance agent involved in Earth’s
biogeochemical cycling, but one that can be greatly influenced by human actions,
including in relation to climate and environmental change. Fire provides multiple
ecological benefits (McLauchlan et al., 2020) — but in certain circumstances also poses a
risk to life and infrastructure (Duff and Penman, 2021). In areas of substantial
landscape fire activity and in regions downwind, air quality can also be seriously
degraded - leading to major human health impacts and hundreds of thousands of early
deaths per year worldwide (Roberts and Wooster, 2021). Deforestation fires, other fire
involving ‘permanent’ land cover conversion, and fires consuming peat soils can also
result in a net release of carbon to the atmosphere, since unlike savannah or grassland
fires the carbon released is not balanced by a roughly equivalent uptake over subsequent
growing seasons (Sommers et al., 2014; Friedlingstein et al., 2020). Active fire (AF)
remote sensing from space is a key technique used to deliver information on local to
global scale fire activity for all these applications and more in a timely and accurate
manner. Following a recent review of EO-based burned area mapping (Chuvieco et al.,

2019), here we focus on EO for active fires — a technique that has developed to now
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provide information on fire activity occurring anywhere on Earth with very low data
latency and updates multiple times per day. Conducted as part of the Global
Observation of Forest Cover/Global Observation of Landcover Dynamics
(GOFC/GOLD) Fire Programme (https://gofcgold.org/), this review summarizes the

history of the AF remote sensing approach, details current capabilities and key
applications, and identifies important developments deserving focus in the coming
years. Appendix 1 provides a glossary and acronym list covering many of the terms
used, along with a definition of some of the most relevant physical and chemical
quantities.

Figure 1 shows the annual distribution of actively burning landscape fires detected
via processing of data collected by the Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument onboard NASA’s Terra satellite. The fires detected include for
example wildfires, those planned for some land management objective such as support
to agriculture or forestry, and those used to clear land — including forests - for future
agriculture. The data of Figure 1 clearly illustrate that widespread landscape fire activity
occurs on all continents except Antarctica, generally in regions with enough dry fuel and
ignition sources from people or lightning. Globally an average of around 3.4% of Earth’s
terrestrial surface area burns annually (Giglio et al., 2018), an estimate that may
increase as more finely detailed EO-derived burned area (BA) data become available
(Roy et al., 2019; Roteta et al., 2019). Landscape fires such as these play important roles
in many ecological (Bond and Keeley, 2005; McLauchlan et al., 2020) and wider Earth
system processes (Bowman et al., 2009), including in relation to the carbon cycle
(Sommers et al., 2014). But their annual consumption of billions of tonnes of vegetation
and organic soil also results in globally significant emissions of smoke to the atmosphere
(van der Werf et al., 2017), even from individual fire events (Hirch and Koren, 2021),
and this affects air quality (Jaffe et al., 2020), and human health (Roberts and Wooster,
2021). Those fires resulting in permanent landcover change, such as deforestation,
and/or which consume carbon-rich organic soil such as peat built up over long-
timescales also represent a net release of carbon to the atmosphere (e.g. Sommers et al.,
2014; Huijnen et al., 2015) and so contribute to rises in atmospheric greenhouse gas
concentrations. One of the earliest stimuli for use of satellite EO in studying landscape

fires came from uncertainties on their net carbon budget impact (Seiler and Crutzen,
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1980), though a century earlier von Danckelman had drawn attention to their role in
large-scale aerosol radiative forcing (Bronnimann et al., 2009).

Satellite EO can be used to probe many fire characteristics, including burned area
(Giglio et al. 2018; Chuvieco et al., 2019) and the concentration and composition of
smoke plumes (e.g. Kaufman et al., 2002; Coheur et al. 2009; Ross et al., 2013). Active
fire (AF) remote sensing such as that used to produce the data of Figure 1 primarily
focuses on identifying the location, timing and radiative strength (Fire Radiative Power;
FRP) of fires that are actually consuming vegetation and/or organic soil at the time the
observations were made. The FRP is somewhat akin to a spatial integration of the
intensity of the overall combustion zone, and is measured in Watts. AF remote sensing
is based primarily on infrared (IR) spectral measurements, and we begin by
summarizing the historical development of the approaches used to exploit these
measures (Section 2). We then review the fundamental physics (Section 3) and
strategies for AF detection (Section 4), detailing approaches for FRP retrieval and the
extraction of related variables such as fire effective temperature and area (Section 5).
We examine how such data relate to fuel consumption and atmospheric impacts
(Section 6), fire characteristics and ecosystem variables (Section 7), and how they are
increasingly provided via online portals and in ‘analysis ready’ formats (Section 8).
Finally, to aid future planning, we examine types of sensors, datasets and research
activities we consider important for further development of AF applications, so as to

point the way to areas of further fruitful research (Section 9).
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Figure 1. One year of actively burning landscape fire radiative power (FRP),
derived from MODIS observations made from the Terra satellite. Data are the mean
FRP of all active fire pixels detected in each 0.5° grid cell, as defined by the MODIS
MCD14ML Active Fire and Thermal Anomaly product generated for 2010 (Giglio et

al., 2016).

2. The Historical Development of Satellite Active Fire (AF) Methods

The origins of active fire remote sensing extend back to 1960’s and 1970’s, with
airborne thermal imaging of forest and coal seam fires (e.g. Hirsch, 1965; Ellyett and
Flaming, 1973). Satellite-based studies commenced in the early 1980’s, primarily using
data from the Advanced Very High Resolution Radiometer (AVHRR) operating onboard
NOAA’s Polar-orbiting Operational Environmental Satellites (POES). AVHRR data
played a key role in the development of AF detection methods (e.g., Flasse and Ceccato,
1996; Giglio et al. 1999; Ichoku et al., 2003). Research was largely based on the strong
‘active fire sensitivity’ of spectral bands located in the middle infrared (MIR)
atmospheric window (3 — 5 um) (Section 3), with the AVHRR 3.7 um channel shown to
discriminate areas of combustion covering < 1% of the pixel area (Dozier; 1981; Matson

and Dozier, 1981; Muirhead and Cracknell, 1985; Flannigan and Vonder Haar, 1986; Lee

7



207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

and Tag, 1990; Setzer and Periera, 1991; Justice et al., 1993). The sensitivity of MIR
measurements to sub-pixel thermal anomalies still underpins most AF remote sensing
today, and AVHRR itself is still used (e.g., in the Brazilian ‘Queimadas’ fire monitoring
system described in Appendix 2). During the 1980’s the first AVHRR-based active fire
initiatives were unable to use the full spatial resolution (1 km) data globally due to the
limited ‘local area coverage’ (LAC) onboard storage capacity of POES. However, a global
network of AVHRR ground stations collected the directly downlinked High Resolution
Picture Transmission (HRPT) 1 km data broadcast from the POES within their coverage
areas, and in 1992 the International Geosphere Biosphere Programme Data and
Information System (IGBP-DIS) provided specifications for the first global 1 km data set
(Eidenshink and Faundeen 1994). This led to the first ever day and night global AF data
set, produced by Europe’s Joint Research Center (JRC; Ispra) covering April 1992 to
December 1993 (Stroppiana et al. 2000). The nighttime only ESA World Fire Atlas
(WFA) was developed at a similar time using initially ATSR-2 observations (Arino et al.,
1999). The call for such global fire products originated in the requirements set by the
IGBP Global Change and Terrestrial Ecology (GCTE) Core Project and the response by
IGBP Data and Information Systems (IGBP-DIS), and was taken up more
comprehensively by the international community through the GOFC/GOLD program
(Ahern et al., 2003, Csiszar et al. 2013). Most recently the nearly 40-year archive of
global, lower (~ 3 x 5 km) spatial resolution subsampled AVHRR global area coverage
(GAC) data has been mined to generate some of the longest AF records currently
available, initially regionally (e.g. Wooster et al., 2012a) and now being extended
globally. Figure 2 shows an example of a three-decade AVHRR-GAC AF analysis of
southern Canadian provinces (Figure 2a), where extreme fires burned in Manitoba in

May, July and August 1989 (Figure 2b).
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Figure 2. Example of (a) long term and (b) extreme landscape fire activity
recorded in southerly Canadian provinces, as depicted via analysis of AVHRR GAC
data. (a) AF detection time series derived using nighttime GAC data from 1985 to
2016. (b) Example AVHRR GAC image of 24t July 1989 (09:00 UTC) taken during
the extreme 1989 Manitoba fire season (see the peak in (a) and Hirsch, 1991). Cloudy
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pixels are masked as grey and active fire pixels shown by the high MIR (3.7 um)

channel brightness temperature elevation over the ambient background (red areas).

Work with AVHRR fundamentally changed our understanding of the global
presence of fire, but the low sensor saturation temperature (c. 325K) of AVHRRSs 3.7
um MIR band (Csiszar and Sullivan, 2002), significant POES orbital drift (Csiszar et
al. 2003) as well as other issues (Giglio and Roy, 2020) provided limits to its utility.
However, such work greatly influenced the presence of an AF detection and
characterization capability within NASA’s Earth Observing System (EOS; Justice et al.,
1998), specifically that of the EOS flagship sensor - MODIS (Justice et al. 2002a).
MODIS was designed with two 3.96 um MIR channels having different saturation
temperatures and dynamic ranges to support FRP retrieval as well as AF detection
(Kaufman et al., 1998; Justice et al. 2002b). FRP retrieval (Section 5) enables the AF
application to go beyond fire presence/absence mapping to quantify the amount of
radiant energy a fire is emitting per unit time, which is now considered linearly related
to rates of fuel (vegetation and/or organic soil) consumption and smoke emission (e.g.
Kaufman et al., 1996; Ichoku and Kaufman, 2005; Wooster et al., 2005; Kaiser et al.,
2012; Nguyen and Wooster, 2021). The MODIS AF detection algorithms were built on
the AVHRR experience and prototyped using MODIS airborne simulator data
(Kaufman et al., 1998). They exploited the increased brightness temperature (BT)
difference found between the MIR and long-wave infrared (LWIR) channel
measurements at pixels containing actively burning fires (Section 3). The MODIS AF
detection algorithm (Section 4) has been used by NASA to generate a suite of AF
products having better than daily temporal resolution since the year 2000, and these
remain to the present time one of the most widely used MODIS products. Other
satellites in the 1990’s and 2000’s also supported AF detection, including the Defense
Meteorological Satellite Program nighttime low-light imaging Operational Linescan
System (DMSP-OLS) (e.g. Cahoon et al., 1992; Elvidge et al., 2013) and the Tropical
Rainfall Mapping Mission (TRMM) which relied on evolutions of AF detection
methods first used with AVHRR (e.g. Giglio et al., 2000).
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AF detection accuracy assessment is challenging due to the ephemeral and highly
dynamic nature of landscape fire, difficulties in obtaining independent reference data
coincident with the satellite observations, and because surface fires are complex to
characterize in situ. However, for MODIS, the inclusion of the higher spatial resolution
(15, 30 and 90 m) Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) instrument operating concurrently on the Terra satellite and
itself able to be used for AF detection enabled simultaneous reference data to be
collected. A systematic evaluation of the minimum fire sizes detectable by MODIS was
produced (Morisette et al., 2005; Schroeder et al., 2008), and further refinements to
the MODIS AF detection algorithm were informed by this validation. This culminated
in the latest Collection 6 dataset reprocessing (Giglio et al., 2016). These developments
also influenced algorithms used with subsequent low earth orbit (LEO) satellite
sensors, such as the Visible Infrared Imaging Radiometer Suite (VIIRS) (Csiszar et al.,
2014) and Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR)
(Wooster et al., 2012b; Xu et al., 2020). Inter-comparisons of AF data derived from
observations made by different LEO sensors are commonly used to understand their
varying performance characteristics (Figure 3), with one aim being to derive transfer

functions enabling data from multiple sensors to be combined into single time-series.
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Figure 3. Nighttime active fire pixel counts detected in 0.1° grid cells in January 2019
from (a) Sentinel3B SLSTR and (b) Terra MODIS. These sensors have similar local
overpass times and show similar spatial patterns of AF detection, but the SLSTR data
record shows far higher AF pixel counts. Analysis shows this is in part due to the
detection of many lower FRP fires by SLSTR than MODIS. This is a result of the former

sensors smaller pixel area growth around the swath compared to MODIS (Wooster et
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al., 2012a; Xu et al., 2020), and the fact that lower FRP fires are typically the most

numerous (e.g. Wooster and Zhang, 2004).

A similar AF detection algorithm development cycle has occurred for geostationary
(GEO) satellite AF products as with LEO products. Compared to LEO systems, GEO
products offer higher temporal resolutions but coarser spatial resolutions, and each
sensor only provides data over a specific region of the Earth (Figure 4). Geostationary
AF products were first generated over the America’s using the Geostationary
Operational Environmental Satellite Visible Infrared Spin Scan Radiometer
Atmospheric Sounder (GOES-VAS) (e.g. Prins and Menzel, 1992; 1994; Weaver et al.,
1995), and this led to the development of the long-standing GOES WildFire Automated
Biomass Burning Algorithm (GOES WFABBA) product (Prins et al., 1998). The GOES
WFABBA products represent the longest geostationary AF dataset currently available,
and in addition to AF location and time included an estimate of effective AF
temperature and area - derived using the Dozier (1981) ‘bi-spectral’ approach (Section
4). Wooster et al. (2005) and Roberts et al. (2005) first demonstrated the retrieval of
FRP from geostationary EO data, doing so via an approach avoiding use of bi-spectral
data (see Section 5), and went on to develop a full ‘fire thermal anomaly’ (FTA) AF
detection and FRP retrieval algorithm for GEO systems. This was first applied to data
from Meteosat Second Generation (Roberts and Wooster, 2008), and an operational
version is now used to generate a series of geostationary AF detection and FRP retrieval
products spanning much of the globe, including from Meteosat over Africa and Europe
(Wooster et al., 2015), GOES-East and -West over the America’s (Xu et al., 2010; 2021)
and Himawari over Asia (Xu et al.,, 2017). Similar product intercomparisons and

evaluations have been conducted as for LEO AF products (e.g. Roberts et al., 2015).
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Figure 4. Active fire data and coverage maps derived from observations made by
the geostationary Meteosat Second Generation SEVIRI instrument (SEV), and the
polar-orbiting Aqua MODIS (MYD) and VIIRS (VNP) at approximately the same
time of day. An approximately 80 x 100 km region of southern Africa is shown at
top, where the coarser spatial detail of SEVIRI is apparent but also the higher per

pixel FRP values due to the capturing of more fires within a pixel. The spatial

13



335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

coverage of each of these systems obtained in a single hour is shown in the global

map, with the location of the focus region highlighted.

3. Basic Physics of Active Fire Remote Sensing

AF detection and characterization is based on remote sensing of some of the
approximately 20 MJ.kg! of energy released when vegetation and organic soil burns
(Cheney and Sullivan, 2008). ‘High heat of combustion’ describes the maximum total
energy release per unit of dry matter consumed, and so live, i.e., moist, fuels release
somewhat less (Smith et al., 2013). Of the total energy released, only about 10 - 20% is
released as (primarily IR) electromagnetic radiation (Freeborn et al. 2008, Kremens et
al., 2012). This radiative energy release rate is far higher than from the same area of
ambient land however, and its spectral distribution follows Planck’s Radiation Law and
its derivative Wien's Displacement Law which serve as the physical basis for most AF

remote sensing.

Figure 5 shows the modeled blackbody emitted spectral radiance for surfaces at 300 K,
600 K and 1000 K (typical temperatures of the Earth’s land surface, smoldering, and
flaming combustion respectively; Kaufman et al. 1998; Sullivan et al. 2003; Dennison et
al. 2006). The emitted spectral radiance from a 1000 K flaming fire in the longwave IR
(LWIR) atmospheric window (8 — 14 um) is more than an order of magnitude higher
than from the ambient land surface, but in the MIR (3 — 5 um) atmospheric window it is
almost three orders of magnitude higher — demonstrating why MIR observations are so
sensitive to the presence of actively burning fires. Cooler smoldering fires show lower
but still very significant levels of MIR and LWIR emittance. The very strong radiative
signal of areas of combustion in the MIR spectral region, and the contrast between this
and that seen in the LWIR from the same location, and in the MIR from nearby ambient
non-fire areas, mean that active fires can be detected in appropriately remotely sensed

imagery even if they cover an extremely small fraction of a pixel.
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Figure 5. Emitted spectral radiance for blackbodies at typical flaming (1000 K) and

smoldering (600 K) temperatures along with that from an ambient 300 K surface.

Note the logarithmic scale of the y-axis. The MIR and LWIR atmospheric window

regions are shaded grey.

To demonstrate that even small sub-pixel fires generate very detectable changes in the

signal of the pixels they are contained within, Figure 6 shows an example of modelled

top-of-atmosphere (TOA) spectral radiance for different pixel situations, fully taking

into account both emitted and reflected radiation and atmospheric effects. The figure

contrasts a 300 K savannah land surface pixel (green line) with the same pixel but also

15



377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

containing 0.5 % areal coverage of flaming 1000 K combustion (red line). In the MIR
spectral region (3 — 5 um), there is around an order of magnitude difference between the
spectral radiance of these two pixels, equivalent to an easily detectable brightness
temperature (BT) difference of around 80 K - even though the fire covers less than 1% of
the pixel area. Whilst there is a dependency on issues such as day/night operation, and
certain instrument-specifics, most AF detection algorithms can identify pixels in
remotely sensed imagery that contain active fires if they have induced a minimum 5 to
10 K increase in the pixels MIR brightness temperature compared to the non-fire
background. As such, fires covering down to perhaps [ 0.01% of the pixel area are
potentially identifiable. A far lower (but still likely detectable) signal difference between
the fire and non-fire savannah pixels is apparent in the 10 — 12 um LWIR spectral region
of Figure 6, indicating that fires essentially have to cover a far larger portion of the
pixel area to be identified using LWIR observations than MIR observations. These types
of spatial and spectral contrast differences are the basis of most AF detection
algorithms, with various additional tests employed to discriminate AF pixels from ‘false
alarms’. Pixels containing homogeneously warm (e.g. solar heated) land would be
expected to have more similar MIR and LWIR BTs than would AF pixels, enabling the
latter to be discriminated using this characteristic (see Section 4), whilst geographic
masks can be used to screen out land-based gas flaring and active volcanoes for

example.

Figure 6 also shows the signal of a pixel containing sunglint over water, which is a key
cause of potential false alarms since sunglint affected pixels can have similar MIR and
LWIR signals to AF pixels. However, sunglints can be masked out based on their
typically strong visible wavelength and/or near infrared (NIR) signals (e.g. Zhukov et
al., 2006). Sunglint does not occur at night, and so nighttime AF detection algorithms
can often be deployed with increased sensitivity, including because nighttime ambient
surface temperatures are typically lower and more homogeneous than by day - leading
to potential increases in the contrast provided by AF pixels. Some nighttime AF
detection algorithms employ analysis of short-wave infrared (SWIR) signals (typically

between 1.6 and 2.2 um), which Figure 5 and 6 shows are also raised by the presence of
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sub-pixel active fires. By day however such emitted SWIR signals can be masked by
variations in solar reflected radiation unless the fire covers a substantial fraction of the
pixel area. Such methods are thus best suited to use with higher spatial resolution

imagery (e.g. Giglio et al., 2008).
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Figure 6. Modeled top-of-atmosphere emitted spectral radiance for four pixels —
containing ambient (300 K) savannah; the same but with a 1000 K actively burning
fire covering 0.5% of the pixel area, specularly-reflected sunglint from a 300 K
surface, and solar-heated bare soil at 320 K. Examples of typical spectral bands of a
satellite based imaging radiometer used to detect AF pixels are shown at top (here
those from the Sentinel-3 SLSTR sensor; Wooster et al., 2012a). Savannah pixels
which contain a sub-pixel active fire are best separated from non-fire pixels in MIR
spectral region, which is targeted by the SLSTR S7 spectral band. SLSTR also has a
second (low-gain) MIR band (F1) to avoid saturation effects that impact S7 over

warmer areas and active fires (see Section 10).
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Few active fires completely fill a satellite image pixel, and extremely rarely at the
scale of MODIS, SLSTR and VIIRS pixels. Thus subpixel AF situations such as is
modelled in Figure 6 are by far the most common type. However, reliable detection of
extremely small subpixel (e.g. < 0.01% pixel area), sub-canopy smouldering, or
particularly cool (e.g. subsurface peat) fires remains a challenge. A fire of a given size
and temperature will also occupy a smaller areal fraction of a larger pixel than a smaller
pixel, reducing its detection reliability. However, moderate spatial resolution EO data
such as provided by AVHRR, MODIS, VIIRS, and SLSTR are available with a daily or
better update frequencies, enabling detection of active fires covering around 100 m2 and
in some cases even smaller (Schroeder et al., 2014; Zhang et al., 2017). Figure 77 shows
an AVHRR 1 km image captured over Indonesia during a period when flaming
vegetation fires and cooler (often sub-surface) smoldering peat fires were widespread.
These fires are generally strongly sub-pixel in size, and in agreement with Figures 5
and 6 their influence on the MIR BT image (a) is far greater than in the LWIR BT image
(b). The BT difference image (Figure 7c¢) best highlights the AF pixels, and this

difference metric is the basis of most AF detection algorithms (Section 4).

0 100 ‘
[ 1Kilometers

Figure 7. Night-time AVHRR local area coverage (LAC) 01 km spatial resolution
imagery of large-scale fires burning in primarily in peatlands across southern

Kalimantan (Indonesia) on 24th August 1991. (a) MIR and (b) LWIR brightness
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temperature (BT) data. The presence of a sub-pixel fire affects the BT more in the MIR
than in the LWIR, and the MIR and LWIR BT difference shown in (c) most clearly
highlights them.

Figure 77 shows a largely cloud free situation. Unlike smoke, meteorological clouds
obscure active fires from view, and can also contribute to sunglint-induced false alarms.
Cloud masking is thus an important component of EO-based AF detection. Information
on cloud masked areas is also essential for AF product users to understand whether a
location is considered free of detectable fires, or whether there is uncertainty due to
cloud cover. Atwood et al. (2015) demonstrate that AF detection can occur through even
very thick smoke, but that some satellite AF product cloud masking procedures
inadvertently mask out heavily smoke affected areas as being affected by cloud.
Conservative cloud masks can also result in higher rates of AF omission, and so
underestimation of regional-scale FRP totals (Freeborn et al., 2014; Hall et al., 2019;
Liu et al., 2020). However, Wooster et al., (2018) demonstrate that considerable
spatio-temporal detail on fire activity in strongly smoke and cloud affected regions can

still be gained with suitable tailoring of AF product cloud masking procedures.

To aid understanding of the exact source of the types of elevated spectral signals
shown in Figure 6 over fire affected pixels, Parent et al. (2010) made high spectral
resolution laboratory measurements of fire emitted radiation. Planckian thermal
emission was seen coming from both the hot fuel and from luminous hot soot particles
in the flames, but whilst the fuel typically had a high emissivity across the IR region,
that of the flames depended strongly on soot concentration and flame depth (Agueda et
al., 2010; Johnston et al. 2014). However, even in low emissivity (e.g. thin, low soot
concentration) flames showing low amounts of Planckian thermal emission, strong
thermal emission in narrow spectral ‘emission line’ regions were seen from hot gases
such as CO2and H-0 (Parent et al., 2010). EO sensors prioritized for AF remote sensing
generally avoid use of such spectral regions however, since ambient atmospheric CO-
and H.O absorb strongly at these same wavelengths and would tend to obscure the
surface emitted signals when observing from space. Atmospheric transmittance is taken

into account of during the generation of certain AF products, but typically only in terms
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ambient atmospheric gaseous constituents (e.g. Wooster et al., 2015; Section 5). In
terms of aerosols, wildfire smoke is dominated by very small particles (i.e. PM2.5 and
smaller) that are inefficient scatterers of MIR and LWIR radiation, and this is the reason
that fires can be identified though even strongly smoke-affected regions as long as the
data are not masked as cloudy (Atwood et al., 2015). However, thick smoke is likely to
have some impact on the retrieved FRP, including via any black carbon component
absorbing some of the fire-emitted thermal radiance. This is yet to be accounted for in

FRP retrieval algorithms.

4. Active Fire Detection Algorithms and Products

4.1. Active Fire Detection Algorithms

4.1.1 Early Work

Dozier (1981) and Matson and Dozier (1981) undertook some of the earliest
satellite-based studies of sub-pixel ‘thermal anomalies’. They explained the causes of the
spectrally varying BTs seen in AVHRR data containing sub-pixel hot sources (e.g. Figure
7), and these characteristics still underly almost all AF detection methods used today.
They proposed a so-called bi-spectral fire characterisation algorithm that used non-
linear simultaneous equations to estimate the fires sub-pixel effective temperature and
area (see Section 5.1). Prior to application of this bi-spectral, other approaches are often

used to identify the pixels to which it should be applied.

4.1.2 Fixed threshold algorithms

Fixed threshold AF detection algorithms apply relational operators and fixed
thresholds to the BT data captured in individual spectral bands (e.g., TMir > 320K)
and/or to band differences (e.g., T mir —Tiwir > 10 K). Their simplicity provides
computational efficiency, but even carefully-tuned thresholds can in general only satisfy
AF detection accuracy requirements under the specific regional/seasonal conditions for

which they were derived (Kaufman et al., 1990; Pereira and Setzer, 1993), or they must
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be applied under relatively stable ambient background temperature conditions (e.g. at
night; Wooster et al., 2012b). Use of higher thresholds can help alleviate false alarms
related to by ambient background temperature variations, as was the case with the ESA

World Fire Atlas, but increase the chance of omitting smaller and/or cooler fires (Arino

et al., 1999).

4.1.3 Contextual algorithms

Contextual algorithms incorporate dynamic thresholds, which adapt to local
conditions to aid detection of smaller and/or cooler fires whilst minimizing false alarms.
In this approach, candidate AF pixels are first detected using liberal fixed thresholds -
generally applied to the Tmir and/or Tmir — Triwir data. False detections are then
removed from this ‘potential AF pixel” set by comparing the signal of each candidate AF
pixel to that of neighboring non-fire pixels within a surrounding geographic window.
Some of the first contextual AF detection algorithms were developed for use with
AVHRR (e.g. Flasse and Cecatto (1996); Giglio et al., 1999) as part of the IGBP-DIS
global fire initiative (Section 2). Evolutions followed, including use of differently sized
windows (e.g. Giglio et al., 2003, 2016; Zhukov et al., 2006), and spatial filters to
improve rejection of non-fire pixels in the early stages and allow use of more liberal
fixed thresholds able to better capture smaller/cooler fires (Roberts and Wooster,
2008).

Contextual algorithms still remain the most commonly used AF detection
method. Since their initial development (Flasse and Ceccato, 1996; Giglio et al., 1999;
Kaufman et al., 1998), they have been applied to data from numerous LEO sensors,
including VIIRS (Schroeder et al., 2014; Csiszar et al., 2014; Zhang et al., 2017), MODIS
(Kaufman et al.,1998; Giglio et al., 2016), the BIRD Hot Spot Recognition System
(HSRS, Zhukov et al., 2006), the TRMM Visible and Infrared Scanner (VIRS, Giglio et
al., 2000), SLSTR (Wooster et al., 2012b; Xu et al., 2020), and Landsat (Schroeder et al.
2016; Kumar and Roy, 2018), and also GEO sensors such as those carried by Meteosat
(e.g. Wooster et al., 2015; Amraoui et al., 2010; Di Biase and Laneve, 2018), GOES
(Prins et al., 1998; Xu et al., 2010; Schmidt et al., 2017; Xu et al., 2021), Himawari (Xu
et al., 2017; Wickramasinghe et al., 2016), and FengYun (Xu et al., 2011).
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4.1.4 Multi-temporal algorithms

The majority of AF detection algorithms are applied to single date imagery, with
some adding basic temporal constraints to remove possible false alarms (e.g., Prins et
al., 1998; Xu et al., 2010; Kumar and Roy, 2018). Some multi-temporal AF detection
algorithms have been developed however. These either identify fire-related pixel-level
thermal variations via multi-temporal change detection (e.g. Filizzola et al., 2017), or
model the ambient pixel BT diurnal cycle and identify fire-related departures from this
(e.g. Roberts and Wooster, 2014). Both approaches aim to identify an AF pixel via
thermal differences compared to expectations, whilst accounting for temporal
variability. In the multi-temporal change detection approach, statistical
characterizations of a fire-relevant parameter (e.g., the MIR BT or MIR-LWIR BT
difference) at each pixel location are calculated over a suitably long period; and such
approaches have been applied to LEO (Marchese et al., 2017) and GEO (Laneve et al.
2006; Filizzola et al., 2017) data. Model-based approaches exploit the latter’s higher
temporal frequency to characterize the ambient BT diurnal cycle and then forecast this
forward in time (Udahemuka et al.,, 2007; Hally et al,, 2017). Optimal estimation
techniques, such as Kalman filters, can build on this baseline to assimilate observed BTs
and deploy statistical thresholds to confirm whether active fires are present based on
departures from the modelled diurnal trend. Although computationally intensive, this
approach has been applied to GEO data (van den Bergh and Frost, 2005; van den Bergh
et al., 2009; Roberts and Wooster, 2014; Hally et al., 2016), and in some cases has been
shown to detect fires unidentifiable using the more standard contextual approach (van

den Bergh et al., 2009; Roberts and Wooster, 2014).

4.1.5 Non-thermal infrared methods

AF detection methods using visible (VIS), NIR and SWIR band data have been
developed for nighttime use. The VIS-NIR band (0.5 - 0.9 um) on the 2.7-km U.S. Air
Force DMSP-OLS sensor (Elvidge et al., 1996) enabled nighttime detection of city lights,

lightning flashes and active fires using a simple contextual algorithm that identified
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pixels far brighter than its neighbors. Elvidge et al. (2013) extended the approach to 750
m VIIRS day-night band (0.5 - 0.9 um) data, combining it with that from the SWIR-to-
LWIR bands and using a Planck function fitting approach to more confidently
discriminate fires from other visible light sources. Some nighttime AF detection
algorithms also employ SWIR radiances measures where available. For example, Elvidge
et al. (2015) combined Landsat-8 SWIR and LWIR data to discriminate flaming and
smoldering peatland fires, whilst Fisher and Wooster (2019) used nighttime SLSTR
SWIR and MIR data to discriminate gas flares from vegetation fires.

Daytime SWIR algorithms have also been developed for use with medium spatial
resolution sensors having no MIR capability. The most common approaches, developed
for ASTER (Giglio et al., 2008) and then Landsat-8 (e.g., Schroeder et al., 2016, Kumar
and Roy, 2018) rely on a fire-sensitive SWIR band and a comparatively insensitive NIR
band to identify the increased SWIR radiance associated with fires (Figure 6).
Commission errors can result from some highly reflective non-burning surfaces (e.g.,
certain buildings), but the joint availability of Landsat-8 and Sentinel-2 imagery
provides ~3-day median global coverage (Li and Roy, 2017) and the potential for
relatively infrequent but spatially detailed global AF detection.

Finally, more experimental techniques requiring still novel sensors have been
developed. For example, the identification of specific narrow-band NIR emission lines
related to the thermal excitation of potassium (K) that occurs only in flaming fires has

seen an early demonstration from space (Amici et al., 2011).

5. Fire Radiative Power (FRP) and Fire Characterization

5.1 FRP Retrieval

Since the late 1990’s, AF detections have been increasingly accompanied by efforts at
fire characterization, mostly in terms of retrievals of fire radiative power (FRP; usually
expressed in MW). FRP is the rate at which the fires within a pixel are emitting thermal
energy, integrated over all angles and wavelengths. An empirically-derived algorithm for

direct estimation of FRP was first proposed and demonstrated with MODIS airborne
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simulator data by Kaufman et al. (1998) - Equation [1]. An underlying assumption is
that, since heat yields are relatively constant among vegetation types (Stott, 2000),
remotely sensed FRP retrievals provide data useful for estimating rates of fuel
consumption and smoke emission, as first demonstrated by Wooster et al. (2005) and
Kaufman et al. (1998), Freeborn et al., (2008) and Ichoku et al. (2008) respectively.
Equation [1] was used to retrieve FRP in the early (Collections 1 - 4) MODIS AF

Products (Giglio et al., 2003), in units of emitted power per unit area of the pixel:

FRP =434x1071°Y T,?,,R_ﬂre — Trirpg)
[1]

where Ty;g fire and Ty g g are the MIR BT (K) of the AF pixel and the mean of the

surrounding “background” pixels respectively.

Whilst Equation [1] performs well for MODIS, its empirical nature means it is specific to
data from that sensor. It starts to underperform when applied to finer spatial resolution
data that record higher BTs due fires covering a greater proportion of their pixel area
(Section 3) (Wooster et al., 2003). Wooster et al. (2003, 2005) derived a more
physically based approach to FRP retrieval, based on a power-law approximation to the
Planck function and which linearly related FRP (MW) to the AF pixels excess MIR

spectral radiance above the background:

A .0.&
FRp = =2l (LMIR,fire - LMIR,bg)’

[2]

where o is the Stefan-Boltzmann constant (5.67x10-8 J st m2 K+4) and € and emir are the
broadband and MIR spectral emissivities respectively (that cancel as the fire is generally
considered a greybody or blackbody), Ly;;z is the MIR spectral radiance of the AF pixel
(W m2 srt um), and Ly pg is the estimate of what the AF pixel spectral radiance

would be if it did not have a fire within it (typically taken as the mean or median MIR
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spectral radiance of the surrounding background pixels), « (W m-2 srt uym K+4) is a
coefficient dependent upon the sensor’s MIR channel spectral response (Wooster et al.,
2005), and Agqmyp; is pixel area (km2).

Similar to its use in Equation [2], for MODIS Collection 5 an Ay, multiplier
was added to Equation [1] to provide MODIS FRP outputs directly in MW, and from
Collection 6 onwards the FRP retrieval method was shifted to Equation [2] (Giglio et al.,
2016). Giglio et al. (2016) found an average 16% difference when comparing MODIS’
FRP retrievals based on Equations [1] and [2], with greater differences at lower FRPs
reflecting the fact that the MIR radiance method tends to underestimate FRP for
emitters < 600K (a lower temperature than that of most active combustion zones;
Wooster et al., 2003; Dennison 2006). This underestimation is not necessarily
disadvantageous, since it means that radiant heat from warm, recently burned areas not
actively consuming fuel often do not contribute significantly to the total per-pixel FRP
measure from which combustion rates are often derived (Wooster et al., 2005).
However, it may prove more problematic in peatland fires, where underground
combustion can lead to rather low surface temperatures in the burning areas (e.g.

Elvidge et al., 2015; Fisher et al., 2020).

Moving beyond the single-band FRP retrieval methods discussed above, another
approach to FRP estimation is to exploit outputs of the ‘bi-spectral’ method introduced

in Section 4.1.1, namely the effective fire temperature (T;, K) and sub-pixel proportion

(ps) of the Matson (1981) and Matson and Dozier (1981) approach:

Lyir = TMIRPfBMIR(Tf) + (1 = ps)Llmirpg [3]
Liwir = TuwirBiwir (Tf) + (1 = ps)Lliwirpg [4]
FRP = o(Tf — Tyy)psAs [5]
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where Lx is the AF pixel spectral radiance (W m= sr um) observed in the denoted
spectral band x, B,(T) is the Planck function (W m-= srt um), 7 is the atmospheric

transmittance, Ly 4 is the ambient background spectral radiance (i.e. non-fire, W m-=2sr-
1 um), o is the Stefan-Boltzmann constant (5.67x108 J s m2 K+4) and T, is the

brightness temperature (K) of the ambient background in band x.

Per-pixel errors of Trand pf can be large, especially for lower values of p;, and errors of
~100 K and + 50% respectively at one standard deviation (oy) were demonstrated for
even easily detectable active fires (p >0.005; or 0.5% of the pixel area) by Giglio and
Kendall (2001). This is mainly due to challenges in sufficiently precisely isolating the
difference between the AF and ambient background pixel signals in the LWIR - where

fire thermal emission is far less strong (Figures 5, 6 and 7), though errors in Trand
prmay counteract each other somewhat when delivering FRP through Equation 5

(Wooster and Rothery, 1997). Inter-band spatial misregistration effects can also impact
bi-spectral estimation of Trand p; (Shephard and Kennelly, 2003), though Briess et al.
(2003) and Zhukov et al. (2006) tackled this by applying the approach at the fire cluster
(rather than AF pixel) level. Overall, whilst the geostationary GOES WFABBA product
(Prins et al., 1998) applied this approach for FRP estimation, it is not particularly
recommended for use with moderate to low spatial resolution data (Giglio and
Schroeder, 2014; Giglio and Kendall, 2001). Most LEO and GEO AF products now base
their per-pixel FRP retrievals on the MIR radiance method of Equation 2 (Wooster et
al., 2003; 2005). This includes those from VIIRS (Csiszar et al., 2014), Meteosat
(Wooster et al., 2015), Himawari (Xu et al., 2017), GOES (Xu et al., 2010; 2021), SLSTR
(Xu et al., 2021) and MODIS (Giglio et al., 2016).

In 2020, the Committee on Earth Observation Satellites (CEOS) Land Product
Validation (LPV) Subgroup indicated that the current validation level of satellite FRP
products is less advanced than for burned area, partly due to the ephemeral nature of
active fires and the logistical and technical difficulties posed when trying to get
independent, simultaneous FRP observations to match satellite estimates. However, by
exploiting repeated observations occurring near the MODIS swath edge, Freeborn et al.

(2014a) showed that variations in the exact sub-pixel placement of the fire contribute
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per-pixel MODIS FRP uncertainties that are normally distributed with oy = 26.6%, with
simulations demonstrating that at the scale of fire clusters this reduces to less than ~5%
for fires containing in excess of ~ 50 MODIS AF pixels. Such size-dependent FRP
uncertainties should be considered during any intercomparion and/or validation of
satellite-based FRP data.

5.2 Fire Radiative Energy (FRE) Estimation

Fire radiative energy (FRE, MJ) is the temporal integral of FRP between two
points in time (t, and t,,) (Wooster et al., 2005), defined for discrete, evenly spaced,

temporal sampling as:
FRE = Y* FRPAt [6]

where FRP is the fire radiative power (MW) at time t and At is the time (secs) between
FRP retrievals. In fire ecology, the term fire radiative energy [or flux] density (J m=2) is
sometimes used (e.g. Kremens et al., 2010; Sparks et al. 2017), but should be limited to
situations where estimates of radiant energy release at a point are required.

FRE estimates are best achieved from GEO data, because high imaging
frequencies provide the best temporal sampling (Freeborn et al., 2009; Roberts and
Wooster, 2008; Li et al., 2018; Ellicott et al., 2009; Roberts et al., 2018a). However, the
typically coarser pixel areas of GEO sensors mean they often fail to detect the lower FRP
component of a region’s fire regime, and a single GEO imager provides neither global
coverage nor high-quality observations at very high latitudes (Figure 4). Numerous
methods have attempted to estimate FRE from more infrequent LEO-derived FRP data,
for example from the ~ four daily observations provided by MODIS that broadly sample
the diurnal fire cycle (e.g. Boschetti and Roy, 2009; Freeborn et al., 2011). The most
widely applied method represents the FRP diurnal cycle using a modified Gaussian
(perhaps informed by past GEO-FRP data), tailoring its characteristics via MODIS
observations when available (Ellicott et al., 2009, Vermote et al., 2009; Andela et al.,

2015; Yin et al., 2019). To counteract effects coming from the relatively small number of
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daily MODIS observations, and the fact fires are differently detected depending on their
position in the MODIS swath which has a 16-day repeat cycle (Freeborn et al., 2009),
most LEO-derived FRE estimates are delivered at lower spatio-temporal resolutions

(e.g., 0.25°; 8 days).

6. Satellite Active Fire and FRP Products

The number of routinely available GEO and LEO AF products has grown
substantially over the last two decades (Table 1), with several LEO products having
global and/or multi-decade coverage (Arino et al., 2012; Csiszar et al., 2014; Giglio et
al., 2016; Xu et al., 2020). Most use contextual AF detection methods (Section 4.1.3),
with the NASA MODIS AF products demonstrating an excellent approach where re-
processed Collections are periodically released based on algorithm refinements and
updated calibration/geolocation information (Giglio et al., 2003; 2016). Such updates
are mostly driven by routine product quality and validation assessments, along with
science developments (Justice et al., 2002a; 2002b).

Assessing the absolute accuracy and precision of AF products is difficult for
reasons discussed in Section 5. In addition to daytime sunglints, non-burning hot areas
and regions of high local thermal contrast can result in AF detection errors of
commission in places such as deserts, urban areas, and forest clear cuts (e.g. Schroeder
et al. 2008; Kumar and Roy, 2018). Such effects are potentially magnified in higher
spatial resolution products (e.g. Schroeder et al., 2014; Zhang et al., 2017). AF detection
errors of omission are generally related to surface obscuration by cloud (or thick smoke
removed incorrectly during cloud masking), fires not burning at the observation time, or
small and/or too cool fires having an FRP below the products minimum detection limit
(Giglio 2007; Roy et al., 2008; Roberts et al., 2015; Hall et al., 2019). Commission
errors for the best performing products range from a few percent to about 10%,
depending on sensor and algorithm specifics. Some of the most mature (e.g., the NASA
MODIS products) claim mean global commission errors of around 3% (Giglio et al.,
2016). Mature geostationary AF products typically have similar commission errors to

LEO products, but higher omission errors due to their larger area pixels and thus higher
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minimum FRP detection limit (as is apparent in Figures 5 and 8). Conversely, the

higher temporal frequency GEO AF products can sometimes identify fires that are not

detected by LEO products, such as those ignited and burned out between LEO

overpasses or in cloudy regions where the land surface is viewed briefly by the GEO data

as the clouds move (Roberts and Wooster, 2008; Roberts et al., 2015; Hally et al., 2017).

Table 1. LEO and geostationary orbit systems used to generate Active Fire (and for

some also FRP) products.

Instrument Spatial Geographic Satellite Satellite / Agency
resolution of coverage Orbit
active fire
data
MODIS 1 km Global LEO Terra, Aqua/ NASA
75.2 ° W: North |Geostationary |GOES-E and -W
and South /NOAA
GOES ABI 2 km America
135 ° W:
Pacific Ocean,
Hawaii, North
and South
America
Himawari AHI |2 km 140.7 ° E: East  |Geostationary |Advanced Himawari
Asia, Australia, Imager (AHI), JAXA
Pacific Ocean and JMA
Meteosat 3 km 0 °: Europe, Geostationary [Eumetsat
SEVIRI Africa, 41.5 E
VIIRS 375 m, 750 m (Global LEO S-NPP, JPSS1/NOAA
20 NASA/NOAA
NOAA AVHRR[1 km Global LEO POES / NOAA
METOP / Eumetsat
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(A)ATSR 1 km Global (but only [LEO ERS-2* and
nighttime AF ENVISAT
product)

SLSTR 1 km Global LEO Sentinel-3/ Eumetsat|

and ESA

HSRS 350 m Global (but on- [LEO Firebird
demand Constellation / DLR
products)

772
773  *ERS-1 also carried an ATSR sensor, but its MIR channel failed soon after launch.
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777  Figure 8. Active fire detections made on 315t August 2017 (red) in a region of southern
778  Africa using (a) Terra MODIS and Aqua MODIS, (b) Meteosat SEVIRI observations
779  made near-simultaneously with MODIS, and (c) all SEVIRI data collected over that day
780  (24-hrs). Background is a MODIS surface reflectance image (RGB: 2.1 um, 0.8 um and
781 0.6 um).
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783 7. AF Relationships to Fuel Consumption and Atmospheric Variables

784

785 7.1 Fuel Consumption Estimation
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One of the earliest applications of satellite data related to landscape fires was to
estimate amounts of dry biomass consumed (M., sumeq) (Seiler and Crutzen, 1980). The
standard methodology is to combine satellite-derived burned area (BA) data with
biome- and date-dependent fuel consumption per unit area (Fc) estimates, and this is
the basis of the widely-used Global Fire Emission Database (GFED, van der Werf et al.,
2017). However, the method is unable to operate close to real time since BA data are
typically only available after the fire event, and the F. estimates rely on environmental
models driven by meteorological and other data only available with a time delay. As
detailed in Section 5 however, FRP measures can provide almost real-time information
directly proportional to rates of fuel consumption and smoke emission. FRE (MJ)
estimates derived from laboratory-scale 1 Hz FRP measures of mainly cured dry grass
fires were shown to be linked to dry biomass consumed via an ‘FRE combustion

coefficient’ (F¢) of 0.37+0.02 kg MJ-* (Wooster et al., 2005):

Mconsumea (kg) = 0.37 X FRE (M]) [7]

Confirmation of similar ‘combustion coefficient’” values for other fuels was
subsequently demonstrated in further small-scale fire experiments (e.g. Freeborn et al.,
2008; Kremens et al., 2012), and the FRE approach to fuel consumption estimation
been applied to landscape-scale fires using EO data from e.g. Meteosat SEVIRI (Roberts
et al. 2005; 2011; 2018a), GOES (Li et al., 2018) and MODIS (Ellicott et al., 2009;
Vermote et al., 2009; Kaiser et al., 2012; Andela et al., 2015; Yin et al., 2019; McCarley
et al., 2020). However, spaceborne FRP retrievals are subject to perturbations beyond
those affecting small-scale field or laboratory studies, potentially altering the effective
value of the FRE combustion coefficient. Mota and Wooster (2018) summarize such
effects as coming from AF omission errors (Section 4.2), interception of surface-emitted
radiation by overlying tree canopies (Roberts et al., 2018b, Mathews et al., 2016;
Johnston et al.,, 2018), atmospheric effects (Wooster et al., 2015), fuel moisture
variations (Smith et al., 2013), and potentially fire size-dependent variations in the
radiative fraction of the fuel heat yield (Freeborn et al., 2008). Such effects may be

responsible for the generally larger and biome-dependent FRE combustion coefficients
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derived by Kaiser et al. (2012) derived from Global Fire Assimilation System (GFAS)-
based FRE estimates and GFED (burned area)-based fuel consumption totals. Despite
remaining uncertainties, the FRP and FRE approach provides the only direct route to,
respectively, rapidly estimating fuel consumption and smoke emission rates whilst a fire
is burning, and the totals of these immediately after a fire has ceased. Further benefits
may stem from removing the use of models that are sometimes difficult to parameterize,
for example Nguyen and Wooster (2020) demonstrated one of the first EO-based
mappings of fuel consumption per unit (Fc) area across Africa, based solely on Meteosat

FRE data and 20 m spatial resolution BA mapping.

7.2 Smoke Emissions Estimation from Active Fire Data

Fire emissions estimation is one of the main applications for EO-derived data on
active fires. Johnston et al. (2012) used GFED data and a global atmospheric model to
estimate that hundreds of thousands of excess deaths annually are related to exposure to
smoke from landscape fires, and Roberts and Wooster (2021) recently revised this
estimate upwards based on the FRP-based smoke emissions estimates provided by

GFAS. Emissions of a particular smoke species are typically estimated using;:

M, = EFE, X Mconsumea [8]
where M, is the mass of the emitted species x (g) and EF, its emission factor (g.kg).
However, in part due uncertainties in the ‘combustion coefficient’ values of Equation 7
associated with different satellite datasets and/or biomes (see Section 6.1) there is an
interest in relating spaceborne FRP estimates directly to rates of smoke emission (Rx),

first demonstrated by Ichoku and Kaufman (2005):

R, = CX x FRP [9]
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where, R, is the rate of emission of species x (expressed in kg.s) and CZ is the emission

coefficient for species x (kg.MJ-1).

Values of Cf are typically derived from comparisons between satellite-derived
FRP datasets and the emitted species in question, primarily at present particulate
matter (PM) amounts estimated via aerosol optical depth (AOD) measures (Ichoku and
Kaufman, 2005; Mota and Wooster, 2018; Nguyen and Wooster, 2020). The approach
has been successfully demonstrated for near real-time PM emissions estimation in the
U.S. (e.g. Jordan et al., 2008), Canada (e.g. Henderson et al., 2008), and Europe (e.g.
Sofiev et al., 2009), and for global-to-continental scale emissions estimation to support
science studies (e.g. Vermote et al., 2009; Ichoku and Ellison, 2014; Mota and Wooster,
2018; Nguyen and Wooster, 2020). Table 3 lists the major global fire emissions datasets
derived from satellite AF datasets, including GFED since whilst it primarily uses burned
area data it uses AF detections to aid BA estimation in certain circumstances (see

Section 8).

Table 3: Global fire emissions inventories and real-time monitoring systems based in
part on satellite AF data. Note that those not updated in near real time are less
appropriate for use in e.g. atmospheric monitoring and forecasting systems. Note
that FREMvz2 is based on FRP measures derived from GEO systems and so is not

global. We focus on here on that derived from Meteosat over Africa.

Emission . .|Highest . |Emissio
Spatial Satellite Data
Dataset Tempor . n .
Resolut Active Availabil
Naimne, . al . Factor /| Example
. ion Fire Obs | ity
version, and Freque Coeffici . Reference®
Used* period
access* ncy ent
FINN_v1.5 K Daily Npix EE, [2002- Wiedinmyer et al.,
1 km
Present  [2011
FLAMBE- " Hourly | Ny EE, [2000- Reid et al., 2009
1-4 km
ARCTAS 4 Present
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870
871
872
873
874
875
876
877
878
879
880
881
882

883

GBBEPx_v2 Daily FRP EE, [2017- Zhang et al., 2012
0.25 deg
Present [Zhang et al., 2017
GFAS_vi1.2 Daily FRP EE, [2001- Kaiser et al., 2017
0.1deg
Present
GFED_v3.1 d 3-hourly| BA, N, EE, [1997—2011van der Werfet al.,
0.5de
8 2010
GFED_v4.1s 3-hourly| BA, N, EE, [1995— van der Werfet al.,
0.25 deg
Present |2017
FEER_v1.0- d Daily FRP CY [2003- Ichoku and Ellison,
0.1de
G1.2 8 Present [2014
IS4Fires_va2. q 3-hourly| FRP C*¥ [2000- Sofiev et al., 2009
0.1de
0 8 Present
QFED_v2.5 q Daily FRP CY¥ [2000- Darmenov and da
0.1de
8 Present  |Silva, 2015
FREMv2 |Per-Pixel| 15 mins | FRP CX¥ [2004- Nguyen and Wooster,
& 0.1deg Present [2020

*Dataset websites as of March 2021:
FINN (https://wwwz2.acom.ucar.edu/modeling/finn-fire-inventory-ncar);
FLAMBE (not available);
GFAS (https://www.ecmwf.int/en/forecasts/dataset/global-fire-assimilation-
system);
GFED (http://www.globalfiredata.org/);
FEER (https://feer.gsfc.nasa.gov/data/emissions/);
IS4Fires (http://is4fires.fmi.fi);
QFED (http://wiki.seas.harvard.edu/geos-
chem/index.php/QFED biomass burning emissions);

GBBEP (http://www.ospo.noaa.gov/Products/land/gbbepx/)

#This includes the parameter type used in generating the emission dataset (and the
sensor/satellite that acquired such observations enclosed in parenthesis): N,;,=fire-

pixel count; FRP=fire radiative power
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@The indicated references are respective representative examples but may not be the

most relevant reference for each dataset.

Figure 9 shows an emissions inventory intercomparison for seven of the datasets
detailed in Table 3 (1-7 July 2016) available globally, both worldwide and for the peak
fire month in northern and southern hemisphere Africa. Although it would have been
best to show the same smoke aerosol species (in this case, total particulate matter; TPM)
for all products, FLAMBE and QFED only provide PM.s so this is shown instead.
Continued uncertainty in fire emissions estimates is evidenced by the more than two
times difference among the TPM emissions estimates, and the larger differences when
considering PM2;s. Other estimates, conducted as yet only for Africa, show similar
ranges of estimation (Nguyen and Wooster, 2020). Nevertheless, there appears to be
some improvement compared to the factor of 12 difference found even relatively
recently (Zhang et al., 2014). Uncertainties stem from a combination of and/or
propagation of errors that, depending on the exact method and calculations employed,
come from the satellite-derived variables (e.g. AF pixel counts, FRP, and AOD), the
aforementioned ‘combustion coefficient’ conversion factor, the representativeness of the
emission factors (EFx), any required smoke injection height and velocity estimates, and
the host of applicable model parameterizations/assumptions. Further research is
needed to quantify the absolute magnitudes and sources of these uncertainties, and thus

improve our current quantification of continental-to-global fire emissions.
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Figure 9: Landscape fire emissions estimates of total particulate matter (TPM) or
particulate matter of 2.5 um or less aerodynamic diameter (PM-.5), as contained within
different fire emissions databases (Table 3). Left column: July 1-7, 2016 global
distribution; Middle column: January 2016 northern sub-Saharan Africa distribution;
Right column: July 2016 southern sub-Saharan Africa distribution. Total emission of
the respective smoke species for the respective time periods is indicated on each panel.

FREMvz2 is based on geostationary data and so is not global.

8. Relationships to Fire Regimes and Ecosystem Variables

AF detections and FRP data are most commonly used to identify fire timing,
location, intensity, and smoke emissions source strength. However, they have also been
used to infer burned area, fire behavior and fire impacts on the terrestrial environment,
both during and after fire events, and to help define areas characterized by different fire

regimes.

8.1 Burned Area

Satellite data have been used for nearly 40 years to directly map burned area via a fires
impact on surface reflectance (Chuveico et al., 2019). However, in the 1980’s and 1990’s
BA estimates were often calculated using AVHRR-derived AF pixel counts (e.g. Matson
et al. 1987; Matson and Holben 1987) — mainly because AVHRR data are sub-optimal
for direct BA mapping (Giglio and Roy, 2020). However, AF errors of omission related
to e.g. cloud cover or to fires that were not burning at the satellite observation time
mean that AF pixel counts often provide an imperfect proxy for area burned. Figure 10
shows an area of burned savanna imaged by 30 m Landsat data and overlain with
contemporaneous MODIS AF detections. The latter document the spread of the fire but
contain extensive spatial gaps, and even interpolation of the AF detections would not
fully reconstruct the full BA extent.
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Figure 10: MODIS 1 km active fire pixel detections (shown with a rainbow color scale
indicating the day of detection over a three month period) superimposed on a Landsat 8
OLI image (R: 2.2 um, G: 0.86 um, B: 1.6 um, burned areas are apparent in magenta
tones) acquired on the last day of the MODIS active fire detections (6th
September, 2014) for 100 km x 100 km over the Caprivi Strip on the border between
Angola and Namibia.

Whilst Figure 10 shows a clear pattern between BA extent and matching AF pixel
count, several studies (e.g. Giglio et al., 2013; Hantson et al.,, 2013) demonstrate the
ratio to be biome-dependent. These include Roy et al. (2008) who found that for low
percent tree cover and leaf area index (LAI) landscapes, the MODIS 500 m BA product
defined a greater proportion of the landscape as burned than did the MODIS AF
product; yet with increasing tree cover (>60%) and LAI (>5) the reverse was often true.

Biome-specific calibrations have been undertaken to estimate BA from AF pixel counts
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(Scholes et al., 1996; Giglio et al., 2013), with for example GFED using nighttime ATSR
AF detections (Arino et al., 1999) to estimate BA for the pre-MODIS 1997-2000 period

via:
BA;, =o; AF[ [12]

where BA;, is the burned area in grid cell i and month t (0.25° grid cells), AF;;is the AF
detection for the same cell and time, and «; and B; are dimensionless and spatially-
varying parameters estimated independently using regression of post-2000 ATSR AF

pixel counts (Arino et al., 1999) with the 500 m MODIS BA product (Giglio et al. 2013).

Some of the most recent iterations of GFED (e.g. v4.1s; van der Werf et al., 2017) also
use satellite AF detections to estimate the additional BA associated with fires too small
to be mapped with the MODIS 500 m BA product. Whilst this ‘small fire boost’
successfully increases BA in many regions, it can also lead to significant errors in
locations subject to many AF detection errors of commission (Zhang et al., 2018). This
points to the importance of understanding the regional and seasonal dependencies of AF

detection errors.

8.2 Rate of Spread and Intensity and Relationships to Fire Effects

Some of the most ecologically important characteristics of an actively spreading
landscape fire are the fire front rate of spread (ROS) and fireline intensity (FLI; Byram,
1959) (Bond and Keeley, 2005). AF data have been related to both — though primarily
those based on airborne rather than satellite observations (e.g. Pastor et al., 2006;
Paugam et al., 2013). Most satellite AF data use has been limited to mapping wildfire
progression across the landscape (e.g. Veraverbeke and Hook, 2013), and whilst ROS
estimation has been attempted from LEO (Andela et al., 2019) and occasionally GEO
(Liu et al., 2020) AF data, the low spatial and/or temporal resolution of the source data
provides limitations. FLI represents the rate of heat release per unit time per unit length
of the fire front (kW m-; Alexander, 1982), and unlike FRP it includes the all heat

transfer mechanisms. Thus any FRP-based FLI calculations need to assume a radiant
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fraction, or simply provide the FLI radiative component only (e.g. Wooster et al., 2004;
Riggan et al., 2004; Smith and Wooster, 2005). FRP-derived values of fire heat release
may provide links to the effects on plant physiology, such as pre-and post-fire change in
net photosynthesis, tree radial growth, or landscape-scale forest net primary production

(NPP) change (e.g. Sparks et al., 2017; 2018; Figure 11).

Radial growth Net primary productivity
a) Saplings b) Mature trees ¢) Landscape-scale forest
y | 5
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Figure 11. Radial tree growth and NPP patterns seen across different temporal and
spatial scales in areas subject to varying levels of fire activity (as expressed by FRP and
FRE per unit area values at (a) 2 yr old Pinus contorta saplings in laboratory
experiments and (b) mature (>35 years old) Pinus ponderosa trees burned in stand-
scale prescribed fires respectively. Similar patterns were observed in (c) at the regional
scale using net FRE per unit area and NPP measures derived from MODIS. See Sparks

et al. (2017; 2018).

8.3. Fire regime characterization

A fire regime describes the prevailing, long-term fire patterns and characteristics
of an area, emerging from feedback interactions between climate, vegetation, and the
regions natural and anthropogenically driven fires (Whitlock et al., 2010). A fire regimes
principle characteristics are fire frequency, seasonality, spread patterns, intensity and
fuel consumption (Bond and Keeley 2005; Gill 1975). Satellite AF data have been used to

provide contemporary views of landscape fire regimes and to distinguish parameters
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related to fire size, intensity, severity, and most commonly fire seasonality, frequency
and diurnal cycle. Each LEO sensor such as AVHRR, MODIS, and VIIRS typically image
areas a few times daily per satellite, enabling fire diurnal cycles to be roughly
characterized using either day/night ratios (Giglio et al. 2006; Langaas 1992) or
interpolation between observations (Andela et al. 2015; Ellicott et al. 2009). The TRMM
low-inclination, drifting orbit enabled fire diurnal cycles to be characterized from 8-yrs
of VIRS data (Giglio 2007), but the high temporal resolution (and constant ground
footprint areas) provided by geostationary sensors are optimum for diurnal cycle
characterization. GEO data have been applied for this purpose across the Americas (e.g.
Prins et al., 1998; Xu et al., 2010; Zhang et al., 2012), east and south-east Asia (e.g.
Hyer et al., 2013; Xu et al., 2017) and Africa (e.g. Roberts et al., 2009; 2018a) (Figure

12).
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Figure 12. Fire radiative power (FRP) diurnal cycle variability across Africa, as derived
from a year of the 96 daily FRP datasets provided by the geostationary Meteosat FRP-
PIXEL product available from the EUMETSAT LSA-SAF (Wooster et al., 2015; Roberts
et al., 2015). Generally, the fire diurnal cycle is semi-Gaussian, with a day-time peak and
nighttime minima (see inset that shows normalized FRP values from SEVIRI and
MODIS), but the timing of the peak spatially varies. The metric shown is the ratio
between the summed FRP measured by SEVIRI at only the times of MODIS overpasses,
and that measured over the full 24-hr cycle. Changes in the timing of the diurnal cycle

peak are reflected in changes to this ratio.

Satellite AF data indicate that fire diurnal cycles are mostly characterized by mid-
afternoon (local solar time) peaks, with less activity (and with generally lower
intensities) between late evening and early morning (Giglio, 2007; Hyer et al., 2013;
Roberts et al., 2009). During droughts, increased combustion of deep organic soils
sometimes results in a less pronounced and/or temporally extended diurnal cycle (e.g.
Kaiser et al., 2012; Wooster et al., 2012a; 2018), whereas in agricultural regions a bi-
modal diurnal cycle may be driven by local burning practices (Xu et al., 2017). New fire
seasons can also sometimes rapidly arise, driven by changes in fire policy and/or
enforcement (e.g. Zhang et al., 2020). Further fire regime characteristics derivable from
satellite AF data include size distributions, sometimes derived from FRP (e.g. Wooster
and Zhang, 2004) though more commonly from BA (e.g. Archibald et al., 2010). Fire
type can sometimes be elucidated, with clusters of adjacent AF pixels deployed to
identify spatially contiguous flaming and smoldering areas (Langaas, 1992), and on an
instantaneous basis large AF pixel clusters can either be associated with long and
narrow fire lines such as found in savannas (e.g. Dwyer et al., 2000), or deep flaming
fronts with residual combustion behind, typical of Canadian forest fires (Cahoon et al.,
2000). Fire regimes in areas with higher fuel loads and which burn under hotter, drier,
and windier conditions generally exhibit higher upper limits of FLI (W.m), reaction
intensity (W.m=), and heat release per unit area (J.m=). These are key fire behavior
attributes influencing fires’ short- and long-term ecological impact, though thus far their

estimation is only rarely attempted from AF data (see Section 7). More commonly, FRE-
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derived fuel consumption totals (Section 7) have been ratioed against BA data to derive
fuel consumption per unit area measures (e.g. Roberts et al., 2011; Mota and Wooster,
2018; Nguyen and Wooster, 2020), and have been used to help discriminate identical
fire regimes happening at different times of the year under variable meteorological
conditions (e.g., Andela et al., 2015; Boschetti and Roy 2009; Freeborn et al., 2016).
FRP distributions themselves have revealed regional as well as intra-biome fire regime
variations (Wooster and Zhang 2004; Ichoku et al., 2008; Giglio et al., 2006; Laurent et
al., 2019), though such differences may be due to variations in an unknown combination
of fire behavior attributes (e.g. radiant fraction, sub-pixel active fire area, fire intensity)
coupled with influences such as canopy overstory effects (Roberts et al., 2018b).

AF products are particularly well suited for characterizing fire seasons, or the
times of the year when large and intense fires are most prevalent. A variety of temporal
metrics (e.g., start and end dates, peak month, and fire season duration etc.) have been
derived from both AF pixel counts and FRP data, and used to map regional to global
variations in fire seasonality (e.g. Dwyer et al., 2000; Giglio et al., 2006). Locations
where the fire season leads or lags seasonal weather may indicate the degree of control
that humans exert on a regions fire regime (Le Page et al., 2010). For example, across
much of northern Africa, rural communities purposely ignite early season fires under
mild weather conditions to create a patchwork of fuel breaks in an attempt to limit the
uncontrolled spread of more intense and more ecologically damaging late season fires
(Laris, 2002). Agricultural residue burning periods similarly closely coincide with the
timing of crop-specific planting and harvesting (Korontzi et al., 2006; McCarty et al.,
2009; Zhang et al., 2018; 2020)

Accumulating many years of AF observations allows retrieval of long-term attributes,
such as fire return interval (average number of years between successive fires), fire
frequency (the inverse of fire return interval), and measures of interannual fire
variability and trend. However, derived chronologies of annual fire occurrence have
been more commonly extracted from BA time-series (Devineau et al., 2010; Freeborn et
al., 2014b). Instead, the simplest and most common AF analog has probably been the
count of AF pixels detected per unit time and per unit area, referred to as both fire
frequency and fire density (Chuvieco et al., 2008; Csiszar et al., 2005; Di Bella et al.,

2006; Soja et al., 2004). Temporal trends in AF pixel counts are most often used to infer
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changes in fire occurrence and when associated with time-series of climate, land cover,
and anthropogenic variables have been used to identify locations of shifting fire regimes
potentially associated with anthropogenic or climatic trends (Aragao and Shimabukuro,

2010; Arino et al. 2012; Gregoire and Simonetti, 2010; Pricope and Binford, 2012).

9. Online AF Data Delivery and Mapping Systems

Whilst certain of the AF products outlined in Section 6 have been available for
several decades, widespread product delivery in easily accessible formats has been
available for only around half this time. The MODIS Rapid Response System was the
first attempt to provide near real-time global AF data (Justice et al., 2002a),
subsequently evolving into the NASA Fire Information for Resource Management
System (FIRMS) (Davies et al., 2014). These developments are part of a growing trend
of “analysis ready data” (ARD), which aims to reduce the EO data pre-processing burden
on users and enable easier and more immediate analyses. AF data are made available
typically with very low data latency rates via these and other systems, generally within a
few hours or less of the observation time.

AF detections have been available in analysis ready form for more than two decades,
and this has helped spread their use in multiple applications. Many of these need not
expose the user to detailed knowledge of the methods and algorithms (outlined in
earlier Sections) that have been used to produce the AF data. Applications include
strategic land and fire management, no-burning compliance monitoring, wildlife
conservation, detection of illegal logging and/or poaching within protected areas,
monitoring air pollution and improved understanding of fire regimes. As applications
for AF data have evolved and matured, users have further articulated their information
requirements (e.g., Trigg and Roy, 2007; Mouillot et al. 2014; Davies et al., 2014), which
in turn has led to more customized data products, more functional and accessible online
data mapping and delivery systems including a wider variety of variables, and most
recently also mobile accessible applications. Whilst some users simply wish to visualize
AF data on a map, and others want to download it for their own analyses, increasingly
there is a move to also provide broader contextual information in a single online

application (e.g. land cover; atmospheric composition; fire risk, BA).
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AF fire data delivery systems can be classified into three groups: 1) direct providers,
who process and distribute their own AF data; 2) brokers, who take AF data from a
direct provider and add value by customizing the information to serve specific user
communities; and 3) those that are both direct providers and brokers. The latter often
process data collected ‘locally’ in real-time via a so-called satellite direct reception (DR)
or direct broadcast (DB) station, but also acquire additional AF data from others to
provide broader geographic coverage. AF data users are now faced with a huge choice of
data portals, and Appendix 2 provides detail on four key examples currently operating.
We also include therein an example of how such data are used, in this case in support of
national park fire management. Users select their most appropriate information delivery
system based on data type and coverage, latency (time from satellite overpass to user
availability), ease of use, and how the AF data can be viewed and queried alongside
other types of information. GEO or DR-based LEO data feeds generally have some of the
lowest data latency times, but more recently even non-DR equipped data portals for
MODIS and VIIRS AF data, such as NASA FIRMS (part of NASA’s Land, Atmosphere
Near real-time Capability for EOS (LANCE)) offer AF data updates usually within 2.5
hours of the observation time, though some specifics of the near real-time (NRT) AF
products served may differ from those of the “standard” data products. New data feeds
are following this trend, with AF detections and FRP data Sentinel-3 (Wooster et al.,
2012b; Xu et al., 2020) produced in two versions, NRT within a few hours of data
capture (https://metis.eumetsat.int/frp/), and non-time critical (NTC) a few days later

(https://scihub.copernicus.eu/dhus/#/home) .

10. Future Priorities in Active Fire Remote Sensing

10.1 Dataset Priorities

NRT and higher spatial and temporal resolution satellite AF and FRP products
are a priority for the applications and science communities. Errors of AF commission
and in particular omission should continue to be reduced, through sensor and algorithm
development, robust validation, and provision of improved ancillary datasets such as
masks optimized for the AF-application, e.g. cloud masks which do not mask out smoke

contaminated areas, appropriate land/water maps, and maps of static IR emitters (e.g.
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gas flares/volcanoes and potentially persistent false alarms due to e.g. specific industry
or building types). Such developments are required to meet the temporal (1-6 hours)
and spatial (0.25-3 km) resolution and FRP retrieval uncertainty (10% integrated over a
pixel) target specifications outlined by the Global Climate Observing System (GCOS)
Essential Climate Variable (ECV) programme (GCOS-200; 2016) and proposed by
GOFC/GOLD and the Committee on EO Satellites (CEOS) Land Product Validation
(LPV) working groups (Boschetti et al., 2009). The need for long-term, climate quality,
AF products offering global coverage remains paramount, and this entails systematic
product generation, quality control, algorithm maintenance and when necessary
reprocessing. Without reprocessing using updated calibration and geolocation
information, and improved algorithms refined in response to routine product quality
assessment periodic validations (Section 6), AF products become less suitable for
addressing climate science questions.

In addition to improving AF detection algorithms, efforts should focus on
developing AF products maximizing use of currently available data, such as through
blending GEO and LEO observations (e.g. Zhang et al., 2020). A long-standing
GOFC/GOLD goal is the development of a global geostationary AF system, which is
increasingly relevant given the improved AF fire detection apability of the new
generation of GEO satellites. AF detection and FRP data have recently become available
in NRT from Meteosat, Meteosat Indian Ocean, Himawari and GOES-E and -W using
the same FTA algorithm originally developed for Meteosat SEVIRI (Roberts and
Wooster, 2008; Wooster et al., 2015; Xu et al.; 2017; 2021a). Similarly, the availability
of Landsat and Sentinel-2 imagery having pixel sizes in the tens of meters provides
detailed SWIR-based AF detection that may complement coarser spatial resolution but
more frequently available AF products, if only initially for validation of the latter. The
increasing number of very high spatial resolution (1-3 m) sensors should also be
evaluated for their potential use in AF detection. Development of additional ancillary
datasets, such as those related to fuel load per unit area, and biome, season and fuel-
moisture dependent trace gas and aerosol emissions factors (EFs), is required to further

improve fire emissions estimation.

10.2 EO Sensor and Mission Priorities
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This review has reiterated that to provide optimum data for AF remote sensing, a
typical sensor requires co-registered channels in the MIR (3 — 5 um) and LWIR (8 — 14
um), a co-located VIS or NIR channel to aid daytime masking of false alarms and cloud.
The exact spectral placement of each channel is less prescriptive, but for example the
3.959 um “fire channel” of MODIS was selected due to its relative insensitivity to
atmospheric water vapor absorption and avoidance of the CO- absorption window
beyond ~ 4 um (Kaufman et al., 1998). Of key importance for FRP retrieval are MIR
measurements across a sufficient dynamic range to provide good quality, unsaturated
data over the highest intensity and/or largest fires, as well as over the ambient
temperature background. Without the former, the FRP of the most strongly emitting
fires cannot be gauged, and without the latter the AF pixels themselves may not even be
reliably detected. The required upper end of the MIR channel dynamic range needs to
be set according to the sensors ground pixel footprint area, since the same fire will form
a greater proportion of a smaller rather than larger pixel (MODIS 1 km?2 pixels have [J
500 K saturation temperature vs. ABI 4 km2 pixels have [1400 K). For the 60 m spatial
resolution MIR band of the proposed Hyperspectral Infrared Imager (HyspIRI) payload,
Realmuto et al. (2015) specified a 1200 K saturation temperature. As with MODIS and
SLSTR, such wide dynamic ranges sometimes require two MIR detectors, or one
detector operating with dual integration times or gain settings (e.g. BIRD HSRS and
VIIRS). Other beneficial sensor attributes include limiting pixel area growth across the
swath (as done with VIIRS and SLSTR; Schroeder et al., 2014; Xu et al., 2021b), a SWIR
channel operating at night to aid hotspot detection, discrimination of fires from higher
temperature targets such as gas-flares, and FRP estimation from the latter (Fisher and
Wooster, 2018; 2019). SWIR wavebands centered around 2.2 uym appear most effective,
and night-time use of a broad day-night (low light level) band (0.5 - 0.9 um) similar to
that of VIIRS can also be considered. SWIR-based AF detection is also possible by day if
ground pixel footprints are small enough.

High temporal resolution AF data is required for operational fire monitoring,
warning and fire-fighting applications, and to provide the most reliable estimation of
FRE via FRP temporal integration. GEO systems meet this goal, with the newest such as

Himawari (Bessho et al. 2016, Xu et al. 2017), Meteosat Second Generation (soon to be
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superseded by Meteosat Third Generation [MTG]; Roberts and Wooster, 2008), GEO-
KOMPSAT-2A and Feng-Yun 4A (Yang et al. 2017), and GOES-R (Schmit et al. 2017; Xu
et al. 2017; 2021) including MIR bands having suitably extended dynamic ranges, and
offering full-disk temporal resolutions as high as 10 minutes. However, their larger pixel
areas result in minimum FRP detection limits typically at least 4x higher than from the
nadir views of LEO sensors — so they generally cannot detect a substantial number of
fires that MODIS type sensors would identify if they viewed the same location at the
same time. MTG will offer 1 km data every 2.5 minutes over some areas, a first for the
AF application, and even in densely populated Europe this may provide sufficient
capability to usefully detect a significant number of newly ignited fires in advance of
public call ins. Use of highly elliptical orbits could be explored to provide a high latitude,
high temporal resolution AF capability. An achievable future GEO goal that would cover
many of the applications supported by current LEO systems would be 500 m spatial
resolution geostationary-based AF detection, and the Chinese Meteorological Agency
(CMA) GF4 GEO satellite already includes a 400m MIR channel that demonstrates this

is possible (Lu et al., 2020).

An option to provide high spatial detail, low commission error AF data at increased
temporal resolutions is via constellations of LEO systems placed to cover different
overpass times. LEO capabilities continue to improve, and compared to MODIS
Sentinel-3 SLSTR offers a somewhat improved AF detection sensitivity due to its on
average smaller pixel footprint area (Xu et al., 2020; 2021; Figure 3), whilst VIIRS’ 375
m data offers a sensitivity around 10x better (Schroeder et al., 2014; Zhang et al., 2017).
Going beyond the spatial resolution of VIIRS may provide diminishing returns, since the
latter can already identify active areas of combustion of < 20 m2, and over some
landscapes high AF errors of commission can result from the IR clutter present in very
finely detailed thermal imagery (Schroeder et al., 2014; Zhang et al., 2017).
Performance trade-offs between the existing style of often larger satellites using cooled
sensor technology and lower cost smaller missions that might enable lower-cost
constellation development, possibly using uncooled detectors if their performance can

be demonstrated (e.g. WildFireSat; Johnston et al. 2020), should be examined.
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10.3 Other Research Priorities

Beyond datasets and sensors, there remain several primacies for ongoing
research in AF remote sensing. These include a better understanding of errors and
uncertainties in AF detection, FRP retrieval and fire emissions estimation, both spatially
(e.g. by biome, temporally (e.g. diurnally, seasonally) and with respect to different
sensors, products and observational (e.g. atmospheric and view angle) effects.
Validation of AF products remains challenging, due to the ephemeral and dynamic
nature of fire and to difficulties in obtaining co-located simultaneous and independent
reference observations. On a global scale this has been limited to joint use of ASTER and
Terra MODIS (see Section 1), and with Terra nearing its end of life there is a need to
develop a validation strategy covering a wider array of instruments and times of day.
Similarly, a uniform protocol to validate spaceborne FRP retrievals is required,
particularly as it is a designated GCOS ECV and one which is still at the lowest
validation stage according to the CEOS LPV validation hierarchy. Understanding the
lower FRP components of a regions fire regime and how this is included or excluded by
different AF data products remains important, as are ways to adjust for this when
necessary. The ability to map fireline rates of spread remains a goal for many fire
management applications, as is the need to further promote assimilation of NRT AF
data into time-coupled weather-fire behavior modelling frameworks (Cohen and
Schroeder, 2013). Research on the conversion between FRP, FRE and fuel consumption,
trace gas and aerosol emissions continues to be a priority, as does the reconciling of
such estimates with those from alternative (e.g. burned area) based approaches. Finally,
the accuracy and usefulness of EO methods for flaming/smouldering fire discrimination
- including via use of phenomena such as detection of landscape fire potassium emission
lines - needs to be further examined, as does the need and ability to optimize any

applied emissions factors used in subsequent smoke emissions calculations.

11. Summary and Conclusion
Observing landscape fires from space has a strong heritage, stretching back to the

1980’s with NOAA AVHRR. Since then, satellite active fire (AF) data have become very
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widely used by scientists and government agencies, and the number of spaceborne
sensors equipped with measurement capabilities relevant to the AF application,
including with ‘fire-optimized’ thermal channel dynamic ranges, has greatly increased.
The NASA MODIS AF product suite is the most widely utilized, and the ease of access to
these and other AF data through numerous data portals has proliferated beyond science
to allow routine monitoring and reporting - as evidenced by their deployment by the
media during the recent [2019] Amazonian fire activity increase (Kelley et al., 2021) and
during the 2019/2020 Australian black Summer bushfires (Abram et al.,, 2021).
Although these recent events have highlighted the relevance and importance of satellite
AF products (e.g. Escobar, 2019), they have also reinforced the need for the community
of data producers to more clearly communicate the limitations as well as benefits of
each AF product, so as to reduce interpretation inaccuracies.

AF products have evolved from reporting the timing and location of actively
burning fires to now include measures such as fire effective temperature, area and fire
radiative power (FRP). Near real-time (NRT) EO data streams have allowed the FRP
method to be used to deliver smoke emissions source strength information to a variety
of atmospheric modelling systems, for example in support air quality forecasting. Future
satellite missions, including higher spatial resolution GEO systems and increased
numbers of AF-capable LEO systems, including the future possibly of small-satellite
constellations, provide further opportunities for advancing both science and operational
applications as their performance evolves. A key constraint remains the scarcity of
reference data suitable for validating contemporaneous AF detections and FRP
retrievals. Communities such as GOFC/GOLD and CEOS LPV are encouraged to
continue to lobby space agencies to develop and launch missions that include sensors
whose characteristics are optimized for the AF application, and often only relatively
small adjustments to the initially planned characteristics are required — as was the case
for example with Sentinel-3 SLSTR and Meteosat Third Generation. Looking forward,
continuing climate and environmental change may potentially shift certain drivers of
landscape fire (Rogers et al., 2020). Apparent policy or policy enforcement shifts appear
able to rapidly alter fire characteristics over large regions (Sembhi et al., 2020), and the

health impacts of the poor air quality that can come with landscape burning is a growing
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concern. We can therefore expect the relevance and importance of satellite AF remote

sensing to continue to grow.
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