

1 **Investigating conspecific CsRV1 transmission in *Callinectes sapidus***

2 Julie A. Lively^{1*}, Matthew I. Spitznagel², Eric J. Schott², and Hamish J. Small³

3 ¹School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton

4 Rouge, LA 70803, USA

5 ²Institute of Marine and Environmental Technology, University of Maryland Center for

6 Environmental Science, Baltimore, MD 21202, USA

7 ³Virginia Institute of Marine Science, William & Mary, PO Box 1346, Gloucester Point, VA

8 23062, USA

9 *Corresponding author: Julie Lively, Louisiana State University Agricultural Center, 239 LA

10 Sea Grant Building, Baton Rouge, LA 70803, phone: 1-225-578-2423 email: julieann@lsu.edu

11

12

13 Highlights

14 - Single per os exposure with infected muscle did not result in detectable transmission.

15 - Repeated per os exposure resulted in transmission in 11% of individuals.

16 - The use of an alginate enabled a single source of virus to be over time.

17

18 **Abstract**

19 A reo-like virus, CsRV1, is found in blue crabs, *Callinectes sapidus*, from every North American location
20 assessed, including Chesapeake Bay and the Atlantic and Gulf coasts, USA and associated with blue crabs
21 in softshell production. CsRV1-associated crab mortality is prevalent in captive crabs, but it is still
22 unknown how CsRV1 is transmitted. The purpose of this study was to examine the role that conspecific
23 predation or scavenging may play in per os transmission in single exposure and repeated exposure
24 experiments. For viruses without cell culture propagation, repeated exposure experiments have the
25 challenge of presenting the virus consistently during the experiment and across time replicates. In a
26 single-exposure experiment, none of the crabs fed muscle tissue of crabs carrying intense infections of
27 CsRV1 developed CsRV1 infections. In a repeated-exposure trial, using infected muscle tissue prepared
28 in alginate blocks, CsRV1 was detected in 11% of the crabs fed infected tissue but was not significantly
29 different from the control group fed alginate lacking CsRV1. For repeated per os exposure experiments,
30 the study demonstrated the utility of using alginate to present the same homogenous sample of virus,
31 both injected and per os, over time for oral challenge experiments. Conspecific predation and
32 scavenging could be a transmission route, but future work into this and other possible routes of
33 transmission for CsRV1 is important to better understand the role this virus plays in wild crab
34 populations and the soft-shell crab industry.

35

36 **Keywords:** CsRV1, reo-like virus, transmission, blue crabs, conspecific spread

37

38 **1. Introduction**

39 One of the most ecologically and economically important crustaceans in the United States is the blue
40 crab, *Callinectes sapidus* (Rathburn, 1896). It is distributed from New England to the Gulf of Mexico and
41 is fished both commercially and recreationally (Guillory and Perret, 1998; Millikin, 1978). A blue crab's
42 epibenthic lifestyle and voracious feeding habits help regulate the environments in which they live along
43 with the populations of organisms on which they feed.

44

45 Blue crabs commonly consume bivalves, fish, snails, live plants, crustaceans, dead animal matter and are
46 also cannibalistic in nature (Hines, 2007; Hines and Ruiz, 1995). In the United States, the blue crab
47 fishery has an annual dockside value of \$200 million (National Marine Fisheries Service, 2020). In the
48 Gulf of Mexico and Chesapeake Bay regions, commercial fisheries employ thousands of fishermen
49 targeting the species (Louisiana Department of Wildlife and Fisheries, 2020; Virginia Marine Resources
50 Commission, Personal Comm.). Many more are employed in nearshore activities supporting crab
51 harvesters and retailers. Blue crab populations fluctuate due to a number of potential influences
52 including fishing pressure, recruitment success and natural mortality (Hines and Ruiz, 1995; Rome et al.,
53 2005). The role of pathogens in blue crab natural mortality is often ignored yet blue crabs are a host for
54 a wide variety of pathogens, some of which are known to cause significant mortality (Bonami and Zhang,
55 2011; Lee and Frischer, 2004; Messick and Shields, 2000; Rogers et al., 2015; Shields and Overstreet,
56 2007; Spitznagel et al., 2019).

57

58 In the 1970s and 1980s, there were reports of a “reovirus” (then termed RLV, now *Callinectes*
59 *sapidus* reovirus 1, CsRV1) associated with mortalities of captive blue crabs (Johnson, 1984; Johnson,
60 1977). Bowers et al. (2010) demonstrated that injection of CsRV1 is fatal to blue crabs in two to three
61 weeks under laboratory conditions, and subsequent studies revealed that wild crabs carrying natural
62 infections of CsRV1 also die within two to five weeks in captivity (Bowers et al., 2010; Johnson, 1977).
63 CsRV1 is found in hard (intermoult) crabs from every location assessed in the United States, including
64 Chesapeake Bay and the Atlantic and Gulf coasts (Bowers et al., 2011; Flowers et al., 2013; Flowers et
65 al., 2016b; Rogers et al., 2014; Spitznagel et al., 2019). The virus causes destruction of the hemopoietic
66 tissue and young hemocytes, with neurological damage most likely being the cause of death (Johnson,
67 1977; Tang et al., 2011). The impact of CsRV1 on wild crab populations is unknown, however its
68 presence in over 50% of pre-molt mortalities in crabs held under aquaculture conditions suggests it is
69 responsible for a considerable fraction of the overall mortality observed (Bowers et al., 2010; Spitznagel

70 et al., 2019). The captive (artificial) environment is stressful to blue crabs, especially during ecdysis, and
71 in combination with high CsRV1 loads this likely contributes to mortality (Ary Jr and Poirrier, 1989;
72 Spitznagel et al., 2019). However, the molting process is inherently stressful for crabs, and the natural
73 level of background mortality of wild blue crabs during the molt remains a largely unknown proportion
74 of natural mortality (Hewitt et al. 2007).

75

76 Few studies have been done on the factors linked to CsRV1- associated crab mortality (Flowers et al.,
77 2016b; Spitznagel et al., 2019), and it is still unknown how CsRV1 is transmitted. Previous studies
78 analysing wild blue crabs sampled near (<200 m) and far (>2 km) from flow-through shedding facilities in
79 Chesapeake Bay documented the probability of detecting CsRV1 in crabs close to shedding facilities to
80 be up to 78% higher than in crabs sampled from far sites (Flowers et al., 2018). In these flow-through
81 systems, mortalities are often discarded into the adjacent waterway, which could introduce CsRV1 by
82 two routes: via discarded crabs and free virus particles present in flow-through effluent. With wild
83 prevalence values varying from 0 – 60% in hard crabs and 33.3% in live freshly harvested pre-molt crabs
84 (Spitznagel et al., 2019), determining the routes of transmission would increase understanding the role
85 this virus plays in natural blue crab populations and the potential for effluents or discards to affect virus
86 prevalence.

87

88 A better understanding of CsRV1 transmission routes can lead to improvements in blue crab shedding
89 and wild capture practices, as both activities dispose of undersize, sick or dead animals back into the
90 estuary. The purpose of this study was to examine the role that conspecific predation or scavenging may
91 play in transmission. The collection of crabs in Louisiana for use in the bioassay also provided an
92 opportunity to investigate the prevalence of CsRV1 in the natural population at several time points.
93 Furthermore, this study provided an opportunity to examine the utility of using alginate to address the
94 problem of using one batch of virus for an experiment over time for viruses without cell culture options
95 for multiple transmission routes (injected and *per os*).

96

97 **2. Materials and Methods**

98 **2.1 Single Exposure to CsRV1**

99 **2.1.1 Collection and prescreening of single exposure crabs**

100 Wild mature molt blue crabs (carapace width 103-179 mm) were harvested by commercial traps in
101 August 2016 from the Choptank River within 2 km of Tilghman Island, MD, USA. Ambient collection site
102 surface water conditions were 31°C and 14 ppt salinity. These crabs were placed in coolers with cloth-
103 covered ice packs and transported to the Institute of Marine and Environmental Technology (IMET) in
104 Baltimore, MD, where they were housed in individual 16 liter acrylic tanks and acclimated for 7 days in
105 15 ppt artificial sea water (ASW, de-chlorinated municipal water with the addition of commercial grade
106 food salt produced in the IMET Aquaculture Research Center) at 25°C. Crabs were held under constant
107 aeration and a 12h:12h day:night light cycle prior to pre-trial screening for CsRV1. Full water changes
108 were conducted daily to maintain water quality. Each day, crabs were offered a mixed diet of shrimp
109 and squid for 1 h and uneaten food was removed.

110

111 All crabs used in the single exposure experiment (described below) were sampled for existing CsRV1
112 infections (T0) two days prior to their exposure to CsRV1-infected donor muscle tissue. From each crab,
113 100 µl hemolymph was withdrawn from directly beneath the arthrodial cuticle connecting the merus of
114 the swimming leg to the carapace, after cleaning with 75% isopropanol. The hemolymph sample was
115 drawn directly into 300 µl anticoagulant (0.3 M sodium chloride, 0.1 M glucose, 26 mM citric acid, 2.5
116 mM EDTA in sterile water at pH 6.3). Hemocytes were pelleted at 2,000 g and saved for later RNA
117 extraction and qPCR screening as described in Sections 2.3 and 2.4.

118

119 **2.1.2. Single exposure per os**

120 CsRV1-free and CsRV1-infected crabs with a CsRV1 load approximately 10^8 CsRV1 genome copies per
121 mg muscle tissue were identified by RT-qPCR among recently-dead shedding system mortalities.

122 Mortalities had been dead less than 6 h before being chilled on ice and were maintained on ice no more
123 than 24 h until feeding trials. Infectiousness of the fed tissue was verified by preparation of tissue
124 filtrates (Flowers et al. 2016b) and injection into an additional 4 naïve crabs housed under similar
125 conditions; negative control injections (n=5) were performed with filtrates prepared from CsRV1-
126 negative crabs. Filtrate was prepared using infected crab tissue mixed with sterile ASW (15 ppt) at a
127 ratio of 100 mg tissue to 2 ml ASW and vortexed for 2 min. The resulting suspension was centrifuged at
128 500 g for 5 min to sediment debris. The remaining supernatant was filtered through a 0.2 µm filter. The
129 injection area was sterilized with a 95% ethanol solution. Using a tuberculin syringe (1cc, 27-gauge
130 needle), 20 µl of freshly prepared virus suspension representing a challenge dose of 2×10^7 CsRV-1
131 genome copies was injected into the hemal sinus at the joint between the thorax and the 5th (swimmer)
132 leg.

133

134 In order to determine if ingesting a single meal of CsRV1-infected crab muscle could lead to transmission
135 of the virus, 1 g of CsRV1-infected or uninfected crab muscle (infected same muscle tissue as prepared
136 or filtrate above and representing an oral challenge dose of at least 10^{10} CsRV-1 genome copies) was
137 placed in the 16 L aquaria of individual crabs (n=29 fed uninfected and n=29 fed infected muscle tissue)
138 for 1 h. The full or partial consumption of the donor tissue by each naïve crab (all mature males) was
139 recorded, and crabs (n=10 CsRV1 treatment; n=6 uninfected treatment) that did not eat the tissue after
140 1 h were excluded from further analyses. After 1 h, naïve crabs were removed from their enclosure and
141 a full water change performed. Crabs were then maintained and monitored for health changes for 28
142 days post exposure. Crabs still living after 28 days were sacrificed by ice immersion. On the day that
143 crabs died or were sacrificed, a single walking leg was removed and preserved at -20°C for subsequent
144 CsRV1 analysis.

145

146 **2.2 Repeated exposure to CsRV1**

147 **2.2.1 Collection and prescreening of crabs for repeated exposure**

148 Wild blue crabs were caught from 2 locations within Louisiana, USA. In June and August 2017, crabs
149 (carapace width 86-155 mm) were caught at Island Road, Point Aux Chene (2-3 ppt; 29 °C). In September
150 2018, crabs (carapace width 80-114 mm) were caught at Lake Rd, Lacombe (2 ppt; 29 °C). Crabs were
151 caught using dip nets and placed into coolers with ice covered in burlap for transport to Louisiana State
152 University AgCenter. The crabs were held in individual 76 l polyethylene treatment tanks and allowed to
153 acclimate 7 days to 15 ppt ASW (de-chlorinated municipal water with the addition of Instant Ocean® Sea
154 Salt) at 22 °C.

155

156 Before the start of the bioassay (within the 7-day acclimation period), each crab was prescreened for
157 CsRV1 as described above (2.1.1) with one walking leg removed, placed in a plastic bag, and preserved
158 at -20°C.

159

160 **2.2.2. Repeated exposure treatments**

161 The challenge in repeated per os experiments is to provide dosing over time as virus can currently only
162 be obtained from infected blue crab tissue, during the course of a treatment and across replicates. In
163 order to provide a uniform dosing across time, we used alginate to create a solid block of homogenized
164 tissue for the crabs. This allowed the CsRV1 homogeneous tissue to be frozen as a uniform mixture with
165 fresh blocks prepared daily across replicates, and the same sample available to prepare injected filtrate
166 across replicates. As previous work has not been done with alginate and virus delivery, we soaked the
167 CsRV1 alginate block in saline and injected the saline to verify that the alginate process did not interfere
168 with the virus. The four treatments were 1) Fed CsRV1 alginate block, 2) Fed Squid alginate block
169 (negative alginate control), 3) Injected virus filtrate (positive control for viability of virus), and 4) Injected
170 CsRV1 alginate-soaked saline solution (positive control for alginate process). For the infected crab
171 alginate and virus filtrate preparations, infected muscle tissues from crabs previously identified to have
172 a CsRV1 loads of 10^7 and 10^8 per mg fresh weight (Spitznagel et al., 2019) were homogenized with a
173 food processor for 5 min and then frozen until use.

174

175 To prepare the CsRV1 alginate block, we used a process similar to that developed for producing
176 homogenous portions of shrimp processing waste into crab bait (Clowes, 2016). The homogenized
177 infected blue crab tissue was mixed at a ratio of 3:2 alginate:crab, and the mixture hardened in a 1%
178 CaCl₂ solution for 1 h. The resulting crab alginate block was cut into 5 g portions (representing a total
179 challenge dose of approximately 2×10^{10} CsRV1 genome copies) for subsequent use in feeding
180 experiments. Fresh crab alginate blocks were prepared each day for 7 days. Materials and supplies,
181 including food processors, were labeled and kept separate for the CsRV1 alginate and squid (control)
182 alginate to prevent viral contamination.

183

184 The negative control squid alginate block was prepared as above with a ratio of 3:2 alginate:squid
185 (commercial-grade frozen squid, *Ommastrephes sloani pacificus*, homogenized). Fresh squid alginate
186 blocks were prepared each day.

187

188 For the virus filtrate preparation, we followed the procedure outlined by Bowers et al. (2011) and
189 described in 2.1.2. Using a tuberculin syringe (1cc, 27 gauge needle), 20 μ l of freshly prepared virus
190 suspension representing a total challenge dose of approximately 2×10^7 CsRV-1 genome copies was
191 injected into the hemal sinus at the joint between the thorax and the 5th (swimmer) leg. Aliquots of virus
192 filtrate were prepared and frozen (-20°C) for each trial. Mortalities in the first 7 days post injection were
193 not included in further analyses because of the likelihood that these crabs had a cryptic pre-existing
194 infection with CsRV1, another pathogen, or succumbed to unnoticed injuries.

195

196 To verify that preparation of the alginate-crab muscle blocks did not eliminate CsRV1 infectivity, 5 g of
197 crab alginate block was soaked in 25 ml of sterile ASW (15 ppt) for 16 h at 22°C. The solution was then
198 centrifuged at 500 g for 5 min at room temperature to sediment the alginate and filtered through a 0.2
199 μ m filter. Aliquots of virus-saline solution were frozen (-20°C) for each trial. The virus-saline was injected

200 as described above. Mortalities in the first 7 days post injection were not included in further analyses.

201 Due to shipping issues, the viral load of the saline treatment was not available.

202

203 **2.2.3 Repeated exposure *per os***

204 Three separate transmission bioassays were conducted using a total of 106 crabs (trial 1: 30 crabs, June
205 2017; trial 2: 40 crabs, July 2017; and trial 3: 36 crabs, September 2018). Conditions were maintained for
206 all three trials at 15 ppt ASW at 22 °C.

207

208 To examine whether repeated doses of CsRV1 via feeding would result in CsRV1 transmission, a crab
209 alginate block was prepared each day to ensure the same amount of virus was presented to each crab
210 each day. Naïve crabs were randomly assigned into one of four treatment groups: 1) CsRV1 alginate
211 block (n=32), 2) Squid alginate block (negative control, n=32), 3) Injected virus filtrate (positive control
212 for virus, n=21), and 4) Injected alginate saline solution (positive control for homogenate, n=20). The
213 first two treatment groups were fed 5 g of alginate block (squid or crab), each day for 7 days. Crabs were
214 observed to ensure they consumed the alginate, and after 2 h, any remaining alginate was removed. The
215 injected crabs were injected on Day 0 and fed a control diet of squid (*Ommastrephes sloani pacificus*)
216 or shrimp (*Litopenaeus setiferus*) each day for 7 days.

217

218 Crabs from all four treatments were then maintained an additional 21 days following the end of the 7-
219 day alginate feeding treatment to allow the virus time to replicate. During the 21 days following the
220 treatment, the crabs were fed a regular diet of squid (*Ommastrephes sloani pacificus*) or shrimp
221 (*Litopenaeus setiferus*) every 3 days. Crabs were monitored daily for mortality and molting. Water
222 temperature and water quality (ammonia, nitrite, nitrate) were checked daily, and water changes were
223 carried out as needed to maintain water quality. Water temperature ranged from 22-24°C. When a crab
224 died or at the end of the 21 days, a walking leg was removed and stored at -20°C. All samples were
225 shipped frozen to IMET for subsequent RNA extraction and qPCR analyses.

226

227 **2.3 Crab Dissection and RNA Extraction**

228 Hemolymph samples (prescreening for single exposure (2.1.1)) were extracted with Trizol as described
229 in Flowers et al. (2016b) and muscle tissues (prescreening for repeated exposure (2.2.1) and final
230 analysis for both) from preserved crab legs was dissected following Spitznagel et al. (2019). RNA
231 extraction methods followed Flowers et al. (2016b). Those pellets were then dissolved in 1mM EDTA and
232 evaluated (absorbance at 260 and 280 nm) on a NanoDrop spectrophotometer for RNA quantity and
233 purity (Spitznagel et al., 2019).

234

235 **2.4 Quantification of CsRV1**

236 Quantification of CsRV1 genome numbers was based on a standard curve of purified dsRNA from
237 infected crabs, following the methods of Spitznagel et al. (2019), amplified with the primer
238 pair 5'- TGCCTTGGATGCGAAGTGACAAAG- 3' (RLVset1F) and 5'- GCGCCATACCGAGCAAGTTCAAAT- 3'
239 (RLVset1R) used to detect a 158 bp amplicon from the ninth genome segment of CsRV1 (GenBank entry
240 KU311716) (Flowers et al. 2016b). Standard curves of the CsRV1 genome were prepared using dsRNA
241 from purified CsRV1. Standard ten-fold dilutions yielded genome concentrations of 3.4×10^7 down to 34
242 genomes per μL . All dilutions were prepared in 1 mM EDTA with 25 ng per μL yeast tRNA and stored at -
243 80 °C.

244

245 The qPCR reagents, parameters, and process selection followed Flowers et al. (2016b). The qPCR
246 reaction components included 1 \times qScript™ One-Step qPCR Kit Low ROX Master Mix (Quanta Bio), SYBR®
247 Green (Quanta) and 500 nM of each primer. Primers were dissolved in 1mM EDTA to prevent RNA
248 degradation. The product was amplified for 40 cycles of 5 s at 95 °C (melting) followed by 30 s at 61 °C
249 (annealing and extending).

250

251 Based on prior experience and the inclusion of negative control samples processed in parallel with crab
252 samples (Bowers et al., 2011; Flowers et al., 2016a), the threshold for assessing a crab to be infected
253 with CsRV1 was set at 1000 CsRV1 genome copies per mg muscle or per μ l hemolymph as determined
254 by RT-qPCR. Crabs with fewer than 1000 copies were considered negative, and the possible
255 consequence of cross contamination.

256

257 **2.5 Statistical Analysis**

258 For the repeated exposure experiments, an ANOVA was used to compare the Log viral load amongst
259 treatments. Tukey's HSD was used to determine which treatments were different when the ANOVA was
260 significant. Chi-square compared the presence/absence of virus amongst the treatment groups, and a
261 Fisher exact test was used to determine if the treatment groups of crab and squid were different.
262 Statistical analyses were done in JMP (Pro 15.1) and Sigma Plot 14 (Systat Software). The p value was set
263 at 0.05 for all analysis.

264

265 **3. Results**

266 **3.1. Single exposure per os**

267 No crabs fed infected tissue developed CsRV1 infections. None of the crabs fed infected or uninfected
268 tissue died within 28 days. All crabs injected with the virus filtrate (n=4, prepared from CsRV1-positive
269 muscle) died within 21 days with heavy CsRV1 infections. None of the crabs injected with control filtrate
270 (n=5, prepared from CsRV1-negative muscle) developed infections or died within 28 days. The injection
271 studies indicated that the virus fed to the crabs was competent to cause infection and disease.

272

273 **3.2 Repeated exposure to CsRV1**

274 **3.2.1 Pre-existing prevalence**

275 Screening for virus-free crabs produced data on natural prevalence values of the virus. Of the crabs that
276 were caught in Point Aux Chenes in June 2017, 38.5% (10/26) were positive for CsRV1. At the same

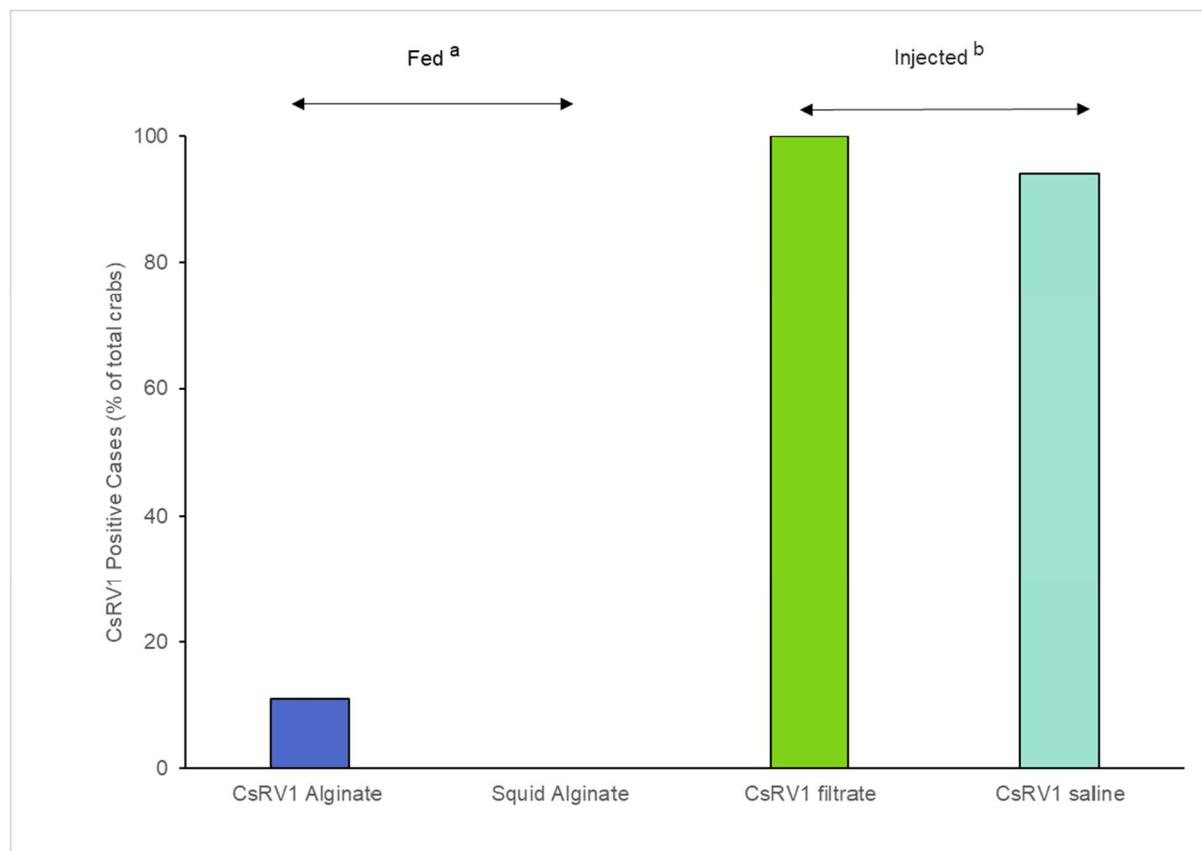
277 location in August 2017, only 2.7% (1/37) crabs were positive for CsRV1. In the following year in
278 September, CsRV1 was detected in 5.6% (2/36) crabs from Lacombe. All crabs with detectable CsRV1
279 were excluded from the data analysis.

280

281 **3.2.2. Post-exposure prevalence and virus load**

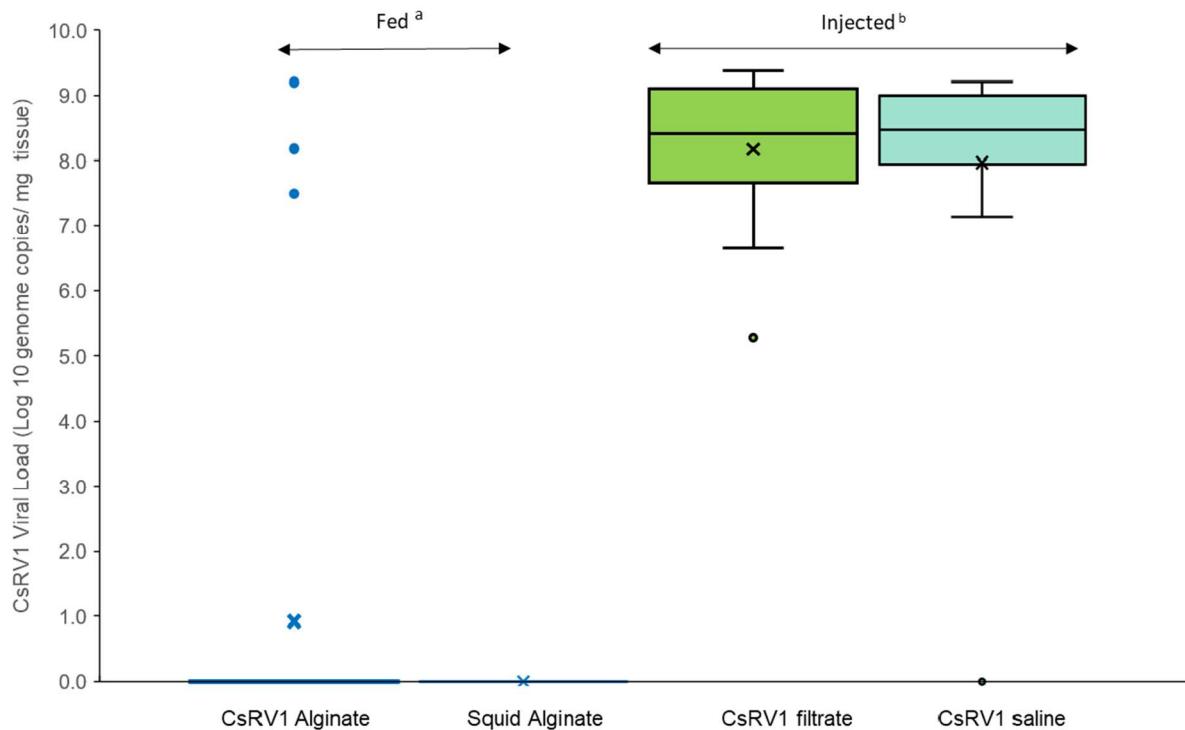
282 For reasons outlined below, 21 crabs were excluded from this study. At To, 13 crabs were determined to
283 be positive for CsRV1 and excluded (see above). Any crab that died in the first week was excluded (n=5),
284 2 of those 5 were also CsRV1 positive at To. Low RNA yields from crab tissue extractions (n=4) and
285 possible contamination (n=1) were also excluded. Of the 84 crabs analyzed, 16 were injected with CsRV1
286 filtrate, 18 were injected with CsRV1 saline solution, 23 were fed squid alginate blocks and 27 were fed
287 CsRV1 alginate blocks. The viral genome number in the CsRV1 filtrate was 12 million copies per
288 microliter representing a challenge dose of 24 million CsRV1 genome copies per crab from the 20 μ l
289 inoculum. The CsRV1 alginate represented a challenge dose of over 10 billion CsRV1 genome copies per
290 block. There were a total of 30 female and 75 male blue crabs in the study. Carapace width ranged from
291 80 to 175 mm with an average width of 112.7 mm.

292


293 CsRV1 was detected in 100% (16/16) of the crabs injected with the CsRV1 filtrate (Fig. 1), with an
294 average of 6.3×10^8 CsRV1 genome copies per mg muscle tissue (Fig. 2). CsRV1 was detected in 94%
295 (17/18) of crabs injected with the CsRV1 saline solution (Fig. 1), with an average viral genome load of 4.4×10^8 CsRV1 genome copies per mg muscle tissue (Fig. 2). A one-way ANOVA revealed there was a
297 significant difference between at least two of the groups ($F=113.15$, $p<0.001$). The final virus loads in the
298 two injected treatments were not significantly different (Tukey's HSD, $p=0.990$; Fig. 2). CsRV1 was not
299 detected in any of the crabs fed the squid alginate blocks (Fig. 1 & 2). CsRV1 was detected in 11% (3/28)
300 of the crabs fed the CsRV1 alginate blocks (Fig. 1) with an average viral genome load of 7.3×10^8 CsRV1
301 genome copies per mg muscle tissue for the three infected crabs (range 1.5×10^8 to 1.7×10^9 CsRV1

302 genome copies per mg muscle tissue) (Fig. 2). The injected groups were both significantly different from
303 the per os groups (Tukey's HSD, $p<0.001$) for all four combinations.

304


305 While three cases of CsRV1 transmission occurred in the CsRV1 alginate block treatment group,
306 the virus load in the two alginate block fed groups (CsRV1 and squid) were not statistically different from
307 each other (Tukey's HSD, $p=0.700$; Fig. 2). The Chi square indicated significant different in presence and
308 absence between at least two groups ($\chi^2=69.26$, $df=3$, $p<0.001$) There was no significant difference in
309 the presence/absence of virus between the CsRV1 alginate and squid fed groups (Fisher Exact, $p=0.240$;
310 Fig. 1). When comparing the final presence/absence of CsRV1 in recipient crabs, fed and injected
311 treatment groups were significantly different (Fisher Exact, $p<0.001$; Fig. 1), and final viral load was also
312 significantly different between the fed and injected treatment groups (Fisher Exact, $p<0.001$; Fig. 2).

313

314
315 **Figure 1.** The positive cases of CsRV1 for each treatment group (% of total crabs). Different letters

316 indicate a significant difference in the fed (blue; CsRV1 alginate and squid alginate) and injected
317 treatments (green; CsRV1 filtrate and CsRV1 alginate saline) ($p<0.001$). There were no
318 significant differences between the fed or within the injected treatment groups.

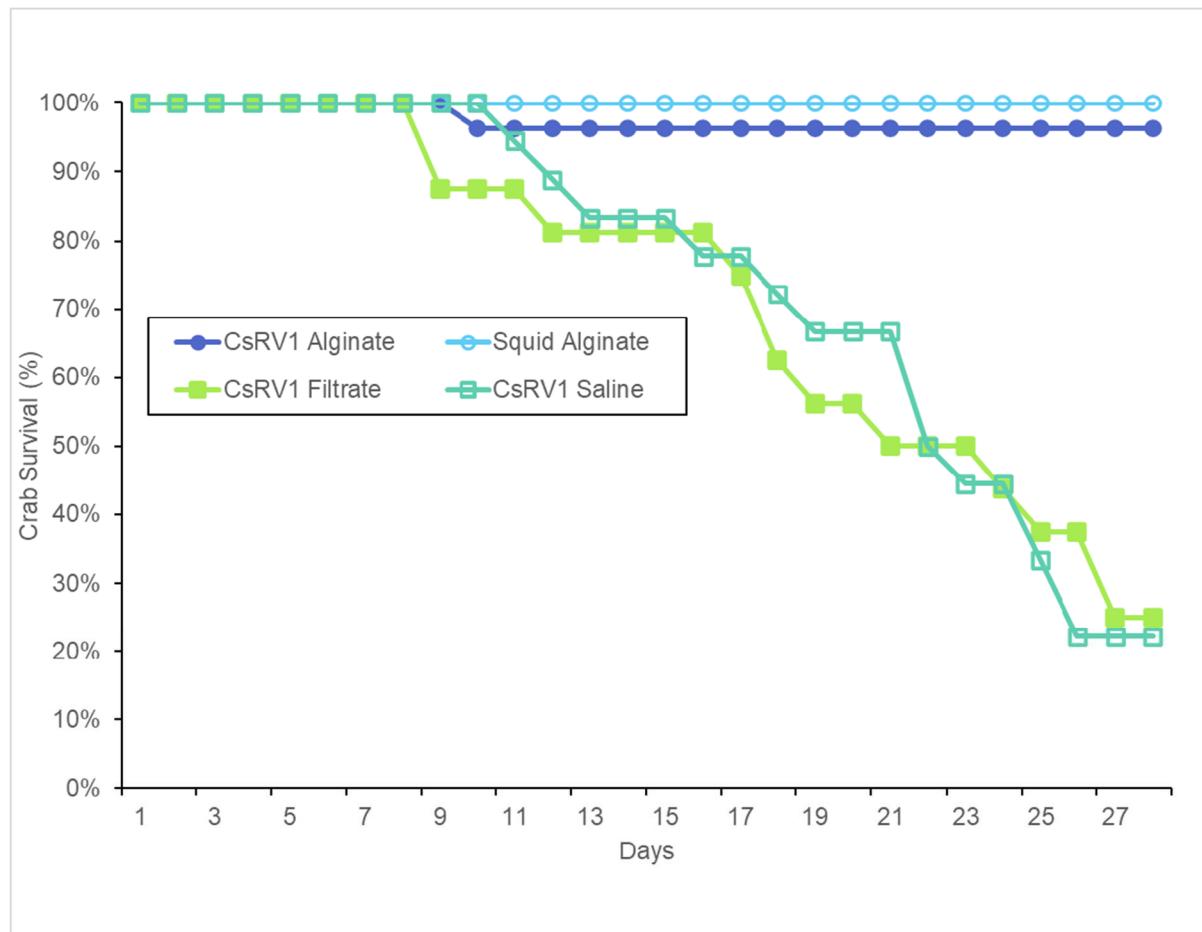


Figure 2. Box plot of the viral load of CsRV1 for each treatment group. X represents the mean with the box representing the upper and lower quartiles with a line at the median. The whiskers represent variability outside of the quartiles. Individual dots are outliers. For CSRV1 Alginate and Squid Alginate, the upper and lower quartiles are at zero. Different letters indicate a significant difference in the fed (blues; CsRV1 alginate and squid alginate) and injected treatments (greens; CsRV1 filtrate and CsRV1 alginate saline) ($p<0.001$). There was no significant difference within the fed or within the injected treatment groups.

3.2.2 Crab survival
CsRV1 was present in 100% of the crabs that died during the course of the experiment (27 crabs: 1 crab fed CsRV1 alginate blocks, 12 crabs injected with CsRV1 filtrate, and 14 injected with CsRV1 alginate

332 saline solution). Of the crabs that died (n=27), the range was 1.7×10^8 to 5.3×10^9 CsRV1 genome copies
333 per mg muscle tissue with an average of 1.6×10^9 CsRV1 genome copies per mg muscle tissue.

334

335

336 Figure 3. 28-day survival (%) of crabs in each treatment group. Injected treatments (Squares) are CsRV1
337 Filtrate (solid) and CsRV1 Saline (open); per os exposure (Circles) are CsRV1 Alginate (solid) and Squid
338 Alginate (open).

339

340 Fifty-seven crabs were alive at the end of the 28-day bioassay (26 crab fed CsRV1 alginate blocks, 23
341 crabs fed squid alginate blocks, 4 crabs injected with CsRV1 filtrate, and 4 injected with the CsRV1
342 alginate saline solution; Figure 3). Of the 57 crabs that were alive at day 28, 16% had detectable CsRV1
343 levels (2 crab fed CsRV1 alginate blocks, 4 crabs injected with CsRV1 filtrate and 3 injected with the

344 CsRV1 alginate saline solution) ranging from 1.7×10^7 to 5.3×10^9 CsRV1 genome copies per mg muscle
345 tissue with an average of 2.5×10^9 CsRV1 genome copies per mg muscle tissue.

346

347

348 **4. Discussion**

349

350 Despite the fact that the blue crab virus CsRV1 is associated with the majority of softshell crab
351 mortalities and has a natural prevalence of up to 60% in hard shell blue crabs, little is known about
352 natural transmission of the virus between blue crabs. Determining the possible routes of transmission
353 for CsRV1 is important to better understand the role this virus plays in wild crab populations and the
354 soft-shell crab industry. Conducting transmission studies with reproducible doses of CsRV1 is challenging
355 because in vitro culture methods do not exist for crustacean viruses. The single exposure bioassay using
356 infected muscle (representing a challenge dose of 10^{10} CsRV-1 genome copies per crab) did not result in
357 detectable CsRV1 transmission. In contrast, the repeated exposure bioassay using alginate gel blocks
358 formulated from muscle tissue homogenates containing CsRV1 (representing a challenge dose of 10^{10}
359 CsRV-1 genome copies per crab) indicated that transmission occurred in 3 of 28 crabs offered this
360 treatment. The use of an alginate gel proved to be an effective method for allowing virus from a single
361 homogenized sample to be delivered to many crabs; virus infectivity was retained for at least 24 h after
362 immersion in saline.

363

364 The exact mode of transmission to the three crabs in the CsRV1 alginate block treatment group is
365 unclear. Since the injected CsRV1 alginate saline solution treatment confirmed that the virus remained
366 infectious after submersion of the alginate block in saline for 24 h it is possible that unknown quantities
367 of CsRV1 viral particles leached out the crab alginate blocks into the surrounding water, and crabs were
368 exposed by this route, rather than by direct consumption of the CsRV1 alginate. In addition, the crabs
369 were handling the CsRV1 alginate as they ate. Regardless of the exact mode, these data suggest that

370 blue crabs interacting with infected tissue from a dead conspecific could increase risk of conspecific
371 infection either from direct per os ingestion or another transmission route. Repeated exposure also is
372 likely to increase to risk of infection as the single exposure bioassay did not result in detectable CsRV1
373 transmission even though viral load was comparable (10^{10}). The apparent lack of infection through per
374 os exposure can be rationalized with the fact that the digestive system of a crab may not be a hospitable
375 place for virus particles. Digestive enzymes that liquefy prey items typically include proteases and
376 nucleases (Verónica and Giménez, 2013). A logical follow up study would be the exposure of virus
377 suspensions to crab digestive enzymes, to see if this abrogates infectivity.

378

379 A lot of information is still needed for this virus. Numerous (unpublished, Schott and Lively labs) trials
380 have shown that injection of blue crabs with approximately 100,000 virus genome equivalents leads to
381 50-100% infection and disease. The dose response curves are unknown for CsRV1, although work is
382 ongoing. In the repeated exposure experiment, crabs were injected with 10^7 while the crabs were
383 exposed to 10^{10} per os. Even with the threefold increase in magnitude, the per os route resulted in
384 significantly fewer infections than injection. This could be due to the transmission route, but there are
385 many other factors that are unknown with the virus.

386

387 The CsRV1 alginate block preparation method appeared to be an effective method for delivery of a
388 known concentration of CsRV1 (10^{10} CsRV-1 genome copies per crab). The associated CsRV1 alginate
389 saline solution studies indicated that after 24 h immersion, CsRV1 released into the saline solution
390 retained its infectiousness when inoculated into naïve crabs, and that resulting CsRV1 loads were
391 comparable to those produced by inoculation of CsRV1 homogenate prepared directly from infected
392 muscle tissues. Large-scale feeding transmission trials in crustaceans can be challenging to carry out. It is
393 difficult to ensure that all naïve animals are exposed to equal amounts of the challenge pathogen. The
394 method developed here would allow for exposure from one virus preparation for every individual every

395 day, and can easily be scaled down, or up, and could be used to investigate the transmission pathways
396 of other viral pathogens of crustaceans.

397

398 There does not seem to be a specific viral load level at which blue crabs die from CsRV1 infection.

399 Flowers et al. (2016b) suggested a level of heavy infection at 10^6 CsRV1 genome copies per mg muscle
400 tissue. Of the 84 individuals analyzed in the current study, all the crabs that died had quantifiable CsRV1
401 viral loads that ranged from 1.7×10^8 to 5.3×10^9 CsRV1 genome copies per mg muscle tissue. Not all
402 crabs that had detectable CsRV1 died. The surviving crabs had a CsRV1 loads that ranged from 1.7×10^7
403 to 5.3×10^9 CsRV1 genome copies per mg muscle tissue. There does not seem to be a definitive
404 correlation between virus loads and host mortality. If the holding time had continued past 28 d, then
405 more of these crabs might have died, but this and previous work (e.g. crabs surviving through molt while
406 infected) suggests that individual fitness (ex. immunocompetence), susceptibility to stress, or other
407 biological factors are involved in mortality (Spitznagel et al., 2019). Further studies are needed to better
408 understand the role of the virus in crab mortality, especially in wild populations.

409

410 The three natural prevalence values calculated from the crabs collected for this study, 38.5% (PAC, June
411 2017), 2.7% (PAC, Aug 2017) and 5.6% (Lacombe, Sept 2018) contribute to the very limited CsRV1
412 prevalence data previously reported in Louisiana (Rogers et al., 2015). The mean natural prevalence of
413 CsRV1 for wild caught crabs in this study was just below 13%. Rogers et al. (2015) collected crabs in the
414 summer of 2013 at Grand Isle and Rockefeller Wildlife Management area, both these locations are
415 farther south than where crabs were collected in this study, and the natural prevalence values were
416 7.7% (5% from Grand Isle and 10.5% from Rockefeller). In contrast, Flowers et al. (2016b) measured
417 natural prevalence in Maryland waters at 22 and 5.9%, over two summers of sampling (2012, 2013). The
418 prevalence values obtained in the current study support the existing literature that CsRV1 prevalence
419 has high variability both spatially and temporally. A recent paper by Zhao et al. (2020) reveals a climate/

420 latitudinal gradient of prevalence, with highest CsRV1 incidence in temperate areas, and nearly absent
421 in the lower latitudes.

422

423 Although our data does not conclusively identify an oral exposure route for CsRV1, it does suggest that
424 naïve crabs can acquire infections when in the proximity of CsRV1, at least with repeated exposure
425 either by consumption of diseased host tissues, or through the water. Our findings, therefore, have
426 direct industry relevance, especially to the soft-shell industry as dead pre-molt crabs are often discarded
427 in nearby waterways or sold/used as fishing bait. Our findings are consistent with Flowers et al. (2018)
428 who reported an increased prevalence of CsRV1 in the vicinity of softshell shedding effluent sources.
429 Returning dead crabs to the water may spread CsRV1 if the crabs are infected, and this may re-infect live
430 wild crabs, whether through consumption or other exposure. Recommendations should be made to the
431 industry to dispose of dead crabs from shedding systems on shore.

432

433 **5. Conclusion**

434 This is the first study to investigate a natural transmission route of CsRV1. While repeated exposure to a
435 CsRV1 alginate preparation did lead to transmission in a limited number of naïve crabs, the exact
436 transmission route is unclear. The alginate/CsRV1 infected muscle preparation was an effective method
437 for delivery of a defined concentration of CsRV1 and allowed us to perform repeated exposures to
438 CsRV1. Additional studies are needed to better understand transmission of this virus.

439

440 **Acknowledgements**

441 We would like to thank the collaborating crabbers, specifically Jimmy Hull and Kelley Cox, and lab
442 members Damen Pheiffer, Nick Haddad, and Lauren Carter for their help in all aspects of this project.

443

444 **Funding**

445 This project was supported by the National Oceanic and Atmospheric Administration Saltonstall-

446 Kennedy Grant No. NA15NMF4270296. All statements, findings, conclusions, and
447 recommendations from this study are those of the authors, not necessarily reflecting the views of
448 the National Oceanic and Atmospheric Administration or the Department of Commerce.

449

450 **References**

451

452 Ary Jr, R. D., Poirrier, M. A., 1989. Acute toxicity of nitrite to the blue crab (*Callinectes*
453 *sapidus*). *The Progressive Fish-Culturist*. 51, 69-72.

454

455 Bonami, J. R., Zhang, S. Y., 2011. Viral diseases in commercially exploited crabs: A review.
456 *Journal of Invertebrate Pathology*. 106, 6-17.

457

458 Bowers, H. A., et al., 2010. Physicochemical properties of double-stranded RNA used to discover a
459 reo-like virus from blue crab *Callinectes sapidus*. *Diseases of Aquatic Organisms*. 93, 17-
460 29.

461

462 Bowers, H. A., et al., 2011. A reo-like virus associated with mortalities of blue crab *Callinectes*
463 *sapidus*: Development of tools to improve soft shell crab aquaculture. *Journal of Shellfish*
464 *Research*. 30, 487-487.

465

466 Clowes, E. L., 2016. Efficacy and Feasibility of Alginate Bait for the Louisiana Commercial
467 Blue Crab (*Callinectes sapidus*) Fishery. *LSU Master's Theses*. 2272.

468

469 Flowers, E. M., et al., 2013. Assessing *Callinectes sapidus* reo-like virus (RLV) prevalence and fishery
470 impacts in the Chesapeake Bay. In: B. E. Meeting, (Ed.), *Poster*, Savannah, GA.

471 Flowers, E. M., et al., 2016a. Genome Sequence Analysis of CsRV1: A Pathogenic Reovirus that

472 Infests the Blue Crab *Callinectes sapidus* Across Its Trans-Hemispheric Range. Frontiers
473 in Microbiology. 7.126. DOI: 10.3389/fmicb.2016.00126

474

475 Flowers, E. M., et al., 2016b. PCR-based prevalence of a fatal reovirus of the blue crab,
476 *Callinectes sapidus* (Rathbun) along the northern Atlantic coast of the USA. Journal of
477 Fish Diseases. 39, 705-714. DOI: 10.1111/jfd.12403

478

479 Flowers, E. M., et al., 2018. Prevalence of the pathogenic crustacean virus *Callinectes sapidus*
480 reovirus 1 near flow-through blue crab aquaculture in Chesapeake Bay, USA. Diseases of
481 Aquatic Organisms. 129, 135-144.

482

483 Guillory, V., Perret, W.S., 1998. History, management, status, and trends in the Louisiana blue crab
484 fishery. Journal of Shellfish Research. 17:2. 413-424.

485

486 Hewitt et al., 2007. Direct and indirect estimates of natural mortality for blue crab. Trans. Am. Fish. Soc.
487 136:1030-1040.

488

489 Hines, A. H., 2007. Ecology of Juvenile and Adult Blue Crabs. In: V. S. Kennedy, L. E. Cronin, Eds.),
490 The Blue Crab: *Callinectes sapidus*. Maryland Sea Grant College, College Park, pp. 565-655.

491

492 Hines, A. H., Ruiz, G. M., 1995. Temporal Variation in Juvenile Blue Crab Mortality: Nearshore
493 Shallows and Cannibalism in Chesapeake Bay. Bulletin of Marine Science. 57, 884-901.

494

495 Johnson, P. J. H. M., 1984. Viral diseases of marine invertebrates. 37, 65.

496

497 Johnson, P. T., 1977. A viral disease of the blue crab, *Callinectes sapidus*: Histopathology and

498 differential diagnosis. *Journal of Invertebrate Pathology*. 29, 201-209.

499

500 Lee, R. F. D., Frischer, M. E., 2004. The decline of the blue crab - Changing weather patterns
501 and a suffocating parasite may have reduced the numbers of this species along the
502 Eastern seaboard. *American Scientist*. 92, 548-553.

503

504 Louisiana Department of Wildlife and Fisheries, Recreational and Commercial License Sales by
505 Parish- License Year 2019. Louisiana Department of Wildlife and Fisheries,
506 <http://www.wlf.louisiana.gov/licenses/statistics>, 2020.

507

508 Messick, G. A., Shields, J. D., 2000. Epizootiology of the parasitic dinoflagellate *Hematodinium*
509 sp. in the American blue crab *Callinectes sapidus*. *Diseases of Aquatic Organisms*. 43,
510 139-152.

511

512 Millikin, M. R., 1978. Blue crab larval culture: methods and management. *Marine Fisheries*
513 *Review*. November. 1353. 10-17.

514

515 National Marine Fisheries Service, Annual Commercial Landing Statistics Vol. 2020. National
516 Oceanic and Atmospheric Administration: National Marine Fisheries Service 2020.

517

518 Rogers, H., et al., 2014. Prevalence of blue crab (*Callinectes sapidus*) diseases, parasites, and
519 commensals at shedding facilities in Louisiana, USA. *Dis. Aquat. Organ.* 112, 207-217.

520

521 Rogers, H. A., et al., 2015. Variations in prevalence of viral, bacterial, and rhizocephalan
522 diseases and parasites of the blue crab (*Callinectes sapidus*). *Journal of Invertebrate Pathology* 127, 54-
523 62.

524

525 Rome, M. S., et al., 2005. Linking temperature and salinity tolerance to winter mortality of
526 Chesapeake Bay blue crabs (*Callinectes sapidus*). *Journal of Experimental Marine*
527 *Biology and Ecology*. 319, 129-145.

528

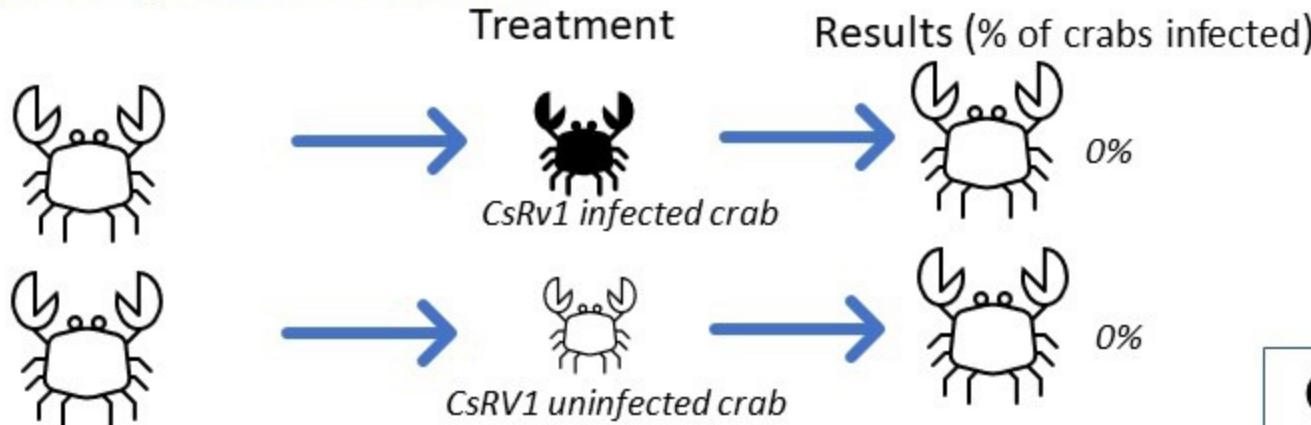
529 Shields, J. D., Overstreet, R. M., Diseases, Parasites, and Other Symbionts. In: V. S. Kennedy, L.
530 E. Cronin, Eds.), *The Blue Crab: Callinectes sapidus*. Maryland Sea Grant College,
531 College Park, 2007, pp. 299-417.

532

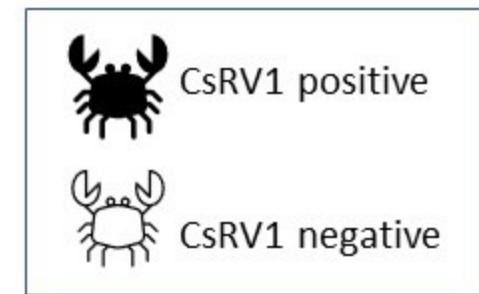
533 Spitznagel, M. I., et al., 2019. Investigating risk factors for mortality and reovirus infection in
534 aquaculture production of soft-shell blue crabs (*Callinectes sapidus*). *Aquaculture*, 502, 289-295.

535

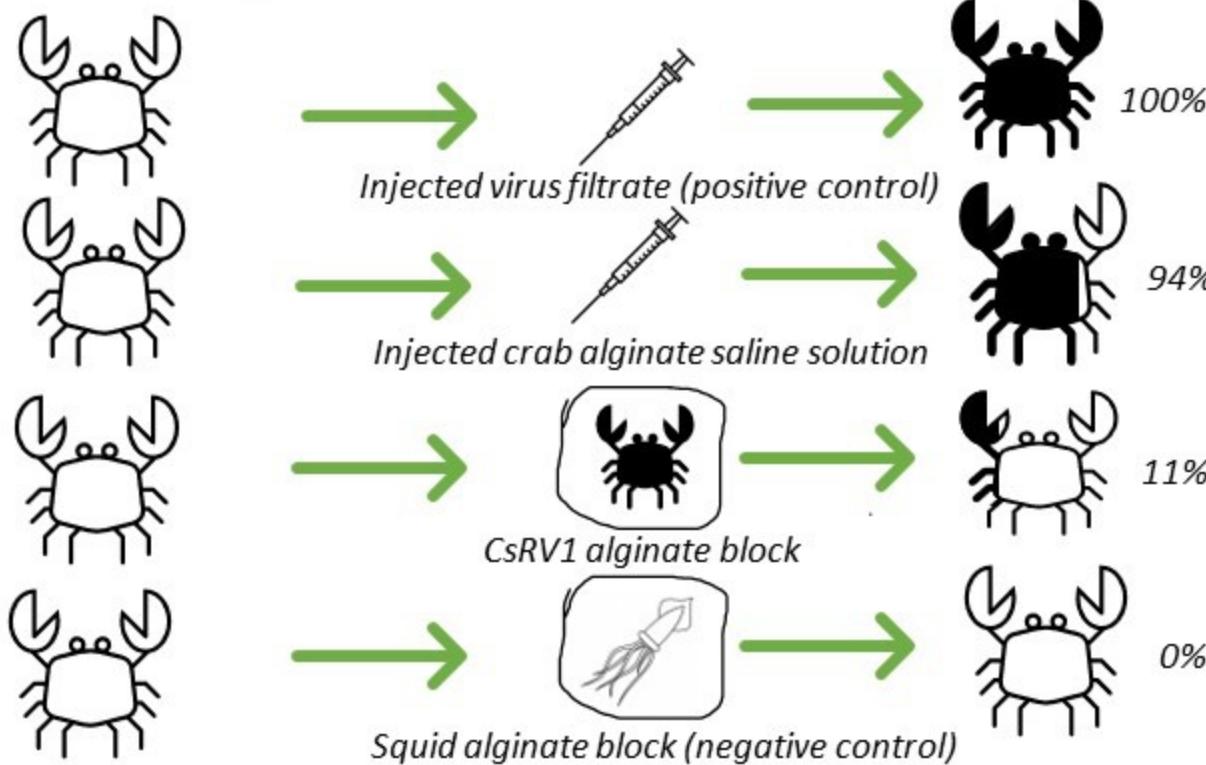
536 Tang, K. F. J., et al., 2011. Histopathological characterization and in situ detection of *Callinectes*
537 *sapidus* reovirus. *Journal of Invertebrate Pathology*. 108, 226-228.


538

539 Verónica, A.; Giménez, F. 2013. Digestive Physiology of Three Species of Decapod Crustaceans of
540 Argentina. *Journal of Shellfish Research*, 32, 3 767-77.


541

542 Zhao, M., et al., 2020. Climate and season are associated with prevalence and distribution of trans-
543 hemispheric blue crab reovirus (*Callinectes sapidus* reovirus 1). *Marine Ecology Progress Series*, 647,
544 123-133.


Single Exposure CsRV1

Transmission

Repeated Exposure CsRV1

