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ABSTRACT 15 

 16 

The quality of metocean forecasts at longer forecast ranges has a significant impact on maritime safety 17 

and offshore operations. A nonlinear ensemble averaging technique is demonstrated using neural 18 

networks applied to one year (2017) of Global ocean Wave Ensemble forecast System (GWES) data 19 

provided by NCEP. Post-processing algorithms are developed based on multilayer perceptron neural 20 

networks (NN) trained with altimeter data to improve the global forecast skill, from nowcast to forecast 21 

ranges up to 10 days, including significant wave height (Hs) and wind speed (U10). NNs are applied as an 22 

alternative to the typical use of the arithmetic ensemble mean (EM). NN models are constructed using six 23 

variables sourced from 21 ensemble members, plus latitude, sin/cos of longitude, sin/cos of time, forecast 24 

lead time, and GWES cycle. The NN outputs are the residues of Hs and U10, i.e, the difference from the 25 

EM to the observations. One hidden (intermediate) layer is evaluated in terms of the optimum number of 26 

neurons (complexity) to map the given problem. The sensitivity test considered 26 different numbers of 27 

neurons, 10 seeds for initial conditions, and 3 equally-divided datasets; for a total of 780 NN experiments. 28 

Assessments using 2,507,099 paired satellite/GWES fields show that a simple NN model with few 29 

neurons is able to reduce the systematic errors for short-range forecasts, while a NN with more neurons is 30 

required to minimize the scatter error at longer forecast ranges. The novel method shows that one single 31 

NN model with 140 neurons is able to improve the error metrics for the whole globe while covering all 32 

forecast ranges analyzed. The bias of the widely used EM of GWES that varies from -10% to 10% for Hs 33 

compared to altimeters can be reduced to values within 5%. The RMSE of day-10 forecasts from the NN 34 

simulations indicated a gain of two days in predictability when compared to the EM, using a reasonably 35 

simple post-processing model with low computational cost. 36 
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1. Introduction 40 

 41 

Accurate forecasts of surface winds and waves are essential for activities such as ship routing, high-42 

risk maritime operations, coastal management, and alerts of extreme events. Extending wave forecast skill 43 

throughout longer forecast horizons requires multiple research initiatives, from improved modeling, for 44 

example incorporating atmosphere-ocean coupling (e.g. Janssen et al., 2002), to improved data 45 

assimilation methods, such as coupled data assimilation (Penny et al., 2017). While these improvements 46 

represent important benefits to the predictability of metocean variables, deterministic forecasts are still 47 

limited in their usefulness for outlooks beyond one week due to the chaotic behavior of the atmosphere-48 

ocean-wave coupled system, for example as pointed out by Lorenz (1963) using a simple model of the 49 

atmosphere. Using an ensemble of multiple forecasts can extend the range of skillful predictions often out 50 

to 10 days, with the additional benefit of providing a measure of the uncertainty via the spread of 51 

predictions (ensemble members). The arithmetic ensemble mean (EM) typically yields smaller forecast 52 

errors compared to the mean error of each individual member (Murphy 1988), which has been confirmed 53 

for both atmospheric ensemble forecasts (Zhou et al., 2017) and wave ensemble forecasts (Cao et al., 54 

2009; Alves et al., 2013). 55 

Since 1992, the European Centre for Medium-Range Weather Forecasts (ECMWF) and the U.S. 56 

National Centers for Environmental Prediction (NCEP) have produced operational ensemble forecasts. 57 

Saetra and Bidlot (2004) investigated the quality of the ECMWF ensemble prediction system using buoy 58 

and satellite data. An interesting improvement to ship routing using the ECMWF wave ensemble system 59 

was analyzed by Hoffschildt et al. (1999). The NCEP atmospheric global ensemble forecast system 60 

(GEFS) was recently assessed by Zhou et al. (2017) and the NCEP global wave ensemble system 61 

(GWES) has been described by Chen (2006), Cao et al. (2009), and evaluated by Alves et al. (2013). 62 

They found that after the day-5 forecasts, the root-mean-square error of the ensemble mean becomes 63 

smaller than the control forecast – however, the general bias does not show any improvement, as 64 

expected. This feature has been confirmed by Campos et al. (2018a), who calculated the systematic and 65 

scatter errors of 10-m wind speed (U10) and significant wave height (Hs) from NCEP ensemble forecast 66 

using buoy measurements. At longer forecast ranges, beyond one week, Campos et al. (2018a) found an 67 

improvement of 20% on the scatter index of the EM compared to the control run, and no significant 68 

improvement on the systematic error. Nevertheless, even with the benefits of the ensemble approach, 69 

large forecast errors are still present beyond the day-7 forecasts, demanding further post-processing 70 

techniques. 71 

Zieger et al. (2018) implemented a regional wave ensemble forecast system and developed a 72 

technique to bias-correct the mean value using multivariate linear regression based on Glahn and Lowry 73 

(1972). Durrant et. al. (2009), based on Woodcock and Greenslade (2007), developed an operational 74 

consensus forecast scheme that uses past model performance to bias-correct and combine forecasts to 75 

produce an improved product at locations where recent observations are available. For 24-hour forecasts, 76 

their methodology produced improvements of 36% and 31% in RMSE of Hs and U10 compared to the 77 

mean raw model components. Following a similar idea, Harpham et al. (2016) developed a Bayesian 78 

statistical method that modifies the probabilities of ensemble forecasts based on recent performance of 79 

individual members against a set of observations. These works are examples of bias correction methods, 80 

which are mostly based on multivariate linear regression and estimation of dynamic weights applied to 81 

ensemble members. Moving to a nonlinear mapping, our goal is to develop post-processing algorithms 82 
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based on neural networks (NN) trained with altimeter data to improve the NCEP’s GWES. This approach 83 

enhances the traditional EM to a nonlinear ensemble average that aims to reduce both the systematic and 84 

scatter errors of U10 and Hs. In our previous works (Campos et al. 2017, 2019a) we introduced a NN 85 

technique to perform a regional nonlinear ensemble averaging based on buoy data.  In this work we 86 

generalize the previously developed technique to global scale forecasts, using altimetry data.  87 

We describe the neural network model in Section 2. The global ensemble and observations, as well as 88 

the data organizing and pairing, are described in Section 3. Section 4 is dedicated to sensitivity tests and 89 

construction of neural network models, investigating the complexity necessary to address the global 90 

mapping. Section 5 shows the results and provide a discussion about the benefits and shortcomings of the 91 

method, and Section 6 presents the final conclusions, challenges, and suggestions of next steps. 92 

 93 

 94 

2. Nonlinear Mapping using Neural Networks 95 

 96 

The assessments of the NCEP ensemble forecast system performed by Campos et al. (2018a) and 97 

Campos et al. (2017), based on Mentaschi et al. (2013), draw attention to the multivariate and nonlinear 98 

aspects of the forecast error. Typically, the interpretation of ensemble outputs is mostly based on the 99 

mean and standard deviation (or spread) of the ensemble members. However, use of the EM assumes that 100 

a linear relationship between ensemble members is optimal, while this relationship may in fact be strongly 101 

nonlinear, particularly at longer lead times. In order to address these nonlinear relationships, we propose 102 

using feedforward NN models to produce an ensemble average as a post-processing alternative, trained 103 

with quality-controlled observations. 104 

A multilayer perceptron NN model (MLP-NN, Rumelhart et al. 1986) has been selected due to its 105 

previous successes being a powerful universal mapping approximator (Hornik, 1991), while being 106 

flexible and easy to implement on regression problems. The MLP-NN is a feed-forward artificial NN that 107 

uses supervised learning, and consists of three or more layers: one input layer, one or more hidden layers, 108 

and one output layer. In this study, only one hidden layer is used, though we vary the number of nodes to 109 

properly identify the minimum complexity and avoid over-fitting. The MLP-NN implemented is based on 110 

the theory of Haykin (1999) and implementation support of Krasnopolsky (2013). Equation (1) presents 111 

the MLP-NN model, which is built with hyperbolic tangent as the activation function. 112 

 113 
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 114 �� are the inputs, �� the outputs, 
 and � are the weights, � and ! are the numbers of inputs and outputs 115 

respectively. The number of nodes (neurons), or hyperbolic tangents, is given by ". The optimization of 116 

parameters 
 and � is based on backpropagation training using gradient decent. At each iteration, the Loss 117 

function is calculated as the square of the error obtained from the forward propagation of the inputs minus 118 

the observations, which is then propagated backwards using the derivative of the activation function, 1 −119 tanh ���� in order to correct the weights. It has been verified that efficient optimization is obtained with 120 

the stochastic gradient decent described by Kingma and Ba (2014), chosen for the NN training. The 121 
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selection of a large and reliable set of measurements, the number of iterations, and the number of neurons 122 

are key aspects during the training process. As a pre-processing step, a quality control is applied to 123 

exclude outliers and then input and output variables are rescaled between 0 and 1 according to equation 124 

(2). This process is later inverted after NN simulations. 125 

 126 

 127 

�)�*�,�+ = ,�� − ��-��.,��-/0 − ��-��. (2) 

 128 

Such NN models have gained increasing use in environmental problems. Examples for wave forecasting 129 

problems include Sánchez et al. (2018) concerning wave energy potential, Mandal and Prabaharan (2006) 130 

for forecast of Hs in India, Dixit and Londhe (2016) for extreme Hs simulations from hurricanes using a 131 

neuro-wavelet technique, Berbić et al. (2017) for short-term predictions of Hs, among other applications 132 

described by Krasnopolsky (2013). 133 

The first step towards the nonlinear ensemble averaging using NN was taken by Campos et al. (2017), 134 

who developed MLP-NN models for two point-wise locations, on the east and west coasts of the United 135 

States, trained with NDBC buoy data. Despite initial problems with excess noise and risk of over-fitting, a 136 

simple NN model with 11 nodes (neurons) and one hidden layer was effective in reducing the 5-day 137 

forecast errors of Hs by 64% for bias, and 29% for RMSE. Rasp and Lerch (2018) applied a similar 138 

neural network model for postprocessing ensemble weather forecasts of 2-m temperature at surface 139 

stations in Germany – being able to outperform benchmark postprocessing methods with low 140 

computational cost. Later developments by Campos et al. (2019a) expanded the single-point approach of 141 

Campos et al. (2017) to a regional modeling application, introducing the spatial dimension into the NN. 142 

Using six NDBC buoys in the Gulf of Mexico, 105,600 NNs were built with different architectures and 143 

initial conditions in order to investigate the ability of NNs to reduce scatter errors and systematic errors 144 

present in the GWES. The most effective NN models of Campos et al. (2019a) were found with 35 to 50 145 

neurons in the hidden layer, which improved the correlation coefficient of day-10 forecasts from 0.39 to 146 

0.61 for U10, and from 0.50 to 0.76 for Hs, when comparing to the EM. We note that both Campos et al. 147 

(2017) and Campos et al. (2019a) developed one independent NN per forecast time, from 0 (nowcast) to 148 

10 days (upper limit of GWES); and the training process was ‘static’, based on one year of measurements, 149 

and not dynamic (or online) as some of the references described before. This means that once the model is 150 

trained, the post-processing algorithm and NN parameters are not modified even when recent 151 

observations become available, unless a re-training is applied. 152 

As a follow-up of Campos et al. (2019a), our present study has two specific technical challenges: (1) 153 

to expand the domain from a small basin (Gulf of Mexico, of Campos et al. 2019a) to the whole globe; 154 

and (2) develop a single NN model that can minimize the error at all forecast horizons, from the nowcast 155 

out to 10 days and beyond. Figure 1 illustrates the first challenge, where different wind and wave climates 156 

can be visualized through the correlation coefficient (CC) of U10 and Hs. Locations in red indicate large 157 

CC where Hs is usually high when surface winds are intense. On the other hand, locations in blue, where 158 

CC is low, often have relatively large waves without strong winds – probably due to the passage of 159 

mature swells at trade winds zones. Figure 1 is a simple illustration of how the homogeneous climate 160 

within the Gulf of Mexico, explored by Campos et al. (2019a), compares to the whole globe explored in 161 

the present study. This indicates the need for proper spatial modeling in the NN simulations and sufficient 162 
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amount of observations during the training process, in order to build a single best NN model to cover all 163 

forecast leads in global simulations. 164 

 165 

 166 

Figure 1 – Correlation coefficient map of Hs and U10, calculated using one year (2017) of the deterministic run (control) for the 167 

nowcast only. Red colors highlight areas strongly influenced by wind-sea.  168 

 169 

We use observations of wind speed (U10) and wave height (Hs) covering the whole globe as provided 170 

by satellite altimeters, as described in Section 3, and consequently we use the same quantities as the 171 

output variables of the NNs. The inputs for the NN model include all of the variables that benefit the 172 

mapping, which consists of input information with high correlation with outputs and verified physical 173 

meaning, for each ensemble member, plus spatiotemporal parameters such as location, time, and forecast 174 

lead time – discussed in section 4. Inspired by the GWES forecast of Hurricane Mathew in the east coast 175 

of the United States (Figure 2), Campos et al. (2017) proposed a slightly different setup of the NN 176 

outputs. Figure 2 shows the ability of the EM of the day-5 GWES forecast in predicting an extreme event. 177 

The first part of the storm was very well simulated while the second peak was overestimated by the 178 

forecast. In this case, the traditional EM produces a skillful forecast for early part of the event, implying 179 

no need for post-processing intervention, while the later part of the storm has a significant drop in skill, 180 

indicated post-processing is required. As a result, the suggestion of Campos et al. (2017) was to use NNs 181 

to predict the anomaly (or residue) of the forecast, i.e., the difference between the measurement and the 182 

EM. 183 

Predicting the residue (or residual) has an advantage during the training process, of not updating the 184 

NN parameters (Equation 1) during the backpropagation training when the EM is already relatively 185 

accurate, while reserving the largest updates to the weights 
 and � for the times when the EM severely 186 

deviates from the observations. This approach agrees with the paradigm that NN should be applied to 187 

nonlinear problems only (Krasnopolsky, 2013, Chpt.1 and 2), i.e., the linear part is adequately represented 188 

by the EM while the nonlinear component is simulated by the NN through the prediction of the residue. 189 

By using the residue predicted by the MLP-NN, combined with the EM, Equation 1 is now embedded in 190 

Equation 3 where the nonlinear ensemble averaging NEM is finally calculated. Campos et al. (2017) 191 

demonstrated the success of this approach for a range of percentiles, including extreme events with fewer 192 

samples in the database. The top percentiles are usually associated with larger errors (Campos et al., 193 

2018a) that lead to larger updates of NN weights. Figure 3 illustrates the model, selected as the basis of 194 

our global NN simulations, and Table 1 shows the NN inputs, outputs, and NN experiments - described in 195 

detail in section 4. 196 
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 197 

 198 

Figure 2 - GWES forecast (day-5 forecast) for a period in 2016 related to Hurricane Mathew. Black lines are the 20 NCEP 199 

ensemble members, shaded-grey is the arithmetic ensemble mean, and in red is the NDBC measurement for station 41004 at 200 

32.501°N / 79.099°W. 201 

 202 �12 = 12 + ��3�4�, 4�, ⋯ , 4�� (3) 

 203 

 204 

Figure 3 - Hybrid scheme proposed by Campos et al. (2017), where the NN model is dedicated to predict the residue that is added 205 

to the arithmetic ensemble mean to obtain the final value. 206 

  207 

Table 1 – Summary of NN architecture and NN experiments, where U10 is 10-m wind intensity, Hs is significant wave height, 208 

Tp is peak wave period, Tm is mean wave period, WsH is significant wave height of wind-sea, and Tws is period of wind-sea. 209 

133 NN Inputs 2 NN Outputs 780 NNs 

21 

members 

U10 

Hs 

Tp 

Tm 

WsH 

Tws 

Latitude 

Residue U10 

10 seeds 
Sine Longitude 

Cosine Longitude 3 independent 

datasets Sine Time Residue Hs 

Cosine Time 
26 different 

numbers of 

neurons 

Forecast lead time 

NCEP/GWES cycle 

 210 

 211 
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The hybrid system (Figure 3) uses the combination of the EM with the NN prediction of the residue 212 

to obtain final estimates of U10 and Hs, which are then assessed against altimeter observations. Willmott 213 

et al. (1985) provide a complete discussion about environmental model assessments, using metrics to 214 

analyze the accuracy and precision of model results. Mentaschi et al. (2013) present a recent valuable 215 

complement to this topic, with a discussion about limitations of RMSE and how it can be complemented 216 

by other metrics to have a reliable estimation of the systematic and scatter components of the error. 217 

Among the equations given by Mentaschi et al. (2013), we prefer to utilize normalized metrics since the 218 

model performance is assessed in a global domain, including wind and wave climates with different 219 

severities. Thus, three normalized error metrics are utilized to evaluate the results: normalized bias 220 

(NBias) that measures the systematic error; scatter index (SI) that measures the scatter error; and 221 

normalized RMSE (NRMSE) that combines the systematic and scatter components. Equations (4) to (6) 222 

describe the dimensionless metrics selected, where � is the altimeter data, � is the forecast, and 50 is the 223 

standard deviation of �. The overbar indicates the arithmetic mean. By using these three normalized 224 

metrics without units, plots and tables of errors can be interpreted as ratios, or percentage errors divided 225 

by 100. 226 

 227 

�67
8 = ∑ ��� − �������∑ ������  (4) 

:; = <∑ *��� − �=� − ��� − �̅�+����� ∑ �������  (5) 

�?2:1 = <∑ ��� − ��������∑ �������  =  <:;� + �67
8� @ �̅�
�̅� + 50�A  (6) 

  228 

3. Input data and observations 229 

 230 

We use one year of 2017 historical forecast data from the NCEP global ensemble system, and satellite 231 

observations selected for the same period. The GWES was implemented in 2005 (Chen, 2006; Cao et al., 232 

2009), and is based on the third-generation wave model WAVEWATCH-III (Tolman, 2016). The current 233 

GWES version (Alves et al., 2013), used in the present paper, runs a 10-day forecast with four cycles per 234 

day, with a space-time resolution of 0.5° and 3 h, and produces ensemble forecasts using 20 GEFS-forced 235 

members plus a control member, described by Zhou et al. (2017). Winds and ice concentration are used as 236 

forcing fields from the GEFS, which was first implemented in 1992 (Toth and Kalnay, 1993). The GEFS 237 

initialization scheme was recently replaced (Zhou et al., 2017), from the breeding-based Ensemble 238 

Transformation with Rescaling (ETR) to the Ensemble Kalman Filter scheme (EnKF, Whitaker et al, 239 

2008). The space-time resolution of surface winds from GEFS is the same as GWES, 0.5° and 3 h. Ice 240 

concentrations are obtained from NCEP’s automated ice analysis (Wu and Grumbine, 2013). 241 

Note that perturbations are solely added to the atmospheric ensemble in GEFS. Behrens (2015) and 242 

Farina (2002) argue that atmospheric forecast models represent highly nonlinear dynamic systems that 243 
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could generate chaotic forecasts due to small perturbations in the initial condition, while perturbations of 244 

the initial state in wave models have small effects on the results. Therefore, the wave ensemble integrates 245 

21 independent simulations of the wave model that differ in the provided forcing conditions. GWES only 246 

propagates to the wave spectra the perturbations added to the atmospheric model. 247 

The quality-controlled altimeter data used for training NN outputs were obtained from two sources: 248 

AVISO and NESDIS. The altimeter missions Jason2, Jason3 and Saral were downloaded from AVISO ftp 249 

area, while Cryosat2 was obtained from NESDIS. Complete assessments of altimeter data can be found at 250 

Queffeulou (2004), Queffeulou (2012), Queffeulou (2013), Sepulveda et al. (2015), and Queffeulou and 251 

Croizé-Fillon (2017). Comparisons with buoys show that the altimeter estimate of Hs is, in general, in 252 

agreement with in situ data, with the differences having a standard deviation around 0.3 m, depending on 253 

the satellite, with a small overestimation at low Hs and underestimation for high Hs. Taking into account 254 

that level of uncertainty is much smaller than forecast errors, altimeter data from the two sources above 255 

can be directly applied for the NN training, after a quick additional quality control. 256 

The along-track altimeter data are organized and collocated into the regular grid of GWES, using the 257 

kd-tree algorithm and based on the methodology of Young and Holland (1996) and Sepulveda et al. 258 

(2015). Considering the high sampling rate of the satellite track, all measurements with a maximum space 259 

distance of 25 km and time distance of 0.5 hours are allocated to each grid point (Lat/Lon) at a specific 260 

time. The multiple altimeter records within this cube of Lat/Lon/Time are selected and a Gaussian 261 

function applied to weight values by distance to the center point, in order to give a single altimeter data 262 

matching the GWES grid-point. Figure 4 illustrates the collocated altimeter data over the globe for the 263 

duration of the NN experiment. 264 

 265 

 266 

Figure 4 - Total count of altimeter observations per GWES grid point for 2017. 267 

 268 

Furthermore, two additional criteria are imposed to exclude satellite/GWES matchups at shallow and 269 

intermediate waters or located close to the coast. These criteria avoid increasing errors of altimeter data 270 

due to footprint averaging size and restrict the NN emulation to deep waters. We use ETOPO1 271 

bathymetry (Amante and Eakins, 2009) with 1 arc-minute of resolution, and a measure of distance from 272 

the coast with 0.04 degrees resolution from NASA's Goddard Space Flight Center database. We select a 273 

minimum water depth of 490 m and minimum distance from the coast of 100 km. Applying these criteria, 274 

a total count of 7,521,298 satellite/GWES matchups between 60°S and 60°N are allocated to GWES grid 275 

points at 3 hourly time resolution. For analysis of results, the largest oceans are delimited using the World 276 

Seas database (IHO, 1953), containing a demarcation of oceans and seas, giving: 817,516 matchups of 277 
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satellite/GWES in the North Atlantic, 1,280,934 in the South Atlantic, 1,601,452 in the North Pacific, 278 

2,175,888 in the South Pacific, and 1,645,508 in the Indian Ocean.  279 

For single hindcast simulations, the 7,521,298 matchups described before would consist of pairs of 280 

one vector of model variables (see Section 4) per altimeter value. However, there are two additional 281 

dimensions, ensemble members and forecast time, so each altimeter record is paired to a matrix 282 

exemplified by Figure 5. The inclusion of forecast time paired to altimeter data must be applied with 283 

caution, because the sequence of records at any specific location is made sparser by shifting satellite 284 

orbits. For each altimeter measurement at any Lat/Lon/Time, we move backwards in time and select 285 

GWES predictions all valid at the same location and time; for example, taking the 24-hour forecast step of 286 

the preceding 1-day GWES cycle, then the 48-hour forecast step of the preceding 2-day GWES cycle etc.  287 

This process can be applied with the NCEP cycle resolution of 6 hours, giving 41 sets of forecast 288 

leads within the time horizon of 10 days. The matrix of 21 ensemble members per 41 forecast instants 289 

provides 861 model values that with an accurate forecast should be similar to the single satellite 290 

observation.  Figure 5 exemplifies this matrix where, on the nowcast GWES is performing very well, for 291 

the first four forecast days GWES slightly overestimates the observations, and beyond the 5th day there is 292 

a severe underestimation of the forecast that should be attenuated by the NN post-processing model. 293 

  294 

295 

 296 

Figure 5 - Matrix representation of forecasts produced by GWES at 54.4°S / 74.5°W, related to the nowcast on 2017/06/10, 12Z, 297 

and up to 10-day forecasts (41 cycles) prior to the event. The top plot shows the significant wave height (Hs, meters) of GWES. 298 

The corresponding observation of Hs derived from the altimeter is 13.8 meters, on 2017/06/10, 12Z at the same position. The 299 

bottom plot shows the difference of observation minus GWES, in meters, where blue indicates underestimation of forecasts, red 300 

indicates overestimation, and the white color is the perfect agreement between model and observation. 301 

 302 

 303 

4. Neural Network Architecture and Sensitivity Tests 304 

 305 

The MLP-NN models were constructed based on equations (1) and (3). NN inputs include six 306 

variables: 10-m wind intensity (U10), significant wave height (Hs), peak wave period (Tp), mean wave 307 

period (Tm), significant wave height of wind-sea (WsH), and period of wind-sea (Tws), for each of 20 308 

ensemble members plus the control member. Initial tests included only Hs, U10, and Tp as NN inputs, 309 

however after expanding the simulations to the whole globe, the addition of Tm, WsH, and Tsw, were 310 
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found to provide valuable information about the wave spectra needed to differentiate mature swell from 311 

young wind-sea, wave generation from propagation zones, and different wind and wave climates (Figure 312 

1). Zieger et al. (2018), in their study of ensemble forecasts in Australia, confirmed the benefit of 313 

including wind-sea features, such as significant wave height and period of wind-waves, that improve the 314 

overall spectral information and the ensemble prediction. 315 

The geographical space is represented with three additional NN inputs: latitude, and sine and cosine 316 

of longitude (equation 7). The sine and cosine of time (days) are added as inputs in order to include an 317 

annual cycle and seasonal effects to the mapping, presented in equation 8. Furthermore, forecast lead-time 318 

is included, varying from 0 to 10 days, as well as GWES forecast cycle (0,6,12,18). This results in a total 319 

of 133 variables as the NN inputs: 126 GWES variables, 3 variables for location, 2 for time, and 2 320 

variables for forecast lead-time and cycle. 321 

 322 

BC�87� = sin F�GHI�JK� L, BC�MC8 = cos P2QBC�360 U (7) 

�87� = sin F�GV�-WJKX L, �MC8��� = cos P2Q�7!Y365 U (8) 

 323 

NNs do not automatically understand periodic and cyclic variables if not stated, for example "time" 324 

(where month 1 comes after month 12, and hour 0 comes after 23), "longitude" (-180 comes after 179) 325 

etc. Therefore, sine and cosine had to be applied to time and longitude, as presented by equations above, 326 

increasing the number of variables. 327 

The NN outputs are composed of two variables only: the residues of U10 and Hs, presented by Figure 328 

3. The hidden (or intermediate) layer, containing the hyperbolic tangents, controls the complexity of the 329 

mapping.  The computational and functional complexity of the NN mapping (�[) of MLP-NN (1) can be 330 

defined by equation (9), following Krasnopolsky (2013). As in equation (1), � and ! are the total 331 

numbers of inputs and outputs, and " is the number of nodes (neurons) in one hidden layer. Once the NN 332 

inputs and outputs are defined and fixed, the complexity is controlled by ". We focus on identifying the 333 

most effective value for k, which is problem and domain dependent. The optimal �[ for the NN global 334 

modeling is unknown, so we conduct an experiment with several NN simulations with different number 335 

of neurons ". The test aims to find a single NN model with the best configuration of the hidden layer and 336 

optimized parameters 
 and �. 337 

 338 �[ = " ∙ �� + ! + 1� + ! (9) 
 339 

A total of 26 different numbers of neurons are tested through independent NN simulations: 2, 5, 10, 340 

20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 180, 200, 250, 300, 350, 400, 450, and 341 

500. Ten different seeds, for random initialization of 
 and � of equation (1), are used to estimate the 342 

sensitivity of the backpropagation training algorithm to the initial weights and to find better initial 343 

weights. The dataset of 7,521,298 matchups of satellite/GWES is randomly divided into three datasets 344 

where the NNs are trained and assessed independently. This allows a further analysis of the robustness of 345 

the NN model and reduces memory load during the computational-costly training step. The entire 346 

sensitivity test considers 26 different numbers of neurons, 10 seeds, and 3 datasets, giving a total of 780 347 

independent NNs. Table 1 summarizes the NN architecture and NN simulations performed. Besides the 348 

data division, a cross-validation scheme with three cycles was applied to each dataset (previously divided, 349 

and independent to each other), alternating indexes defined for training and testing by using the leave-350 
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one-out method. In summary, cross-validation was applied three times, where each one selected 2/9 of the 351 

entire dataset for training and 1/9 for testing. This approach was selected to ensure that NN assessments 352 

are applied to records that were not used during training and, combined to a sufficiently small number of 353 

neurons and iterations, avoids over-fitting, over-training and ensures better generalization. 354 

 355 

Results of sensitivity tests 

Results involving NN simulation for the three different randomly selected datasets (see previous 356 

paragraph) are averaged, since errors are very similar among them, and then presented as a function of the 357 

number of neurons and plotted divided into training and test sets. The systematic error of the EM of 358 

GWES is around 3% (written on top of the left column plots in Figure 6) while the NNs errors are 359 

bounded within -1% and +1%; a very small error involving NN with both small and large number of 360 

neurons. Similar values of NBias are found for U10 and Hs, presented by Figure 6. The scatter indexes 361 

(SI) indicate better results for Hs than U10, where the EM has 24.5% of error for U10 and 21% for Hs. 362 

These values drop to 23% for U10 and 19% for Hs when using NNs, a relative improvement that is 363 

smaller than the improvement found for NBias. The evolution of the SI with the number of neurons 364 

shows a minimum value that corresponds to more neurons than the same for NBias, where a sharp decay 365 

is seen between 2 to 50 neurons. These differences, however, are only 0.38% in the scatter error among 366 

various numbers of neurons. The best results of NRMSE, which combines the scatter and systematic 367 

errors (equation 6, shown in the right column of plots of Figure 6), are found between 60 to 180 neurons 368 

but within a range of only 0.31%. Above 200 neurons, the SI and the NRMSE start to increase again. 369 

The difference between training and test sets is small (Figure 6), suggesting that there is no 370 

overtraining during the backpropagation training step. However, there is variation due to the use of 371 

different seeds such that the results tend to diverge above 200 neurons with increasing spread. This 372 

indicates that the NN models might be over-fitted and implies that the complexity of NN (9) is greater 373 

than needed. For the three different metrics and two output variables, the NN models have smaller errors 374 

than both the EM and control member (top of each plot in Figure 6). Thus, from aforementioned analysis 375 

we conclude that the best NN models should have between 60 to 180 neurons at the intermediate layer. 376 

However, this result comes from the assessment integrated over the entire GWES forecast range of 10 377 

days, while errors increase significantly with forecast horizon, which impacts the NN training. Figure 7 378 

presents the same results as Figure 6 but for three different forecast lead times: day 0 (nowcast), day 5, 379 

and day 10 - where each point related to a specific number of neurons is an average of 30 NNs (10 seeds 380 

and 3 datasets). The NRMSE for Hs reaches minimum at 80 and 90 neurons for different forecast leads.  381 

For U10, on day 0, the sharp decay of the curve suggests the best results with 50 to 80 neurons, and 382 

values above 90 have larger NRMSE. For day 5, a second minimum is found around 160 to 180 neurons. 383 

The longest forecast range, day 10, shows the best results between 120 and 180 neurons, also indicating 384 

larger NRMSE for NN with neurons equal or less than 110. Therefore, the increasing scatter error of the 385 

surface winds at longer forecast ranges is the main feature that requires more complex NNs. Another 386 

characteristic to notice is the distance between the NN curves of training and test set. On day 0 they are 387 

very close to each other, while for day 5 and 10, the test set changes to larger NRMSE than the training 388 

set, indicating the greater difficulty of the NN in simulating longer forecast ranges. 389 

 390 

 391 

 392 
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393 

 394 

Figure 6 – Assessment of NNs performance statistics (vertical axes) as functions of the number of neurons at the hidden layer 395 

(from 2 to 500): Normalized Bias (left), Scatter Index (center), and Normalized RMSE (right). The red and black curves at the 396 

first two columns represent the training and test sets, respectively, showing the results for ten different seeds (initial conditions). 397 

The right column shows the dashed line that is the average (over different seeds) result of training set while solid line is the 398 

results for the test set. On top of each plot the same error metrics for the GWES control run and the arithmetic ensemble mean 399 

(EM) are presented to allow the comparison of results. 400 
 401 

 402 

 403 

 404 

Figure 7 – NRMSE as functions of the number of neurons, for three different forecast horizons. The dashed line is the average 405 

(over different seeds) result for training set while solid line is the results for test set. On top of each plot the same error metrics 406 

for the GWES control run and the arithmetic ensemble mean (EM) are presented, to allow the comparison of results. 407 

 408 

U10 U10 U10 

Hs Hs Hs 

U10 U10 U10 

Hs Hs Hs 

Day 0 Day 5 Day 10 
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The assessment of 780 NNs averaged through the three different datasets (260 results presented) can 409 

be further visualized into the two-dimensional space of scatter and systematic error (Figure 8). All NNs, 410 

represented by the cloud of circles in Figure 8, performed better than the EM and control run (red and 411 

cyan squares, on the left plots), for both types of errors (systematic and scatter), and indicates the success 412 

of the approach. The systematic errors of Hs and U10 presented by NBias are especially small, between -413 

2% and 2%, while the scatter errors are between 19% and 23%. The clouds of training and test points of 414 

Figure 8 are close to each other so NNs are not over-fitted and have generalization capability. The 415 

selection of the best NN model among the tests relies on a defined criterion assigning scores to each NN 416 

based on the error metrics. The right plots of Figure 8 provides a more detailed view of test set results, 417 

where the dot size is proportional to the variance of SI through the forecast range divided by the SI, i.e., 418 

NNs with good results for the whole range of forecast have small points, while NNs that improved some 419 

forecast ranges but not others are depicted by points that have large diameters. This last situation occurs 420 

mostly in NNs with few neurons and high values of SI, at the top of the cloud of points of Figure 8. Based 421 

on these plots, the best NNs are expected to have more than 30 neurons and can simulate very well a wide 422 

range of forecast leads. 423 

 424 

425 

 426 

Figure 8 - Results of the neural network tests in terms of the scatter error (y-axis) and systematic error (x-axis). The left plots 427 

present the NN results (training set in magenta and test set in green) compared to the control run (cyan square, at the top) and the 428 

arithmetic EM (red square). The right plots are a magnification of the clouds of NN results on the test set, where the color 429 

indicates the number of neurons and the size of the dots indicates the normalized standard deviation of scatter error throughout 430 

different forecast ranges. 431 

U10 U10 

Hs 
Hs 



 

14 

 

The decision about the best NN was based on three steps. The first one restricted the NN results 432 

within a maximum systematic error of 0.5% including Hs and U10, as NBias is very small for most of the 433 

NNs. A total of 326 NNs of the 780 have absolute NBias of U10 smaller than 0.005, while for Hs this 434 

amount is 294. The combined restriction for both variables leads to 144 NNs with extremely small and 435 

therefore acceptable biases. The second step sorted the arrays of NNs error metrics, building arrays in 436 

ascending order for each type of error, with IDs related to each NN model. The third step looked at the 437 

top values of the rank (best results) of correlation coefficient (CC) and SI for Hs and U10, searching for 438 

the best NN that minimize the scatter errors of both waves and winds. It has been verified that the top-439 

ranking NN models that minimize certain scatter error metric such as SI, also maximize the correlation 440 

coefficient, which makes the final selection much easier. Three NNs were identified with very similar 441 

values, from which the best one was selected, containing 140 neurons at the hidden layer. Although the 442 

goal of the post-processing simulations is to prioritize Hs, the selection of optimum NNs that also 443 

minimize the error of U10 is important, since both output variables are correlated, and the wave 444 

generation process depends of the quality of surface winds. 445 

 446 

5. Results of Global simulations and discussion 447 

 448 

Once the best NN architecture and parameters have been determined, the performance of the selected 449 

NN was evaluated using an independent set of altimeter data that was not included in the backpropagation 450 

training. This includes 2,507,099 matchups of satellite/GWES distributed over the whole globe. Figure 9 451 

and Figure 10 present global maps of systematic and scatter errors, comparing the EM with the NN 452 

nonlinear average. The matchups are grouped in bins (61 latitudes and 181 longitudes) within a radius of 453 

2° to compute the error statistics for each location. NBias of Figure 9 shows a strong spatial dependence 454 

of GWES errors, reflecting areas of occurrence of tropical and extra-tropical storms where the 455 

atmospheric model data errors are expected to be larger than in other areas, and regions in the tropical 456 

ocean exposed to swell systems that may either propagate extratropical-storm wind-field errors or indicate 457 

intrinsic wave model source-term biases. In mid and high latitudes, the EM tends to overestimate 458 

observed values from altimeters. This is particularly evident in the Southern Hemisphere. In the tropics, 459 

the EM tends to underestimate the observed values, with an exception of area along the ITCZ in the 460 

Pacific Ocean. The systematic error of the EM varies from -10% to +10% at most locations. The 461 

nonlinear ensemble average using NN reduces this bias to values within 5%. The benefit is greater at mid-462 

latitudes dominated by extratropical cyclones where the NBias of the EM can reach 12% for Hs. 463 

However, errors along the Equator in the eastern Pacific Ocean are not improved, possibly due to the 464 

small correlation of Hs and U10 as illustrated in Figure 1. 465 

The global maps of SI (Figure 10), indicate significant errors for both U10 and Hs at extra-tropical 466 

latitudes, again reflecting areas where forcing errors are expected to be larger due to the occurrence of 467 

tropical and extra-tropical storms, or to the dominance of swells. The Hs maps present larger errors at 468 

western portions of the oceans and, concerning the Southern Hemisphere, the South Atlantic Ocean has 469 

larger errors than the Indian and South Pacific Oceans. SI in general reaches up to 40% for U10 and 30% 470 

for Hs. The NN provided additional skill that is not restricted to specific locations but distributed over the 471 

globe. Comparing Figure 9 and Figure 10 it is possible to conclude that the relative improvement due to 472 

the NN on the SI is smaller than the improvement found for NBias. In addition, for practical applications 473 

it is important to have the total RMSE with the same unit as the significant wave height (Hs, in meters) 474 
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combining both error components – presented by Figure 11. As a final global map, we include the 475 

deterministic forecast (control run) to provide an overview of the progress associated with each step. A 476 

significant improvement occurs moving from the control run to the ensemble mean (EM), where the 477 

RMSE at extra-tropical locations is reduced by approximately 30% and confirms the success of the 478 

ensemble methodology described by Zhou et al. (2017) and Alves et al. (2013). The NN post-processing 479 

simulation acts especially on the locations with large RMSE at mid-latitudes and provides an additional 480 

reduction of 20% at these locations so after the hybrid modeling (neural network attached to the ensemble 481 

forecast, illustrated by Figure 3 and equation 3) almost the entire globe has average RMSE of Hs bound to 482 

one meter. 483 

In order to further contribute to the spatial discussion of results, Table 2 divides the assessment in five 484 

ocean basins using the World Seas database initially described. The differences in performance among the 485 

oceans are very small, and the NN is proven to be suitable for all parts of the globe. Table 2 indicates that 486 

the ensemble is adding bias to the control run, which is greatly reduced by the NN. In terms of scatter 487 

error, the EM significantly reduces the SI of the control run, by approximately 25%, and the NN provides 488 

an additional small reduction of 5% to 10% of SI values. 489 

 490 

 491 

 492 

493 

 494 

Figure 9 – Global assessments showing the normalized bias (NBias) for GWES ensemble mean (EM, top), and for NN ensemble 495 

mean (bottom) on an independent test set. The columns represent U10 (left) and Hs (right). Red indicates overestimation of the 496 

model compared to altimeter observations while blue indicates underestimation. Great part of large-scale biases in the mid- to 497 

high-latitudes has been eliminated by the NN ensemble mean. 498 

 499 

 500 

 501 

 502 
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503 

 504 

Figure 10 - Global assessments showing the scatter index (SI) for GWES ensemble mean (EM, top), and for NN ensemble mean 505 

on an independent test-set (bottom). The columns represent U10 (left) and Hs (right). A reduction of SI is seen in the NN results 506 

at some locations. 507 

 508 

509 

 510 

Figure 11  - Final Global assessment maps of Hs showing the RMSE (in meters) for the control run of GWES (A: top-left), the 511 

EM of GWES (B: top-right), and the NN post-processing result (C: bottom). It highlights the progressive improvement divided in 512 

two steps, first the arithmetic ensemble mean (EM) of the ensemble members compared to the deterministic single run (control), 513 

and the neural network post-processing compared to the arithmetic ensemble mean. 514 

 515 

A B 
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Table 2 – Systematic and scatter errors for each ocean, comparing the GWES control run with EM and NNs (test set). 516 

 517 

U10m Hs 

    NAtlantic SAtlantic Indian  NPacific SPacific NAtlantic SAtlantic Indian  NPacific SPacific 

Nbias 

Control 0.016 0.018 0.013 0.010 0.029 -0.031 0.002 0.022 -0.017 0.008 

EM 0.029 0.034 0.030 0.019 0.041 0.001 0.041 0.065 0.017 0.048 

NN-Test 0.007 0.008 0.005 0.006 0.009 0.006 0.007 0.006 0.012 0.005 

SI 

Control 0.338 0.329 0.314 0.335 0.320 0.265 0.269 0.243 0.248 0.237 

EM 0.258 0.244 0.235 0.259 0.241 0.223 0.229 0.206 0.214 0.202 

NN-Test 0.245 0.231 0.223 0.242 0.229 0.208 0.209 0.183 0.197 0.182 

 518 

 519 

We do not divide the global assessment maps into several figures related to forecast lead days 520 

because it would reduce the total data volume of matchups at the bins over the globe. Therefore, Figures 521 

Figure 9 and Figure 10 as well as Table 2 integrate the results over the 10-days forecast range and 522 

inevitably insert more weight into the analyses and comparisons involving longer lead times associated 523 

with larger errors. The final Figure 12 shows the error metrics as a function of the forecast lead-time, 524 

providing a meaningful assessment of the nonlinear wave ensemble averaging using NN. A total of 525 

61,149 matchups of satellite/GWES per forecast time is utilized to compose the plots. Figure 12 shows 526 

that NBias is reduced to values between 0 to 2% throughout the whole range. This improvement is 527 

especially important after the day-7 forecasts, when the control run tends to underestimate, and EM tends 528 

to overestimate the observations. The SI plot indicates a small reduction of the error by the NN, equally 529 

distributed over the lead times. Taking the right part of the SI plot, associated with the longest horizons, 530 

the results of the NN on day-10 has the same error of the EM on day-8, equal to 27%, which represents an 531 

extension of 2 days in terms of predictability if the NN averaging is used. 532 

Equation (6) presents the combination of NBias and SI into the NRMSE, also included in Figure 12. 533 

The growth pattern is similar to the SI plot, which is expected after comparing the y-axis of NBias and SI 534 

plots that indicate much larger errors coming from the scatter component. The correlation coefficient 535 

(CC) is the most challenging metric to improve but the NN model was able to slightly improve the values 536 

compared with the EM, especially at longer forecast lead times. The comparison of plots in Figure 12 537 

allows one to have a valuable overview of the benefits and shortcomings of the NN post-processing 538 

method. 539 

The operational implementation of the post-processing algorithm is simple. Once the NN parameters 540 

(
, � of equation 1) and normalization parameters (equation 2) are obtained, the simulation is 541 

straightforward, following three steps. (1) The inputs must be downloaded (or linked) from the NCEP 542 

ensemble forecast system, which are then normalized and reshaped to build the input array for the NN 543 

program; (2) the NN simulation is run covering the latitude, longitude and forecast time, generating the 544 

global residue; and (3) outputs invert the initial normalization, the proper shape of the array is rebuilt, and 545 

the residues are added to the EM fields of Hs and U10 to construct the final output file (in our case, in 546 

netcdf or grib2 format). As described before, the training process is the step that requires more 547 

computational power. Daily runs following GWES cycles, however, can be performed by single-core 548 

processors (~2GHz) taking approximately five minutes, in Python language. We believe this might be 549 

further improved and time consumed can be reduced. 550 
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 551 

 552 

 553 

 554 

 555 

Figure 12 – NBias (A: top-left), SI (B: top-right), NRMSE (C: bottom-left), and correlation coefficient (D: bottom-right) of Hs 556 

versus forecast lead time, considering the independent assessment using 2,507,099 matchups of satellite/GWES (61,149 per 557 

forecast time). Solid curves show the deterministic run, dashed-point the EM, and dashed curves the nonlinear ensemble 558 

averaging using NN. 559 

 560 

 561 

It is important to stress again that our methodology based on neural-networks does not intend to 562 

replace the numerical modeling of the physical processes or the ensemble approach. Instead, we have 563 

developed a framework maintaining the ensemble forecast, as provided by NCEP, and including a soft-564 

computing neural network as a post-processing step - linking the traditional modeling with a machine 565 

learning algorithm that improves the ensemble mean, trained with a large amount of altimeter data. The 566 

post-processing algorithm using multilayer perceptron neural networks is simple enough to be used as a 567 

bias correction to deterministic forecasts (same methodology but with only “one member”). However, it is 568 

proved that ensemble forecasts significantly reduce the scatter errors at longer forecast ranges (Zhou et 569 

al., 2017; Campos et al., 2019b) so the best solution considering the hybrid modeling is to attach the 570 

neural network to outputs of ensemble forecast systems. 571 

 572 

 573 

 574 

 575 

A B 

C D 



 

19 

 

6. Conclusions 576 

 577 

A large set of experiments was conducted to develop neural networks to post-process and bias-correct 578 

operational ensemble wave forecasts, where the target variable is primarily Hs followed by U10. The 579 

main goal was to build a NN model trained with altimeter data, able to calculate nonlinear ensemble 580 

averages that outperform the typical arithmetic ensemble mean, applied to the whole globe and covering a 581 

forecast range of 10 days. Simplicity of post-processing algorithms has been a priority during the project. 582 

An analysis of 780 NNs facilitated identifying an effective architecture and complexity of the problem, as 583 

well as testing the generalization and the distribution of the error with forecast lead times, latitudes, and 584 

longitudes. 585 

A previous study by Campos et al. (2019a) focusing on the Gulf of Mexico found the best NN 586 

configurations with 35 to 50 neurons in the hidden layer. Expanding to our global simulation, it was 587 

found that 60 to 180 neurons produce the best results. The complexity of the NN models, described by 588 

equation (9), necessary to address global nonlinear ensemble averages, involves a deeper discussion that 589 

depends on the output variable of interest, forecast range, and the type of error. It was shown that 590 

minimizing Hs errors require fewer neurons (around 80) than U10 (more than 100). The same is valid for 591 

shorter and longer forecast ranges. Simpler NN models with 60 to 80 neurons produce the smallest errors 592 

in the nowcast, while 120 neurons are needed when considering the day-10 forecasts. Overall, simple NN 593 

models are able to reduce the systematic errors of Hs at short-range forecasts, while NN models with 594 

more neurons are necessary to minimize the scatter error of U10 at longer forecast ranges. After a limit 595 

around 200 neurons, increasing the complexity of NN models resulted in larger errors and loss of 596 

generalization. 597 

The best NN overall configuration was found to have 140 neurons at the hidden layer. Taking the 598 

results from one year of simulations (2017), we found that the NNs are efficient in reducing global 599 

systematic errors. The average NBias was reduced from an average of 3.5% for the EM to less than 1% 600 

globally, which was further confirmed to be valid in all the five oceans analyzed separately. Scatter errors 601 

were more difficult to reduce; however, the NNs did provide a small improvement of SI, especially for 602 

Hs. The NRMSE combines the systematic and scatter components of error (equation 6), and confirms the 603 

effectiveness of the nonlinear ensemble average using global NN trained with altimeter data, which was 604 

able to improve the NRMSE throughout the whole range of forecasts. Using the NN-based nonlinear 605 

averaging, the day-10 forecasts have the same NRMSE as the day-8 forecasts for the arithmetic ensemble 606 

mean – a gain of two forecast days in predictability. We believe that the methodology described can be 607 

successfully extended to even longer forecast ranges, which requires a new setup of the operational wave 608 

ensemble forecast of NCEP/NOAA that nowadays is limited to 10 days. Further, we believe that 609 

integrating the NN methods with coupled atmosphere-ocean-wave forecasts and coupled data assimilation 610 

(Penny and Hamill et al., 2017; Penny et al., 2017) may further extend this prediction capability, as well 611 

as introducing wave parameters from spectral partitions into the NN inputs, which could benefit lower 612 

latitudes with multiple distant swells. 613 

In terms of future developments, besides the extension of forecast horizon, the construction of neural 614 

network-based ensembles is a promising example of a growing trend to incorporate machine learning into 615 

weather forecasting (Boukabara et al., 2019). The criterion of selecting the best NN among the tests led to 616 

the choice of a single NN whereas Krasnopolsky and Lin (2012) showed that multiple NN simulations 617 

(developing an ensemble of NNs) produced successful results for precipitation forecasts in the United 618 
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States. Specific NN ensembles suitable for extreme wave conditions can also be developed in the future, 619 

following the track of the storms, as performed by Campos et al. (2018b), or even building NN members 620 

trained for tropical cyclones, which represent a unique family of events. Our study focused on large 621 

basins in deep water. Future NN developments are needed to cover coastal areas, lakes, small seas, and 622 

locations close to the Arctic influenced by sea ice. Our last suggestion and plan are to include multi-623 

model ensembles in the NN post-processing algorithm, introducing more input variables into the NNs in 624 

addition to the NCEP ensemble members, for example: ECMWF, Canadian Meteorological Center 625 

(CMC), Fleet Numerical Meteorology and Oceanography Center (FNMOC), and Icosahedral 626 

Nonhydrostatic Model (ICON-DWD). We believe that this approach can expand the applicability of post-627 

processing algorithms using neural networks and can significantly improve wind and wave forecast with 628 

relative low computational cost. 629 

 630 
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 641 

Data sources 642 

 643 

NCEP’s Global Wave Ensemble Forecast: 644 

• ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/wave/prod 645 

Altimeters: 646 

• ftp://avisoftp.cnes.fr/AVISO/pub/ 647 

• ftp://ftp.star.nesdis.noaa.gov/pub/sod/lsa/cs2igdr/ 648 

Distance to the nearest coastline: 649 

• https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/ 650 

World Seas database, IHO-Sea-Areas: 651 

• http://www.marineregions.org/downloads.php#iho 652 

 653 

 654 

 655 
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