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ABSTRACT: Seasonal hypoxia is a recurring threat to ecosystems and fisheries in the Chesapeake Bay. Hypoxia forecast-
ing based on coupled hydrodynamic and biogeochemical models has proven useful for many stakeholders, as these models
excel in accounting for the effects of physical forcing on oxygen supply, but may fall short in replicating the more complex
biogeochemical processes that govern oxygen consumption. Satellite-derived reflectances could be used to indicate the
presence of surface organic matter over the Bay. However, teasing apart the contribution of atmospheric and aquatic con-
stituents from the signal received by the satellite is not straightforward. As a result, it is difficult to derive surface concen-
trations of organic matter from satellite data in a robust fashion. A potential solution to this complexity is to use deep
learning to build end-to-end applications that do not require precise accounting of the satellite signal from the atmosphere
or water, phytoplankton blooms, or sediment plumes. By training a deep neural network with data from a vast suite of vari-
ables that could potentially affect oxygen in the water column, improvement of short-term (daily) hypoxia forecast may be
possible. Here, we predict oxygen concentrations using inputs that account for both physical and biogeochemical factors.
The physical inputs include wind velocity reanalysis information, together with 3D outputs from an estuarine hydrody-
namic model, including current velocity, water temperature, and salinity. Satellite-derived spectral reflectance data are
used as a surrogate for the biogeochemical factors. These input fields are time series of weekly statistics calculated from
daily information, starting 8 weeks before each oxygen observation was collected. To accommodate this input data struc-
ture, we adopted a model architecture of long short-term memory networks with eight time steps. At each time step, a set
of convolutional neural networks are used to extract information from the inputs. Ablation and cross-validation tests sug-
gest that among all input features, the strongest predictor is the 3D temperature field, with which the new model can out-
perform the state-of-the-art by ~20% in terms of median absolute error. Our approach represents a novel application of
deep learning to address a complex water management challenge.

SIGNIFICANCE STATEMENT: This study presents a novel approach that combines deep learning and hydrody-
namic model outputs to improve the accuracy of hypoxia forecasts in the Chesapeake Bay. By training a deep neural
network with both physical and biogeochemical information as input features, the model accurately predicts oxygen
concentration at any depth in the water column 1 day in advance. This approach has the potential to benefit stakehold-
ers and inform adaptation measures during the recurring threat of hypoxia in the Chesapeake Bay. The success of this
study suggests the potential for similar applications of deep learning to address complex water management challenges.
Further research could investigate the application of this approach to different forecast lead times and other regions
and ecosystem types.
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1. Introduction

Hypoxia, typically defined as oxygen levels < 2 mg L ™", has
been identified as a recurring threat to the Chesapeake Bay
ecosystem. Nutrient reductions have helped to mitigate the
problem (Frankel et al. 2022) but are not sufficient to fully ad-
dress it owing to the setback associated with climate change
(Du et al. 2018; Irby et al. 2018). In fact, statistics from recent
years have shown that hypoxia continues to have a significant
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impact on the bay’s fisheries and aquaculture [see reports by
Virginia Institute of Marine Science (VIMS) 2022 and Mary-
land Department of Natural Resources (MDDNR) 2022].
This problem has garnered significant attention from the sci-
entific community, as well as policymakers and stakeholders
who are concerned about the long-term health and sustain-
ability of the Chesapeake Bay ecosystem. In preparation for
upcoming spaceborne spectroscopy missions, the National
Aeronautics and Space Administration (NASA) recently began
engaging potential users of its future satellite data prior to mission
launch for the ocean color and aquatic community (Schollaert Uz
et al. 2019; Culver et al. 2020; Scott and Urquhart 2020; Culver
et al. 2022; Lee et al. 2022). Chesapeake Bay resource managers
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2 ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS

who monitor waters are keenly interested in improving the ability
of remote sensing and other new technology to help detect harm-
ful algal blooms and other threats to the growing aquaculture in-
dustry (Wolny et al. 2020).

Hypoxia forecasts help resource managers and policymakers
to make informed decisions about managing coastal ecosystems
and fisheries and allow stakeholders to take proactive measures
to minimize the impact on fisheries and aquaculture operations.
Current approaches to forecasting hypoxia in the Chesapeake
Bay involve the use of numerical models, such as the Chesa-
peake Bay Environmental Forecasting System (CBEFS)
(St-Laurent et al. 2020; Bever et al. 2021; St-Laurent and
Friedrichs 2024). This 3D mechanistic model simulates the
physical and biogeochemical processes that lead to hypoxia
and is forced with a wide range of real-time inputs, including
both terrestrial information (river discharge and nutrient load-
ings) and atmospheric data (air temperature, winds, humidity,
precipitation, etc.). Model outputs include water temperature,
salinity, currents, as well as biogeochemical variables, includ-
ing nutrient concentrations, phytoplankton and zooplankton
biomass, dissolved organic matter, inorganic sediment, alkalin-
ity, and dissolved oxygen concentrations.

In many estuarine ecosystems like the Chesapeake Bay,
phytoplankton are the primary producer of organic matter
and thus one of the key drivers of hypoxia (Su et al. 2020).
Therefore, accurate and low-latency measurement and pre-
diction of algal blooms beyond discrete field sampling is cru-
cial for effective hypoxia forecasts. Satellite remote sensing
has the potential to provide valuable data on algal biomass
over large spatial scales and in a timely fashion (e.g., Aurin
et al. 2013; Mouw et al. 2015). Although dissolved oxygen
(DO) is not directly detectable from satellites, it is related to
physical and biological processes that can be remotely sensed
(Zheng and DiGiacomo 2020). However, assimilating satellite
remote sensing data into current modeling approaches like
the CBEFS can be challenging due to issues such as data la-
tency, quality, incomplete swaths or missing data due to cloud
cover, and data processing requirements.

Because of the challenges associated with the assimilation
of remote sensing data into mechanistic models, there is grow-
ing interest in the potential of deep learning—driven artificial
intelligence (AI) to improve our understanding and manage-
ment of these complex systems. Deep learning—driven Al has
already shown promise in a range of environmental applica-
tions, including prediction of weather patterns (Chantry et al.
2021), air pollution forecasting Masood and Ahmad 2021,
tracking wildlife populations (Isabelle and Westerlund 2022),
and managing water resources (Ghobadi and Kang 2023). In
the context of hypoxia management, Al has the potential to
provide new insights into the complex relationships between
physical, biological, and environmental variables that drive
hypoxia events (Yu et al. 2020; Valera et al. 2020). By analyz-
ing large datasets with multiple variables, AI models can
identify patterns and correlations that may not be readily ap-
parent using traditional modeling approaches. In addition, the
computational cost of Al models, once training is completed,
is low compared to the burden of running a 3D hydrodynamic
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model, making Al models very promising for operational
applications.

The potential benefits of Al-driven approaches to environ-
mental monitoring and management create a strong motiva-
tion for developing AI algorithms for hypoxia forecasts
(Schollaert Uz et al. 2020). By leveraging the power of Al to
better understand and manage hypoxia and other environmen-
tal challenges, we can move toward more effective and sustain-
able management strategies that promote the long-term health
and resilience of our coastal ecosystems. The ultimate goal of
this research is to help provide resource managers and policy-
makers with the forecasts they need to make informed deci-
sions about managing coastal ecosystems and fisheries while
also contributing to our broader understanding of the complex
relationships between physical, biological, and environmental
variables that drive hypoxia events.

2. Data

To predict daily mean DO concentrations within the water
column of the Chesapeake Bay, it is necessary to obtain data
that characterize the supply, consumption, and advection of
DO. The primary control on oxygen supply across the air—
water interface is water column stratification and wind-driven
vertical mixing, which are determined by factors such as tem-
perature, salinity, wind speed, and direction. Oxygen con-
sumption is primarily influenced by the availability of organic
matter in the water column and sediments, as well as the rate
of organic decomposition, which is largely controlled by tem-
perature and the corresponding rate of microbial metabolism.
Additionally, pH and redox potential also play a role in af-
fecting oxygen consumption. It should be noted that tempera-
ture also directly affects the solubility of oxygen in water.

To address these considerations, we utilized temperature
and salinity data to characterize water column stratification,
wind data to characterize vertical mixing, satellite optical data
to characterize the distribution of organic matter at the sur-
face, and 3D current velocity data to characterize advection.
Temperature also serves as an important indicator of organic
matter decay rate. This study does not include any data to
characterize distributions of organic matter in subsurface
layers and sediments, as an effective approach to their charac-
terization was not available at the time of the study. Satellite
ocean color data were used as indicators of surface organic
carbon content such as dissolved organic matter, suspended
particulate matter, and phytoplankton, which is the major
source of autochthonous organic carbon.

With respect to the prediction target, daily mean DO concen-
trations, it is characterized by field-measured DO samples. While
these DO data were derived from instantaneous measurements,
our primary objective is to accurately predict daily mean DO con-
centrations. The approach is intended to ensure a statistically ro-
bust agreement between model-predicted and measured DO on
an average daily basis across an extensive period of two decades.

a. Data sources

Temperature, salinity, and current velocity information are
obtained from a 3D hydrodynamic model implemented for
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the Chesapeake Bay, i.e., the CBEFS. The CBEFS is an imple-
mentation of the Regional Ocean Modeling System (Shchepetkin
and McWilliams 2005) originally designed for process-based
studies of the Chesapeake Bay. It is a fully mechanistic model
based on well-known biogeochemical processes and strictly
enforces the conservation of nitrogen, carbon, and oxygen (see
St-Laurent et al. 2020; Bever et al. 2021; Frankel et al. 2022;
St-Laurent and Friedrichs 2024 for detailed descriptions of the
model). The CBEFS is operated in a freely running mode,
meaning that its skill at reproducing observations is entirely
determined by its prognostic equations and parameters. There
are no mechanisms in the CBEFS to artificially bring the
model closer to reality (e.g., data assimilation) even when ob-
servations are available or when systematic biases are present.
As opposed to using the publicly available nowcast/forecast
(www.vims.edu/cbefs), we used a CBEFS hindcast output, sim-
ilar to that described by Frankel et al. (2022) except with a
finer horizontal resolution of 600 m instead of 1.8 km. This
hindcast uses the same configuration, including bathymetry and
biogeochemical parameters, as the forecast; however, the fore-
cast uses a different atmospheric forcing product (ECMWF
ERAS for hindcast and North American Mesoscale Forecast
System for nowcast/forecast). Different terrestrial inputs of
freshwater and biogeochemical constituents were also used. For
the period 1985-2014, the hindcast configuration uses the
EPA’s Phase 6 Watershed Model (Hood et al. 2021), whereas
the CBEFS uses scaled real-time USGS freshwater discharge
and a seasonal climatology of biogeochemical concentrations.
After 2014, both the hindcast and nowcast/forecast use the
same riverine forcing because the Phase 6 Watershed Model
was not available beyond 2014 at the time of this work. The
same wind data used to force the CBEFS were used as one of
the input features of our machine learning model, which is the
3-hourly wind data generated by the ECMWF ERAS.

There are several moderate-resolution satellite sensors
available, and in this study, we chose MODIS Agua. MODIS
Aqua has the longest time span which ensures that we obtain
the largest training dataset possible. The commonly used
“level-2” ocean color data which are the products of atmo-
spheric correction often have large gaps owing to unfavorable
conditions such as turbid water, glint, clouds, and aerosols. To
maximize the availability of ocean color data and leave ex-
traction of predictive features to machine learning algorithms,
we used top-of-atmosphere reflectance data and applied Ray-
leigh correction. MODIS level-1A data were obtained from
NASA’s Ocean Biology Processing Group (OBPG). Using
the OBPG software SeaWiFS Data Analysis System-Ocean
Color Science Software (SeaDAS-OCSSW), we obtained
Rayleigh-correct spectral reflectance (dB) at 12 visible, near-
infrared, and shortwave infrared bands, including 412, 443,
469, 488, 531, 551, 555, 645, 667, 678, 748, and 869 nm. Among
these bands, spatial resolution for 645 nm is 250 m; for 469
and 555 nm, it is 500 m. The rest of the spectral bands have a
spatial resolution of 1 km. However, the obtained Rayleigh-
correct spectral reflectance we generate at all bands is at
250 m, where all other band reflectances are downscaled at
645-nm spatial resolution. We used “level-1b” top-of-atmosphere
reflectance data, applied Rayleigh correction, and obtained
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Rayleigh-correct spectral reflectance p, at 12 visible, near-
infrared, and shortwave infrared bands, including 412, 443,
469, 488, 531, 551, 555, 645, 667, 678, 748, and 869 nm. MODIS
data were obtained from NASA’s OBPG.

DO field data were obtained from the Chesapeake Bay
Program (CBP) DataHub (https://datahub.chesapeakebay.
net/WaterQuality). Sampling locations are illustrated in Fig. 1.
Monitoring in the main stem is routinely conducted monthly,
except during warmer months when it is done biweekly. There
are tidal tributary stations which are generally sampled once
per month. The main stem and tidal tributary samples account
for ~75% and 7%, respectively, of DO data used in this study.
We also used a significant amount of data sampled semicontin-
uously at various depths at some shallow water sites along the
shoreline of the main stem Bay and tributaries (~6%), as well
as at the surface (0.5 m) along some segments monitored
monthly using a flow-through sampling system (~11%). All
DO concentrations were measured in situ typically using ei-
ther Yellow Spring Instrument (YSI) or Hydrolab sondes.

b. Data preprocessing

The original data from multiple sources such as CBEFS
outputs, MODIS, and ECMWF outputs were not presented
in a spatial-temporal consistent format and need to be pre-
processed before being accommodated into the training data-
sets. The CBEFS outputs we used (Table 1), i.e., currents,
temperature, and salinity, are daily averages. We binned the
CBEFS outputs on a pixel-by-pixel basis into weekly means
to reduce the volume of input data for our model. Satellite re-
flectance data were also binned in the same fashion, except
that the 1st percentile, as opposed to weekly mean values, was
used to reduce the influence of bright pixels that are likely
associated with atmospheric sources. With respect to ECMWF-
derived wind data, we calculated the 2D probability distribution
Pying With respect to 10 bins of wind speed (0-10 m s™1) and
12 bins of wind direction within weekly time windows for data
corresponding to the grid point closest to a DO field sampling
location. This is done to characterize the mixing effect of the
winds since calculating simple means did not result in a good
representation of the wind forcing data.

In addition to temporal binning, the CBEFS outputs and
MODIS reflectance data were also spatially reprojected to
an evenly spaced rectangular grid, which is bounded by
36.6°-39.6°N and 75.6°-77.0°W with a resolution of 0.01°.
The MODIS data were originally in irregularly oriented
swaths and were reprojected to this grid. The original
CBEFS outputs are defined on a Cartesian horizontal grid
and on 20 topography-following vertical levels. They were
reprojected to our rectangular grid and also vertically every
1 m from O to 15 m. This is sufficient for most parts of the
Chesapeake Bay except in the regularly dredged main ship-
ping channel that extends from the Atlantic Ocean to Balti-
more Harbor. Finally, the CBEFS outputs were vertically
averaged every 5 m to have three vertical layers in the final
reprocessed data. Note that although the input features ob-
tained from CBEFS outputs cover only three layers up to
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FIG. 1. Locations of CBP field sampling of DO concentration. The symbol color represents
the total number of observations in our datasets from 2002 to 2020. Open black circles mark the
location of selected stations labeled with station names.

15 m deep, our models are trained to predict DO at any
depth in the Chesapeake Bay.

c. Construction of training datasets

Using the data described above, we compiled a dataset
comprising 162274 pairs of training examples covering the
time period from 2002 to 2020. Each example contains multi-
ple scalar, vector, or tensor arrays as feature variables and
one scalar target variable (Table 1), where the features are
used to predict the target. For each individual example, the
target is DO measured at a given date, latitude, longitude,
and depth. The features include multidimensional CBEFS-
derived current velocity, temperature, and salinity; MODIS-

derived py; and Pying data from 8 weeks to 1 day before the
date of DO sampling, as well as three contextual scalar varia-
bles, including day of year (DoY), DO sampling depth, and
bottom depth. Thus, the model developed using this dataset
can be used to predict DO with 1-day lead time. Each of the
CBEFS- and MODIS-derived variables is an 8-week time se-
ries of weekly statistical arrays (typically mean, except for p;
which is 1st percentile to avoid cloud contamination as much
as possible) sampled on a grid-by-grid basis in a rectangular
window surrounding the target location. The size of the rect-
angular sampling window was made proportional to the time
difference in the number of weeks d between the sampling
dates of DO and the feature variable, assuming that as we go
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TABLE 1. Data structure of each individual training example. Symbols: ¢ is time, in number of weeks before the DO observation,
size = 8; lat is latitude, size = 10; lon is longitude, size = 6; A is light wavelength, size = 12; z is water depth, size = 3; wy,q is wind
speed, size = 11; wy;, is wind direction, size = 8; u, v, and w are current velocity data in longitudinal, latitudinal, and vertical
directions, respectively; T is water temperature; S is salinity; Pyng is 2D probability distribution of wind with respect to its speed and
direction; zg,m is DO sampling depth; and zpo, is bottom depth. ERAS is the fifth generation ECMWF atmospheric reanalysis of
the global climate covering the period from January 1950 to the present. MODIS Agqua is the Moderate Resolution Imaging
Spectroradiometer onboard Aqua satellite. CBEFS is the Chesapeake Bay Environmental Forecasting System. CBP is the Chesapeake

Bay Program.

Variables Number of dimensions Coordinates Source
Ps 4 t, lat, lon, A MODIS Aqua
u,v,w, T, S 4 t, lat, lon, z CBEFS output
Pwind 3 t, Wspd, Wdir ECMWF-ERAS output
DoY 0 — —
Zsam 0 — CBP
Zbot 0 — CBP
DO (target) 0 — CBP

back further in time, what happens at locations farther away
could potentially impact the target. The initial sampling win-
dow is selected to be 10 km (along the same longitude) by
6 km (along the same latitude) for the first week and enlarges
d times for other weeks so that the sampling window is
10d km X 6d km. Longer sizes along the same longitude were
selected because the general pattern of currents in the Chesa-
peake Bay is dominated by longitudinal flows, thus higher
mobility in terms of water parcels. Although the sampling re-
gion varies with time difference d, the sizes of the horizontal
array were kept identical by subsampling the data d-folds;
data within every d X d grid point were averaged. The wind
probability distribution Py;,q Was sampled at the same times
but at a fixed single point for each given example. Therefore,
the Py;nq feature is an 8-week time series of probability distri-
bution across various wind speeds and directions. Other fea-
ture variables are simply scalars associated with the field
sampling day of year, sampling depth, and bottom depth. Any
missing values in the input features are replaced with zeros,
which is a common practice in machine learning.

The entire dataset was split into training, validation, and
test sets chronologically as opposed to randomly to avoid
overfitting (Table 2). The test set used data from the years
2019 and 2020; these data were not included in the training.
The year 2018 was used as a validation set except during the
cross-validation studies when various other previous years
were used alternatively. The number of examples varies from
year to year but is generally consistent in size, accounting for
5%—7% of the entire dataset except for 2002 and 2020 (Table 2).
The much smaller sizes were attributable to the late start of the
availability of MODIS Aqua data in 2002 and the impact of the
COVID-19 pandemic on field sampling activities in 2020.

3. Model architecture

The machine learning model utilizes a long short-term memory
(LSTM) framework, which is based on physical intuition to incor-
porate a diverse set of input data (Fig. 2). LSTM is chosen to
learn the time series data because it is particularly well-suited for
capturing temporal dependencies and patterns in sequences,
thanks to its ability to maintain long-term memory and selectively

forget irrelevant information, which is crucial in predicting
future values of DO. The prediction target, DO, was conceptu-
alized as a result of a series of historical environmental condi-
tions. At each time step, in this case, weekly, the environmental
data corresponding to that specific time step were integrated
into an LSTM cell.

The environmental data were utilized for various purposes
within the model. Satellite reflectance was utilized as a marker
for surface organic matter. Temperature and salinity (density)
were employed to determine the degree of vertical stratifica-
tion and rate of organic matter decomposition, respectively.
Currents were used to identify the movement of water par-
cels. Wind was evaluated as a factor impacting oxygen supply
through wind-induced mixing at the air-water interface. Con-
sequently, the reflectance, temperature and salinity, currents,
and wind data were processed independently before being
combined into the machine learning model. To obtain organic

TABLE 2. Data distribution by year and the split of training,
validation, and test datasets. There are 162274 examples in total.

Splits Year Size Percentage

Training and 2002 1578 1.0
validation 2003 8657 5.3
2004 10016 6.2

2005 8415 52

2006 10393 6.4

2007 10573 6.5

2008 10047 6.2

2009 9110 5.6

2010 8125 5.0

2011 8834 54

2012 8844 5.5

2013 9303 5.7

2014 8949 5.5

2015 9307 5.7

2016 9300 5.7

2017 9185 5.7

2018 10020 6.2

Test 2019 8839 54
2020 2779 1.7

Brought to you by NOAA Library | Unauthenticated | Downloaded 03/28/25 06:53 PM UTC



Reflectance | Density
R | Vi y
I_ p InputLayer | il LS_InDUt_E_a)fr_l

,

/

ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS

VOLUME 3
Currents Wind
————— A l— —————
uv,w | I P,.q INputLayer |
InputLayer | P} ——— —_—==

FIG. 2. Model architecture of using multiple data streams to predict the concentration of DO
in the Chesapeake Bay. InputLayer, a layer to receive input data; Dashed rectangles represent
different components that learn from different data streams. See Table 1 for details of various in-

put variables.

matter information from reflectance data on a grid-specific
basis, the model was trained to learn the spectral features in
the reflectance data through the implementation of 3D convo-
lutions using kernels of size 1 X 1 X n, where n represents the
number of channels in the input reflectance data. Analogous
operations were applied to the temperature and salinity data
to obtain localized information on stratification and organic
matter decomposition, as well as to the combined data of re-
flectance, density, and currents. Subsequently, dense layers
were applied to the combined organic flux and decomposition
information to estimate oxygen demand. Oxygen supply is es-
timated by processing the wind data using a 2D convolutional
neural network (CNN) to obtain a vector characterizing the
overall degree of vertical mixing.

After assimilating the environmental data at all time
steps, the outputs of the LSTM are combined with other
contextual information, including DoY and sampling and
bottom depths corresponding to the target. The prediction
of DO is made using several more densely connected neural
network layers.

To optimize the hyperparameters (external configurations
that are set arbitrarily and whose value cannot be estimated
from data) of the model that ingests all input features dis-
cussed above, we utilized the Ray Tune library (https://docs.
ray.io) to search in a hyperparameter space. The hyperpara-
meter space is defined by the following dimensions: batch
size, dropout rate, number of convolution filters of various two-
dimensional convolutional (Conv2D) and three-dimensional
convolutional (Conv3D) layers, kernel size, pooling type, learn-
ing rate, number of dense layers and number of neurons in

them, etc. Ray Tune uses various search algorithms such as
grid search, random search, and Bayesian optimization to
efficiently navigate through this hyperparameter space to
find the optimal set of parameters for our model. The best
set of hyperparameters is selected based on the validation
error.

4. Ablation study

We conducted an ablation study on the model to under-
stand the contribution of each component to the overall
performance of the model and to identify any redundant or
unnecessary features that may be removed to improve the
efficiency and accuracy of the model without sacrificing its
performance. Various individual components and their
combinations were tested. The results are shown in Table 3
in incremental order of validation mean absolute error
(MAE). Each configuration is named after the physical
meaning of the additional input features used. For conve-
nience, an abbreviated name is also given to each con-
figuration. The simplest baseline model (B) has only two
input features, i.e., sampling and bottom depths. All other
configurations of model setups involve additional input
features.

From the standpoint of single-feature prediction power,
temperature is the single most important predictor, outper-
forming reflectance, currents, wind, salinity, and day of year
by a significant margin of at least 0.3 mg L™ in terms of vali-
dation MAE. However, if one wishes to push the limit of
model performance, the validation MAE can be further
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TABLE 3. Different configurations of the model with various input features. The configurations were sorted based on the validation
error (MAE) using 2018 as the validation year. The “baseline” model uses only zg,m and zpoe as input. Density represents both

temperature and salinity. See details in the appendix (Fig. Al).

Model configuration

Abbreviation Full name Additional input variables Validation MAE
B Baseline 2.457
S Seasonality DoY 2.264
Dg Salinity S 2.153
w Wind Pyina 1.403
C Currents u, v, w 1.208
R Reflectance Ps 1.196
WS Wind-seasonality Pying, DOY 1.174
RD, Reflectance-temperature ps, T 0.903
Dy Temperature T 0.902
DWS Temperature-wind-seasonality T, Pying, DOY 0.896
RDC Reflectance—density—currents ps, T, S, u, v, w 0.889
D Density T,S 0.888
DC Density—currents T,S, u v,w 0.885
DCW Density—currents—wind T, S, u, v, w, Pyina 0.869
RDCW Reflectance—-density—currents—wind ps, T, S, u, v, W, Pying 0.861
RDCWS Reflectance—density—currents—wind-seasonality o, T, S, u, v, w, Pying, DOY 0.857
DCWS Density—currents—wind—seasonality T, S, u, v, w, Pying, DOY 0.851

lowered by up to 0.15 mg L™, at a much higher computing
cost because of the inclusion of more input features.

5. Cross validation

The above results were obtained using 2018 as the valida-
tion year, which is known to be a wet year (see https://www.
usgs.gov/centers/chesapeake-bay-activities/science/freshwater-
flow-chesapeake-bay), and its use as the validation set could
potentially skew the model training result. To ensure that the
model is unbiased by the selection of validation year, we con-
ducted a cross validation by using different years from 2002 to
2017 as validation years while holding 2019 and 2020 as the
years included in the test set. Cross-validation experiments
were performed for the four best-performing configurations, i.e.,
density—currents—wind (DCW), density—currents-wind-seasonal-
ity (DCWS), reflectance-density—urrents—wind (RDCW), and
reflectance—density—currents-wind-seasonality (RDCWS) (see
Table 3 for details regarding these configurations).

The cross-validation results (Fig. 3; Table 4) show that the
MAE on the test set is similar, ~0.9 mg L™}, even when using
different years for validation. This result was consistent across
the evaluation of the four different model configurations con-
sidered (DCW, RDCW, DCWS, and RDCWS). No correla-
tion between wet/dry years versus test set MAE is observed,
although the validation MAE appears to be somewhat associ-
ated with the annual mean streamflow into the Chesapeake
Bay, with high errors for the wet years 2003, 2004, and 2011.
However, even this correlation is inconsistent because the val-
idation MAE is also high for the two “normal” years 2005 and
2006 but low for the wet year of 2018. After careful analysis
and comparison of the performance of these models, it was
determined that the choice of which year was used as the vali-
dation set has a small influence on the performance of the
trained model on the test set. The consistent results across the

various validation years demonstrate the robustness and reli-
ability of the methodology.

The four model configurations also have similar validation
and test MAE. This indicates that all four model configura-
tions have similar validation and test MAE (Fig. 3; Table 4),
indicating their ability to accurately predict DO with only mi-
nor variations in performance. To make the most efficient and
cost-effective model, the DCW configuration was selected as
the final model due to its simplicity with the least number of
input features, which results in lower computing cost and
complexity compared to the other configurations. We hereaf-
ter refer to this model configuration as the hypoxia forecast
based on AI (HypoxAl).

6. Evaluation of HypoxAl in comparison with
the CBEFS

The overall agreement between HypoxAl-predicted and
observed DO in the test set in comparison with CBEFS-
predicted DO is shown in Fig. 4 and Table 5. In this test set,
DO observations were made at various sampling depths and
covered a broad range of bathymetry, including both deep
and shallow stations. HypoxAlI surpasses the CBEFS in terms
of the number of locations where it can make predictions,
with a capability to make ~10% more predictions, mostly in
shallow areas of the tributaries which are out of the scope of
predictions for the CBEFS we used. For the subset of samples
where both HypoxAl and the CBEFS provided predictions,
HypoxAI demonstrated better performance, e.g., the test set
MAE was lower by 0.18 mg L™, or 16%. For the other subset
of samples where the CBEFS did not make any prediction,
HypoxAl exhibits consistently good accuracy compared with
its performance on the previous subset, actually with some-
what better skill.
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FIG. 3. MAE calculated for DO derived from four versions of the model: DCW, DCWS, RDCW, and RDCWS,
which were cross-validated using different years as the source of validation data. Results are calculated from the test

set data, i.e., years 2019 and 2020.

While we have evaluated the overall performance of the
model using the cross-validation experiments described
above, it is also important to examine whether the model
makes realistic predictions with respect to vertical DO pro-
files. The evaluation of the model’s performance in predicting
vertical DO profiles will provide further insight into the

accuracy and robustness of the model. Therefore, we com-
pared observed DO profiles with those predicted by the
CBEFS and HypoxAlI for six selected stations along the Ches-
apeake Bay main stem, which are relatively deep and known
to experience the worst hypoxia issues. We analyzed both
a cooler month (April; Fig. 5) and a warmer month (July;

TABLE 4. Cross validation with different validation years and four different versions of the model with and without reflectance and
seasonality, in addition to the input of density, currents, and wind data. All MAEs represent the average values of all setups using
different years for validation. See details in the appendix (Figs. A2-AYS).

Model versions Training MAE (mg L)

Validation MAE (mg L") Test MAE (mg L")

DCWwW 0.699
RDCW 0.683
DCWS 0.714
RDCWS 0.696

0.881 0.898
0.881 0.902
0.868 0.893
0.860 0.902
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Fig. 6) and found that HypoxAI demonstrated reasonable
vertical DO profiles for both. For the cooler month examples,
the HypoxAl-predicted profiles exhibited variable vertical
shapes and were in better agreement with field measurements
than those predicted by the CBEFS model. However, we also
observed that the measurements showed abrupt changes
in DO, which are not well-reproduced by the HypoxAl-
predicted profiles, as they tend to be smooth and lack fine
structures. Several CBEFS profiles in Fig. 5 show a vertically
well-mixed DO profile, suggesting that the model has not yet

simulated the onset of hypoxia on this particular date. There-
fore, the disagreement between the CBEFS and field meas-
urements might be mainly a timing issue. For the warmer
month example, we found that the CBEFS and HypoxAl
were able to reproduce some stratification in the vertical DO
profiles but still struggled to match the abrupt changes in DO
seen in the field measurements, similar to some of the exam-
ples in the cooler month.

In addition to the visual comparison of the predicted and mea-
sured DO profiles, we also conducted a quantitative assessment

TABLE 5. Test set error statistics for model version DCW using 2018 as the validation year.

Model Samples RMSE MAE R? Slope Bias N
HypoxAl All 1.263 0.913 0.847 0.846 —0.003 11618
No CBEFS predictions 1.197 0.857 0.876 0.898 0.126 1156
CBEFS made valid predictions 1.270 0.920 0.838 0.837 —0.017 10462
CBEFS CBEFS made valid predictions 1.538 1.098 0.763 0.892 0.155 10462

Brought to you by NOAA Library | Unauthenticated | Downloaded 03/28/25 06:53 PM UTC



10 ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS VOLUME 3
Opmrr T T T T T Oprrrr T T T L0 7
st A 5 g B 4 =g C =

“10f ETys ETyS £

E st 3 -1sf 3 -1sF E

5 = . = 1 = .

Q —20 = 20 - -20 -

o o 7 E 7 £ =

O _5F q-25F e =

- CB3.3CH E CB4.1CH E CB4.3E-
—30 Apr179 —30¢ Apr1749 30 Apr 175
_35:1|||||||1|||||l|||||||1:_35;1|||l|||||||||||||||||1:_35:|1||l||||||||||1|||||||‘
OprTTr I T T Or""l""l""l""/f"— L0 O B U
st D 4 s E 4 s F =

_ -10F 3 -10F 3 -10F E

€ = = = = = =

— =15 - -15F -0 -15F =

< C - E - E -

e} - - E - E -

Q -20 = = —20 = —20 =

(O] C . E . - .

o C - C - C -
-25 -0 -25F -0 -25F =

= CB5.1 A E CB5.2 A F— Measured l CB5.4 A
-0 Apr16—= —30 Apr 16— 30— HypoxAl Apr 16
C i C 7 [ —— CBEFS .
_35_1III|IIIJ|IIII|IIII|IIJ__35_IIII|IIII|IIII|IIII|III__35_|1||||||||IIII|JIII|III_
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0. 2.5 5.0 7.5 10.0
DO [mg L™!]

FIG. 5. Comparison of DO profiles in April 2019 at six stations along the Chesapeake Bay main stem representative of the growth stage of
hypoxia. See Fig. 1 for station locations.

of the model performance by calculating statistical differ-
ences between the model-derived and field-measured DO
profiles for all stations deeper than 10 m. Our results indi-
cate that the accuracies of both CBEFS- and HypoxAl-
derived DO values vary with month and depth (Fig. 7).
They both agree reasonably well with field measurement ex-
cept in April. This suggests that prediction of the exact tim-
ing of the onset of hypoxia is difficult. Overall, HypoxAl
exhibits the best agreement with measurements in June and
August. With respect to depth, we observed an increased
error in the predicted profiles at depths between 5 and 10 m.
This represents a challenge for both models to accurately
predict sharp DO changes across the oxycline, which is a
well-known problem (Irby et al. 2016).

These results suggest that, overall, the HypoxAI model
demonstrated reasonable performance in predicting vertical
DO profiles and may be a valuable tool for predicting hypoxia
conditions in the Chesapeake Bay. However, there are still
some limitations and areas for improvement, particularly in
reproducing fine-scaled structures in the water column. Like
any model, HypoxAl is limited by the accuracy of its inputs.
If neither CBEFS hydrodynamics and mixing nor other input
information captures the right temperature and salinity pro-
files, HypoxAI’s capability to resolve vertical structures will
be compromised. Therefore, the development of more precise

tools to characterize the hydrodynamics continues to be cru-
cial in future research.

7. Discussion

Hypoxia is the culmination of the complex interplay be-
tween oxygen supply and consumption processes that can oc-
cur over an extended period, ultimately resulting in oxygen
depletion in a body of water when oxygen consumption
outcompetes supply. To predict this issue, our study utilized
machine learning techniques to account for multiple key
processes associated with oxygen supply and consumption,
incorporating not only hydrodynamic information provided
by the CBEFS but also atmospheric reanalysis products as
well as satellite-derived remote sensing data, which more ac-
curately account for the influence of algal biomass. One no-
table result of this endeavor is the cross-validation study
(Fig. 3 and Table 4) which demonstrated stability in the test
set outcomes, regardless of the specific year used for valida-
tion. This is interesting because environmental variables in the
Chesapeake Bay have been experiencing significant changes
(Ni et al. 2020; Turner et al. 2021; Hinson et al. 2022; Frankel
et al. 2022) over the time period encompassed by our dataset.
It suggests that despite the long-term environmental changes,
the dynamics between short-term features and short-term DO
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FIG. 6. As in Fig. 5, but for July 2019 representative of the peak hypoxia period.

concentrations remained sufficiently consistent to train a reli-
able model. This might also indicate the stability of such mod-
els in the face of future climate change. However, we advise
against applying the current version of the model to future
projections because scenarios exhibiting sudden or extreme
changes beyond the model’s trained range would result in
poor model performance. Updating and retraining the model
by incorporating new data into the existing training dataset
will be key to maintaining the model’s relevance and accuracy
in a rapidly changing climate scenario.

While our study demonstrated the efficacy of modern artifi-
cial intelligence in predicting this environmental phenome-
non, it also opened up more questions for future research,
particularly in understanding the intricate dynamics governing
oxygen levels. One notable finding is that although satellite-
derived Rayleigh-corrected reflectance is a significant predic-
tor of dissolved oxygen in the Chesapeake Bay, its addition to
input features does not improve model accuracy beyond the
strongest predictor, which is 3D water temperature. This can
be attributed to several factors. First, benthic respiration plays
a significant role in oxygen consumption in the Chesapeake
Bay (Officer et al. 1984; Kemp et al. 1992; Li et al. 2015). This
process is not directly observable via remote sensing but is
strongly influenced by temperature (Roehm 2005; Murphy
et al. 2011). Since water temperature significantly affects the
metabolic rates of not only benthic but also pelagic organisms,

temperature directly impacts the rate of oxygen consumption
across both benthic and pelagic zones. This could partly ex-
plain why the 3D water temperature emerges as an over-
whelmingly strong predictor of DO. Second, remote sensing
detects the color of phytoplankton pigment at the surface,
used as a proxy for the standing stock of phytoplankton,
whereas it is the primary productivity that is more relevant to
bottom DO, which can vary temporally. This variability is
highlighted in the study by Zheng and DiGiacomo (2020),
which demonstrates that the correlation between remote sens-
ing reflectance and bottom DO levels in deeper parts of the
Chesapeake Bay is more pronounced during warmer seasons
with active algal growth, compared to periods of cooler seasons
with less algal activity. Finally, the use of Rayleigh-corrected
top-of-atmosphere reflectance in this study as opposed to atmo-
spherically corrected remote sensing reflectance might have
introduced more “noise” than “signal.” We chose to use Ray-
leigh-corrected level-1 data to maximize data coverage, whereas
level-2 remote sensing reflectance data suffer from high data
masking due to the presence of unfavorable conditions such as
clouds, aerosols, glint, and high turbidity. The hope was to leave
more feature engineering to the model, i.e., allowing the model
to find relevant features in the reflectance data. However, our
results indicate that, for the specific task of this study, there
might have been too much noise in the Rayleigh-corrected data
and/or there are not enough training examples for the model to
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FIG. 7. Monthly difference between predicted and measured DO profiles during the warm season.

learn relevant features in these data. As such, further research
is necessary to determine the extent to which satellite ocean
color data should be processed to improve feature engineering
relevant for hypoxia forecasting.

Although an improvement in model accuracy with the addi-
tion of Rayleigh-corrected MODIS reflectance data is absent,
it is important to note that this finding was made when 3D wa-
ter temperature data from the output of a hydrodynamic
model are used. In situations where such 3D data are unavail-
able, e.g., when only satellite data are provided, the potential
contribution of ocean color data to the forecasting of hypoxia
in the Chesapeake Bay must be further evaluated. Further re-
search is necessary to assess how well the model performs
with only satellite ocean color and SST data.

With respect to the selection of input data sources, we pri-
marily utilized data from the CBEFS, which incorporates vari-
ous terrestrial inputs. However, it is important to acknowledge
that this model includes some form of groundwater biogeo-
chemistry, which plays a critical role in the Bay’s hydrological
and ecological dynamics (Brookfield et al. 2021), but not in an
explicit way. Incorporating relevant datasets could account for
chemical pathways from groundwater discharge in supporting
or suppressing algal blooms and subsequent hypoxic events. In
addition, the integration of microbial datasets could enhance
the model’s skill through a better understanding of the succes-
sion of microbial and algal blooms (Sison-Mangus et al. 2016;

Cheng et al. 2021). Despite their potential value, the incorpo-
ration of chemical and microbial datasets into existing predic-
tive models is not without challenges. One of the primary
limitations of these datasets is their restricted spatial and tem-
poral coverage, which can introduce significant uncertainties
into the model. These uncertainties can stem from both the in-
herent variability in microbial and chemical processes and the
sporadic nature of data collection. Furthermore, from an oper-
ational perspective, which is the ultimate goal of this study, the
utility of these datasets is constrained by data latency issues.
Timely data acquisition is essential for operational forecasting,
and the delayed availability of chemical and microbial data
can limit their applicability in real-time environmental predic-
tion systems. Therefore, while the integration of these datasets
holds promise for advancing our predictive capabilities, careful
consideration must be given to their limitations, uncertainties,
and data latency.

Another important area of future research is the handling
of missing values in input data. In our study, we addressed the
challenge of missing data by adopting the convention of filling
missing values with zeros, a common practice in computer
science. While filling missing values with zeros is a straight-
forward and computationally efficient method, it may not ac-
curately represent the underlying environmental processes;
in addition, zero represents a physically realistic value for
some variables such as temperature, salinity, and reflectance.
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Therefore, filling input variables with zero could potentially
introduce biases into the model. In environmental science,
more sophisticated imputation techniques have been devel-
oped, ranging from simple statistical methods to advanced
machine learning approaches that consider spatial and tempo-
ral correlations to predict missing data points (Fernandes et al.
2015; Stock et al. 2020; Mohebzadeh et al. 2021). However,
such data were unavailable for Rayleigh-corrected MODIS
data, and developing such gap-filling algorithms for our data-
sets would be a major undertaking that warrants a separate
study. Thus, the impact of replacing missing values with zeros
on the statistical integrity of our environmental variables and,
consequently, on the model’s performance remains an area of
uncertainty and requires further investigation.

To broaden the scope, the application of artificial intelli-
gence in Earth sciences benefits from a thorough examination
of the model’s architecture and its correlation with the ob-
served results. This would involve a detailed analysis of the
optimized hyperparameters to understand their influence on
model performance. For instance, examining how the opti-
mized hyperparameters reflect the specific challenges of DO
prediction, or comparing our model’s architecture and perfor-
mance with similar models in environmental science, could
provide deeper insights into the capabilities and limitations of
LSTM models in this field. Additionally, exploring potential
modifications to the model architecture to enhance its predic-
tive accuracy and adaptability to different environmental con-
texts would be a significant contribution to this area of
research. Such comprehensive evaluations would guide future
developments in this rapidly evolving domain.

8. Summary

This study developed a deep learning model, called HypoxAl,
which is capable of integrating data from multiple sources with
disparate data structures. The model was designed to predict
DO concentrations in the Chesapeake Bay based on a variety
of environmental variables, including temperature, salinity,
satellite-derived Rayleigh-correction reflectance, currents, and
wind. In evaluating the performance of HypoxAl, the results
showed good overall agreement with measurements, and the
model was able to learn multiple types of vertical DO profiles,
which suggests its ability to capture complex patterns and vari-
ability in DO concentrations.

Our study also found that the 3D temperature field was the
strongest predictor of DO levels, followed by satellite-derived
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Rayleigh-corrected reflectance, currents, wind, and salinity.
Having a 3D temperature field as an input feature is sufficient
to optimize model performance; adding the satellite reflec-
tance data, as we did here, did not improve the Al model skill,
likely due to atmospheric interference, as discussed.

However, it can be a significant undertaking to obtain a 3D
temperature field, which requires running a hydrodynamic
model like the CBEFS. Future studies could investigate how
the model would perform using only more readily available
data sources as predictors such as satellite-derived sea surface
temperature and ocean color and how to improve the feature
engineering of ocean color data. This approach could poten-
tially reduce operational costs while maintaining accurate DO
predictions.
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APPENDIX

Model Training Histories
a. Ablation study

Training histories of all model configurations evaluated in
the ablation study are shown in Fig. A1, which are summa-
rized in Table 3 in the main text.

b. Cross validations

Shown here are training histories using different years as
validation datasets for four cross-validation models: DCW
(Fig. A2), DCWS (Fig. A3), RDCW (Fig. A4), and RDCWS
(Fig. AS), which are summarized in Table 4 and Fig. 3.

Brought to you by NOAA Library | Unauthenticated | Downloaded 03/28/25 06:53 PM UTC


https://github.com/coastwatch/HypoxAI-ChesapeakBay
https://github.com/coastwatch/HypoxAI-ChesapeakBay
https://www.kaggle.com/datasets/guangmingzheng/chesapeake-dissolved-oxygen-and-environmental-data/
https://www.kaggle.com/datasets/guangmingzheng/chesapeake-dissolved-oxygen-and-environmental-data/
https://www.kaggle.com/datasets/guangmingzheng/chesapeake-dissolved-oxygen-and-environmental-data/
https://doi.org/10.25773/q2kh-rd09

14

3.0

25

2.0

MAE [mg/L]

15

1.0

1.3

1.2

11

1.0

MAE [mg/L]

0.9

0.8

0.7

MAE [mg/L]

0.7
0

ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS VOLUME 3
_\ LA L I LN I I B |||||1||||||||__| LI L O B B ||||||||||||||_ TT T T[T T T T[T 717 |_
g B S Ds T w R T
. 2.153 T 1.403 ]

-

I
i

3

v

L]

v

s

e s a k]

R il +
[§e 5

[P

..

‘.h
e

ST g
L b T

co b b

O L

TT T T[T T T T [TTT

LI I I

Dr
0.902

LI O IO

H
o
o

DrWs H
s

0.896 :—
d
o

LI I

TT T T[T T T T [ TTTT

D

!

LTI A AN N AN AR

"‘

L 1T ", IR P I A
E o =] ‘8;.< oy i oy |
= == S - Yy -F -
F T Wew, T -~ T 7
C oI e T xI e
oo b b T b b T b b s T b Lo 1 TENEREN N AR A A

TT T T[T T T T [ T T T T RI T T T [T T T T [T T T T[T T T T [T T T T[T T T T [T T T T [T T T T [T T T T T T T T[T T T T TT&®

DC 7 bDCw RDCW 7 RDCWS 7 DCWSs 7

0.861 : 0.857 0.851 ]

-+ 0.6

— 0.6+

N\ N

0.2
e, .. R A B
PN 4 3,0, € - i
+ ol 4 e, i e, L Tt + o, E
cov bR v b b et b by e e b by Fa L Lo L T gy § §
10 20 10 20 10 10 20 3D 10 20 30 10 20
Epoch Epoch Epoch Epoch Epoch Epoch

FIG. Al. Training histories of different model configurations with various combinations of input features.

Brought to you by NOAA Library | Unauthenticated | Downloaded 03/28/25 06:53 PM UTC

30



15

ZHENG ET AL.

JULY 2024

o
(L L B B L L L L L L L N e R R R R ¢ R R R R HES R nane L
F | + -+ 1 |
n H T T 1 ]
= s £ [ Jw
n i e 1 1 B
- > RN + ol
r \ o + ] o
E > T ]
- ...1I - =R
e a o7
o o T = N
L .l o T 4+ mo R . o]
¥ A & B
- 8% T g2 : o Siqa
F RS + &3 ~ S8
F - + + L.
E o T T -
£ el il 2 Jo
- ~ 1 + . Ea
n o T T ]
o
E o T T ]
5 + o . =k
[Frr ey o o e ' | o o = = . =]
T L L L B T 1T T 1]
. £ . £ i 7
F + + £ Bl
n T T T ol
- - - - +HQ
F T o .
F £ &£ '
C s B E a1
E S~ =T o ]
- - 88 g8 34
E 1 T NS ¢+t So b
E A R T ]
n T . T ]
C T Rl T dg
n 1T B T N N
n T o T T ]
F T Q) T T ]
L € nu £ 4 N
C . L+ i = .
ety mmmrry R \Perrr e
n L L I IFEEREE Tt ]
— I o T Juw
- T T T sk
E T R a A
— . . — - o
F pa SOOI Qi D
E e D T e
C R < T T X
o - S o R
. . I3 2
- O = R iR =k
C R » ~ T . NS o
E Ny . S T x ]
E ST DS . 1o
F ST A - -
- & -+ S T =+ b
T el x & ]
[ L1 1= Al .
n T T T ]
C T i = Jun
C T - T mkN
C - T I+
: 3 4 SIS E
F - + o K
E ° » N > Nan P
C o T ~ « ~ 7]
L So r T 28 ¥ i R “Jun
o~ o ® ) o ® —
F ~No o T No > & T No | 7
F C T vh.. T ! ]
— = -IT- A .m. -T- (e -1
n T 1 H ]
F T ) & T v ]
= T K T 1 -
- T ST = :
F -+ Lo <+ (R -
E x bo 5% € 1 ]
F M\ T sap” = .:u* .
Eepvgdmerper ..A I EErTAARES I T T . — EEL e ke it IR NN
N — < : N — < ‘ * ~ N — e il ® ~ N - < o * ™~
— — — S - — — =) =) =) — — - S} =) S — — — =) =) =)

[1/6w] IV [1/6w] Ivin [1/6w] I3vin [1/6w] IV

Epoch
ry | Unauthenticated | Downloaded 03/28/25 06:53 PM UTC

Epoch

ht to you by NOAA Librar

Broug

Epoch
FIG. A2. Training histories for model DCW using different years as validation.

Epoch



ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS VOLUME 3

16

L B L B L L L L L B L B B L L O L L B B R S R R N R EEHEE RN LR
E T H T T ]
E T H . . ]
n 1 EN 1 N
n T I N ]
E T A N ]
E N o 5 ]
C i r o .
n o n ot E
n T : n B 7
£ ‘L oam T mo Y N N
F S N T o
E Caf 83 —+ =R 18R &
C e Ne r T So “F RS =
- N 4 ...... -+ - L ~
E W Dal— T .
n 1T R T | ]
F + N + F ]
E T e T C ]
i
E T I8 T | 5 ]
E T » . . -
E T & 1T n N E
- + - + L \_m ]
= 1 | I L] f%ﬂ_::_::
It T T T T L B B L L L
= T 4+ . =]
n E. - { ]
E ¥ o r R
: F oo o Foes E
E oo T+ o~ o S
- A 88 PESE-E: =T 28 e
B “+ R3 fF+ R3S »+ R3S O
n T s T T > ]
n 1T I . < i
s T T T i ]
E T 0 - m B =
F e T T o3 ]
= ] L L L Ll i 1y
) T Tt T (RHas BN Tt
n T T T H ]
F T T & | 1
F -+ + -+ |
~ i il i 1 ir
- —+ -4 -+ 1 k|
- 4 + -+ 1 Ry
: ¥ ¥ “ 3
|| T =4 T 1 o
= T s -+ 1 o
§ 1 3
E I N s ! o
E T . P - s o ! o
n PN HE Fon Do
vl < ) © o
- 8w T &3 T o | o]
r i No T No T oo 1 COR.
C P T T ! YOl
u A T T ' -
= i . £ H -
= 1 o2, ] 1T i ]
o T el e I I it T TR
n T T T (RAHER RN BRARR
C T i i LAI.
F T T o 3
C T N s ]
— =+ =+ o -]
o ‘T sC i X
. & oo R
F o < T o o R o]
E -+ w1 -+ " |
- g} = + 28 o 28 NREEE
[ ~e T ~ T No T ~e \ ]
E T o & ]
C T -~ I T ]
-
E - ~ T - ]
o F 1 i
F T o T T ]
C T o T T ]
- -+ ..tl -+ -+ N
= I o . _= -
F E A.... 1= . E
E . s T T ]
C . ] " £24 T ] ]
HH = < B -
BoppqooeepppynthFy T N I il o e e s i e ' TR T TR IR ™ T [ T T
N — < o @ ~ N — < o * ~ N — e ~ N - < o * ™~
- - — IS) IS IS — — — =) =) =) — — - S — — — =) =) =)

[1/6w] IV [1/6w] Ivin [1/6w] I3vin [1/6w] IV

15 20 25
Epoch

10

15 20 25
Epoch

10
Brought to you by NOAA Library | Unauthenticated | Downloaded 03/28/25 06:53 PM UTC

15 20 25
Epoch

10

FIG. A3. As in Fig. A2, but for model DCWS.

25

15 20
Epoch

10



17

ZHENG ET AL.

JULY 2024

30

25

L L L L L B L L L O B I L BB L B L LR S R I I R L

T H T H T ]

T i . T ]

T 1 En T ]

T ! £ £ -

T 4 =x T ]

T | e & m

T i V L T -

o 1 = . o

i T Nin NS

T ooa | T oo #H oo

1 2 I ST R

‘T 88 I 28 C A 58 =

+ K3 -+ |3 1+ &3 s

T - v I S ]

T T & ca

T T & T «

T i T -

e L] . L Fy 1
T Tt T T ]
n T T o€ ]
- a o iy 7
o T ml o A
E —t - «or |
o e I N R i
— o 28 sod— IR & ]
r s s T No Vol No .
F oI % T T ]
L 5 - R J 4 n
- « 1 I =€ -

0y k]
n & F [ N N
n s F 5 T T ]
F & T W T T ]
o K T " T T ]
o 4 1 r

c = T T > E
I \ = Ly

n L L L L e T T (RHES R ]
n T T T ! E
C T T T 1 E
— I T T 1 =
n T N 1 1 3
E x =T + 1 2
F -+ Fans kN ! ]
E T fran & 1 .
- —+ o . - 1 -
- . - e “ .

E 4 e .
F S a <4 ! J
~ o NN 1 - nQ .
. D] H T 4R 1 o]
C s 8o e T on~ ] .
E af o T '+ RS i =
» ST T T ! ]
F oF - . H .
F RS S T ! ]
= R FANE S T H -
n S L FA + + | N
. + S + . .
T o T T ]
T -uv i = -
] . 7 I ]
. ] o 3 ||\|& 7
ke 1] I e .
[ 1 LI - T 1]
F T T H ]
F a T T H ]
E T T | ]
C Z i = 1 -
n T 1 1 E
- L —+ 1 B
- o F 3 -+ ! B
E & e €T o~
= T — B
n o -+ - o]
F ol pas L s
E ol . fan ]
E o~ r © aN — ]
Foan = oo T & =3 E
o~ N we ] O® P Ly o ®
F e ] eI Ne J v e ]
g ] s _ & F .
C . e S ]
- e SO ! P i
F ] . . 1 N
F - T H o I ]
- d 4 A -+ 1 % -+ —
o 1 .o - 1 o -+ —
= - o i [ A —+ -
E < B i 1= [ . B
o . PRt T (AN T 7
= B Aad? T T iy B
Eerraduerer TN . ko e AT VRN VAT TR AN o ol ol | I R s i ol A ]
N — < ~ N — < o * ~ N — e il ® ~ N - <
— — — =) - — — =) =) =) — — - S} =) S — — —

[1/6w] IV [1/6w] Ivin [1/6w] I3vin [1/6w] IV

20

15
Epoch

10
ry | Unauthenticated | Downloaded 03/28/25 06:53 PM UTC

20 25

15
Epoch

10

ht to you by NOAA Librar

Broug

15 20 25

Epoch

10

FIG. A4. As in Fig. A2, but for model RDCW.

15
Epoch

10



18 ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS VOLUME 3

:I TTT | TTTT | TTTT | TTTT ] TTTT | TTT Ii_:l | LI | TTTT | TTTT | TTTT | TTTTPrTTIT | TTTT | TTTT | TTTT | TTTT | TTT IA TTTT | TTTT | TTTT | TTT IA
r 2002 I 2004 ] ]
_"_ 0.711 __: 0.980 I 7
3 EH :
o + ]
£ - I
w I ] ]
< T= Ts ]
= += +-2- .
: £ EC EAEY E
0.8 = N s ,'.' T "' + :.‘;: . =
r T e, T Yrag,. T cesltea, ]
07l G e e b e b e e e CE e 3 e
. H T I_.;I [ I T I T I T I T T I T T I_ [T l LB l T I T I T ] T T l_ T I LU l T T I LB I T I T l_
5 ::E 2007 ] 2008 7 2009 ]
mL 0.897 B A 0.829 1
12p% Ir - . E
L -+ - - -
o T ] ] ]
1 ] 3 3 ]
g v n ] T ]
o M -+ B -+ Bl
€ 100 iy 3 =L 3
= L [ 1 15 i
w Ls = T ~ Ie . ]
‘z( 09:-:, I Y ‘5 YNV T ]
T T % T % T 1
E-es F---Ny F--f -2 k‘;w--&-f\/xs
Cos T %y I %, I . ]
08 N, T e T T, + i E
r T, T \“*«L .. T g T el . ]
0.7 fHHHHHHHHHHHEE R s e R e
2010 :;. 2011 ] 2012 T 2013 ]
12 0.872 _—i 0. 0.833 _—i 0.780 i
. H 1 .
] ] ]
K n ] ]
- 11 o —_—j' -
S H T ] ]
E 10f -+ — — .
o cr Vo I T ] ]
F F 30 3 £
= gob-% - it} T3 . .
I % 0 "N Y 1% s S cnnc
S T % I o~ ] ]
o8k n.\g T o,,.'." T \‘*..* _ ]
L e, T g T a, 7 ]
o RRLLTTIN + o, + My : 1
07 b b b e T e E e b et e b TR ] I
. L ] T T | 1T | T ] TTTT l LB _:l T I T ] L ] T T | T T | T IA UL l LB l T ] LI ] LI ] T T IA
3 2015 ] 2016 ]
0.765 -1 0.770 1
il E g
H o 1
2 1413‘ o -
=) ' ! ]
€ 1ol 1
— 1.0 1 n -
2 A —} A B
s 1 ]
= oof + - .
s e £ ™ = i
o N T LEST an L T o, 1
0.7 lllllllllll.l.l'r"l..'tnfblllllIIIIJ__IIIllllllllllll.l.l.l.']:rffl.llllll:_llllllllIlllIlI.I.'I.I.l'IIhLIIIII1]__lllllllllllllll‘:?’\vlJllllllll:
) 10 15 20 25 W 5 10 15 20 25 I 5 10 15 20 25 I 5 10 15 20 25
Epoch Epoch Epoch Epoch
FIG. AS. As in Fig. A2, but for mode]l RDCWS.
REFERENCES Brookfield, A. E., A. T. Hansen, P. L. Sullivan, J. A. Czuba,
M. F. Kirk, L. Li, M. E. Newcomer, and G. Wilkinson, 2021:
Aurin, D., A. Mannino, and B. Franz, 2013: Spatially resolving Predicting algal blooms: Are we overlooking groundwater? Sci.
ocean color and sediment dispersion in river plumes, coastal Total Environ., 769, 144442, https://doi.org/10.1016/j.scitotenv.
systems, and continental shelf waters. Remote Sens. Environ., 2020.144442.
137, 212-225, https://doi.org/10.1016/j.rse.2013.06.018. Chantry, M., H. Christensen, P. Dueben, and T. Palmer, 2021:
Bever, A.J., M. A. M. Friedrichs, and P. St-Laurent, 2021: Real-time Opportunities and challenges for machine learning in weather
environmental forecasts of the Chesapeake Bay: Model setup, and climate modelling: Hard, medium and soft Al. Philos.
improvements, and online visualization. Environ. Modell. Soft- Trans. Roy. Soc., A379, 20200083, https://doi.org/10.1098/rsta.
ware, 140, 105036, https://doi.org/10.1016/j.envsoft.2021.105036. 2020.0083.

Brought to you by NOAA Library | Unauthenticated | Downloaded 03/28/25 06:53 PM UTC


https://doi.org/10.1016/j.rse.2013.06.018
https://doi.org/10.1016/j.envsoft.2021.105036
https://doi.org/10.1016/j.scitotenv.2020.144442
https://doi.org/10.1016/j.scitotenv.2020.144442
https://doi.org/10.1098/rsta.2020.0083
https://doi.org/10.1098/rsta.2020.0083

JuLYy 2024

Cheng, Y., V. N. Bhoot, K. Kumbier, M. P. Sison-Mangus, J. B.
Brown, R. Kudela, and M. E. Newcomer, 2021: A novel ran-
dom forest approach to revealing interactions and controls
on chlorophyll concentration and bacterial communities dur-
ing coastal phytoplankton blooms. Sci. Rep., 11, 19944,
https://doi.org/10.1038/s41598-021-98110-9.

Culver, T., and Coauthors, 2020: SBG user needs and valuation
study Final Report September, 2020. Zenodo, 123 pp., https:/
doi.org/10.5281/zenodo.6347764.

——, and Coauthors, 2022: SBG user needs and valuation study
Final Report, December 2021. Zenodo, 156 pp., https://doi.
org/10.5281/zenodo.6347789.

Du, J., J. Shen, K. Park, Y. P. Wang, and X. Yu, 2018: Worsened
physical condition due to climate change contributes to the
increasing hypoxia in Chesapeake Bay. Sci. Total Environ.,
630, 707-717, https://doi.org/10.1016/j.scitotenv.2018.02.265.

Fernandes, J. A., X. Irigoien, J. A. Lozano, I. Inza, N. Goikoet-
xea, and A. Pérez, 2015: Evaluating machine-learning techni-
ques for recruitment forecasting of seven North East Atlantic
fish species. Ecol. Inf, 25, 35-42, https:/doi.org/10.1016/).
ecoinf.2014.11.004.

Frankel, L. T., M. A. M. Friedrichs, P. St-Laurent, A. J. Bever,
R. N. Lipcius, G. Bhatt, and G. W. Shenk, 2022: Nitrogen
reductions have decreased hypoxia in the Chesapeake Bay:
Evidence from empirical and numerical modeling. Sci. Total
Environ., 814, 152722, https://doi.org/10.1016/j.scitotenv.2021.
152722.

Ghobadi, F., and D. Kang, 2023: Application of machine learning
in water resources management: A systematic literature re-
view. Water, 15, 620, https:/doi.org/10.3390/w15040620.

Hinson, K. E., M. A. M. Friedrichs, P. St-Laurent, F. Da, and
R. G. Najjar, 2022: Extent and causes of Chesapeake Bay
warming. J. Amer. Water Resour. Assoc., 58, 805-825, https://
doi.org/10.1111/1752-1688.12916.

Hood, R. R., and Coauthors, 2021: The Chesapeake Bay program
modeling system: Overview and recommendations for future
development. Ecol. Modell., 456, 109635, https://doi.org/10.
1016/j.ecolmodel.2021.109635.

Irby, I. D., and Coauthors, 2016: Challenges associated with
modeling low-oxygen waters in Chesapeake Bay: A multiple
model comparison. Biogeosciences, 13, 2011-2028, https://doi.
org/10.5194/bg-13-2011-2016.

——, M. A. M. Friedrichs, F. Da, and K. E. Hinson, 2018: The
competing impacts of climate change and nutrient reductions
on dissolved oxygen in Chesapeake Bay. Biogeosciences, 15,
2649-2668, https://doi.org/10.5194/bg-15-2649-2018.

Isabelle, D. A., and M. Westerlund, 2022: A review and categori-
zation of artificial intelligence-based opportunities in wildlife,
ocean and land conservation. Sustainability, 14, 1979, https:/
doi.org/10.3390/su14041979.

Kemp, W. M., P. A. Sampou, J. Garber, J. Tuttle, and W. R.
Boynton, 1992: Seasonal depletion of oxygen from bottom
waters of Chesapeake Bay: Roles of benthic and planktonic
respiration and physical exchange processes. Mar. Ecol. Prog.
Ser., 85, 137-152, https://doi.org/10.3354/meps085137.

Lee, C. M., N. F. Glenn, E. N. Stavros, J. Luvall, K. Yuen, C.
Hain, and S. Schollaert Uz, 2022: Systematic integration of
applications into the Surface Biology and Geology (SBG)
Earth mission architecture study. J. Geophys. Res. Biogeosci.,
127, €2021JG006720, https://doi.org/10.1029/2021JG006720.

Li, Y., M. Li, and W. M. Kemp, 2015: A budget analysis of
bottom-water dissolved oxygen in Chesapeake Bay. Estuaries

ZHENG ET AL. 19

Coasts, 38, 2132-2148, https://doi.org/10.1007/s12237-014-
9928-9.

Masood, A., and K. Ahmad, 2021: A review on emerging artificial
intelligence (AI) techniques for air pollution forecasting:
Fundamentals, application and performance. J Cleaner Prod.,
322, 129072, https://doi.org/10.1016/j.jclepro.2021.129072.

MDDNR, 2022: Chesapeake Bay hypoxia reports. Accessed 29
March 2023, https://dnr.maryland.gov/waters/bay/pages/hypoxia-
reports.aspx.

Mohebzadeh, H., E. Mokari, P. Daggupati, and A. Biswas, 2021:
A machine learning approach for spatiotemporal imputation
of MODIS chlorophyll-a. Int. J. Remote Sens., 42, 7381-7404,
https:/doi.org/10.1080/01431161.2021.1957513.

Mouw, C. B., and Coauthors, 2015: Aquatic color radiometry re-
mote sensing of coastal and inland waters: Challenges and
recommendations for future satellite missions. Remote Sens.
Environ., 160, 15-30, https://doi.org/10.1016/j.rse.2015.02.001.

Murphy, R. R., W. M. Kemp, and W. P. Ball, 2011: Long-term
trends in Chesapeake Bay seasonal hypoxia, stratification,
and nutrient loading. Estuaries Coasts, 34, 1293-1309, https:/
doi.org/10.1007/s12237-011-9413-7.

Ni, W., M. Li, and J. M. Testa, 2020: Discerning effects of warm-
ing, sea level rise and nutrient management on long-term
hypoxia trends in Chesapeake Bay. Sci. Total Environ., 7317,
139717, https://doi.org/10.1016/j.scitotenv.2020.139717.

Officer, C. B., R. B. Biggs, J. L. Taft, L. E. Cronin, M. A. Tyler,
and W. R. Boynton, 1984: Chesapeake bay anoxia: Origin,
development, and significance. Science, 223, 22-27, https://doi.
org/10.1126/science.223.4631.22.

Roehm, C. L., 2005: Respiration in wetland ecosystems. Respira-
tion in Aquatic Ecosystems, P. del Giorgio and P. Williams,
Eds., Oxford Academic, 83-102.

Schollaert Uz, S., G. E. Kim, A. Mannino, P. J. Werdell, and
M. Tzortziou, 2019: Developing a community of practice for
applied uses of future pace data to address marine food secu-
rity challenges. Front. Earth Sci., 7, 283, https://doi.org/10.
3389/feart.2019.00283.

——, T. J. Ames, N. Memarsadeghi, S. M. McDonnell, N. V.
Blough, A. V. Mehta, and J. R. McKay, 2020: Supporting
aquaculture in the chesapeake bay using artificial intelligence
to detect poor water quality with remote sensing. Proc.
IGARSS 2020 - 2020 IEEE Int. Geoscience and Remote Sens-
ing Symp., Waikoloa, HI, Institute of Electrical and Electron-
ics Engineers, 3629-3632.

Scott, J. P., and E. Urquhart, 2020: Leveraging design principles
to inform the next generation of NASA Earth Satellites.
Oceanography, 33, 128-129, https://doi.org/10.5670/oceanog.
2020.416.

Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oce-
anic modeling system (ROMS): A split-explicit, free-surface,
topography-following-coordinate oceanic model. Ocean Mod-
ell., 9, 347-404, https://doi.org/10.1016/j.ocemod.2004.08.002.

Sison-Mangus, M. P., S. Jiang, R. M. Kudela, and S. Mehic, 2016:
Phytoplankton-associated bacterial community composition
and succession during toxic diatom bloom and non-bloom
events. Front. Microbiol., 7, 1433, https://doi.org/10.3389/
fmicb.2016.01433.

St-Laurent, P., and M. A. M. Friedrichs, 2024: On the sensitivity
of coastal hypoxia to its external physical forcings. J. Adv.
Model. Earth Syst., 16, €2023MS003845, https://doi.org/10.
1029/2023MS003845.

——, —, R. G. Najjar, E. H. Shadwick, H. Tian, and Y. Yao,
2020: Relative impacts of global changes and regional

Brought to you by NOAA Library | Unauthenticated | Downloaded 03/28/25 06:53 PM UTC


https://doi.org/10.1038/s41598-021-98110-9
https://doi.org/10.5281/zenodo.6347764
https://doi.org/10.5281/zenodo.6347764
https://doi.org/10.5281/zenodo.6347789
https://doi.org/10.5281/zenodo.6347789
https://doi.org/10.1016/j.scitotenv.2018.02.265
https://doi.org/10.1016/j.ecoinf.2014.11.004
https://doi.org/10.1016/j.ecoinf.2014.11.004
https://doi.org/10.1016/j.scitotenv.2021.152722
https://doi.org/10.1016/j.scitotenv.2021.152722
https://doi.org/10.3390/w15040620
https://doi.org/10.1111/1752-1688.12916
https://doi.org/10.1111/1752-1688.12916
https://doi.org/10.1016/j.ecolmodel.2021.109635
https://doi.org/10.1016/j.ecolmodel.2021.109635
https://doi.org/10.5194/bg-13-2011-2016
https://doi.org/10.5194/bg-13-2011-2016
https://doi.org/10.5194/bg-15-2649-2018
https://doi.org/10.3390/su14041979
https://doi.org/10.3390/su14041979
https://doi.org/10.3354/meps085137
https://doi.org/10.1029/2021JG006720
https://doi.org/10.1007/s12237-014-9928-9
https://doi.org/10.1007/s12237-014-9928-9
https://doi.org/10.1016/j.jclepro.2021.129072
https://dnr.maryland.gov/waters/bay/pages/hypoxia-reports.aspx
https://dnr.maryland.gov/waters/bay/pages/hypoxia-reports.aspx
https://doi.org/10.1080/01431161.2021.1957513
https://doi.org/10.1016/j.rse.2015.02.001
https://doi.org/10.1007/s12237-011-9413-7
https://doi.org/10.1007/s12237-011-9413-7
https://doi.org/10.1016/j.scitotenv.2020.139717
https://doi.org/10.1126/science.223.4631.22
https://doi.org/10.1126/science.223.4631.22
https://doi.org/10.3389/feart.2019.00283
https://doi.org/10.3389/feart.2019.00283
https://doi.org/10.5670/oceanog.2020.416
https://doi.org/10.5670/oceanog.2020.416
https://doi.org/10.1016/j.ocemod.2004.08.002
https://doi.org/10.3389/fmicb.2016.01433
https://doi.org/10.3389/fmicb.2016.01433
https://doi.org/10.1029/2023MS003845
https://doi.org/10.1029/2023MS003845

20 ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS

watershed changes on the inorganic carbon balance of the
Chesapeake Bay. Biogeosciences, 17, 3779-3796, https://doi.
org/10.5194/bg-17-3779-2020.

Stock, A., A. Subramaniam, G. L. Van Dijken, L. M. Wedding,
K. R. Arrigo, M. M. Mills, M. A. Cameron, and F. Micheli,
2020: Comparison of cloud-filling algorithms for marine satel-
lite data. Remote Sens., 12, 3313, https://doi.org/10.3390/
rs12203313.

Su, J., and Coauthors, 2020: Source partitioning of oxygen-consuming
organic matter in the hypoxic zone of the Chesapeake Bay.
Limnol. Oceanogr., 65, 1801-1817, https://doi.org/10.1002/
Ino.11419.

Turner, J. S., C. T. Friedrichs, and M. A. M. Friedrichs, 2021:
Long-term trends in Chesapeake Bay remote sensing reflec-
tance: Implications for water clarity. J. Geophys. Res. Oceans,
126, €2021JC017959, https://doi.org/10.1029/2021JC017959.

Valera, M., R. K. Walter, B. A. Bailey, and J. E. Castillo, 2020:
Machine learning based predictions of dissolved oxygen in a

VOLUME 3

small coastal embayment. J. Mar. Sci. Eng., 8, 1007, https://
doi.org/10.3390/jmse8121007.

VIMS, 2022: Dead-zone report card: Compare the annual severity
of Chesapeake Bay hypoxia. Accessed 29 March 2023, https:/
www.vims.edu/research/topics/dead_zones/forecasts/report_card/
index.php.

Wolny, J. L., and Coauthors, 2020: Current and future remote
sensing of harmful algal blooms in the Chesapeake Bay to
support the shellfish industry. Front. Mar. Sci., 7, 337, https://
doi.org/10.3389/fmars.2020.00337.

Yu, X., J. Shen, and J. Du, 2020: A machine-learning-based
model for water quality in coastal waters, taking dissolved
oxygen and hypoxia in Chesapeake Bay as an example. Wa-
ter Resour. Res., 56, €2020WR027227, https://doi.org/10.1029/
2020WR027227.

Zheng, G., and P. M. DiGiacomo, 2020: Linkages between phyto-
plankton and bottom oxygen in the Chesapeake Bay. J. Geo-
phys. Res. Oceans, 125, €2019JC015650, https://doi.org/10.
1029/2019JC015650.

Brought to you by NOAA Library | Unauthenticated | Downloaded 03/28/25 06:53 PM UTC


https://doi.org/10.5194/bg-17-3779-2020
https://doi.org/10.5194/bg-17-3779-2020
https://doi.org/10.3390/rs12203313
https://doi.org/10.3390/rs12203313
https://doi.org/10.1002/lno.11419
https://doi.org/10.1002/lno.11419
https://doi.org/10.1029/2021JC017959
https://doi.org/10.3390/jmse8121007
https://doi.org/10.3390/jmse8121007
https://www.vims.edu/research/topics/dead_zones/forecasts/report_card/index.php
https://www.vims.edu/research/topics/dead_zones/forecasts/report_card/index.php
https://www.vims.edu/research/topics/dead_zones/forecasts/report_card/index.php
https://doi.org/10.3389/fmars.2020.00337
https://doi.org/10.3389/fmars.2020.00337
https://doi.org/10.1029/2020WR027227
https://doi.org/10.1029/2020WR027227
https://doi.org/10.1029/2019JC015650
https://doi.org/10.1029/2019JC015650

