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ABSTRACT: Development of an impact-based decision support forecasting tool for surface-transportation hazards re-
quires consideration for what impacts the product is intended to capture and how to scale forecast information to impacts
to then categorize impact severity. In this first part of the series, we discuss the motivation and intent of such a product, in
addition to outlining the approach we take to leverage existing and new research to develop the product. Traffic disrup-
tions (e.g., crashes, increased travel times, roadway restrictions, or closures) are the intended impacts, where impact sever-
ity levels are intended to scale to reflect the increasing severity of adverse driving conditions that can correlate with a need
for enhanced mitigation efforts by motorists and/or transportation agencies (e.g., slowing down, avoiding travel, and impos-
ing roadway restrictions or closures). Previous research on how weather and road conditions impact transportation and
novel research herein to create a metric for crash impact based on precipitation type and local hour of the day are both in-
tended to help scale weather forecasts to impacts. Impact severity classifications can ultimately be determined through con-
sideration of any thresholds used by transportation agencies, in conjunction with the scaling metrics.

SIGNIFICANCE STATEMENT: Weather can profoundly impact surface transportation and motorist safety. Be-
cause of this and because there are no explicit tools available to forecasters to identify and communicate potential im-
pacts to surface transportation, there is a desire for the development of such a forecast product. However, doing so
requires careful consideration for what impacts are intended to be included, how weather corresponds to impacts, and
how thresholds for impact severity should be defined. In this first part of the paper series, we outline each of these as-
pects and present novel research and approaches for the development of an impact-based forecast product specifically
tailored to surface-transportation hazards. The product is ultimately intended to improve motorist safety and mobility
on roads.
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1. Introduction

Slick roads, limited visibilities, and other dangerous driving
conditions caused by winter weather can pose an extreme haz-
ard to motorists. Each year, nearly 1000 winter-weather-
related fatalities occur on U.S. roadways (Tobin et al. 2022),
an order of magnitude larger than fatalities from all other
weather-related hazards (Black and Mote 2015a). Of these fa-
talities, however, only one-third occurred within an official
Winter Weather Warning, Watch, or Advisory (WSW) issued
by the National Weather Service (NWS) (Tobin et al. 2022).
In that study, it was found that the language used within
WSWs does not clearly convey how much of an impact the
winter weather is expected to have on surface transportation.
For example, the use of language such as “hazardous driving
conditions” versus “extremely hazardous driving conditions”
is vague and does not objectively communicate impacts in an
easily understandable manner. Further, the subjective use of
“extreme” is, ostensibly, not used consistently and allows a

variety of interpretations from motorists. In light of those
findings, the authors recommended the development of a
product complementary to official NWS WSWs that conveys
tiered road-hazard impact levels consistently across the coun-
try, regardless of WSW status.

To properly develop an impact-based forecast product for sur-
face transportation across the United States, it is important to
first identify what the product would need to address in order to
be useful and successful. Although surface transportation in-
cludes, but is not limited to, roadway transportation, properly ac-
counting for impacts to roadway transportation is an important
first step for an all-encompassing surface-transportation-based
impact product that would include impacts to other surface-
based transportation methods such as railways and even
surface-based operations of airports. In the first part of this
series outlining the development of such a product, we in-
troduce a novel approach that leverages both preexisting
and new research to pair weather information with nonme-
teorological data in order to scale weather forecast data to
potential transportation impacts and to categorize the sever-
ity of those impacts. In Tobin et al. (2024, hereafter Part II),
we detail specifics about a new NWS forecast product inCorresponding author: DanaM. Tobin, dana.tobin@noaa.gov
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development, including how the product performs for recent
winter weather conditions that negatively impacted surface
transportation.

2. Defining the impacts of weather and road conditions
on surface transportation

a. Contextualizing the problem

Weather-related impacts to surface transportation can be
separated into two categories: traffic disruptions and financial
costs. Traffic disruptions include, but are not limited to,
motor-vehicle crashes, increased travel times, and roadway re-
strictions or closures. Roadway restrictions (e.g., vehicle bans,
lane restrictions, speed limit reductions, and chain controls)
and closures are done either as a safety precaution (i.e., in re-
sponse to or in anticipation of hazardous road conditions) or
out of necessity (i.e., due to crashes or other road hazards that
require traffic diversions to clear the roadway). Financial costs
include those resulting from traffic disruptions (e.g., the finan-
cial cost of a motor-vehicle crash or delay; Blincoe et al. 2023)
and the cost of winter road maintenance (e.g., plowing and
applying spreading treatments such as salt, sand, and brine).
To optimize cost spending and resource allocations, transpor-
tation agencies often develop and use metrics for assessing
winter storm severity (e.g., a winter severity index) based on
maintenance costs and resources used during a storm or win-
ter season (e.g., Walker et al. 2019; Fay et al. 2020; Sturges
et al. 2020; Villwock-Witte et al. 2021). However, these indi-
ces are inconsistent in their approaches due to varying service
levels and data availability, meaning that an index developed
for one agency often cannot be used for another agency
(Sturges et al. 2020). Ultimately, the financial costs of winter
road maintenance vary drastically across the United States
owing to budgetary considerations, resources, and varying
levels of service. This means that creating an impact-based
forecast product based on financial costs related to winter
weather would be a poor choice for a product intended to be
consistently used across the United States. Instead, the focus
should be on impacts related to traffic disruptions, which can
easily be adapted and applied across the United States with
knowledge of both how weather typically disrupts traffic flow
and motorist safety and typical mitigation strategies employed
by motorists and transportation agencies.

Weather can profoundly influence traffic flow and road
safety. In response to adverse weather and driving conditions,
motorists often make behavioral changes, such as lowering ve-
hicle speeds, using alternate routes or modes of transporta-
tion, and adjusting their travel schedules or canceling trips
altogether (e.g., Barjenbruch et al. 2016; Böcker et al. 2013;
Maze et al. 2006). These driver adaptations can measurably
affect traffic flow parameters of vehicle speeds and traffic
volumes. Precipitation generally reduces both traffic volumes
and vehicle speeds, with snow having a greater influence than
rain. Higher precipitation rates and/or amounts also reduce
traffic volumes and vehicle speeds. For example, rain reduces
traffic volumes by 2%–3% (Codling 1974; Doherty et al. 1993;
Keay and Simmonds 2005), while snow can reduce traffic

volumes by nearly one-half, with reductions generally propor-
tional to increasing snow amounts (e.g., Hanbali and Kuemmel
1993; Knapp and Smithson 2003). Similarly, Agarwal et al.
(2005) found that heavy rain (.0.25 in. h21) results in urban
freeway speed reductions of 4%–7% whereas heavy snow
(.0.5 in. h21) results in speed reductions of 11%–15%. Other
adverse weather conditions, such as visibility reductions, cold
weather, and high wind speeds, can also reduce vehicle speeds
(e.g., Maze et al. 2006).

In addition to limiting mobility, precipitation and adverse
driving conditions negatively impact roadway safety. Nearly
25% of all collisions occur during precipitation, and precipita-
tion increases the risk of both crash and injury (e.g., Andrey
et al. 2003; Qiu and Nixon 2008). The risk of a crash is also a
function of both precipitation type and intensity (e.g., Andrey
et al. 2003; Qiu and Nixon 2008; Andrey 2010; Black and
Mote 2015b; Black et al. 2017; Tobin et al. 2021). Several stud-
ies document that snow has a higher crash risk than rain, and
Tobin et al. (2021) report that freezing precipitation has
a higher crash risk than snow. Other studies generalize that
higher precipitation intensities are typically associated with
higher crash risk (e.g., Andrey et al. 2003; Qiu and Nixon
2008). Although diminished traffic volumes and reduced vehi-
cle speeds can partially offset the increased risk of fatality or
severe injury in snowfall, there is some debate on the net in-
fluence of snow on fatalities and injury severity (Andrey et al.
2003; Qiu and Nixon 2008). Nonprecipitation, vision-obscuring
hazards such as dense fog or smoke can also profoundly impact
transportation and result in injuries and fatalities yet are notori-
ously difficult to forecast (Ashley et al. 2015).

b. Outlining a solution

Translating the influences of winter weather on traffic
flow and safety into an impact scaling is difficult and re-
quires two things: 1) scaling weather information to its im-
pact on surface transportation and 2) selecting appropriate
thresholds for each impact severity level. Each will now be
addressed.

1) SCALING WEATHER INFORMATION TO IMPACTS

Properly scaling weather data to transportation impacts in-
volves addressing all aspects of potential impacts, including
the increased travel times, the likelihood of crashes, and the se-
verity of crashes that may occur. A single weather condition}
such as 0.5 in. h21 of snowfall}can result in different impacts
based on a number of different factors, including what other
ambient weather or road conditions there are (e.g., low vs
high visibility and snowy vs wet roads) and what time of day
or even day of week it is (e.g., overnight vs midday hours or
weekend vs weekday). Here, we introduce how weather
conditions can be scaled to impacts by combining the influ-
ences of how driving conditions affect travel times and how
precipitation type affects motorist safety throughout the
day.

The first tangible transportation-related impact of winter
weather is often increased travel times, which can be partially
attributed to reductions in vehicle speeds. The influence of
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weather and pavement conditions on vehicle free-flow speeds1

has been documented by a number of studies (e.g., Kyte et al.
2001; Maze et al. 2006; Ye et al. 2009). For example, Maze
et al. (2006) report that freeway speeds are reduced by 13%
for snow rates . 0.5 in. h21, but only by 6% for rain rates .
0.25 in. h21. Similarly, Ye et al. (2009) suggest that travel
speeds are 16% lower on snow-covered roads, but only
4% lower on wet roads. Maze et al. (2006) also report speed
reductions for temperature, wind speed, and visibility
conditions.

We suggest that these reductions in vehicle free-flow speeds
under various weather and pavement conditions can be lever-
aged to approximate a combined disruption to traffic flow
(i.e., in the form of increased travel times due to reduced vehi-
cle speeds). For instance, a metric combining speed reduc-
tions based on the ambient weather conditions (precipitation,
temperature, wind speed, and visibility individually) and
pavement conditions (e.g., wet, snowy, slushy, and icy) can
scale impacts based on how the overall driving conditions can
influence vehicle speeds and thus travel times. Such a metric
would help to, for example, increase impacts for snowfall that
is concurrent with other poor driving conditions (e.g., low visi-
bility, snowy roads) versus the same snowfall occurring with
more manageable driving conditions (e.g., moderate visibility,
wet roads).

Secondary impacts stemming from an increased crash risk
may or may not materialize into an increased number of
crashes during any single weather event. Further, any crashes
that do occur can have widely varying impacts, ranging from
single-vehicle slide-offs with no injuries or associated delays
to large pileups with casualties that close interstates for an in-
definite period of time. Chin et al. (2004) documented that
the impact of crashes on delays, lane closures, and the time it
takes to clear a crash and reopen lanes generally increases
with the number of vehicles involved and the severity of the
crash (e.g., property damage only, injury, or fatal). Ultimately,
however, the same weather conditions that result in a pileup
can just as easily result in no incidents.

To distill such a wide variety of potential crash-related im-
pacts into a single metric, it becomes necessary to examine
only the average observed outcome. For this, a targeted, yet
comprehensive, research study is designed specifically to ad-
dress the hourly time-of-day impacts of precipitation type.
The goal of the study is to distill the following impact aspects
into a single metric for each local hour of the day and for each
precipitation type: 1) the likelihood of a crash occurring;
2) how many vehicles and casualties are typically involved
with crashes that do occur; and 3) how many vehicles are usu-
ally traveling at that hour. This single metric is designed to
capture the totality of impacts associated with precipitation

type by accounting for crash risk, crash severity, and traffic
volumes. This work is presented in detail in section 3.

2) IMPACT SEVERITY LEVEL THRESHOLDS

It is desired for increasing severity levels of an impact-
based product to reflect the increasing severity of adverse
driving conditions, which correspond to the need for en-
hanced mitigation efforts or strategies to maintain safety, if
possible. Such mitigation efforts range from motorist behavior
modifications (e.g., slowing down and avoiding travel) to
transportation agencies imposing restrictions on roadways
(e.g., lane or roadway closures, speed limit restrictions, vehi-
cle bans, and chain controls). Because transportation agencies
often only consider restrictions for weather conditions meeting
or exceeding certain thresholds, knowledge of those thresholds
is invaluable for developing a useful product. For example,
weather conditions prompting the closure of an interstate
should have a higher impact level than conditions that typically
only trigger speed restrictions. Unfortunately, such thresholds
are often not clearly defined, as agencies ultimately make deci-
sions on restrictions through careful evaluation of not only
weather and road conditions, but a number of other factors
including resource availability, the status of restrictions in
surrounding states, and any potential consequences}including
economic impacts}of such restrictions [e.g., Commonwealth of
Pennsylvania 2022; T. Greenfield, Iowa Department of Trans-
portation (DOT), 2022, personal communication; S. Venegas,
California DOT, 2022, personal communication]. Further, dif-
ferent states will likely have different thresholds owing to their
own exposure to various weather hazards (e.g., the frequency
and amount of snowfall) and availability of resources. Ulti-
mately, threshold information from transportation agencies is
crucial to ensure that the impact severity level thresholds
chosen for the product are reasonable for locations across the
United States.

Through the Pathfinder program}an initiative of enhanced
collaboration between NWS offices, private weather pro-
viders, the Federal Highway Administration (FHWA), state
Departments of Transportation, and other transportation
agencies (FHWA 2018)}the Pennsylvania Turnpike has
shared their “Weather Event Management Playbook,” which
includes specific thresholds for various weather event levels
and the corresponding potential considerations for travel re-
strictions (Table 1). For example, the Pennsylvania Turnpike
will consider imposing vehicle and/or speed restrictions or
even closing the Turnpike with 3 in. h21 of snowfall. These
thresholds can thus be used to help inform the thresholds for
each impact severity level, at least for the Pennsylvania area.
Regionalization of thresholds}particularly for snow rate and
ice accumulation}is necessary to appropriately define the im-
pact for other areas of the United States. Whereas the thresh-
olds for Pennsylvania serve as a proof of concept, the snow
rate thresholds defined for Pennsylvania Turnpike are consis-
tent with those outlined in the New York State (NYS) DOT
Traffic Management Strategies (J. Thompson, NYS DOT,
2023, personal communication). This consistency suggests that
those thresholds are likely representative of large regions. In

1 The Highway Capacity Manual defines “free-flow speeds” as
the “average speed of vehicles on a given segment, measured un-
der low-volume conditions, when drivers are free to travel at their
desired speed and are not constrained by the presence of other
vehicles or downstream traffic control devices” (Transportation
Research Board 2000).
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the absence of knowledge of other thresholds across the
United States, the Pennsylvania Turnpike thresholds will be
used across the United States until regionalization can be in-
troduced in the future. Such regionalization can be done
through using climatological information to account for expo-
sure, with resulting thresholds spot-checked against transporta-
tion-related criteria from other regions, if such information
becomes known to the developers. Regionalization is necessary
because regional or even local variations in preparedness, driver
experience with and adaptation to hazardous winter weather, and
traffic demands can also influence how impactful theweather con-
ditions are.

3. Quantifying time-of-day impacts

Time-of-day factors are desired to scale the impact of active
precipitation based on the local hour of the day and precipita-
tion type. For example, the impact of precipitation during
midday hours should be greater than that during overnight
hours due to a higher number of motorists on the road. Addi-
tionally, the timing of the hazard in relation to peak traffic
volumes is often of concern for the messaging of potential im-
pacts (e.g., Barjenbruch et al. 2016; Tobin et al. 2022). Be-
cause of this, it is important to capture the influence of time
of day on the product. Here, we present a novel research
study that produces a single metric aggregating impacts asso-
ciated with crash risk, crash severity, and typical traffic vol-
umes. Precipitation-type data, crash data, and traffic volume
data are all required for this analysis, which presents a unique
challenge in terms of combining these separate datasets. Au-
tomated Surface Observing System (ASOS) data are often
used to infer precipitation type at the time of motor-vehicle
crashes that occur either within a set distance from the loca-
tion (e.g., Tobin et al. 2019, 2022) or within a city or region
close to the station (e.g., Black and Mote 2015b). However,
accurate winter precipitation-type data are primarily only

available from the select ASOS sites with human observers
available to augment or correct automated observations (e.g.,
NOAA 1998; Reeves 2016; Landolt et al. 2019). Such rou-
tinely augmented ASOS sites are sparsely located and thus
limit the areas within which analysis can be performed on
crash and traffic data.

Crash and traffic volume data availability presents another
limitation, as they are collected and managed by state or local
agencies, with varying levels of availability. Unfortunately,
this means that both crash and traffic datasets are not avail-
able for every state, which would be ideal for analysis across
the United States. However, these datasets are available for
several contiguous states in the Great Lakes region: Illinois,
Indiana, Michigan, and Ohio. This region is appropriate for
an initial analysis, though, as it has a high density of fatal
winter-weather-related crashes (Tobin et al. 2022). Further,
this region is contiguous with Pennsylvania, where we have in-
formation on thresholds used by the Turnpike to inform im-
pact levels. These crash data include information such as the
date, time, latitude, longitude, number of injuries and fatali-
ties, and number of vehicles involved with each reported crash.
Traffic volume data were obtained through the Midwest Soft-
ware Solutions (MS2) Traffic Count Database System with
accounts provided from each state. The traffic volume data
obtained include vehicle counts for each hour at counting loca-
tions within the state.

The crash and traffic volume data for the years noted in
Table 2 are first limited to cool-season months (October–
April) to avoid warm season biases and further limited only
to data points within 20 mi of routinely augmented ASOS
sites (i.e., those in Reeves 2016). These sites are used to ob-
tain accurate accounts of both precipitation type and respec-
tive beginning and ending times. Further, only data from the
state where each ASOS is located are used, to avoid any
biases resulting from state-specific crash reporting thresholds.
For example, the reporting threshold in Indiana is any crash

TABLE 1. Criteria and potential restrictions detailed in the Pennsylvania Turnpike’s Weather Event Management Playbook for each
event level for the select weather events.

Weather event Basic event Medium event Major event Extreme event

Snow rate Criteria .0.5 in. h21 .1.0 in. h21 .2.0 in. h21 .3.0 in. h21

Restrictions None Consider speed
restrictions

Consider speed
restrictions or
imposing vehicle
restrictions

Consider speed
restrictions,
imposing vehicle
restrictions, or
potential
Turnpike closure

Rain rate Criteria .0.25 in. h21 .0.5 in. h21 .1.0 in. h21 .2.0 in. h21

Restrictions None Consider speed
restrictions

Consider speed
restrictions

Consider speed
restrictions

Ice accumulation Criteria – ,0.25 in. .0.25 in. .0.5 in.
Restrictions – Consider speed

restrictions
Consider speed

restrictions or
imposing vehicle
restrictions

Consider speed
restrictions,
imposing vehicle
restrictions, or
potential
Turnpike closure

WEATHER AND FORECAS T ING VOLUME 391120

Brought to you by NOAA Library | Unauthenticated | Downloaded 04/01/25 07:01 PM UTC



that results in a fatality, injury, or $$1,000 in property dam-
age, whereas in Illinois, the property damage thresholds are
.$1,500 if all drivers are insured or .$500 if any driver is un-
insured. The location of these ASOS sites, the corresponding
20-mi ranges, and locations of the traffic count sites within
20 mi of each ASOS site that are used for analysis are shown
in Fig. 1. The traffic count sites are color coded by whether
they are designated as urban or rural locations.

Using methods similar to those outlined in Tobin et al.
(2021), event and control periods are identified for each
ASOS location for rain (with no additional precipitation
types), snow (with no additional precipitation types), and
freezing precipitation (i.e., freezing rain and freezing drizzle,
with the allowance of additional precipitation types) events.
Ice pellet events are not examined because their infrequent
occurrence is a significant limitation for such analysis (e.g.,
Tobin et al. 2021). Event periods are defined as the beginning
and ending times of the precipitation type of interest, and
control periods are the same period exactly 1 or 2 weeks be-
fore or after the event period in which no precipitation is

reported. These event and control pairings are used to com-
pare crash and vehicle count information during precipitation
versus nonprecipitation, while also controlling for confound-
ing variables such as time of day, day of week, and seasonality
(e.g., Black and Mote 2015b). Control periods in May through
September are discarded to avoid warm-season traffic biases
(e.g., increased vehicle counts). Event periods that were not
successfully matched to a control period are also discarded.

Viable event–control pairings are then broken into full-hour
periods in local time. For example, rain between 1030 and
1315 LT is broken into two full-hour periods (1100–1200 LT
and 1200–1300 LT). Subhourly event–control pairings (e.g.,
snow between 0950 and 1035 LT) are discarded. These full-
hour event–control pairings are used to directly compare crash
and vehicle count information during precipitation versus non-
precipitation for any local hour of the day. Because the total
set of full-hour periods for any given hour comes from differ-
ent storms, there is inherent variability owing to other factors
that are outside the scope of this current work. These factors
may include different road conditions or maintenance opera-
tions, the hour at which the storm is sampled at (e.g., the first
hour vs later in the event), precipitation intensity (e.g., heavy
snow vs light snow), and other weather conditions (e.g., visibil-
ity and varying light conditions). As a result, this study is
meant to capture the general influence of precipitation during
a local hour of the day.

To arrive at the final time of day factoring, the following
calculations are performed: crash ratio, traffic volume ratio,
crash factor, impact factor, traffic factor, and time-of-day fac-
tor. Each is discussed in detail below.

a. Crash ratio

The crash ratio addresses the question of how many crashes
occur during precipitation relative to normal. It is calculated
for each full-hour event–control pairing as

crash ratio 5
crashes during the event hour 1 0:5
crashes during the control hour 1 0:5

: (1)

The 0.5 constant ensures that the crash ratio does not become
zero or undefined, while also minimizing bias (Black and
Villarini 2019). Full-hour event–control pairs with no crashes
during either the event or control period are omitted from
analysis, consistent with suggestions in Black and Villarini
(2019).

The mean, median, 25th percentile, and 75th percentile of
hourly crash ratios for each precipitation type (rain, snow,
and freezing precipitation) are shown in Fig. 2. Normalized
frequency distribution of the 10th–90th percentile of the
hourly data for each precipitation type is also plotted to fur-
ther illustrate the distribution of the data. We perform light
smoothing on the mean crash ratios by averaging the hourly
crash ratio alongside half-weighted crash ratios of both the
previous and following hour. These smoothed mean crash ra-
tios are also plotted in Fig. 2.

A crash ratio of 1.0 indicates an equivalent number of
crashes during both precipitation and nonprecipitation peri-
ods. A value of 2.0 indicates twice as many crashes during the

TABLE 2. Periods of record for crash and volume data for each
state.

State Crash data years Volume data (October–April only)

Illinois 2010–20 2011–21
Indiana 2007–20 2012–21
Michigan 2011–20 2010–21
Ohio 2016–20 2015–21

TVC

GRR
LAN

DTW

TOL

BLV

YNG
CLE

CMH
FFO

SBN
MDW

RFD

PIA

SPI

FWA

GUS

IND

HUF

Esri, TomTom, Garmin, FAO, NOAA, USGS, EPA, USFWS

ASOS Sites
Rural Traffic Count Sites
Urban Traffic Count Sites
Major Highways

FIG. 1. A map of the locations of all routinely augmented ASOS
sites (black squares) and the traffic count site locations (blue circles
for rural locations and red circles for urban locations) used for anal-
ysis (black squares). Black circle outlines denote the 20-mi radius
around each ASOS site, within which the crash and traffic volume
data are used. Major highways are also displayed for reference.
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precipitation period than the nonprecipitation period. Simi-
larly, a value of 0.5 indicates twice as many crashes during the
nonprecipitation period than the precipitation period. All
hourly mean crash ratio values for each precipitation type are

.1.0, meaning that any precipitation type}on average}
increases the number of crashes that occur at any hour of the
day. Further, more crashes typically occur during snow than
rain and even more occur during freezing precipitation than
snow. This result is consistent with increased crash relative
risk estimates reported in Tobin et al. (2021).

b. Traffic volume ratio

The traffic volume ratio addresses the question of how many
vehicles are traveling on the roadway during precipitation rela-
tive to normal. The same approach that was done for computing
crash ratios was done for computing volume ratios, but only af-
ter additional quality control was performed on the vehicle
count data. Only traffic volume data from permanent traffic
count sites were used, and only full-hour event–control pairings
with an equivalent number of valid entries during both the
event and control hour were used. For example, if there are two
entries for a traffic count site during the control hour (e.g., a
northbound count and a southbound count) but fewer than two
entries during the event hour [e.g., a Not a Number (NaN)
count or only a northbound count], the event–control pairing is
discarded. Further, if both the event and control hour have zero
vehicle counts, the event–control pairing is discarded. This is
consistent with what was done for crash ratios following the sug-
gestion in Black and Villarini (2019). One final scenario consid-
ered for quality controlling the traffic count data was for event–
control pairings where 1 h had a zero count and the other had a
nonzero count. If the nonzero count is .10, the data for the
pairing are discarded. However, if the nonzero count is#10 ve-
hicles, as may occur during low-volume periods such as early
morning hours, the 0-vehicle count is increased to 1 to ensure
that the volume ratio does not become zero or undefined.

The traffic volume ratio for each full-hour event–control
pairing is computed as follows:

volume ratio 5
sum of vehicle counts for all locations during the event hour
sum of vehicle counts for all locations during the control hour

: (2)

The same statistics and visualizations done for crash ratios are
performed for volume ratios and shown in Fig. 3. A value of
1.0 indicates equivalent vehicle counts during both precipita-
tion and nonprecipitation periods. A value of 0.9 indicates
10% fewer vehicle counts during precipitation. All hourly
smoothed mean volume ratios for each precipitation type are
,1.0 (except rain for 1–2 h), meaning that there are fewer ve-
hicle counts on average during precipitation. Further, there
are typically fewer vehicle counts during snow than rain and
even fewer vehicles during freezing precipitation. Further,
precipitation during the afternoon and evening hours has a
greater influence on reducing traffic volumes than the early
morning hours, particularly for snow and freezing precipita-
tion. This is likely attributed to a greater flexibility in traveler
schedules in the afternoon relative to the morning, which may
allow a shift in travel timing or avoiding travel altogether.

c. Crash factor

The crash factor is a proxy for a crash relative risk estimate
and addresses the question of how likely a crash is to occur
during precipitation relative to normal. Crash relative risk es-
timates are based on the odds of a crash occurring during pre-
cipitation compared to the odds of a crash occurring during
normal, nonprecipitation conditions. The odds of a crash are
simply the ratio between the number of crashes and non-
crashes. Because the number of crashes is often much lower
than the total number of vehicles on roadways, the number of
noncrashes can be approximated with traffic volumes. As
such, the crash relative risk estimate can be approximated
with a crash ratio divided by a traffic volume ratio. For the
purposes of this study, the smoothed mean crash and volume
ratios computed in sections 3a and 3b, respectively, are cho-
sen to estimate crash relative risk. This approach is chosen

FIG. 2. Crash ratios for each local hour of the day for (a) rain,
(b) snow, and (c) freezing precipitation. Circles indicate hourly
mean crash ratios, and colored solid lines denote smoothed mean
crash ratios. Colored distributions to the left of each hour marker
are normalized distribution of the 10th through 90th percentile of
crash ratio values. Horizontal ticks indicate the 25th and 75th per-
centiles, and diamonds indicate median values.
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instead of estimating crash risk directly for each full-hour
event–control pairing because it increases the total number of
data entries available for analysis. If crash relative risk were
to be estimated directly, event–control pairings would need
viable crash and traffic volume data. For example, a full-hour
event–control pair with no crashes during either the event or
control hour, but with reliable traffic volume data would need
to be omitted, thus removing valuable information regarding
traffic volumes. One limitation to this indirect approach is that
statistics such as percentiles cannot be obtained; however, the
mean value is sufficient for our needs of obtaining a single,
mean metric for measuring crash risk.

The crash factor for each precipitation type at each local
hour of the day is found by dividing the smoothed mean crash
ratio by the smoothed mean traffic volume ratio. For visuali-
zation purposes, a Gaussian-weighted moving filter with a
window length of 10 h is applied to the crash factors, as shown
in Fig. 4 for rain, snow, and freezing precipitation. This
smoothing filter is chosen to preserve the diurnal variation of
crash factoring, while removing some variability from the in-
dividual hourly data. A value of 1.0 indicates that crashes on
average are equally likely to occur during precipitation and
nonprecipitation periods. A value of 2.0 indicates that crashes
on average are twice as likely to occur during precipitation
than normal. Any precipitation type increases the average
crash risk at any hour of the day, yet crash risk is higher dur-
ing snow than rain and highest during freezing precipitation.
This is consistent with the findings in Tobin et al. (2021) of a
hierarchy in crash relative risk with precipitation type. Fur-
ther, there is evidence that crash risk is highest during the
morning and overnight periods for snow and freezing precipi-
tation, whereas crash relative risk is highest in the afternoon

and evening periods for rain. This is also consistent with Tobin
et al. (2021) where the highest crash relative risk is in the after-
noon period for rain, but in the morning for snow. We speculate
that warmer road surface conditions for the afternoon hours
could account for the lower crash factor in the afternoon versus
the morning hours.

d. Impact factor

The impact factor addresses the question of how severe and
impactful a crash is during precipitation. A simple metric for
the impact factor is defined for each local hour of the day as
the average of the following per event-hour crash: the number
of vehicles involved, plus one-half the number of injuries, plus
the number of fatalities. This metric is proposed to give a
sense of the gravity of the crashes that occur by combining
the number of vehicles, injuries, and fatalities that occur, con-
sidering that increases in both the number of vehicles in-
volved in a crash and the severity of a crash (i.e., property
damage only, injury, or fatal) can lead to longer delays, more
lane closures, and increased time to clear the crash and re-
open lanes (Chin et al. 2004). The total number of crashes, ve-
hicles involved, injuries, and fatalities that occurred during all
full-hour event periods for each precipitation type (i.e., the
set of data considered for this specific analysis of an impact
factor) is presented in Table 3, in addition to an aggregate im-
pact factor based on those values. Because the incidence of in-
jury or fatality is much lower than the incidence of a crash
involving more than one vehicle (i.e., an average of 0.19 inju-
ries per crash, 0.0016 fatalities per crash, yet 1.8 vehicles in-
volved per crash), the impact factor is primarily driven by
how many vehicles are involved in each crash. The weighting
factor of 1.0 for each vehicle was to ensure that no impact fac-
toring was given if all crashes that occur involve only a single
vehicle with no injuries or fatalities. Further, the weighting
factors of 0.5 and 1.0 for injuries and fatalities, respectively,
are assigned such that the impact factor is not strongly biased
by these higher-severity outcomes.

The resulting impact factor data for each local hour and
precipitation type are shown in Fig. 5, with mean values
smoothed as was done for the crash and traffic volume ratios.
Values of 1.0 indicate that crashes during precipitation in-
volve only a single vehicle and no injuries or fatalities per
crash. All precipitation types have mean impact factors . 1.0

FIG. 3. As in Fig. 2, but for volume ratios.

FIG. 4. Crash factors for each local hour of the day for rain, snow,
and freezing precipitation, with a Gaussian-weighted moving filter
with a window length of 10 h applied to the result.
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at all hours of the day, meaning that crashes during any pre-
cipitation type at any time typically involve either more than
one vehicle or may also result in injuries and/or fatalities. Fur-
ther, there is a pronounced diurnal pattern for all precipita-
tion types where crash impact is higher during the afternoon
and early evening hours and lower during the early morning
hours. Very few full-hour event periods during daytime hours
had all crashes involve just a single vehicle with no injuries or
fatalities, as evidenced by elevated 10th and 25th percentile
values, particularly between 0900 and 1700 LT. Overnight and
early morning hours, particularly between 0100 and 06:00 LT,
have 25th percentile values of 1.0 for all precipitation types,
meaning that one-quarter of those full-hour event periods
have crashes involving only a single vehicle with no injuries or
fatalities. The diurnal shape of these curves is consistent with
expectations based on traffic volume patterns (see next sub-
section below) where crash impacts are higher during hours
with more vehicles on the roadway and lower during hours
with fewer vehicles. This follows logical reasoning: the higher
the number of vehicles on the roadway is, the more likely
crashes are to involve additional vehicles (Tobin et al. 2022).

In comparing the smoothed mean impact factors among the
precipitation types (and the aggregate impact factors in Table 3),
a hierarchy is evident such that the impact factor for rain is

higher than that for snow, which is higher than freezing precipita-
tion. This means that for each crash that occurs, crashes during
rain are typically more impactful}strictly speaking with the met-
ric outlined here}than snow, and crashes during freezing precip-
itation are the least impactful. Although this result may seem
counterintuitive, owing to the enhanced overall impacts associ-
ated with freezing rain and snow, it is important to note that
crashes during rain typically occur at higher speeds and with
higher traffic volumes than during snow or freezing rain, which
can lead to crashes involved more vehicles, and/or more severe
crashes as a result. These influences translate to a higher impact
factor using the formulation defined here. Further, these impact
factors are an estimate per crash. It is important to keep this fac-
toring in context with the crash factor, which paints a clearer pic-
ture that although there are more crashes during snow and
freezing rain, they tend to involve fewer vehicles and/or casualties.

e. Traffic factor

The traffic factor accounts for how many vehicles are typi-
cally on the roadway at a given local time of day during a
weekday, weekend, or holiday (Thanksgiving, Christmas Eve,
Christmas, New Year’s Eve, and New Year’s Day). Whereas
the crash and impact factors are not disaggregated by day of
week or holidays due to limited data availability to cover all
24 h of each day classification, the traffic factor aims to ad-
dress these differences. It is taken as the local hourly average
of all vehicle counts from the entire period of record within
each state for weekdays, weekends, and holidays, separately,
and then averaged for the analysis region. These average
counts for the three categories are then normalized by the
maximum average combined count (i.e., any day category).
The traffic factor is then defined to give a 25% increase if the
normalized vehicle count is equivalent to the maximum aver-
age hourly overall count. These resulting traffic factors for
weekdays, weekends, and holidays are shown in Fig. 6. Week-
days feature distinct morning and afternoon peaks for rush
hour traffic periods, whereas weekends feature a broad in-
crease in traffic throughout the late morning through evening
period. Holidays have similar patterns to weekends, yet with
slightly lower total traffic volumes.

f. Time-of-day factor

The time-of-day factors are the final factoring values for
each precipitation type that can then be integrated into an
impact-based product. Specifically, our intended use for these
factors is to use them to adjust the forecasted precipitation
rates based on the local time of day, to account for diurnal influen-
ces of precipitation type on motorist safety and transportation-

TABLE 3. Total number of crashes, vehicles involved, injuries, and fatalities considered for the impact factor calculation. An
aggregate impact factor for each precipitation type is also shown.

Precipitation type Crashes Vehicles involved Injuries Fatalities Impact factor

Rain 134 386 254 885 28 493 251 2.00
Snow 130 548 233 734 22 592 157 1.89
Freezing precipitation 10 017 16 624 1898 20 1.76
Total 274 951 505 243 52 983 428 1.94

FIG. 5. As in Fig. 2, but for impact factors.
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related impacts. For example, 0.5 in. h21 of snowfall should have
a higher impact during hours where the crash ratio, impact factor,
and traffic factor are all high. These higher-impact hours indicate
that crash risk is higher, crashes are more impactful (i.e., involve
more vehicles and/or fatalities), and traffic volumes are typically
higher (e.g., duringmidday hours).

Time-of-day factors are based on the product of the
smoothed crash and impact factors for each precipitation type
and the appropriate traffic factor (weekday, weekend, or
holiday) corresponding to the local hour of the day. These
values are then smoothed with a Gaussian-weighted moving
filter with a window length of 10 h to provide a smoother ac-
counting of diurnal variations. Although this smoothing does
reduce the more pronounced influences of the morning and
evening weekday peaks evident in Fig. 6, it preserves the dif-
ferences between daytime and overnight traffic patterns.
Rush hours can be extremely localized, with different cities or
roadways experiencing different peak travel hours. For exam-
ple (not shown), the weekday traffic patterns from the traffic
count sites located within 20 mi of GUS (Peru, IN)}all of
which were designated as rural and away from a major high-
way (Fig. 1)}did not feature the same “peakiness” of a morn-
ing rush hour as for the all-urban traffic count sites within 20 mi
of MDW (Chicago, IL). Further, traffic patterns in the wake of
the COVID-19 pandemic have changed such that the peak travel
hours may be shifted or spread out (e.g., Javadinasr et al. 2022;
Bhagat-Conway and Zhang 2023). These changes are not well
reflected in the data here, which is dominated by pre-COVID-19
traffic patterns, so accounting of localized and current traffic pat-
terns should be considered in future studies.

Finally, the resulting time-of-day values for snow are di-
vided by the minimum value of snow, and the values for rain
and freezing precipitation are divided by the minimum value
of rain. This division is done to help scale snow and liquid pre-
cipitation types independently, because snow and liquid pre-
cipitation have separate impact-based thresholds (see Table 1;
snow has a higher impact than rain of the same rate due to
thresholding, not the time-of-day factors). For simplicity, ice
pellets are given time-of-day factors that are the average of
snow and freezing precipitation for each hour, which is in line
with results from Tobin et al. (2021) where the crash relative
risk estimates of ice pellets are between those for snow and
freezing precipitation. These final time-of-day factors are
shown in Fig. 7. These factors mean that ice pellets will have a

greater impact on surface transportation than snow at any
given hour. Similarly, freezing rain will have a greater impact
on surface transportation than rain at any given hour of the
day. Further, the impact of each precipitation type is lower
during overnight hours and higher throughout the day. The
influences of day of the week are subtle, yet weekday morn-
ings have a distinct increase in factoring relative to weekends
or holidays.

One way in which these factors can be used for a surface-
transportation-related impact-based forecast product is by
combining precipitation rate, the metric for driving conditions
[discussed in section 2b(1)], and the time-of-day factor as-
signed to the precipitation type for the forecast hour. In this
way, precipitation type, precipitation rate, local time of day,
and driving conditions are all accounted for when determining
impacts. Whereas the time-of-day factors address transporta-
tion disruptions stemming from motorist safety (i.e., crash risk,
severity, and exposure), the metric for driving conditions}
which is based on reductions to vehicle free-flow speeds}
addresses transportation disruptions owing to reduced vehi-
cle speeds, such as increased travel times. By combining these
influences, the weather conditions can be scaled appropri-
ately to impacts. However, because the guidelines provided
by the Pennsylvania Turnpike are only based on precipitation
type and rate, it is important to ensure that the additional
factoring from driving conditions and time of day does not
completely overwhelm the raw precipitation rates. For exam-
ple, 0.5 in. h21 of snowfall should never have impacts on par
with 3.0 in. h21 of snowfall.

4. Conclusions

This article outlines a novel approach for the development of
an impact-based forecast product for surface transportation.

FIG. 6. Traffic factors for each local hour of the day for weekdays,
weekends, and holidays.

FIG. 7. Final time-of-day factors for each local hour of the day for
(a) snow (black lines) and ice pellet (purple lines) precipitation
types and (b) rain (green lines) and freezing rain (blue lines) precipi-
tation types. Dark solid lines of each color denote the factoring for
weekdays, medium-shaded dash–dotted lines denote those for
weekends, and light-shaded dotted lines denote those for holidays.
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Such a product would be invaluable to communicating the
potential severity of impacts from weather}particularly winter
precipitation}on surface transportation and motorist safety.
This development involves careful consideration for what im-
pacts are intended to be captured, how to scale weather and
road conditions to impacts, and how to categorize impact sever-
ity. Tying impacts to traffic disruptions are ideal, as these can
range from increased travel times and delays, to road closures
due to impassable road conditions. In this way, impact severity
can scale with increasingly poor driving conditions, which can ne-
cessitate enhanced mitigation efforts or strategies by motorists or
transportation agencies to maintain safety on roads, if possible.

To scale hourly weather forecast data to transportation im-
pacts, we propose the following: 1) Incorporate ametric represen-
tative of driving conditions and 2) introduce time-of-day factoring
for active precipitation to address the increase in crash risk and
the impact of crashes that may occur. The former leverages exist-
ing research to address disruptions to vehicle free-flow speeds to
ensure that, for example, 0.5 in. h21 of snow on snow-covered
roads with low visibility will have higher impacts than on wet
roads with higher visibility. The time-of-day factors introduced
here were based on research methods that combine crash and
traffic volume data during rain, snow, and freezing precipitation
types to assess the crash risk and the impact of crashes at each lo-
cal hour of the day for each precipitation type. These factors also
address potential impact variations during weekdays, weekends,
and holidays. Time-of-day factors are used to ensure that, for ex-
ample, snow during overnight hours has a lower impact than
snow during midday hours and that weekday rush hours are han-
dled appropriately versus weekend traffic patterns. Owing to data
availability limitations, the analysis performed to obtain the time-
of-day factors was limited to a single region of the United States,
whichmay not adequately reflect the diurnal influences of precipi-
tation type onmotorist safety and transportation impacts in other
areas. However, the methods used to create the time-of-day fac-
tor values can be applied to additional regions or states in the fu-
ture to improve regionalized utility of the product.

Although the time-of-day factors defined here were devel-
oped for a specific intended use case (i.e., Part II of this se-
ries), the research done on crash ratios, volume ratios, and
impact factors also has important implications for understand-
ing how motorist safety changes throughout the day and with
different precipitation types. This work also helps to further
our understanding of crash risk by separately interrogating
the influences of precipitation type on crash rate and traffic
volume reduction. We document higher crash ratios in the
morning hours for snow and freezing precipitation types yet
slightly higher crash ratios in the evening hours for rain.
There also exists a hierarchy where crash ratios are highest
for freezing precipitation and lowest for rain. For traffic vol-
ume ratios, there is a pronounced diurnal cycle for all precipi-
tation types where traffic volume reductions are minimal in
the morning hours but increase throughout the day. Traffic
volume reductions are also highest for freezing precipitation
and lowest for rain. We also introduce a unique method for
quantifying the impact of a crash by combining vehicle counts,
injuries, and fatalities into a single metric. This metric is lowest
overnight and increases throughout the day, indicating that

crashes overnight involve fewer vehicles, injuries, and/or fatali-
ties, yet crashes involve more vehicles, injuries, and/or fatalities
during the day. This metric is also highest for rain and lowest for
freezing rain, which is a reflection of the combined influence of
vehicle speeds and traffic volumes on the severity of crashes and
number of vehicles involved in crashes.

Identifying appropriate thresholds for impact severity levels
involves awareness of what thresholds may exist for transporta-
tion agencies to potentially impose travel restrictions. However,
such thresholds or guidelines are difficult to obtain due to either
the inexistence of specific guidelines or the need to leverage spe-
cific partnerships between NWS offices and transportation agen-
cies. Thresholds from the Pennsylvania Turnpike, in addition to
the scaling metrics of both driving conditions and time-of-day
factors, can be used to help inform impact levels. Ideally, how-
ever, thresholds from other areas are desired to ensure that im-
pact levels are appropriately scaled to all regions of the United
States. In the absence of specific knowledge of these thresholds,
climatology may be used as a proxy.

Now that the development of a new NWS impact-based
forecast product for surface transportation has been framed
in the context of its motivation, intent, and considerations for
impacts, Part II of this series will describe more specifics
about the product in development and highlight its perfor-
mance for the select case studies where surface transportation
was negatively impacted by winter weather.
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