

1 Improving NCEP's Global-Scale Wave Ensemble Averages Using 2 Neural Networks

3
4 Ricardo Martins Campos^{1*}, Vladimir Krasnopolksky², Jose-Henrique Alves³,
5 Stephen G. Penny^{4,5}

6 ¹Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico,
7 University of Lisbon

8 ²EMC/NCEP/NOAA Center for Weather and Climate Prediction

9 ³SRG/EMC/NCEP/NOAA Center for Weather and Climate Prediction

10 ⁴Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder

11 ⁵Physical Sciences Division, NOAA Earth System Research Laboratory

12 *Corresponding Author, e-mail address: riwave@gmail.com

15 ABSTRACT

16 The quality of metocean forecasts at longer forecast ranges has a significant impact on maritime safety
17 and offshore operations. A nonlinear ensemble averaging technique is demonstrated using neural
18 networks applied to one year (2017) of Global ocean Wave Ensemble forecast System (GWES) data
19 provided by NCEP. Post-processing algorithms are developed based on multilayer perceptron neural
20 networks (NN) trained with altimeter data to improve the global forecast skill, from nowcast to forecast
21 ranges up to 10 days, including significant wave height (Hs) and wind speed (U10). NNs are applied as an
22 alternative to the typical use of the arithmetic ensemble mean (EM). NN models are constructed using six
23 variables sourced from 21 ensemble members, plus latitude, sin/cos of longitude, sin/cos of time, forecast
24 lead time, and GWES cycle. The NN outputs are the residues of Hs and U10, i.e. the difference from the
25 EM to the observations. One hidden (intermediate) layer is evaluated in terms of the optimum number of
26 neurons (complexity) to map the given problem. The sensitivity test considered 26 different numbers of
27 neurons, 10 seeds for initial conditions, and 3 equally-divided datasets; for a total of 780 NN experiments.
28 Assessments using 2,507,099 paired satellite/GWES fields show that a simple NN model with few
29 neurons is able to reduce the systematic errors for short-range forecasts, while a NN with more neurons is
30 required to minimize the scatter error at longer forecast ranges. The novel method shows that one single
31 NN model with 140 neurons is able to improve the error metrics for the whole globe while covering all
32 forecast ranges analyzed. The bias of the widely used EM of GWES that varies from -10% to 10% for Hs
33 compared to altimeters can be reduced to values within 5%. The RMSE of day-10 forecasts from the NN
34 simulations indicated a gain of two days in predictability when compared to the EM, using a reasonably
35 simple post-processing model with low computational cost.

36
37 **Keywords:** neural networks; ensemble forecast; non-linear ensemble averaging; wave modeling;
38 altimeter data.

40 **1. Introduction**

41 Accurate forecasts of surface winds and waves are essential for activities such as ship routing, high-
42 risk maritime operations, coastal management, and alerts of extreme events. Extending wave forecast skill
43 throughout longer forecast horizons requires multiple research initiatives, from improved modeling, for
44 example incorporating atmosphere-ocean coupling (e.g. Janssen et al., 2002), to improved data
45 assimilation methods, such as coupled data assimilation (Penny et al., 2017). While these improvements
46 represent important benefits to the predictability of metocean variables, deterministic forecasts are still
47 limited in their usefulness for outlooks beyond one week due to the chaotic behavior of the atmosphere-
48 ocean-wave coupled system, for example as pointed out by Lorenz (1963) using a simple model of the
49 atmosphere. Using an ensemble of multiple forecasts can extend the range of skillful predictions often out
50 to 10 days, with the additional benefit of providing a measure of the uncertainty via the spread of
51 predictions (ensemble members). The arithmetic ensemble mean (EM) typically yields smaller forecast
52 errors compared to the mean error of each individual member (Murphy 1988), which has been confirmed
53 for both atmospheric ensemble forecasts (Zhou et al., 2017) and wave ensemble forecasts (Cao et al.,
54 2009; Alves et al., 2013).

55 Since 1992, the European Centre for Medium-Range Weather Forecasts (ECMWF) and the U.S.
56 National Centers for Environmental Prediction (NCEP) have produced operational ensemble forecasts.
57 Saetra and Bidlot (2004) investigated the quality of the ECMWF ensemble prediction system using buoy
58 and satellite data. An interesting improvement to ship routing using the ECMWF wave ensemble system
59 was analyzed by Hoffschmidt et al. (1999). The NCEP atmospheric global ensemble forecast system
60 (GEFS) was recently assessed by Zhou et al. (2017) and the NCEP global wave ensemble system
61 (GWES) has been described by Chen (2006), Cao et al. (2009), and evaluated by Alves et al. (2013).
62 They found that after the day-5 forecasts, the root-mean-square error of the ensemble mean becomes
63 smaller than the control forecast – however, the general bias does not show any improvement, as
64 expected. This feature has been confirmed by Campos et al. (2018a), who calculated the systematic and
65 scatter errors of 10-m wind speed (U10) and significant wave height (Hs) from NCEP ensemble forecast
66 using buoy measurements. At longer forecast ranges, beyond one week, Campos et al. (2018a) found an
67 improvement of 20% on the scatter index of the EM compared to the control run, and no significant
68 improvement on the systematic error. Nevertheless, even with the benefits of the ensemble approach,
69 large forecast errors are still present beyond the day-7 forecasts, demanding further post-processing
70 techniques.

71 Zieger et al. (2018) implemented a regional wave ensemble forecast system and developed a
72 technique to bias-correct the mean value using multivariate linear regression based on Glahn and Lowry
73 (1972). Durrant et. al. (2009), based on Woodcock and Greenslade (2007), developed an operational
74 consensus forecast scheme that uses past model performance to bias-correct and combine forecasts to
75 produce an improved product at locations where recent observations are available. For 24-hour forecasts,
76 their methodology produced improvements of 36% and 31% in RMSE of Hs and U10 compared to the
77 mean raw model components. Following a similar idea, Harpham et al. (2016) developed a Bayesian
78 statistical method that modifies the probabilities of ensemble forecasts based on recent performance of
79 individual members against a set of observations. These works are examples of bias correction methods,
80 which are mostly based on multivariate linear regression and estimation of dynamic weights applied to
81 ensemble members. Moving to a nonlinear mapping, our goal is to develop post-processing algorithms

83 based on neural networks (NN) trained with altimeter data to improve the NCEP's GWES. This approach
 84 enhances the traditional EM to a nonlinear ensemble average that aims to reduce both the systematic and
 85 scatter errors of U10 and Hs. In our previous works (Campos et al. 2017, 2019a) we introduced a NN
 86 technique to perform a regional nonlinear ensemble averaging based on buoy data. In this work we
 87 generalize the previously developed technique to global scale forecasts, using altimetry data.

88 We describe the neural network model in Section 2. The global ensemble and observations, as well as
 89 the data organizing and pairing, are described in Section 3. Section 4 is dedicated to sensitivity tests and
 90 construction of neural network models, investigating the complexity necessary to address the global
 91 mapping. Section 5 shows the results and provide a discussion about the benefits and shortcomings of the
 92 method, and Section 6 presents the final conclusions, challenges, and suggestions of next steps.

95 2. Nonlinear Mapping using Neural Networks

96
 97 The assessments of the NCEP ensemble forecast system performed by Campos et al. (2018a) and
 98 Campos et al. (2017), based on Mentaschi et al. (2013), draw attention to the multivariate and nonlinear
 99 aspects of the forecast error. Typically, the interpretation of ensemble outputs is mostly based on the
 100 mean and standard deviation (or spread) of the ensemble members. However, use of the EM assumes that
 101 a linear relationship between ensemble members is optimal, while this relationship may in fact be strongly
 102 nonlinear, particularly at longer lead times. In order to address these nonlinear relationships, we propose
 103 using feedforward NN models to produce an ensemble average as a post-processing alternative, trained
 104 with quality-controlled observations.

105 A multilayer perceptron NN model (MLP-NN, Rumelhart et al. 1986) has been selected due to its
 106 previous successes being a powerful universal mapping approximator (Hornik, 1991), while being
 107 flexible and easy to implement on regression problems. The MLP-NN is a feed-forward artificial NN that
 108 uses supervised learning, and consists of three or more layers: one input layer, one or more hidden layers,
 109 and one output layer. In this study, only one hidden layer is used, though we vary the number of nodes to
 110 properly identify the minimum complexity and avoid over-fitting. The MLP-NN implemented is based on
 111 the theory of Haykin (1999) and implementation support of Krasnopol'sky (2013). Equation (1) presents
 112 the MLP-NN model, which is built with hyperbolic tangent as the activation function.

$$113 \quad NN(x_1, x_2, \dots, x_n; a, b) = y_q = a_{q0} + \sum_{j=1}^k a_{qj} \cdot \tanh \left(b_{j0} + \sum_{i=1}^n b_{ji} \cdot x_i \right); q = 1, 2, \dots, m \quad (1)$$

114
 115 x_i are the inputs, y_q the outputs, a and b are the weights, n and m are the numbers of inputs and outputs
 116 respectively. The number of nodes (neurons), or hyperbolic tangents, is given by k . The optimization of
 117 parameters a and b is based on backpropagation training using gradient decent. At each iteration, the Loss
 118 function is calculated as the square of the error obtained from the forward propagation of the inputs minus
 119 the observations, which is then propagated backwards using the derivative of the activation function, $1 -$
 120 $\tanh(x)^2$ in order to correct the weights. **It has been verified that efficient optimization is obtained with**
 121 **the stochastic gradient decent described by Kingma and Ba (2014), chosen for the NN training.** The

122 selection of a large and reliable set of measurements, the number of iterations, and the number of neurons
123 are key aspects during the training process. As a pre-processing step, a quality control is applied to
124 exclude outliers and then input and output variables are rescaled between 0 and 1 according to equation
125 (2). This process is later inverted after NN simulations.

126

127

$$\tilde{x}_i^{[0,1]} = \frac{(x_i - x_i^{min})}{(x_i^{max} - x_i^{min})} \quad (2)$$

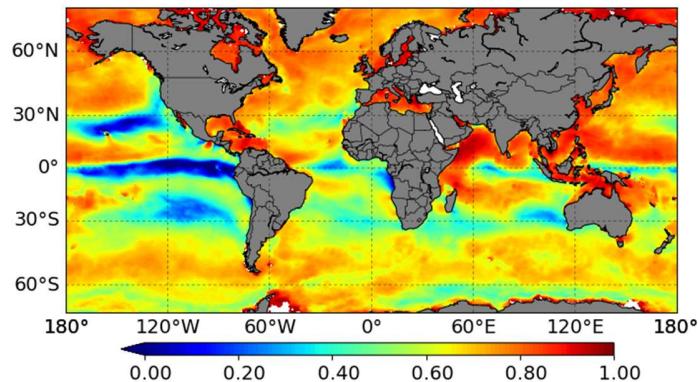
128

129 Such NN models have gained increasing use in environmental problems. Examples for wave forecasting
130 problems include Sánchez et al. (2018) concerning wave energy potential, Mandal and Prabaharan (2006)
131 for forecast of Hs in India, Dixit and Londhe (2016) for extreme Hs simulations from hurricanes using a
132 neuro-wavelet technique, Berbić et al. (2017) for short-term predictions of Hs, among other applications
133 described by Krasnopsky (2013).

134 The first step towards the nonlinear ensemble averaging using NN was taken by Campos et al. (2017),
135 who developed MLP-NN models for two point-wise locations, on the east and west coasts of the United
136 States, trained with NDBC buoy data. Despite initial problems with excess noise and risk of over-fitting, a
137 simple NN model with 11 nodes (neurons) and one hidden layer was effective in reducing the 5-day
138 forecast errors of Hs by 64% for bias, and 29% for RMSE. Rasp and Lerch (2018) applied a similar
139 neural network model for postprocessing ensemble weather forecasts of 2-m temperature at surface
140 stations in Germany – being able to outperform benchmark postprocessing methods with low
141 computational cost. Later developments by Campos et al. (2019a) expanded the single-point approach of
142 Campos et al. (2017) to a regional modeling application, introducing the spatial dimension into the NN.
143 Using six NDBC buoys in the Gulf of Mexico, 105,600 NNs were built with different architectures and
144 initial conditions in order to investigate the ability of NNs to reduce scatter errors and systematic errors
145 present in the GWES. The most effective NN models of Campos et al. (2019a) were found with 35 to 50
146 neurons in the hidden layer, which improved the correlation coefficient of day-10 forecasts from 0.39 to
147 0.61 for U10, and from 0.50 to 0.76 for Hs, when comparing to the EM. We note that both Campos et al.
148 (2017) and Campos et al. (2019a) developed one independent NN per forecast time, from 0 (nowcast) to
149 10 days (upper limit of GWES); and the training process was ‘static’, based on one year of measurements,
150 and not dynamic (or online) as some of the references described before. This means that once the model is
151 trained, the post-processing algorithm and NN parameters are not modified even when recent
152 observations become available, unless a re-training is applied.

153 As a follow-up of Campos et al. (2019a), our present study has two specific technical challenges: (1)
154 to expand the domain from a small basin (Gulf of Mexico, of Campos et al. 2019a) to the whole globe;
155 and (2) develop a single NN model that can minimize the error at all forecast horizons, from the nowcast
156 out to 10 days and beyond. Figure 1 illustrates the first challenge, where different wind and wave climates
157 can be visualized through the correlation coefficient (CC) of U10 and Hs. Locations in red indicate large
158 CC where Hs is usually high when surface winds are intense. On the other hand, locations in blue, where
159 CC is low, often have relatively large waves without strong winds – probably due to the passage of
160 mature swells at trade winds zones. Figure 1 is a simple illustration of how the homogeneous climate
161 within the Gulf of Mexico, explored by Campos et al. (2019a), compares to the whole globe explored in
162 the present study. This indicates the need for proper spatial modeling in the NN simulations and sufficient

163 amount of observations during the training process, in order to build a single best NN model to cover all
164 forecast leads in global simulations.
165



166

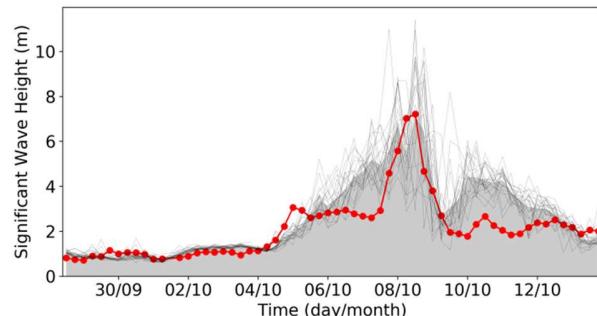
167 Figure 1 – Correlation coefficient map of Hs and U10, calculated using one year (2017) of the deterministic run (control) for the
168 nowcast only. **Red colors highlight areas strongly influenced by wind-sea.**

169

170 We use observations of wind speed (U10) and wave height (Hs) covering the whole globe as provided
171 by satellite altimeters, as described in Section 3, and consequently we use the same quantities as the
172 output variables of the NNs. The inputs for the NN model include all of the variables that benefit the
173 mapping, which consists of input information with high correlation with outputs and verified physical
174 meaning, for each ensemble member, plus spatiotemporal parameters such as location, time, and forecast
175 lead time – discussed in section 4. Inspired by the GWES forecast of Hurricane Mathew in the east coast
176 of the United States (Figure 2), Campos et al. (2017) proposed a slightly different setup of the NN
177 outputs. Figure 2 shows the ability of the EM of the day-5 GWES forecast in predicting an extreme event.
178 The first part of the storm was very well simulated while the second peak was overestimated by the
179 forecast. In this case, the traditional EM produces a skillful forecast for early part of the event, implying
180 no need for post-processing intervention, while the later part of the storm has a significant drop in skill,
181 indicated post-processing is required. As a result, the suggestion of Campos et al. (2017) was to use NNs
182 to predict the anomaly (or residue) of the forecast, i.e., the difference between the measurement and the
183 EM.

184 Predicting the residue (or residual) has an advantage during the training process, of not updating the
185 NN parameters (Equation 1) during the backpropagation training when the EM is already relatively
186 accurate, while reserving the largest updates to the weights a and b for the times when the EM severely
187 deviates from the observations. This approach agrees with the paradigm that NN should be applied to
188 nonlinear problems only (Krasnopolsky, 2013, Chpt.1 and 2), i.e., the linear part is adequately represented
189 by the EM while the nonlinear component is simulated by the NN through the prediction of the residue.
190 By using the residue predicted by the MLP-NN, combined with the EM, Equation 1 is now embedded in
191 Equation 3 where the nonlinear ensemble averaging NEM is finally calculated. Campos et al. (2017)
192 demonstrated the success of this approach for a range of percentiles, including extreme events with fewer
193 samples in the database. The top percentiles are usually associated with larger errors (Campos et al.,
194 2018a) that lead to larger updates of NN weights. Figure 3 illustrates the model, selected as the basis of
195 our global NN simulations, and Table 1 shows the NN inputs, outputs, and NN experiments - described in
196 detail in section 4.

197



198

199

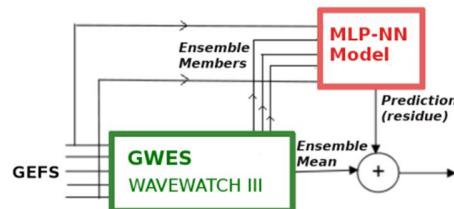
200
201

Figure 2 - GWES forecast (day-5 forecast) for a period in 2016 related to Hurricane Mathew. Black lines are the 20 NCEP ensemble members, shaded-grey is the arithmetic ensemble mean, and in red is the NDBC measurement for station 41004 at 32.501°N / 79.099°W.

202

$$NEM = EM + NN_r(p_1, p_2, \dots, p_n) \quad (3)$$

203



204

205
206

Figure 3 - Hybrid scheme proposed by Campos et al. (2017), where the NN model is dedicated to predict the residue that is added to the arithmetic ensemble mean to obtain the final value.

207

208
209

Table 1 – Summary of NN architecture and NN experiments, where U10 is 10-m wind intensity, Hs is significant wave height, Tp is peak wave period, Tm is mean wave period, WsH is significant wave height of wind-sea, and Tws is period of wind-sea.

133 NN Inputs		2 NN Outputs	780 NNs
21 members	U10 Hs Tp Tm WsH Tws	Latitude	10 seeds 3 independent datasets 26 different numbers of neurons
		Sine Longitude	
		Cosine Longitude	
		Sine Time	
		Cosine Time	
		Forecast lead time	
		NCEP/GWES cycle	
		Residue U10	
		Residue Hs	

210

211

212 The hybrid system (Figure 3) uses the combination of the EM with the NN prediction of the residue
 213 to obtain final estimates of U10 and Hs, which are then assessed against altimeter observations. Willmott
 214 et al. (1985) provide a complete discussion about environmental model assessments, using metrics to
 215 analyze the accuracy and precision of model results. Mentaschi et al. (2013) present a recent valuable
 216 complement to this topic, with a discussion about limitations of RMSE and how it can be complemented
 217 by other metrics to have a reliable estimation of the systematic and scatter components of the error.
 218 Among the equations given by Mentaschi et al. (2013), we prefer to utilize normalized metrics since the
 219 model performance is assessed in a global domain, including wind and wave climates with different
 220 severities. Thus, three normalized error metrics are utilized to evaluate the results: normalized bias
 221 (NBias) that measures the systematic error; scatter index (SI) that measures the scatter error; and
 222 normalized RMSE (NRMSE) that combines the systematic and scatter components. Equations (4) to (6)
 223 describe the dimensionless metrics selected, where x is the altimeter data, y is the forecast, and σ_x is the
 224 standard deviation of x . The overbar indicates the arithmetic mean. By using these three normalized
 225 metrics without units, plots and tables of errors can be interpreted as ratios, or percentage errors divided
 226 by 100.

227

$$NBias = \frac{\sum_{i=1}^n (y_i - x_i)}{\sum_{i=1}^n x_i} \quad (4)$$

$$SI = \sqrt{\frac{\sum_{i=1}^n [(y_i - \bar{y}) - (x_i - \bar{x})]^2}{\sum_{i=1}^n x_i^2}} \quad (5)$$

$$NRMSE = \sqrt{\frac{\sum_{i=1}^n (y_i - x_i)^2}{\sum_{i=1}^n x_i^2}} = \sqrt{SI^2 + NBias^2 \left(\frac{\bar{x}^2}{\bar{x}^2 + \sigma_x^2} \right)} \quad (6)$$

228

229 3. Input data and observations

230

231 We use one year of 2017 historical forecast data from the NCEP global ensemble system, and satellite
 232 observations selected for the same period. The GWES was implemented in 2005 (Chen, 2006; Cao et al.,
 233 2009), and is based on the third-generation wave model WAVEWATCH-III (Tolman, 2016). The current
 234 GWES version (Alves et al., 2013), used in the present paper, runs a 10-day forecast with four cycles per
 235 day, with a space-time resolution of 0.5° and 3 h, and produces ensemble forecasts using 20 GEFS-forced
 236 members plus a control member, described by Zhou et al. (2017). Winds and ice concentration are used as
 237 forcing fields from the GEFS, which was first implemented in 1992 (Toth and Kalnay, 1993). The GEFS
 238 initialization scheme was recently replaced (Zhou et al., 2017), from the breeding-based Ensemble
 239 Transformation with Rescaling (ETR) to the Ensemble Kalman Filter scheme (EnKF, Whitaker et al,
 240 2008). The space-time resolution of surface winds from GEFS is the same as GWES, 0.5° and 3 h. Ice
 241 concentrations are obtained from NCEP's automated ice analysis (Wu and Grumbine, 2013).

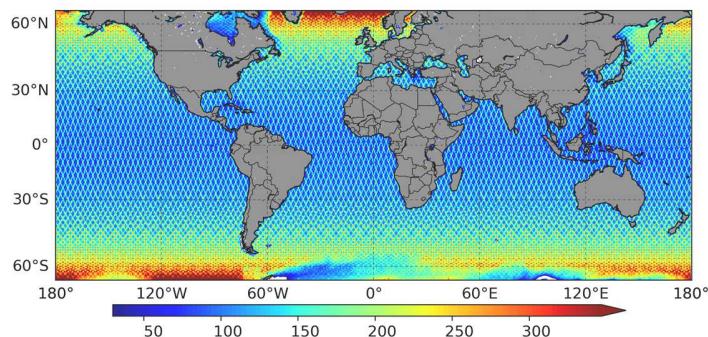
242 Note that perturbations are solely added to the atmospheric ensemble in GEFS. Behrens (2015) and
 243 Farina (2002) argue that atmospheric forecast models represent highly nonlinear dynamic systems that

244 could generate chaotic forecasts due to small perturbations in the initial condition, while perturbations of
245 the initial state in wave models have small effects on the results. Therefore, the wave ensemble integrates
246 21 independent simulations of the wave model that differ in the provided forcing conditions. GWES only
247 propagates to the wave spectra the perturbations added to the atmospheric model.

248 The quality-controlled altimeter data used for training NN outputs were obtained from two sources:
249 AVISO and NESDIS. The altimeter missions Jason2, Jason3 and Saral were downloaded from AVISO ftp
250 area, while Cryosat2 was obtained from NESDIS. Complete assessments of altimeter data can be found at
251 Quefférou (2004), Quefférou (2012), Quefférou (2013), Sepulveda et al. (2015), and Quefférou and
252 Croizé-Fillon (2017). Comparisons with buoys show that the altimeter estimate of Hs is, in general, in
253 agreement with in situ data, with the differences having a standard deviation around 0.3 m, depending on
254 the satellite, with a small overestimation at low Hs and underestimation for high Hs. Taking into account
255 that level of uncertainty is much smaller than forecast errors, altimeter data from the two sources above
256 can be directly applied for the NN training, after a quick additional quality control.

257 The along-track altimeter data are organized and collocated into the regular grid of GWES, using the
258 kd-tree algorithm and based on the methodology of Young and Holland (1996) and Sepulveda et al.
259 (2015). Considering the high sampling rate of the satellite track, all measurements with a maximum space
260 distance of 25 km and time distance of 0.5 hours are allocated to each grid point (Lat/Lon) at a specific
261 time. The multiple altimeter records within this cube of Lat/Lon/Time are selected and a Gaussian
262 function applied to weight values by distance to the center point, in order to give a single altimeter data
263 matching the GWES grid-point. Figure 4 illustrates the collocated altimeter data over the globe for the
264 duration of the NN experiment.

265



266

267 Figure 4 - Total count of altimeter observations per GWES grid point for 2017.

268

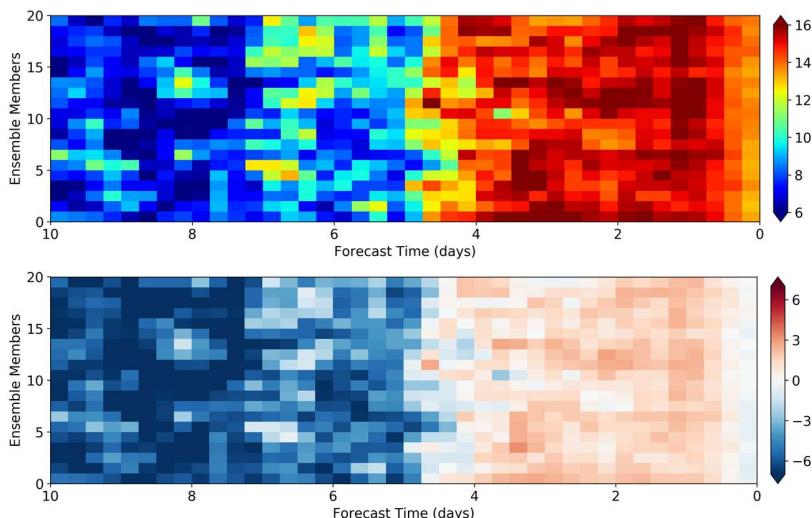
269 Furthermore, two additional criteria are imposed to exclude satellite/GWES matchups at shallow and
270 intermediate waters or located close to the coast. These criteria avoid increasing errors of altimeter data
271 due to footprint averaging size and restrict the NN emulation to deep waters. We use ETOPO1
272 bathymetry (Amante and Eakins, 2009) with 1 arc-minute of resolution, and a measure of distance from
273 the coast with 0.04 degrees resolution from NASA's Goddard Space Flight Center database. We select a
274 minimum water depth of 490 m and minimum distance from the coast of 100 km. Applying these criteria,
275 a total count of 7,521,298 satellite/GWES matchups between 60°S and 60°N are allocated to GWES grid
276 points at 3 hourly time resolution. For analysis of results, the largest oceans are delimited using the World
277 Seas database (IHO, 1953), containing a demarcation of oceans and seas, giving: 817,516 matchups of

278 satellite/GWES in the North Atlantic, 1,280,934 in the South Atlantic, 1,601,452 in the North Pacific,
 279 2,175,888 in the South Pacific, and 1,645,508 in the Indian Ocean.

280 For single hindcast simulations, the 7,521,298 matchups described before would consist of pairs of
 281 one vector of model variables (see Section 4) per altimeter value. However, there are two additional
 282 dimensions, ensemble members and forecast time, so each altimeter record is paired to a matrix
 283 exemplified by Figure 5. The inclusion of forecast time paired to altimeter data must be applied with
 284 caution, because the sequence of records at any specific location is made sparser by shifting satellite
 285 orbits. For each altimeter measurement at any Lat/Lon/Time, we move backwards in time and select
 286 GWES predictions all valid at the same location and time; for example, taking the 24-hour forecast step of
 287 the preceding 1-day GWES cycle, then the 48-hour forecast step of the preceding 2-day GWES cycle etc.

288 This process can be applied with the NCEP cycle resolution of 6 hours, giving 41 sets of forecast
 289 leads within the time horizon of 10 days. The matrix of 21 ensemble members per 41 forecast instants
 290 provides 861 model values that with an accurate forecast should be similar to the single satellite
 291 observation. Figure 5 exemplifies this matrix where, on the nowcast GWES is performing very well, for
 292 the first four forecast days GWES slightly overestimates the observations, and beyond the 5th day there is
 293 a severe underestimation of the forecast that should be attenuated by the NN post-processing model.

294



295

296

297 Figure 5 - Matrix representation of forecasts produced by GWES at 54.4°S / 74.5°W, related to the nowcast on 2017/06/10, 12Z,
 298 and up to 10-day forecasts (41 cycles) prior to the event. The top plot shows the significant wave height (Hs, meters) of GWES.
 299 The corresponding observation of Hs derived from the altimeter is 13.8 meters, on 2017/06/10, 12Z at the same position. The
 300 bottom plot shows the difference of observation minus GWES, in meters, where blue indicates underestimation of forecasts, red
 301 indicates overestimation, and the white color is the perfect agreement between model and observation.

302
 303

304 4. Neural Network Architecture and Sensitivity Tests

305
 306 The MLP-NN models were constructed based on equations (1) and (3). NN inputs include six
 307 variables: 10-m wind intensity (U10), significant wave height (Hs), peak wave period (Tp), mean wave
 308 period (Tm), significant wave height of wind-sea (WsH), and period of wind-sea (Tws), for each of 20
 309 ensemble members plus the control member. Initial tests included only Hs, U10, and Tp as NN inputs,
 310 however after expanding the simulations to the whole globe, the addition of Tm, WsH, and Tsw, were

311 found to provide valuable information about the wave spectra needed to differentiate mature swell from
 312 young wind-sea, wave generation from propagation zones, and different wind and wave climates (Figure
 313 1). Zieger et al. (2018), in their study of ensemble forecasts in Australia, confirmed the benefit of
 314 including wind-sea features, such as significant wave height and period of wind-waves, that improve the
 315 overall spectral information and the ensemble prediction.

316 The geographical space is represented with three additional NN inputs: latitude, and sine and cosine
 317 of longitude (equation 7). The sine and cosine of time (days) are added as inputs in order to include an
 318 annual cycle and seasonal effects to the mapping, presented in equation 8. Furthermore, forecast lead-time
 319 is included, varying from 0 to 10 days, as well as GWES forecast cycle (0,6,12,18). This results in a total
 320 of 133 variables as the NN inputs: 126 GWES variables, 3 variables for location, 2 for time, and 2
 321 variables for forecast lead-time and cycle.

$$322 \quad lonsin = \sin\left(\frac{2\pi lon}{360}\right), \quad loncos = \cos\left(\frac{2\pi lon}{360}\right) \quad (7)$$

$$tsin = \sin\left(\frac{2\pi time}{365}\right), \quad tcos(t) = \cos\left(\frac{2\pi time}{365}\right) \quad (8)$$

323
 324 NNs do not automatically understand periodic and cyclic variables if not stated, for example "time"
 325 (where month 1 comes after month 12, and hour 0 comes after 23), "longitude" (-180 comes after 179)
 326 etc. Therefore, sine and cosine had to be applied to time and longitude, as presented by equations above,
 327 increasing the number of variables.

328 The NN outputs are composed of two variables only: the residues of U10 and Hs, presented by Figure
 329 3. The hidden (or intermediate) layer, containing the hyperbolic tangents, controls the complexity of the
 330 mapping. The computational and functional complexity of the NN mapping (N_c) of MLP-NN (1) can be
 331 defined by equation (9), following Krasnopol'sky (2013). As in equation (1), n and m are the total
 332 numbers of inputs and outputs, and k is the number of nodes (neurons) in one hidden layer. Once the NN
 333 inputs and outputs are defined and fixed, the complexity is controlled by k . We focus on identifying the
 334 most effective value for k , which is problem and domain dependent. The optimal N_c for the NN global
 335 modeling is unknown, so we conduct an experiment with several NN simulations with different number
 336 of neurons k . The test aims to find a single NN model with the best configuration of the hidden layer and
 337 optimized parameters a and b .

$$338 \quad N_c = k \cdot (n + m + 1) + m \quad (9)$$

339
 340 A total of 26 different numbers of neurons are tested through independent NN simulations: 2, 5, 10,
 341 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 180, 200, 250, 300, 350, 400, 450, and
 342 500. Ten different seeds, for random initialization of a and b of equation (1), are used to estimate the
 343 sensitivity of the backpropagation training algorithm to the initial weights and to find better initial
 344 weights. The dataset of 7,521,298 matchups of satellite/GWES is randomly divided into three datasets
 345 where the NNs are trained and assessed independently. This allows a further analysis of the robustness of
 346 the NN model and reduces memory load during the computational-costly training step. The entire
 347 sensitivity test considers 26 different numbers of neurons, 10 seeds, and 3 datasets, giving a total of 780
 348 independent NNs. Table 1 summarizes the NN architecture and NN simulations performed. Besides the
 349 data division, a cross-validation scheme with three cycles was applied to each dataset (previously divided,
 350 and independent to each other), alternating indexes defined for training and testing by using the leave-

351 one-out method. In summary, cross-validation was applied three times, where each one selected 2/9 of the
352 entire dataset for training and 1/9 for testing. This approach was selected to ensure that NN assessments
353 are applied to records that were not used during training and, combined to a sufficiently small number of
354 neurons and iterations, avoids over-fitting, over-training and ensures better generalization.

355

Results of sensitivity tests

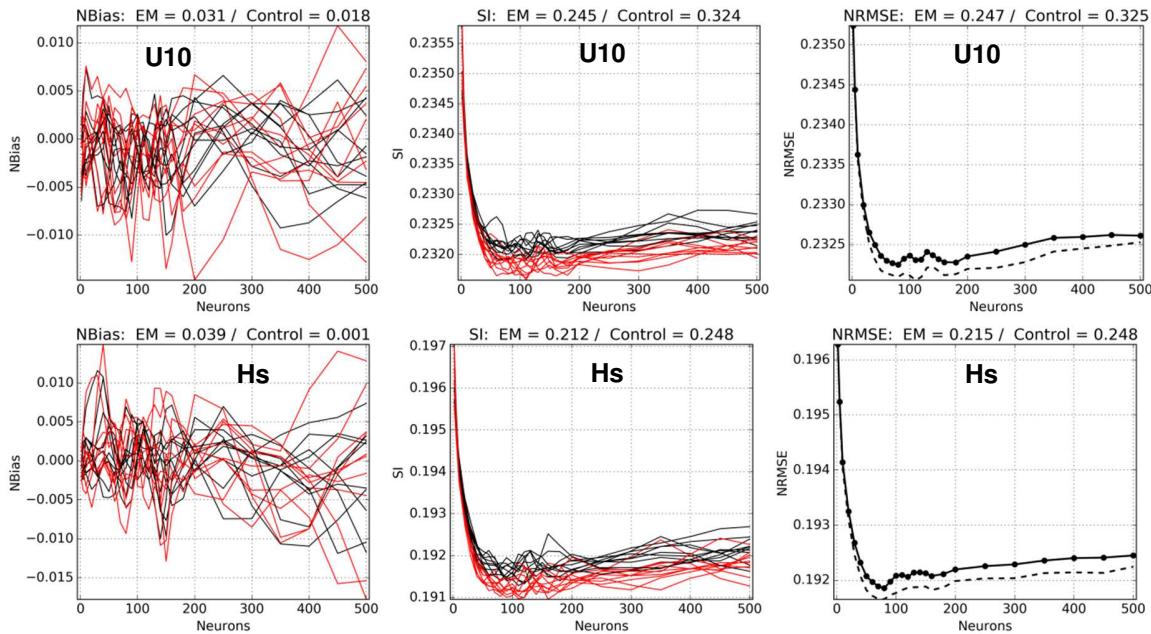
356 Results involving NN simulation for the three different randomly selected datasets (see previous
357 paragraph) are averaged, since errors are very similar among them, and then presented as a function of the
358 number of neurons and plotted divided into training and test sets. The systematic error of the EM of
359 GWES is around 3% (written on top of the left column plots in Figure 6) while the NNs errors are
360 bounded within -1% and +1%; a very small error involving NN with both small and large number of
361 neurons. Similar values of NBias are found for U10 and Hs, presented by Figure 6. The scatter indexes
362 (SI) indicate better results for Hs than U10, where the EM has 24.5% of error for U10 and 21% for Hs.
363 These values drop to 23% for U10 and 19% for Hs when using NNs, a relative improvement that is
364 smaller than the improvement found for NBias. The evolution of the SI with the number of neurons
365 shows a minimum value that corresponds to more neurons than the same for NBias, where a sharp decay
366 is seen between 2 to 50 neurons. These differences, however, are only 0.38% in the scatter error among
367 various numbers of neurons. The best results of NRMSE, which combines the scatter and systematic
368 errors (equation 6, shown in the right column of plots of Figure 6), are found between 60 to 180 neurons
369 but within a range of only 0.31%. Above 200 neurons, the SI and the NRMSE start to increase again.

370 The difference between training and test sets is small (Figure 6), suggesting that there is no
371 overtraining during the backpropagation training step. However, there is variation due to the use of
372 different seeds such that the results tend to diverge above 200 neurons with increasing spread. This
373 indicates that the NN models might be over-fitted and implies that the complexity of NN (9) is greater
374 than needed. For the three different metrics and two output variables, the NN models have smaller errors
375 than both the EM and control member (top of each plot in Figure 6). Thus, from aforementioned analysis
376 we conclude that the best NN models should have between 60 to 180 neurons at the intermediate layer.
377 However, this result comes from the assessment integrated over the entire GWES forecast range of 10
378 days, while errors increase significantly with forecast horizon, which impacts the NN training. Figure 7
379 presents the same results as Figure 6 but for three different forecast lead times: day 0 (nowcast), day 5,
380 and day 10 - where each point related to a specific number of neurons is an average of 30 NNs (10 seeds
381 and 3 datasets). The NRMSE for Hs reaches minimum at 80 and 90 neurons for different forecast leads.
382 For U10, on day 0, the sharp decay of the curve suggests the best results with 50 to 80 neurons, and
383 values above 90 have larger NRMSE. For day 5, a second minimum is found around 160 to 180 neurons.
384 The longest forecast range, day 10, shows the best results between 120 and 180 neurons, also indicating
385 larger NRMSE for NN with neurons equal or less than 110. Therefore, the increasing scatter error of the
386 surface winds at longer forecast ranges is the main feature that requires more complex NNs. Another
387 characteristic to notice is the distance between the NN curves of training and test set. On day 0 they are
388 very close to each other, while for day 5 and 10, the test set changes to larger NRMSE than the training
389 set, indicating the greater difficulty of the NN in simulating longer forecast ranges.

390

391

392



393

394

Figure 6 – Assessment of NNs performance statistics (vertical axes) as functions of the number of neurons at the hidden layer (from 2 to 500): Normalized Bias (left), Scatter Index (center), and Normalized RMSE (right). The red and black curves at the first two columns represent the training and test sets, respectively, showing the results for ten different seeds (initial conditions). The right column shows the dashed line that is the average (over different seeds) result of training set while solid line is the results for the test set. On top of each plot the same error metrics for the GWES control run and the arithmetic ensemble mean (EM) are presented to allow the comparison of results.

395

396

397

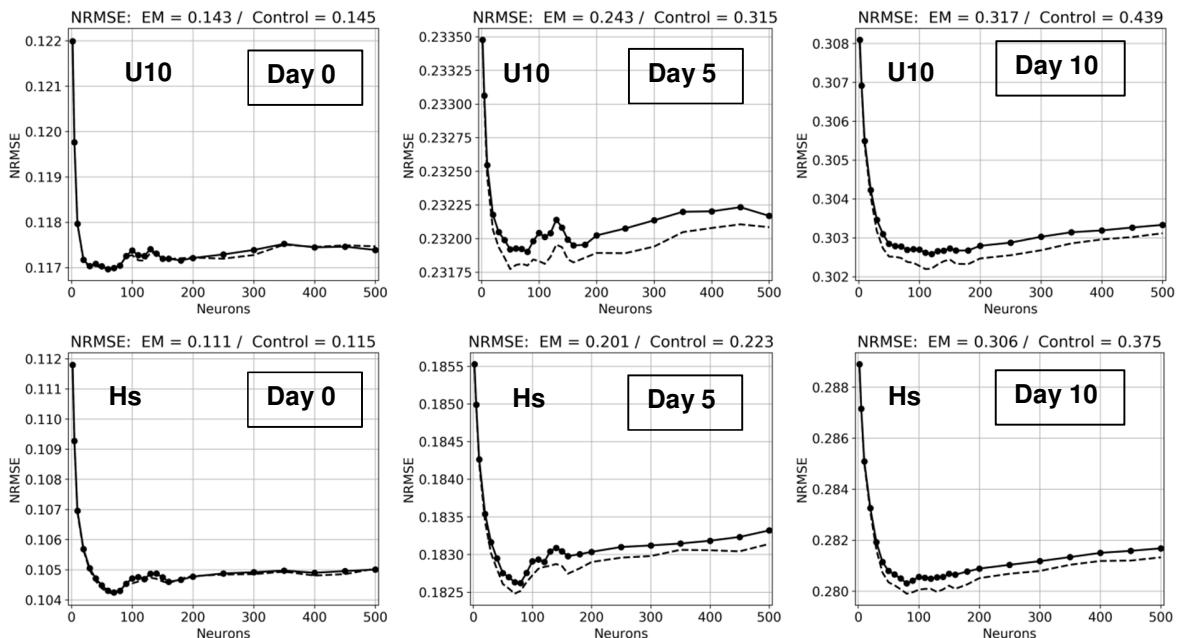
398

399

400

401

402



403

404

405

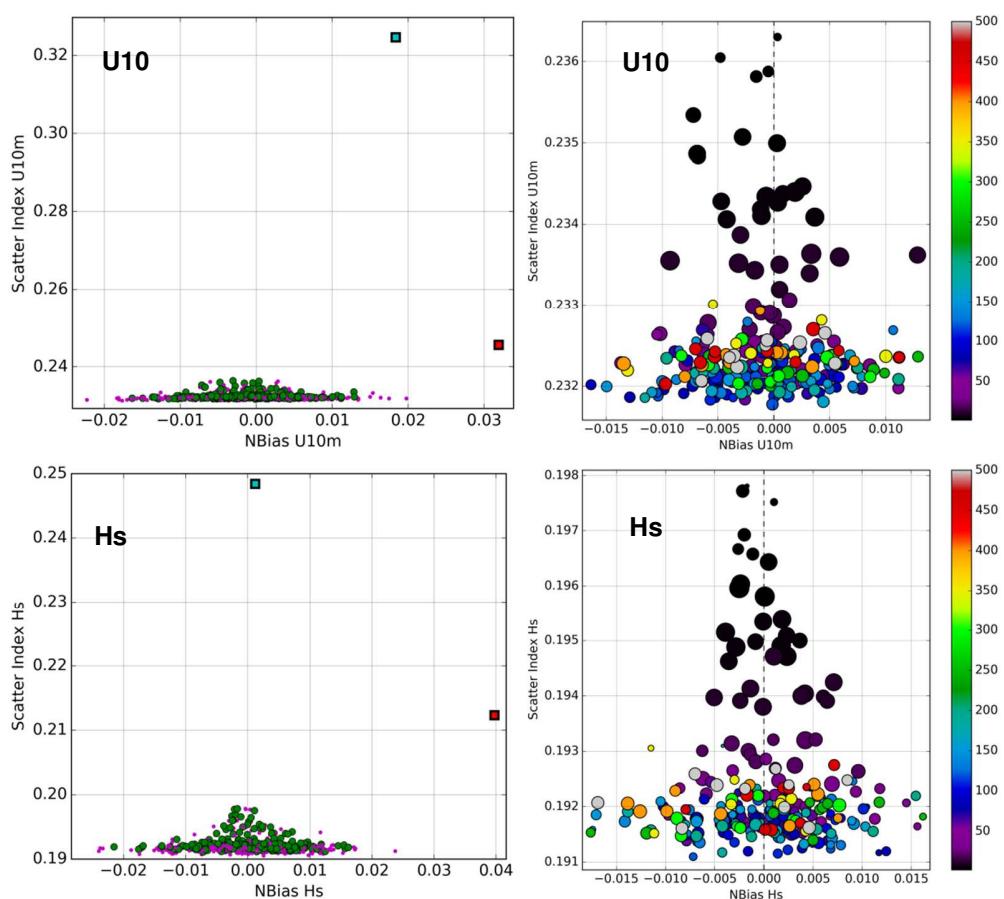
406

407

408

Figure 7 – NRMSE as functions of the number of neurons, for three different forecast horizons. The dashed line is the average (over different seeds) result for training set while solid line is the results for test set. On top of each plot the same error metrics for the GWES control run and the arithmetic ensemble mean (EM) are presented, to allow the comparison of results.

409 The assessment of 780 NNs averaged through the three different datasets (260 results presented) can
 410 be further visualized into the two-dimensional space of scatter and systematic error (Figure 8). All NNs,
 411 represented by the cloud of circles in Figure 8, performed better than the EM and control run (red and
 412 cyan squares, on the left plots), for both types of errors (systematic and scatter), and indicates the success
 413 of the approach. The systematic errors of Hs and U10 presented by NBias are especially small, between -
 414 2% and 2%, while the scatter errors are between 19% and 23%. The clouds of training and test points of
 415 Figure 8 are close to each other so NNs are not over-fitted and have generalization capability. The
 416 selection of the best NN model among the tests relies on a defined criterion assigning scores to each NN
 417 based on the error metrics. The right plots of Figure 8 provides a more detailed view of test set results,
 418 where the dot size is proportional to the variance of SI through the forecast range divided by the SI, i.e.,
 419 NNs with good results for the whole range of forecast have small points, while NNs that improved some
 420 forecast ranges but not others are depicted by points that have large diameters. This last situation occurs
 421 mostly in NNs with few neurons and high values of SI, at the top of the cloud of points of Figure 8. Based
 422 on these plots, the best NNs are expected to have more than 30 neurons and can simulate very well a wide
 423 range of forecast leads.
 424



425

426
 427
 428
 429
 430
 431

Figure 8 - Results of the neural network tests in terms of the scatter error (y-axis) and systematic error (x-axis). The left plots present the NN results (training set in magenta and test set in green) compared to the control run (cyan square, at the top) and the arithmetic EM (red square). The right plots are a magnification of the clouds of NN results on the test set, where the color indicates the number of neurons and the size of the dots indicates the normalized standard deviation of scatter error throughout different forecast ranges.

432 The decision about the best NN was based on three steps. The first one restricted the NN results
433 within a maximum systematic error of 0.5% including Hs and U10, as NBias is very small for most of the
434 NNs. A total of 326 NNs of the 780 have absolute NBias of U10 smaller than 0.005, while for Hs this
435 amount is 294. The combined restriction for both variables leads to 144 NNs with extremely small and
436 therefore acceptable biases. The second step sorted the arrays of NNs error metrics, building arrays in
437 ascending order for each type of error, with IDs related to each NN model. The third step looked at the
438 top values of the rank (best results) of correlation coefficient (CC) and SI for Hs and U10, searching for
439 the best NN that minimize the scatter errors of both waves and winds. It has been verified that the top-
440 ranking NN models that minimize certain scatter error metric such as SI, also maximize the correlation
441 coefficient, which makes the final selection much easier. Three NNs were identified with very similar
442 values, from which the best one was selected, containing 140 neurons at the hidden layer. Although the
443 goal of the post-processing simulations is to prioritize Hs, the selection of optimum NNs that also
444 minimize the error of U10 is important, since both output variables are correlated, and the wave
445 generation process depends of the quality of surface winds.

446

447 5. Results of Global simulations and discussion

448

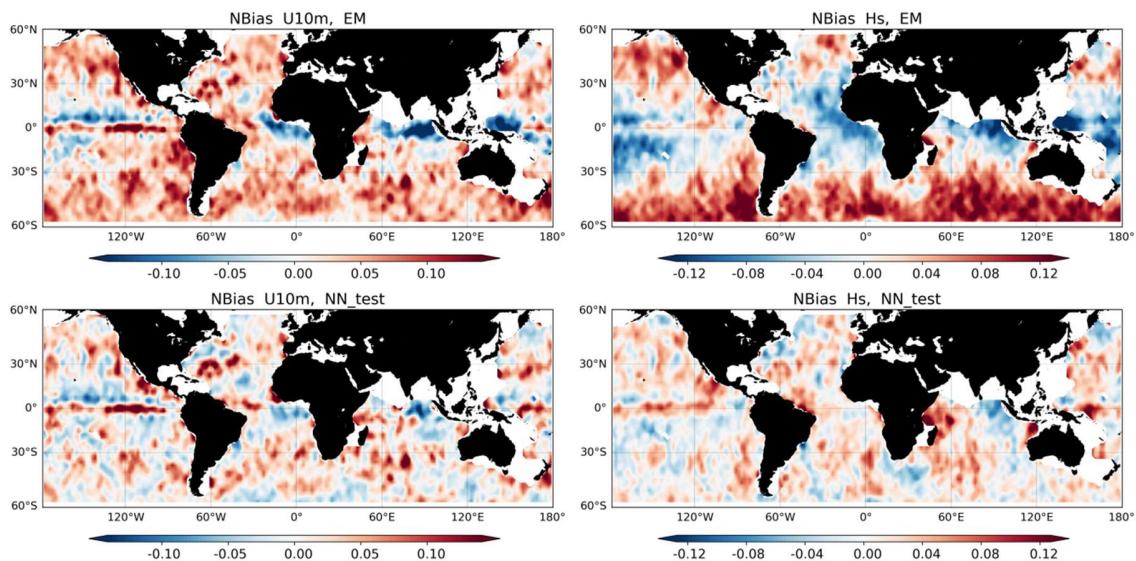
449 Once the best NN architecture and parameters have been determined, the performance of the selected
450 NN was evaluated using an independent set of altimeter data that was not included in the backpropagation
451 training. This includes 2,507,099 matchups of satellite/GWES distributed over the whole globe. Figure 9
452 and Figure 10 present global maps of systematic and scatter errors, comparing the EM with the NN
453 nonlinear average. The matchups are grouped in bins (61 latitudes and 181 longitudes) within a radius of
454 2° to compute the error statistics for each location. NBias of Figure 9 shows a strong spatial dependence
455 of GWES errors, reflecting areas of occurrence of tropical and extra-tropical storms where the
456 atmospheric model data errors are expected to be larger than in other areas, and regions in the tropical
457 ocean exposed to swell systems that may either propagate extratropical-storm wind-field errors or indicate
458 intrinsic wave model source-term biases. In mid and high latitudes, the EM tends to overestimate
459 observed values from altimeters. This is particularly evident in the Southern Hemisphere. In the tropics,
460 the EM tends to underestimate the observed values, with an exception of area along the ITCZ in the
461 Pacific Ocean. The systematic error of the EM varies from -10% to +10% at most locations. The
462 nonlinear ensemble average using NN reduces this bias to values within 5%. The benefit is greater at mid-
463 latitudes dominated by extratropical cyclones where the NBias of the EM can reach 12% for Hs.
464 However, errors along the Equator in the eastern Pacific Ocean are not improved, possibly due to the
465 small correlation of Hs and U10 as illustrated in Figure 1.

466 The global maps of SI (Figure 10), indicate significant errors for both U10 and Hs at extra-tropical
467 latitudes, again reflecting areas where forcing errors are expected to be larger due to the occurrence of
468 tropical and extra-tropical storms, or to the dominance of swells. The Hs maps present larger errors at
469 western portions of the oceans and, concerning the Southern Hemisphere, the South Atlantic Ocean has
470 larger errors than the Indian and South Pacific Oceans. SI in general reaches up to 40% for U10 and 30%
471 for Hs. The NN provided additional skill that is not restricted to specific locations but distributed over the
472 globe. Comparing Figure 9 and Figure 10 it is possible to conclude that the relative improvement due to
473 the NN on the SI is smaller than the improvement found for NBias. In addition, for practical applications
474 it is important to have the total RMSE with the same unit as the significant wave height (Hs, in meters)

475 combining both error components – presented by Figure 11. As a final global map, we include the
 476 deterministic forecast (control run) to provide an overview of the progress associated with each step. A
 477 significant improvement occurs moving from the control run to the ensemble mean (EM), where the
 478 RMSE at extra-tropical locations is reduced by approximately 30% and confirms the success of the
 479 ensemble methodology described by Zhou et al. (2017) and Alves et al. (2013). The NN post-processing
 480 simulation acts especially on the locations with large RMSE at mid-latitudes and provides an additional
 481 reduction of 20% at these locations so after the hybrid modeling (neural network attached to the ensemble
 482 forecast, illustrated by Figure 3 and equation 3) almost the entire globe has average RMSE of H_s bound to
 483 one meter.

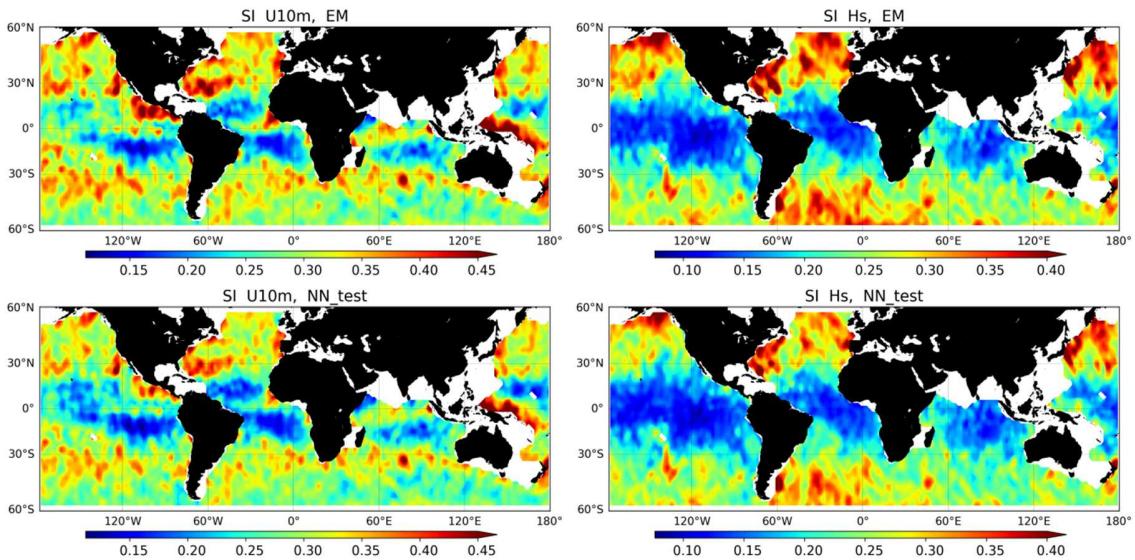
484 In order to further contribute to the spatial discussion of results, Table 2 divides the assessment in five
 485 ocean basins using the World Seas database initially described. The differences in performance among the
 486 oceans are very small, and the NN is proven to be suitable for all parts of the globe. Table 2 indicates that
 487 the ensemble is adding bias to the control run, which is greatly reduced by the NN. In terms of scatter
 488 error, the EM significantly reduces the SI of the control run, by approximately 25%, and the NN provides
 489 an additional small reduction of 5% to 10% of SI values.

490
 491
 492

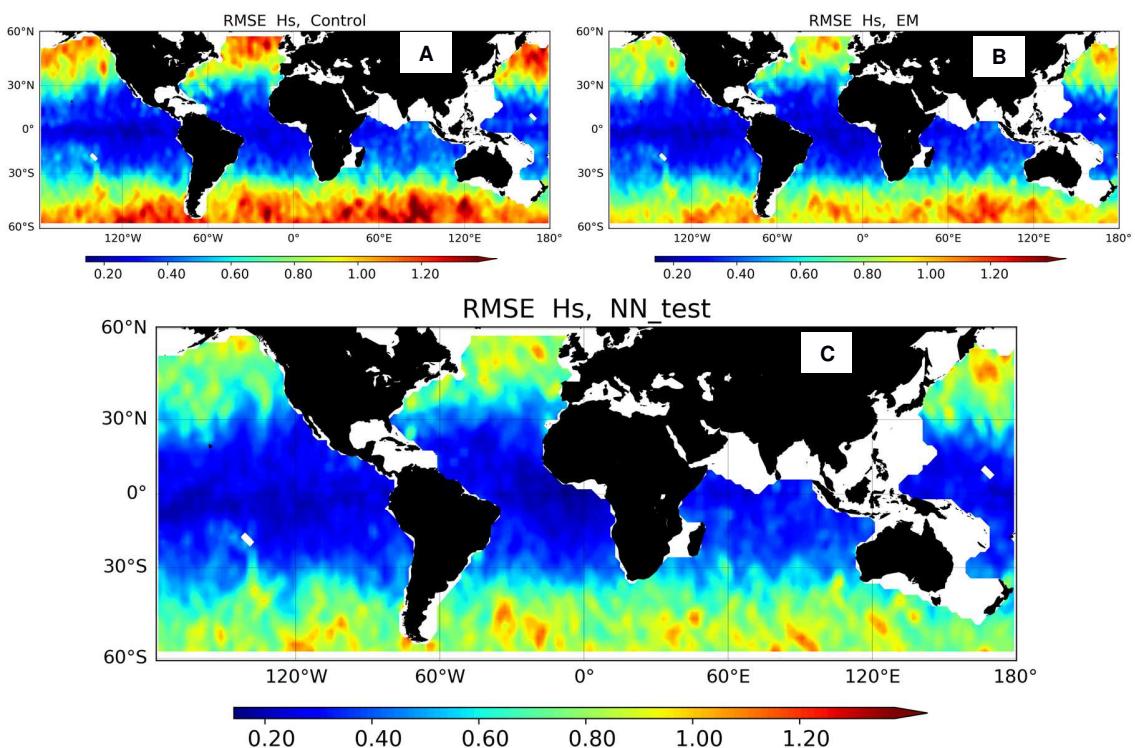


494
 495 Figure 9 – Global assessments showing the normalized bias (NBias) for GWES ensemble mean (EM, top), and for NN ensemble
 496 mean (bottom) on an independent test set. The columns represent U10 (left) and H_s (right). Red indicates overestimation of the
 497 model compared to altimeter observations while blue indicates underestimation. Great part of large-scale biases in the mid- to
 498 high-latitudes has been eliminated by the NN ensemble mean.

499
 500
 501
 502



505 Figure 10 - Global assessments showing the scatter index (SI) for GWES ensemble mean (EM, top)
 506 on an independent test-set (bottom). The columns represent U10 (left) and Hs (right). A reduction of SI is seen in the NN results
 507 at some locations.



510 Figure 11 - Final Global assessment maps of Hs showing the RMSE (in meters) for the control run of GWES (A: top-left), the
 511 EM of GWES (B: top-right), and the NN post-processing result (C: bottom). It highlights the progressive improvement divided
 512 in two steps, first the arithmetic ensemble mean (EM) of the ensemble members compared to the deterministic single run (control),
 513 and the neural network post-processing compared to the arithmetic ensemble mean.

516
517

Table 2 – Systematic and scatter errors for each ocean, comparing the GWES control run with EM and NNs (test set).

		U10m					Hs				
		NAtlantic	SAtlantic	Indian	NPacific	SPacific	NAtlantic	SAtlantic	Indian	NPacific	SPacific
Nbias	Control	0.016	0.018	0.013	0.010	0.029	-0.031	0.002	0.022	-0.017	0.008
	EM	0.029	0.034	0.030	0.019	0.041	0.001	0.041	0.065	0.017	0.048
	NN-Test	0.007	0.008	0.005	0.006	0.009	0.006	0.007	0.006	0.012	0.005
SI	Control	0.338	0.329	0.314	0.335	0.320	0.265	0.269	0.243	0.248	0.237
	EM	0.258	0.244	0.235	0.259	0.241	0.223	0.229	0.206	0.214	0.202
	NN-Test	0.245	0.231	0.223	0.242	0.229	0.208	0.209	0.183	0.197	0.182

518
519

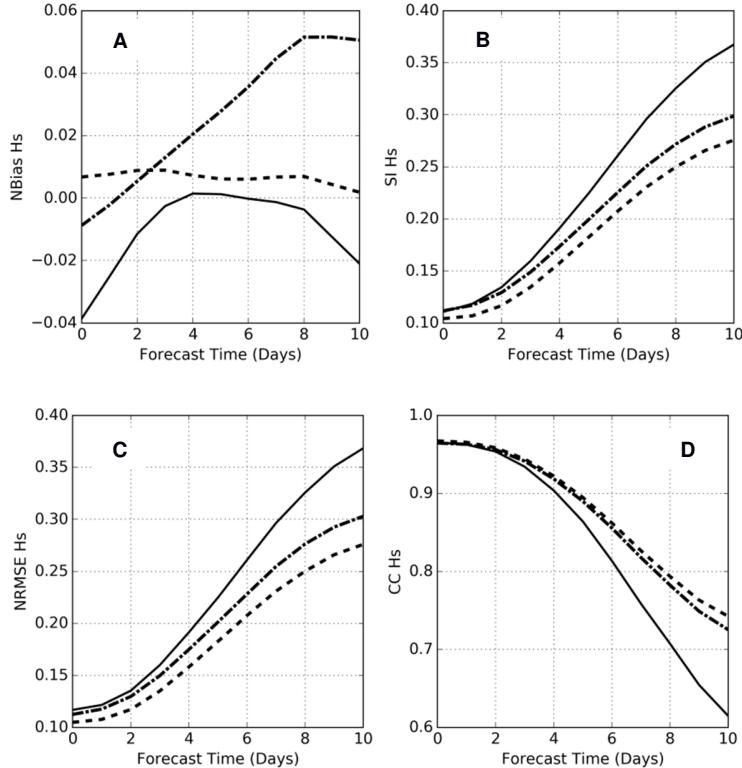
520 We do not divide the global assessment maps into several figures related to forecast lead days
 521 because it would reduce the total data volume of matchups at the bins over the globe. Therefore, Figures
 522 Figure 9 and Figure 10 as well as Table 2 integrate the results over the 10-days forecast range and
 523 inevitably insert more weight into the analyses and comparisons involving longer lead times associated
 524 with larger errors. The final Figure 12 shows the error metrics as a function of the forecast lead-time,
 525 providing a meaningful assessment of the nonlinear wave ensemble averaging using NN. A total of
 526 61,149 matchups of satellite/GWES per forecast time is utilized to compose the plots. Figure 12 shows
 527 that NBias is reduced to values between 0 to 2% throughout the whole range. This improvement is
 528 especially important after the day-7 forecasts, when the control run tends to underestimate, and EM tends
 529 to overestimate the observations. The SI plot indicates a small reduction of the error by the NN, equally
 530 distributed over the lead times. Taking the right part of the SI plot, associated with the longest horizons,
 531 the results of the NN on day-10 has the same error of the EM on day-8, equal to 27%, which represents an
 532 extension of 2 days in terms of predictability if the NN averaging is used.

533 Equation (6) presents the combination of NBias and SI into the NRMSE, also included in Figure 12.
 534 The growth pattern is similar to the SI plot, which is expected after comparing the y-axis of NBias and SI
 535 plots that indicate much larger errors coming from the scatter component. The correlation coefficient
 536 (CC) is the most challenging metric to improve but the NN model was able to slightly improve the values
 537 compared with the EM, especially at longer forecast lead times. The comparison of plots in Figure 12
 538 allows one to have a valuable overview of the benefits and shortcomings of the NN post-processing
 539 method.

540 The operational implementation of the post-processing algorithm is simple. Once the NN parameters
 541 (a, b of equation 1) and normalization parameters (equation 2) are obtained, the simulation is
 542 straightforward, following three steps. (1) The inputs must be downloaded (or linked) from the NCEP
 543 ensemble forecast system, which are then normalized and reshaped to build the input array for the NN
 544 program; (2) the NN simulation is run covering the latitude, longitude and forecast time, generating the
 545 global residue; and (3) outputs invert the initial normalization, the proper shape of the array is rebuilt, and
 546 the residues are added to the EM fields of Hs and U10 to construct the final output file (in our case, in
 547 netcdf or grib2 format). As described before, the training process is the step that requires more
 548 computational power. Daily runs following GWES cycles, however, can be performed by single-core
 549 processors (~2GHz) taking approximately five minutes, in Python language. We believe this might be
 550 further improved and time consumed can be reduced.

551
552
553

554



555

556 Figure 12 – NBias (A: top-left), SI (B: top-right), NRMSE (C: bottom-left), and correlation coefficient (D: bottom-right) of Hs
557 versus forecast lead time, considering the independent assessment using 2,507,099 matchups of satellite/GWES (61,149 per
558 forecast time). Solid curves show the deterministic run, dashed-point the EM, and dashed curves the nonlinear ensemble
559 averaging using NN.

560

561

562 It is important to stress again that our methodology based on neural-networks does not intend to
563 replace the numerical modeling of the physical processes or the ensemble approach. Instead, we have
564 developed a framework maintaining the ensemble forecast, as provided by NCEP, and including a soft-
565 computing neural network as a post-processing step - linking the traditional modeling with a machine
566 learning algorithm that improves the ensemble mean, trained with a large amount of altimeter data. The
567 post-processing algorithm using multilayer perceptron neural networks is simple enough to be used as a
568 bias correction to deterministic forecasts (same methodology but with only “one member”). However, it is
569 proved that ensemble forecasts significantly reduce the scatter errors at longer forecast ranges (Zhou et
570 al., 2017; Campos et al., 2019b) so the best solution considering the hybrid modeling is to attach the
571 neural network to outputs of ensemble forecast systems.

572

573

574

575

576 **6. Conclusions**

577
578 A large set of experiments was conducted to develop neural networks to post-process and bias-correct
579 operational ensemble wave forecasts, where the target variable is primarily Hs followed by U10. The
580 main goal was to build a NN model trained with altimeter data, able to calculate nonlinear ensemble
581 averages that outperform the typical arithmetic ensemble mean, applied to the whole globe and covering a
582 forecast range of 10 days. Simplicity of post-processing algorithms has been a priority during the project.
583 An analysis of 780 NNs facilitated identifying an effective architecture and complexity of the problem, as
584 well as testing the generalization and the distribution of the error with forecast lead times, latitudes, and
585 longitudes.

586 A previous study by Campos et al. (2019a) focusing on the Gulf of Mexico found the best NN
587 configurations with 35 to 50 neurons in the hidden layer. Expanding to our global simulation, it was
588 found that 60 to 180 neurons produce the best results. The complexity of the NN models, described by
589 equation (9), necessary to address global nonlinear ensemble averages, involves a deeper discussion that
590 depends on the output variable of interest, forecast range, and the type of error. It was shown that
591 minimizing Hs errors require fewer neurons (around 80) than U10 (more than 100). The same is valid for
592 shorter and longer forecast ranges. Simpler NN models with 60 to 80 neurons produce the smallest errors
593 in the nowcast, while 120 neurons are needed when considering the day-10 forecasts. Overall, simple NN
594 models are able to reduce the systematic errors of Hs at short-range forecasts, while NN models with
595 more neurons are necessary to minimize the scatter error of U10 at longer forecast ranges. After a limit
596 around 200 neurons, increasing the complexity of NN models resulted in larger errors and loss of
597 generalization.

598 The best NN overall configuration was found to have 140 neurons at the hidden layer. Taking the
599 results from one year of simulations (2017), we found that the NNs are efficient in reducing global
600 systematic errors. The average NBias was reduced from an average of 3.5% for the EM to less than 1%
601 globally, which was further confirmed to be valid in all the five oceans analyzed separately. Scatter errors
602 were more difficult to reduce; however, the NNs did provide a small improvement of SI, especially for
603 Hs. The NRMSE combines the systematic and scatter components of error (equation 6), and confirms the
604 effectiveness of the nonlinear ensemble average using global NN trained with altimeter data, which was
605 able to improve the NRMSE throughout the whole range of forecasts. Using the NN-based nonlinear
606 averaging, the day-10 forecasts have the same NRMSE as the day-8 forecasts for the arithmetic ensemble
607 mean – a gain of two forecast days in predictability. We believe that the methodology described can be
608 successfully extended to even longer forecast ranges, which requires a new setup of the operational wave
609 ensemble forecast of NCEP/NOAA that nowadays is limited to 10 days. Further, we believe that
610 integrating the NN methods with coupled atmosphere-ocean-wave forecasts and coupled data assimilation
611 (Penny and Hamill et al., 2017; Penny et al., 2017) may further extend this prediction capability, as well
612 as introducing wave parameters from spectral partitions into the NN inputs, which could benefit lower
613 latitudes with multiple distant swells.

614 In terms of future developments, besides the extension of forecast horizon, the construction of neural
615 network-based ensembles is a promising example of a growing trend to incorporate machine learning into
616 weather forecasting (Boukabara et al., 2019). The criterion of selecting the best NN among the tests led to
617 the choice of a single NN whereas Krasnopolksy and Lin (2012) showed that multiple NN simulations
618 (developing an ensemble of NNs) produced successful results for precipitation forecasts in the United

619 States. Specific NN ensembles suitable for extreme wave conditions can also be developed in the future,
620 following the track of the storms, as performed by Campos et al. (2018b), or even building NN members
621 trained for tropical cyclones, which represent a unique family of events. Our study focused on large
622 basins in deep water. Future NN developments are needed to cover coastal areas, lakes, small seas, and
623 locations close to the Arctic influenced by sea ice. Our last suggestion and plan are to include multi-
624 model ensembles in the NN post-processing algorithm, **introducing more input variables into the NNs in**
625 **addition to the NCEP ensemble members**, for example: ECMWF, Canadian Meteorological Center
626 (CMC), Fleet Numerical Meteorology and Oceanography Center (FNMO), and Icosahedral
627 Nonhydrostatic Model (ICON-DWD). We believe that this approach can expand the applicability of post-
628 processing algorithms using neural networks and can significantly improve wind and wave forecast with
629 relative low computational cost.

630

631

632 **Acknowledgments**

633 This study has been developed at the Department of Atmospheric and Oceanic Science of the University
634 of Maryland, and at the Environmental Modeling Center of NCEP, funded by the National Weather
635 Service Office of Science and Technology (NWS/OST), Award NA16NWS4680011, with further support
636 in the last stage of development from Fundação para a Ciência e a Tecnologia (FCT – Portugal) under the
637 project EXWAV (RD0504) number PTDC/EAM-OCE/31325/2017. The authors would like to
638 acknowledge Dr. Todd Spindler for giving support with data management and coding, the atmospheric
639 ensemble team at NCEP, and the satellite data provided by AVISO and NESDIS.

640

641

642 **Data sources**

643

644 NCEP's Global Wave Ensemble Forecast:

- 645 • <ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/wave/prod>

646 Altimeters:

- 647 • <ftp://avisoftp.cnes.fr/AVISO/pub/>
- 648 • <ftp://ftp.star.nesdis.noaa.gov/pub/sod/lsa/cs2igdr/>

649 Distance to the nearest coastline:

- 650 • <https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/>

651 World Seas database, IHO-Sea-Areas:

- 652 • <http://www.marineregions.org/downloads.php#ihos>

653

654

655

656

657 **References**

658

659 Alves, J.H.G.M., Wittman, P., Sestak, M., Schauer, J., Stripling, S., Bernier, N.B., McLean, J., Chao, Y.,
660 Chawla, A., Tolman, H., Nelson, G., Klots, S., 2013. The NCEP–FNMOC combined wave ensemble
661 product. Expanding Benefits of Interagency Probabilistic Forecasts to the Oceanic Environment. Bulletin
662 of the American Meteorological Society, BAMS, December 2013.

663

664 Amante, C., Eakins, B.W., 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources
665 and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center,
666 NOAA.

667

668 Behrens, A., 2015. Development of an ensemble prediction system for ocean surface waves in a coastal
669 area. *Ocean. Dyn.* 65, 469–486.

670

671 Berbić, J., Ocvirk, E., Carević, D., Loncar, G., 2017. Application of neural networks and support vector
672 machine for significant wave height prediction. *Oceanologia*, 59, 331–349.

673

674 Boukabara, S.-A., Krasnopolksky, V., Stewart, J.Q., Penny, S.G., Hoffman, R.N., Maddy, E., 2019. Artificial
675 Intelligence May Be Key to Better Weather Forecasts. *Earth & Space Science News*:
676 <https://eos.org/opinions/artificial-intelligence-may-be-key-to-better-weather-forecasts>

677

678 Campos, R.M., Krasnopolksky, V., Alves, J.H.G.M., Penny, S.G., 2019a. Nonlinear Wave Ensemble
679 Averaging in the Gulf of Mexico using Neural Networks. *Journal of Atmospheric and Oceanic
680 Technology*, 36, 113–127.

681

682 Campos, R.M., Alves, J.H.G.M., Penny, S.G., Krasnopolksky, V., 2019b. Global Assessments of the
683 NCEP Ensemble Forecast System using Altimeter Data. *Ocean Dynamics*, ISSN 1616-7341.
684 <https://doi.org/10.1007/s10236-019-01329-4>

685

686 Campos, R.M., Alves, J.H.G.M., Penny, S.G., Krasmopolsky, V., 2018a. Assessments of surface winds
687 and waves from NCEP Ensemble Forecast System. *Weather and Forecasting*, 33, 1533–1546.

688

689 Campos, R.M., Alves, J.H.G.M., Guedes Soares, C., Guimaraes, L.G., Parente, C.E., 2018b. Extreme
690 wind-wave modeling and analysis in the South Atlantic Ocean. *Ocean Modelling*, 124, 75–93.

691

692 Campos, R.M., Krasnopolksky, V., Alves, J.H., Penny, S.G., 2017. Improving NCEP's probabilistic wave
693 height forecasts using neural networks: A pilot study using buoy data. NCEP Office Note 490,
694 23 pp., <https://doi.org/10.7289/V5/ON-NCEP-490>.

695

696 Cao, D., Tolamn, H., Chen, H.S., Chawla, A., Wittmann, P., 2009. Performance of the Ocean Wave
697 Ensemble Forecast at NCEP. NOAA Marine Modelling and Analysis Branch (MMAB). Technical Note
698 No.279.

699

700 Chen, H.S., 2006. Ensemble prediction of ocean waves at NCEP. Proc. 28th Ocean Engineering Conf.,
701 Taipei, Taiwan, NSYSU, 25–37.

702

703 Dixit, P., Londhe, S., 2016. Prediction of extreme wave heights using neuro wavelet technique. *Appl.*
704 *Ocean Res.*, 58, 241–252.

705

706 Durrant, T.H., Woodcock, F, Greenslade, D.J.M., 2009. Consensus forecasts of modelled wave
707 parameters. *Weather Forecast* 24, 492–503.

708

709 Farina, L., 2002. On ensemble prediction of ocean waves. *Tellus* 54A, 148–158.

710

711 Glahn, H.R., Lowry, D.A., 1972. The use of model output statistics (MOS) in objective weather
712 forecasting. *J Appl Meteor* 11, 1203–1211.

713

714 Harpham, Q., Tozer, N., Cleverley, P., Wyncoll, D., Cresswell, D., 2016. A Bayesian method for
715 improving probabilistic wave forecasts by weighting ensemble members. *Environmental Modelling &*
716 *Software* 84, 482-493.

717

718 Hoffschildt, M, Bidlot, J.R., Hansen B, Janssen, P.A.E.M., 1999. Potential benefits of ensemble
719 forecasting for ship routing. ECMWF, Technical Memorandum 287.

720

721 Hornik, K., 1991. Approximation Capabilities of Multilayer Feedforward Network. *Neural Networks*, 4,
722 251-257

723

724 International Hydrographic Organization, 1953. “Limits of Oceans and Seas”, Special Publication N° .28,
725 3rd edition.

726

727 Janssen, P., Doyle, J.D., Bidlot, J., Hansen, B., Isaksen, L., Viterbo, P., 2002. Impact and feedback of
728 ocean waves on the atmosphere. *Atmosphere–Ocean Interactions*, N. Perrie, Ed., *Advances in Fluid*
729 *Mechanics*, Vol. I, WIT Press, 155–197.

730

731 Kalnay, E., 2003. Atmospheric modeling, data assimilation and predictability. Cambridge University
732 Press, 341pp.

733

734 Kingma, D., Ba, J., 2014. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*.

735

736 Krasnopolksky, V.M., 2013. The Application of Neural Networks in the Earth System Sciences: Neural
737 Network Emulations for Complex Multidimensional Mappings. *Atmospheric and Oceanographic*
738 *Sciences Library*, Vol. 46, Springer, 189 pp.

739

740 Krasnopolsky, V.M., Lin, Y., 2012. A neural network nonlinear multimodel ensemble to improve
741 precipitation forecasts over continental US. *Adv. Meteor.*, 2012, 649450.

742

743 Lorenz, E.N., 1963. The predictability of hydrodynamic flow. *Trans. NY Acad. Sci., Series II* 25, 409-
744 432.

745

746 Mandal, S., Prabaharan, N., 2006. Ocean wave forecasting using recurrent neural networks. *Ocean Eng.*,
747 33, 1401-1410.

748

749 Mentaschi, L., Besio, G., Cassola, F., Mazzino, A., 2013. Problems in RMSE-based wave model
750 validations. *Ocean Modelling*, 72, 53-58.

751

752 Murphy, J.M., 1988. The impact of ensemble forecasts on predictability. *Q J R Meteorol Soc*
753 114(480):463-493.

754

755 Penny, S.G., Hamill, T.M., 2017. Coupled Data Assimilation for Integrated Earth System Analysis and
756 Prediction. *Bulletin of the American Meteorological Society*, doi: 10.1175/BAMS-D-17-0036.1.

757

758 Penny, S.G., et al., 2017. Coupled Data Assimilation for Integrated Earth System Analysis and Prediction:
759 Goals, Challenges and Recommendations. *World Meteorological Organization, WWRP-2017-3.*
760 https://www.wmo.int/pages/prog/arep/wwrp/new/documents/Final_WWRP_2017_3_27_July.pdf

761

762 Queffeulou P., 2004. Long-term validation of wave height measurements from altimeters, *Marine
763 Geodesy*, 27, 495-510.

764

765 Queffeulou, P., 2012. Preliminary assessment of Jason-2 GDR version D for SWH and sigma0 data,
766 September 2012. *Laboratoire d'Océanographie Physique et Spatiale IFREMER*. Report available at
767 ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves/documentation/J2_versions_D_T.pdf

768

769 Queffeulou P., 2013. Cryosat-2 IGDR SWH assessment update – May, 2013. *Laboratoire
770 d'Océanographie Physique et Spatiale IFREMER*. Report available at
771 <ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves/documentation/>

772

773 Queffeulou, P., Croizé-Fillon, D., 2017. Global altimeter SWH data set. *Laboratoire d'Océanographie
774 Physique et Spatiale IFREMER*. Report available at
775 ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves/documentation/altimeter_wave_merge_11.4.pdf

776

777

778 Rasp, S., Lerch, S., 2018. Neural Networks for Postprocessing Ensemble Weather Forecasts. *Monthly
779 Weather Review*, 146, 3885-3900.

780

781 Saetra, O., Bidlot, J.R., 2004. Potential Benefits of Using Probabilistic Forecasts for Waves and Marine
782 Winds Based on the ECMWF Ensemble Prediction System. *Weather Forecast.* 19, 673-689.

783

784 Sánchez, A.S., Rodrigues, D.A., Fontes, R.M., Martins, M.F., Kalid, R.A., Torres, E.A., 2018. Wave
785 resource characterization through in-situ measurement followed by artificial neural networks' modeling.
786 *Renewable Energy*, 115, 1055–1066.

787

788 Sepulveda, H.H., Queffeulou, P., Arduin, F., 2015. Assessment of SARAL AltiKa wave height
789 measurements relative to buoy, Jason-2 and Cryosat-2 data. *Marine Geodesy*, 38 (S1), 449-465.

790

791 Tolman, H. L., 2016. User manual and system documentation of WAVEWATCH III version 5.16.
792 NOAA/NWS/NCEP MMAB Tech. Note 329, 326 pp.

793

794 Toth, Z., Kalnay, E., 1993. Ensemble forecasting at NMC: The generation of perturbations. *Bull. Amer.*
795 *Meteorol. Soc.*, 74, 2317-2330.

796

797 Willmott, C.J., Ackleson, S.G., Davis, R.E., Feddema,J.J., Klink, K.M., Legates,D.R., O'Donnell, J.,
798 Rowe, C., 1985. Statistics for the Evaluation and Comparison of Models. *Journal of Geophysical*
799 *Research*, 90, C5, pp 8995-9005.

800

801 Whitaker, J.S., Hamill, T.M., Wei, X., Song, Y., Toth, Z., 2008. Ensemble Data Assimilation with the
802 NCEP Global Forecast System. *Mon. Wea. Rev.*, 136, 463–482.

803

804 Wu, X., Grumbine, R., 2013. Sea Ice in the NCEP Climate Forecast System Reanalysis. *Science and*
805 *Technology Infusion Climate Bulletin.* 38th NOAA Annual Climate Diagnostics and Prediction
806 Workshop.

807

808 Woodcock, F., Greenslade, D. J. M., 2007. Consensus of numerical model forecasts of significant wave
809 heights. *Weather and Forecasting*, 22, 792–803.

810

811 Young, I.R., Holland, G.J., 1996. *Atlas of the oceans: Wind and Wave Climate.* Pergamon Press, New
812 York, pp. 241.

813

814 Zhou, X., Zhu, Y., Hou, D., Luo, Y., Peng, J., Wobus, R., 2017. Performance of the new NCEP Global
815 Ensemble Forecast System in a parallel experiment. *Wea. Forecasting*, 32, 1989–2004.

816

817 Zieger, S., D., Greenslade, Kepert, J.D., 2018. Wave ensemble forecast system for tropical cyclones in the
818 Australian region. *Ocean Dynamics*, 68, 603–625.

819

820

821

822