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Abstract
Atmospheric motion vector (AMV) winds have positive impacts in opera-
tional numerical weather prediction (NWP) systems. These impacts might be
improved with better treatment of the following error characteristics of AMVs.
First, AMVs may have wind errors due to height assignment errors. Second,
AMVs may have additional wind-speed biases in addition to those due to height
assignment errors. Third, AMVs are representative of motion in a possibly thick
atmospheric layer, not a single atmospheric level. Previous work proposed a
variational feature track correction (FTC) method in which an observation oper-
ator is implemented that averages the NWP background winds optimally in
the vertical. Here, a prototype feature track correction observation operator
(FTC-OO) is implemented in the NOAA/NCEP data assimilation (DA) system.
The parameters describing the vertical averaging are determined offline based
on previous DA cycles. The FTC-OO reduces the observation minus background
standard deviation by about 4%. Global observing-system experiments (OSEs)
are performed comparing the FTC-OO with the operational observation opera-
tor. The forecast verification sample is 41 10-day forecasts. The OSEs show that
the FTC-OO improves forecast skill, primarily for tropical geopotential height.
Additional OSEs are performed that include Aeolus wind observations. The
hypothesis that the Aeolus winds would enhance the impact of the FTC-OO was
not borne out in these experiments—the Aeolus observations alone have a sig-
nificant positive impact, but the impact of the FTC method in the presence of
the Aeolus observations is neither enhanced nor degraded compared with the
impact of the FTC method alone.
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1 INTRODUCTION

Atmospheric motion vectors (AMVs) are created in the
millions each day by tracking clouds and water vapor (WV)
features in satellite imagery at numerous wind-producing
centers. AMVs include three-dimensional (3D) winds cre-
ated by tracking features in retrieved WV imagery and
cloud-track winds (CTWs) created by tracking infrared
(IR) or visible imagery (e.g., Santek et al., 2019, 2022).
AMVs are assimilated in numerical weather prediction
(NWP) systems and show positive impact (e.g., Lee
et al., 2022; Li et al., 2020). However, they are often aggres-
sively thinned, and their error characteristics are complex
(e.g., Cordoba et al., 2017; Lee & Song, 2017; Salonen
et al., 2015). Key among these error characteristics (Velden
& Bedka, 2009) are the following:

• AMVs may have height assignment errors that induce
wind errors when the observed heights are considered
free of errors.

• AMVs may have additional wind-speed biases even after
some bias correction.

• AMVs are representative of motion within a layer with
depth up to a few hundred hPa, not a single atmospheric
level.

Height assignments are made by comparing the
cloud-top temperature with a “known” temperature pro-
file. Errors in the temperature profile, as well as the
methodology of matching the temperatures, can lead to
height assignment errors (Velden & Bedka, 2009). Ulti-
mately it must be recognized that AMVs have a somewhat
complicated relationship with the true wind. Hoffman
et al. (2022) propose a feature track correction (FTC) rep-
resentation of AMVs to account for the above aspects of
AMV errors.

When we began this work, a key motivation was the
prospect of using Doppler wind lidar (DWL) observations
to anchor AMVs in a variational FTC (VarFTC) system
that would parallel using global navigation satellite sys-
tem (GNSS) radio occultation (RO) observations to anchor
radiance measurements in a variational bias correction
(VarBC) system. VarBC has substantially improved the use
of radiance observations (Zhu et al., 2014). For VarBC,
high-quality unbiased conventional and RO observations
provide key anchoring information to account for biases
in the NWP temperature background (i.e., the short-term
forecast used as the background when assimilating obser-
vations, (e.g., Cucurull et al., 2014; Healy, 2008)). Such
observations are termed “anchoring” observations because
they anchor the data assimilation (DA) to reality. VarFTC
would do this for AMVs—that is, to account statistically

for the above aspects of AMV errors using higher quality
wind profiles as a reference.

The current study is a step towards developing VarFTC
but falls short of demonstrating VarFTC in two important
ways. First, the optimization of the feature track correction
observation operator (FTC-OO) is performed offline using
recent backgrounds. In a true VarFTC, the coefficients of
the FTC-OO are determined inline as part of an augmented
state vector. Appendix A.4 describes how this could be
done. Second, the DWL observations used here are Aeolus
wind profiles, which have larger than hoped for ran-
dom errors and biases. Moreover, preprocessing of Aeolus
winds uses European Centre for Medium-Range Weather
Forecasts (ECMWF) background information. Ideally, the
DWL observations would be assimilated as the Doppler
shift (and amplitude) of the lidar signal backscattered
by the sampled volume (Rennie & Isaksen, 2020, p. 16).
This would parallel the way RO observations are assimi-
lated as refractivities (or bending angles) and radiometer
observations are assimilated as radiances instead of as
retrieved temperature and humidity profiles. Assimilating
observations close to the original measurement (refrac-
tivity not temperature, Doppler shift not wind) is critical
in modern DA systems to eliminate the inevitable biases
introduced by the assumptions and prior data used in
retrieval methods. However, the feasibility of assimilating
Doppler shift would require an efficient and fast forward
operator to calculate Doppler shift from the NWP model
state.

The present study assesses the utility of FTC in global
NWP DA by comparing observing system experiments
(OSEs) with and without the implementation of a proto-
type FTC-OO within the Global Statistical Interpolation
(GSI) DA system, which is part of the National Oceanic
and Atmospheric Administration (NOAA) National Cen-
ters for Environmental Prediction (NCEP) Finite-Volume
Cubed-Sphere Global Forecast System (FV3GFS). To test
this hypothesis that DWL observations would anchor
the FTC method, we conducted additional OSEs that
added Aeolus observations of horizontal line-of-sight
(HLOS) wind profiles. In what follows, Aeolus winds are
Aeolus HLOS winds. Aeolus winds are observed by the first
satellite DWL, which was hosted by the European Space
Agency (ESA) Earth Explorer satellite named Aeolus
(Rennie et al., 2021; Stoffelen, 2005). The Aeolus wind
observations were reprocessed with different software ver-
sions, referred to as baselines. This study made use of Base-
line 10 (B10) Aeolus Level 2B (L2B) wind observations. The
Atmospheric LAser Doppler INstrument (ALADIN) Pro-
cessor Releases website lists additional baseline datasets
that are available.1 The L2B data make use of ECMWF tem-
perature and humidity profiles in the Rayleigh–Brillouin
correction and ECMWF wind profiles in the Aeolus DWL
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main mirror temperature-dependent bias correction
(Rennie et al., 2021; Weiler et al., 2021).

Aeolus measures the Doppler backscatter in two
“channels.” In the Mie channel, backscatter from clouds
and aerosols is used to derive wind profiles, while in the
Rayleigh channel molecular backscatter is used. There-
fore, Aeolus Mie winds in clear conditions and Aeolus
Rayleigh winds in cloudy conditions have large errors
and are not used for NWP. In what follows, Rayleigh and
Mie winds are the Aeolus Rayleigh-clear and Mie-cloudy
winds, respectively. The characteristics of the Rayleigh and
Mie winds are different, with the Mie winds having smaller
mean and random errors. However, the Rayleigh winds
are more numerous. The Aeolus HLOS L2B Rayleigh and
Mie winds used in this study have been assimilated in
operational DA systems at NWP centers worldwide and
have demonstrated positive impact on global weather fore-
casts (e.g., Garrett et al., 2022; Rennie et al., 2021). The
effectiveness of Aeolus winds to serve as anchoring obser-
vations should be increased because their height assign-
ments are accurate, since they are based on range-gating
the received signals, but might be decreased because
they are HLOS winds and not 2D horizontal winds like
the AMVs.

The main goals of this study are (1) to document our
implementation of the FTC-OO in the GSI, (2) to examine
the impact of the FTC-OO in the GSI, and (3) to determine
whether these impacts are improved by the presence of
Aeolus wind observations. Section 2 describes the FTC-OO,
with details presented in the Appendix. Section 3 outlines
the experimental setup and Section 4 presents the results.
Section 5 summarizes the study, draws conclusions, and
offers recommendations for future work.

2 THE FEATURE TRACK
CORRECTION OBSERVATION
OPERATOR (FTC- OO)

DA systems minimize a cost function that “balances” the
misfit to the observations and the misfit to the background
(Kalnay, 2002). The minimization is with respect to the
control vector, which includes the state vector describing
dynamical variables of the NWP system. If the control
vector includes additional parameters—related to phys-
ical parameterizations or observation operators—it is an
augmented state vector. Within the DA, the misfits are
combined in quadratic forms with weight matrices given
by the inverse error covariance matrices. The error covari-
ance matrices have a critical role in defining the DA cost
function, but can be difficult to specify. Deriving this form
of the cost function assumes no correlations between
errors of the observation and background misfits. The

misfit to the background is the difference between the
background and the model state. The misfit to observa-
tions is the difference between the observation and the
estimate of the observation determined from the model
state, which is calculated by the observation operator. In
this study we define a FTC-OO that estimates an AMV
observation as a linear least-squares adjustment of a ver-
tical average of the model horizontal wind profile. In
practice, representations of the background and the data
that have small or no correlations are preferred, to reduce
the number of parameters that must be estimated to spec-
ify the necessary covariances. To that end, DA systems
usually represent the wind field in terms of stream and
velocity potential functions, which are assumed to have
uncorrelated errors, rather than in terms of wind compo-
nents which do have correlated errors. At the same time,
wind observations are assimilated (here and in general) as
wind components that are assumed to have uncorrelated
errors. This might be improved upon by assimilating winds
that are observed by feature tracking in terms of speed
and direction, but we will not pursue that here, except to
note that an FTC in terms of speed and direction could be
implemented.

The FTC-OO is described for convenience as a two-step
process for a single AMV observation, Vo, at a reported
observation pressure of po, where V is the horizontal
vector wind, p is the pressure, and superscript o denotes
an observation. Step 1 evaluates V(p), the model state hor-
izontal vector wind profile at the AMV observation loca-
tion and time. This is determined by applying the normal
wind observation operator to the AMV observation lati-
tude, longitude, and time at a number of pressure values
including and surrounding po. Usually, and in the experi-
ments reported here, that interpolation is linear in latitude,
longitude, log of pressure, and time. Step 1 is symbolically
written as

V(p) = g(x), (1)

where x is the model state and g is the “horizontal wind
profile observation operator.” Step 2 estimates Vo as a
function of V(p) as

̂V = f (V(p)) = 𝛾V + 𝛿V, (2)

where ̂V is the estimate of Vo, V is the vertical average of
V(p), and 𝛾 and 𝛿V are multiplicative and additive bias cor-
rection parameters. The vertical average is over a pressure
layer of thickness Δz that is offset from po by an amount
h. The parameters 𝛾 , 𝛿V, Δz, and h are determined as
described below. Note that 𝛾 is a unitless scalar, 𝛿V has two
components and the same units as Vo, and Δz and h have
units of pressure. The FTC-OO, HFTC(x), combines Steps 1
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and 2 to estimate a single AMV observation, Vo, as

y = HFTC(x) = f (g(x)) = ̂V. (3)

Appendix A.1 describes the implementation of the dis-
cretized FTC-OO.

The FTC optimization determines the quantities 𝛾 ,
𝛿V, Δz, and h to minimize the mean squared difference
between Vo and ̂V. The optimization is performed for var-
ious subsets of the AMVs. In the present study, the subsets
are defined by all combinations of (1) the different AMV
types defined in the GSI, (2) three geographic regions, and
(3) three height bins. The AMV types used in this study and
their acronyms are listed in the caption of Figure 1. The
geographic regions are the Northern Hemisphere Extrat-
ropics (NHX, 20◦N–90◦N), the Tropics (20◦S–20◦N), and
the Southern Hemisphere Extratropics (SHX, 20◦S–90◦S).
The height bins, denoted low, middle, and high, are sepa-
rated by the 800- and 450-hPa pressure levels. As described
in Appendix A.1, interpolation near subset boundaries is
made efficient by restating Equation (2) as a weighted sum.

Within each subset, for example, Geostationary Oper-
ational Environmental Satellite (GOES) IR tropical high
AMVs, the calculation is as described by Hoffman
et al. (2022), where the FTC parameters are determined by

F I G U R E 1 Estimated observation errors (EOEs, m/s)
evaluated for all AMV types (different lines identified in the legend)
assimilated in the BASE experiment during the study period, for all
locations, for (a) IR AMV types and (b) WV and visible AMV types,
displayed as a function of pressure (hPa). Figure acronyms:
AVHRR=Advanced Very High Resolution Radiometer; CT=cloud
top; DL=deep layer; EUMET=EUMETSAT=European Organisation
for the Exploitation of Meteorological Satellites;
GOES=Geostationary Operational Environmental Satellite;
JMA=Japan Meteorological Agency; MODIS=Moderate Resolution
Imaging Spectroradiometer; VIIRS=Visible Infrared Imaging
Radiometer Suite; VIS=visible.

minimizing a cost function as two nested optimizations.
The outer optimization determines the layer to be averaged
over (Δz and h) and the inner optimization determines the
multiplicative and additive bias corrections (𝛾 and 𝛿V) to
be applied to the layer average horizontal vector wind, V.
The inner optimization is a linear regression. The outer
optimization is a search in the space of layer thickness
(Δz) and layer offset (h) (see Appendix A.3). Because of
the vertical discretization, Δz and h take on discrete val-
ues, thereby defining a 2D gridded cost function, which
allows the use of a brute-force or directed search for the
minimum on this grid. Discussions of the efficient imple-
mentation of the optimizations used in this study are given
in Appendices A.2 and A.3.

The FTC-OO parameters are calculated either a priori
based on previous DA cycles or inline based on the current
DA cycle. A priori calculations can be done before the cur-
rent GSI cycle begins. The experiments presented here are
all based on a priori calculations using the AMVs and back-
grounds from the previous Ncycles = 28 DA cycles (i.e., the
previous 7 days; a plan for inline calculations is discussed
in Appendix A.4). We tuned the parameter Ncycles based on
offline calculations. The optimal value of Ncycles should be
as small as possible to avoid using stale observations, but
must be large enough that each sample of observations is
sufficiently large. In choosing Ncycles, we preferred a choice
that had a larger reduction in variance explained, a smaller
value of Ncycles, mean differences closer to zero, and bias
corrections (𝛿V) closer to zero. In retrospect, it should also
be possible to use a fixed sample size of the previous AMV
observations in each subset, going back in time only far
enough as needed. Experience suggests that this sample
size should be in the range of thousands of observations.

3 OBSERVING-SYSTEM
EXPERIMENT (OSE) SETUP

Four OSEs were performed using initial forecast times at
0000 UTC from August 2–September 16, 2019. The con-
trol experiment is named BASE. The other experiments
replaced the operational AMV observation operator with
the FTC-OO observation operator and/or added assimila-
tion of Aeolus winds. These experiments are as follows:

• FTC: BASE + FTC-OO;
• DWL: BASE + Aeolus assimilation;
• FTCDWL: BASE + FTC-OO + Aeolus assimilation.

Our experiments assimilate all observation types
that are assimilated operationally, including many
types of AMVs. The AMV types fall into one of five
categories—visible, short-wave IR, long-wave IR, WV
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deep layer, and WV cloud-top AMVs. These AMVs are all
single-level observations at the cloud top except that WV
deep-layer AMVs are generated by tracking features in
WV fields retrieved under clear conditions. Spatial cover-
age for the entire dataset is near-global, with partial gaps
at around 60◦S and 60◦N. These gaps are present because
at these latitudes geostationary Earth orbit (GEO) sensor
zenith viewing angles are too high for reliable imaging and
low-Earth orbit (LEO) collocations are not close enough
in time. (LEO AMVs depend on comparing imagery from
separate, but close in time, overpasses.) The majority of
the AMVs in our experiments, ∼80% of the total, come
from the NOAA GOES satellites. Note that in experiments
FTC and FTCDWL, the FTC-OO is applied to AMV types
with sufficient sample size (> 300 per cycle). The opera-
tional observation operator is applied to AMV types with
smaller samples in experiments FTC and FTCDWL and
to all AMVs in experiments BASE and DWL. Additional
observations assimilated in these experiments include
conventional observations (from surface stations, ships,
radiosondes, etc.), radio occultation observations, scat-
terometer winds, and radiance observations from satellites
in both LEO and GEO orbits.

The OSEs conducted for this study make use of the
operational FV3GFS, a global 4D ensemble variational DA
and forecast system (Wang & Lei, 2014). The DA com-
ponent of the FV3GFS system is the GSI (, 2021; Kleist
et al., 2009). Specifically, we use the NCEP global workflow
v15.3 at C384L64 research resolution, a lower horizon-
tal resolution than that used in operations, where C384
indicates there are 384 grid points along each edge of the
model’s cubed sphere, giving an approximate ∼25 km hor-
izontal grid, and L64 indicates there are 64 vertical levels.
In addition to this deterministic component, the FV3GFS
system also includes ensemble analyses and forecasts to
estimate the background-error statistics. The ensemble
resolution is C192 (∼50 km), about half that of the deter-
ministic resolution. All forecasts and analyses make use of
the same 64-level vertical grid.

In our experiments the FV3GFS system cycles every
6 hours, assimilating data observed from 3–9 hours after
the start of the cycle to produce the analysis valid 6 hours
after the start of the cycle, that is, valid at the start of the
next cycle. 10-day forecasts are generated once a day from
the analysis valid at 0000 UTC. The first five days are con-
sidered a spin-up period; all results presented are for the
analysis valid at 0000 UTC from August 7–September 16,
2019 and forecasts from those initial conditions. We use
ECMWF operational analyses for verification—analysis
and forecast “errors” in this study are really differences
with respect to the assumed ECMWF “truth.”

ESA and ECMWF produced the operational Aeolus
L2B B10 Rayleigh-clear and Mie-cloudy HLOS winds that

are assimilated in experiments DWL and FTCDWL. These
are not assimilated operationally by FV3GFS, but we have
previously extended the GSI to do so (Garrett et al., 2022)
and developed a total least-squares (TLS) bias correction
for the Aeolus winds (Liu et al., 2022). Other details of how
the Aeolus winds are quality-controlled and assimilated in
our experiments are given by Garrett et al. (2022). In this
study, we did not apply our own TLS bias correction to the
Aeolus winds, to avoid complicating the interpretation of
our results.

Of particular interest in the present study are the AMV
estimated observation errors (EOEs), that is, assumed
standard deviations (m/s), used in the DA. DA systems
filter the observation minus background (OMB) differ-
ence to create the update, that is, the optimized analysis.
Here, the background is the short-term forecast estimate
of the observation, that is, the observation operator eval-
uated for that observation. (In the context of DA or time
series analysis, these differences are known as innova-
tions.) Within the DA, the OMB differences are scaled by
the EOEs. The AMV EOEs in the GSI are based on esti-
mates tabulated by pressure (in 50-hPa thick bins from
100 to 1000 hPa spaced by 50 hPa) and AMV type. The
GSI adjusts the tabulated EOE observation by observation,
based on quality-control information, observation density,
and representativeness factors. Since the GSI does not
currently thin AMVs available to it, and horizontal error
correlations are ignored when assimilating these observa-
tions, the EOEs are inflated for those AMV types, notably
the GOES AMVs, that are present in the database with
high spatial density. Figure 1 presents the EOEs as used in
experiment BASE for the AMVs assimilated in our exper-
iments. EOEs are plotted in Figure 1 whenever there is at
least an average of 800 AMVs for that subset per cycle. Note
that the EOEs in Figure 1 vary substantially by type and
vertical level. For example, the EOEs for GOES deep-layer
water-vapor winds increase from 4 to 14 m/s from the mid
to upper troposphere. Because the FTC-OO reduces repre-
sentativeness errors, we adjust the EOEs for observations
for which the OMB differences are calculated with the
FTC-OO. (For details, see the discussion of AMV OMB
wind differences in Section 4.)

4 FTC- OO IMPACT ASSESSMENTS

In all statistical analyses presented here, the verification
period includes all 0000 UTC initial times from August
7–September 16, 2019. The forecast verification sample
is 41 10-day forecasts, and the analysis verification sam-
ple is 164 cycles. The boundary between tropical and
extratropical verification regions is 20◦. The results are
verified with respect to the ECMWF operational analysis.
ECMWF verification has the advantage that the ECMWF
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F I G U R E 2 OMB statistics for all AMVs assimilated in the four experiments (different lines identified in the legend) during the study
period, for all locations in the three geographic regions: (a–d) NHX, (e–h) Tropics, and (i–l) SHX, from top to bottom, for all AMV types. The
statistics from left to right are (a,e,i) the mean u-wind OMB (m/s), (b,f,j) the mean v-wind OMB (m/s), (c,g,k) the vector standard deviation
(Stdv in the figure labels) of the wind OMB (i.e., the mean speed of the horizontal vector wind OMB) expressed as a percentage with respect
to BASE (%), and (d,h,l) the sample size (Num in the figure labels) in units of 106 counts for the experimental period and the vector standard
deviation of the wind OMB for BASE (m/s), all displayed as a function of reported observation pressure (hPa). Estimated 95% confidence
intervals (horizontal bars) are calculated from the sample standard deviation of the statistic.

analyses are independent of the NOAA analyses. However,
it should be noted that the ECMWF system is most like
the BASE configuration: unlike the ECMWF operational
analysis in 2019, experiments FTC and FTCDWL use the
FTC-OO and experiments DWL and FTCDWL assimilate
Aeolus winds. In the results presented here, correlations
between analyses and forecasts are not accounted for, but
we discuss the estimated impact of such correlations at the
end of this section.

OMB statistics for the AMVs should indicate reduc-
tions in both random errors and biases due to the FTC-OO.
These reductions are seen in Figures 2 and 3 below and

indicate where FTC-OO is having the biggest impact on
adjusting the AMVs, but such reductions do not by them-
selves indicate that the FTC estimates of wind are closer to
the truth than the original AMVs. For this we turn, later
in this section, to OMB statistics for independent wind
datasets and forecast-error statistics.

Figure 2 shows the variation of the AMV OMB statis-
tics for all AMV types assimilated in our experiments.
For experiments FTC and FTCDWL, the OMB values are
calculated using the FTC-OO, while for experiments BASE
and DWL the operational observation operator is used.
Most AMVs are observed in the upper troposphere (at
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F I G U R E 3 The ratio of the horizontal vector wind standard
deviations of the wind difference (i.e., OMB) as a function of
pressure (hPa) of the FTC-OO with respect to those of the
operational observation operator, for the study period, for each
AMV type (different lines identified in the legend), for all locations
in the three geographic regions: (a,b) NHX, (c,d) Tropics, and (e,f)
SHX, from top to bottom, for (a,c,e) the IR AMV types and (b,d,f)
WV and visible AMV types. Figure acronyms: CT=cloud top;
DL=deep layer; VIS=visible.

pressures less than 500 hPa) and near the top of the plane-
tary boundary layer (panels d,h,l). Gaps in the figure pan-
els (other than d,h,l) correspond to no observations, and
statistics at the edges of these gaps may not be reliable. The
u- and v-wind component (hereafter u- and v-wind) mean
OMB differences are small (of the order of 0.1 m/s) in the
NHX (panels a,b), but larger (of the order of 0.25–0.5 m/s)
in the Tropics (panels e,f) and SHX (panels i,j). Mean
OMB differences are small between experiments, but the
mean OMB values for the FTC and FTCDWL experiments

are consistently closer to zero than those of the BASE
and DWL experiments. This is especially the case in the
SHX: in Figure 2i,j, the u- and v-wind mean differences in
the upper troposphere (at pressures less than 500 hPa) are
closer to zero by ∼0.25 m/s. Since the FTC parameters are
a result of fitting samples in thick pressure layers (below
800 hPa, between 800 and 450 hPa, and above 450 hPa),
we are not guaranteed improvements for sections of these
thick layers. As a result, FTC-OO does not reduce the
bias at a few levels in Figure 2. In all experiments and all
regions, the vector standard deviation of the OMBs varies
from about 1.5 m/s to 5 m/s as height increases (panels
d,h,l). The FTC-OO reduces the vector standard deviation
of the OMBs by roughly 4% (panels c,g,k).

Figure 3 shows the ratio of the vector standard devi-
ation of the OMB wind difference between the FTC-OO
and the operational observation operator for the differ-
ent AMV types in the different regions. This ratio, 𝜑, is
expected to be less than one, indicating a positive impact.
(Values larger than one indicating a negative impact
occurs, but are very close to one.) In the figure, 𝜑 is
always in the range [0.85, 1.02]. The smallest values (i.e.,
those corresponding to the greatest reduction in variance)
are below 0.90 for low-level European Organisation for
the Exploitation of Meteorological Satellites (EUMETSAT)
AMVs in the SHX and Tropics. In experiments FTC and
FTCDWL, operational EOEs (Figure 1) are multiplied by
𝜑 from Figure 3. Both the EOEs and 𝜑 values are tabu-
lated by region, pressure level, and AMV type. Note that
in Figure 3 the statistics are evaluated during the study
period for the sample of all AMVs passing quality control
in the BASE experiment—both in the BASE experiment
and in a preliminary FTC experiment that did not adjust
the EOEs.

Figures 4 and 5 show typical (mean) values of the AMV
parameters Δz and h for the different AMV types that
were assimilated in experiment FTC. First note the large
variation in mean daily sample sizes, from about 0.75 mil-
lion total GOES AMVs assimilated per day to only∼15,000
MODIS AMVs assimilated per day. The mean layer depth
Δz is typically 100–200 hPa. Except for VIIRS IR AMVs,
mean height corrections are all negative and for the most
part act to lower the reported height by approximately
half a vertical grid (i.e., h ∼ −12.5 hPa); note that this cor-
rection is negligible for EUMETSAT and Japan Meteoro-
logical Agency (JMA) WV AMVs. The standard deviation
across time for Δz is generally small (order of 20 hPa)
except for the MODIS types, which have small samples.
The standard deviation across time for h is also of order
20 hPa.

The mean u- and v-wind bias corrections (𝛿u, 𝛿v) are
mostly negative and typically of magnitude 0.5 m/s or less
(Figure 6). These are components, so the mostly negative
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F I G U R E 4 (a) The mean FTC parameter averaging depth
(Δz, hPa), (b) its standard deviation across analyses, and (c) daily
sample size (millions) for high, middle, and low winds (colors),
evaluated for all AMVs of each type (vertical axis) assimilated in the
FTC experiment during the study period, for all locations. Figure
acronyms: CT=cloud top; DL=deep layer; vis=visible; mid=middle;
Stdv=standard deviation.

F I G U R E 5 As in Figure 4, but for FTC parameter height
correction (h, hPa).

values indicate that the FTC acts to make the estimated
AMVs more northerly and easterly. Figure 6 shows an
approximately 0.05 m/s positive shift (and reduced mag-
nitudes) in the u-wind bias corrections in experiment
FTCDWL compared with experiment FTC for each geo-
stationary AMV type. This is small but systematic and
only appears in the u-wind results. This is consistent
with the fact that the Aeolus wind is essentially a u-wind
in the Tropics due to the observing geometry, and may
indicate some inconsistencies between the FV3GFS and
Aeolus observations.

At very short forecast times, comparisons versus an
analysis can obscure the true impact of observations due
to errors in the verification. Therefore, we examined OMB
statistics for an independent and reliable dataset, namely,

F I G U R E 6 The u- and v-wind bias correction terms (𝛿u, 𝛿v,
m/s) in the Tropics for experiment FTC (red) and experiment
FTCDWL (blue) calculated by the FTC optimization during the
study period for vertical levels above 400 hPa for each geostationary
AMV type.

conventional wind observations made by radiosondes and
aircraft (Figure 7). In the NHX, the OMB standard devia-
tion differences normalized by the BASE values are indis-
tinguishable from each other and of magnitude less than
1%. In the Tropics and SHX, the experiments assimilating
Aeolus winds reduce the OMB standard deviation differ-
ences by 1%–2%, except for u-wind in the tropical upper
troposphere–lower stratosphere (UTLS), where reductions
are larger, reaching 4% at 100 hPa. In the SHX, v-wind
reductions are larger for experiment DWL than for exper-
iment FTCDWL. In the Tropics and SHX, the results for
u-wind are neutral with differences of magnitude less than
1% and the results for v-wind are negative with differences
of order 1%.

While OMB statistics versus reliable assimilated obser-
vations, as in Figure 7, are not influenced by biases
and random errors as can occur in an NWP verifica-
tion of short-term forecasts, analyses like Figure 7 suffer
from small or non-existent samples in parts of the spa-
tial domain. Also, in the case of radiosondes, observa-
tions are mostly available only at the two main synoptic
times of 0000 and 1200 UTC. Therefore, additional OMB
analyses using satellite observations could be useful. For
example, one could use other independent wind observa-
tions from lidars and scatterometers, or other observations,
such as humidity-sensitive radiances, that are sensitive to
the effects of wind observations on humidity transport.

Figure 8 shows the zonally averaged u-wind mean
analysis for BASE (Figure 8a) and the differences
comparing FTC, DWL, and FTCDWL with BASE. There
are distinctive difference patterns of magnitudes up
to 0.5 m/s in the tropical UTLS. In experiment FTC
(Figure 8b), the mean u-wind increases by as much as
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F I G U R E 7 OMB impacts with respect to (w.r.t.) BASE for all
conventional wind observations (radiosondes and aircraft). The
panels show the standard deviation of the wind component OMB
differences expressed as a percentage with respect to BASE (%) for
the other three experiments (different lines identified in the legend)
during the study period, for all locations in the three geographic
regions: (a,b) NHX, (c,d) Tropics, and (e,f) SHX, from top to bottom,
for the (a,c,e) u-wind and (b,d,f) v-wind components, displayed as a
function of reported observation pressure (hPa). Estimated 95%
confidence intervals (horizontal bars) are calculated from the
sample standard deviation of the statistic.

0.25 m/s centered on the Equator at 200 hPa compared
with BASE. In experiment DWL (Figure 8c), the mean
u-wind decreases by as much as 0.5 m/s centered on
the Equator at 100 hPa compared with BASE. Rennie
et al. (2021) also reported large mean u-wind analysis
differences in their OSE results at 150 and 100 hPa (their
fig. 11). The patterns seen in Figure 8b,c are merged in
Figure 8d for experiment FTCDWL.

Figure 9 shows the root-mean-square errors (RMSE,
taking the ECMWF analysis as the truth) for heights,
winds, and temperatures in the NHX, SHX, and
Tropics for FTC, DWL, and FTCDWL compared with
BASE in the form of forecast skill verification scorecards.
The FTC/BASE comparison (Figure 9a) shows statistically

significant improvement in forecast skill for geopoten-
tial height in the Tropics throughout the troposphere out
to day 6. This is statistically significant, but not meteo-
rologically important. Otherwise, this scorecard shows
decreased skill in the SHX day-1 wind forecast in the UTLS
and some increased skill in the day-6 wind forecast in the
Tropics. The DWL/BASE comparison (Figure 9b) shows
much greater improvements, especially for wind and
temperature, for all levels in the Tropics at short forecast
times, and for longer forecast times at upper levels. For
example, the 100-hPa wind and temperature forecasts are
significantly improved out to days 10 and 6, respectively.
In the Tropics, the DWL experiment does not improve
geopotential height forecasts except for the 100-hPa level
at days 1 and 3. In the SHX there are very significant
day-1 improvements and significant day-3 improvements
for all variables except at lower levels. In the NHX there
are minor improvements at day 1. The FTCDWL/BASE
comparison (Figure 9c) combines all the improvements
seen in the two other comparisons. Comparing Figure 9c
with Figure 9b, we see improvements in the geopotential
height and temperature forecasts in the troposphere in the
Tropics and SHX. The scorecard for FTCDWL compared
with DWL is not shown but is like the scorecard for FTC
compared with BASE (Figure 9a).

Figure 10 visualizes the evolution of the differences
(each experiment minus BASE) in the horizontal vec-
tor wind RMSE (ΔRMSE) in the SHX. The RMSE of the
BASE experiment increases with forecast time to over
20 m/s at 300 hPa. The impacts in experiments DWL and
FTCDWL are positive almost everywhere and increase
slowly with forecast time, reaching over 0.5 m/s in the mid
to upper troposphere (400 < p < 200). In experiment FTC,
the ΔRMSE are initially negative until about day 4 and
then increase rapidly, reaching over 0.3 m/s in a pattern
like the DWL experiments. However, referring to Figure 9,
the largest differences in Figure 10 are not statistically sig-
nificant. Instead, Figure 9 shows that the most significant
differences are at short forecast times, where the differ-
ences are small in magnitude but large as a percentage of
the RMSE of the BASE experiment.

Plots of 500-hPa height forecast RMSE (Figure 11)
for the Tropics and SHX show different patterns of pos-
itive impacts. In the Tropics, the impacts are marginal
(Figure 11a), with significantly positive impacts for the
DWL experiments out to day 8 (Figure 11b). In the SHX,
improvements are greatest for FTCDWL at day 8 and
beyond (Figure 11c), but the impacts are significantly pos-
itive for the FTC experiments out to day 7 (Figure 11d).

The difference summary assessment metrics (SAMs)
combine a collection of forecast skill score differences
(experiment minus BASE; Figure 12). Values above 0.0
represent an improvement of the forecast versus the BASE.
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F I G U R E 8 (a) The zonally and temporally averaged u-wind analysis (m/s) for BASE and differences with respect to BASE for (b) FTC,
(c) DWL, and (d) FTCDWL.

A value of 0.02, for example, indicates the average normal-
ized statistic is better (greater) than BASE by 0.02. Under
the null hypothesis that there are no differences, all SAMs
would be 0.5, so a 0.02 improvement can be considered
a 4% improvement in normalized scores. Details are in
Hoffman et al. (2018). The SAMs displayed in Figure 12
are consistent with the previous discussion of individ-
ual skill scores. Overall (Figure 12a), DWL and FTCDWL
show an improvement of 4% and FTC shows a barely
significant improvement of 1%. In the more granular
difference SAMs, for different variables, forecast times,
and regions (Figure 12b,c,d), we see that the DWL and
FTCDWL impacts are similar, except that FTCDWL is

noticeably better in the Tropics and for geopotential
height. In these panels, FTC compared with BASE has
a large improvement for geopotential height and minor
improvements for the Tropics and SHX and for forecast
times of days 6 and 7.

Estimating the impact of correlations on the error
bars of Figures 11 and 12 is itself subject to sampling
errors. As an approximation, we turn to results of Hoffman
et al. (2018, their appendix d), which are based on three
years of forecasts from three leading global operational
NWP centers during 2015–2017. They found that “the
combined [sample size] reduction factor for all dimensions
is approximately 0.09 [appropriate for Figure 12a] and for
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F I G U R E 9 FV3GFS (day-1 to day-10) forecast skill verification scorecards comparing (from top to bottom) (a) FTC, (b) DWL, and (c)
FTCDWL with BASE. Note that only RMSE heights, winds, and temperatures for NHX, SHX, and Tropics are extracted to create this figure.
The symbols and colors indicate the probability that an experiment is better than BASE. As shown below the scorecard, the green symbols
(from left to right) indicate that an experiment is better than BASE at the 95%, 99%, and 99.9% significance levels, respectively, while the red
symbols indicate that an experiment is worse than BASE at the 99.9%, 99%, and 95% significance levels, respectively. Gray indicates no
statistically significant differences.
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F I G U R E 10 Southern Hemisphere extratropics forecast wind RMSE statistics (m/s) in time (h) versus pressure (hPa) cross-sections.
The first panel (a) shows the forecast RMSE in the BASE experiment. The differences in the forecast RMSE with respect to BASE (ΔRMSE)
are shown for (b) DWL, (c) FTC, and (d) FTCDWL. Note that increasing darker green shades correspond to increasing negative values and,
hence, increasing positive impacts.

all verification time dimensions about 0.66 [appropriate
for Figure 11].” The error bars should then be larger by a
factor of one divided by the square root of this reduction
factor, or 1.2 for Figure 11 and 3.3 for Figure 12a. Equiv-
alently, the reported p-level of 95% could be adjusted. For
figures like Figure 11 in which there are forecasts once
daily, the p-level is actually approximately 90%.

5 SUMMARY AND CONCLUSIONS

This study examined the OSE impact of a prototype imple-
mentation of the feature track correction observation oper-
ator (FTC-OO) in the FV3GFS. A goal of the FTC-OO is to
reduce AMV error correlations, which are difficult to treat
in DA systems. There are multiple potential sources of sys-
tematic errors (biases hereafter) in AMVs (as discussed in
the Introduction) and in DA systems generally (Dee, 2005).

Biases are normally assumed to be zero in operational DA
systems. If present and unaccounted for, systematic errors
induce error correlations. Eyre et al. (2022) point out that
“Until recently, observation errors have all been treated
as uncorrelated, with a diagonal R matrix. Where this has
been known to be a poor approximation, the problem has
been addressed empirically, either by inflating the error
variances or thinning the observations or both. It is cur-
rently still the general practice to treat horizontally corre-
lated errors by thinning.” (However, in current operational
use and in our experiments, data thinning of AMVs is
disabled in the GSI.) While background-error correlations
(the B matrix) are treated with varying degrees of sophis-
tication, it is always assumed that the observation and
background errors are uncorrelated. The FTC method and
similar methods that are based on OMB values might seem
to violate the cardinal assumption made in all DA systems
of zero background minus observation-error covariances.
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F I G U R E 11 (a,c) RMSE of FV3GFS 0- to 10-day 500-hPa
height forecasts (decameters) in the BASE, FTC, DWL, and
FTCDWL experiments (colors) and RMSE differences with respect
to (b, d) BASE in (a, b) the Tropics and (b, d) SHX. Note that (a,c) a
decrease in RMSE or (b,d) a negative RMSE difference represents a
positive impact. In the RMSE difference panels (b,d), the bars
represent the 95% confidence interval.

However, this assumption is not violated, because these
“corrections” are based on past data or are formulated by
augmenting the state vector, with the result that the bias
corrections are part of the observation operator. At the
same time, it must be recognized that, without enough
observations that are highly accurate (i.e., without bias),
bias-correction schemes in the context of DA run the risk
of correcting relative biases between model and observa-
tions without reducing the true analysis biases.

F I G U R E 12 The difference Summary Assessment Metrics
(SAMs) for FTC, DWL, and FTCDWL versus BASE experiments
(colors). The SAMs are shown for (a) all metrics combined, for
different (b) forecast variables (geopotential height (HGT),
temperature (Temp), vector wind (Wind), and relative humidity
(RH)), (c) forecast lead times, and (d) different geographic regions.
The gray horizontal areas centered on the zero line indicate the 95%
confidence interval under the null hypothesis that there is no
difference between experiments for this metric. In addition, the
sample-estimated 95% confidence interval is indicated by error bars
at the ends of the color bars. Two normalizations are used, the
empirical cumulative density function (ECDF, color-shaded) and
rescaled-minmax normalization (black outline).

We compared experiment FTC, which implemented
the FTC-OO, with experiment BASE, our control experi-
ment. In FTC, the FTC-OO is applied to all AMV types
listed in Figure 1. The goal of using the FTC is to char-
acterize AMV errors better and thereby improve their
usefulness in DA systems. As seen in Equation (2), FTC
attempts to match AMVs and model winds better by apply-
ing constant and speed-dependent corrections to a vertical
average of the model winds in the FTC-OO. Compared
with experiment BASE, experiment FTC reduces data mis-
fit and improves the FV3GFS forecast skill, especially in
the SHX and Tropics.

We also conducted OSEs with the addition of
Aeolus wind observations, to examine the sensitivity of
the FTC method to other wind observations. The exper-
imental setups for experiments DWL and FTCDWL are
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identical to experiments BASE and FTC, respectively,
except for the addition of Aeolus wind observations. The
comparisons of experiment FTC with BASE and exper-
iment FTCDWL with DWL showed similar impacts on
forecast skill. In both experiments FTC and FTCDWL,
AMV OMBs show smaller mean and random differences
in the upper troposphere of the SHX (Figure 2).

Overall, improvements in forecast skill due to the
FTC-OO were small in our experiments and at best
were just marginally significant. The main improvement
of experiment FTC compared with experiment BASE
(Figure 9a) is in forecast skill for geopotential height in the
Tropics, which, while statistically significant, is not mete-
orologically important. However, the history of the evolu-
tion of NWP forecast skill has been incremental and small
improvements have accumulated. In fact, the decision to
implement a new method operationally often requires run-
ning impact experiments for much longer periods than we
were able to use in our experiments. In the end, a new
method with a good science basis may be implemented
operationally so long as the impacts are neutral or better.

Unfortunately, the hypothesis that the Aeolus observa-
tions would enhance the impact of the FTC-OO was not
borne out in our experiments; that is, the Aeolus observa-
tions alone have a significant positive impact, but the use
of the FTC-OO method in the presence of the Aeolus obser-
vations only produces an improvement that parallels that
seen without Aeolus winds, that is, improvements for tropi-
cal geopotential height forecasts. As described in the Intro-
duction, we anticipated that Aeolus wind observations
could anchor AMVs assimilated with the FTC method in
a way similar to how RO observations anchor radiance
observations assimilated with VarBC. However, currently
available Aeolus wind observations, especially the Rayleigh
wind observations, have larger than anticipated random
errors and noticeable biases, which, as discussed at the end
of Section 3, so far have only been corrected via compar-
ison with an NWP system. First, the Rayleigh winds are
subjected to two bias corrections based on ECMWF back-
grounds, the Rayleigh–Brillouin correction and the Aeolus
DWL main mirror temperature-dependent bias correction
(Rennie et al., 2021; Weiler et al., 2021). Liu et al. (2023)
showed the benefit of using FV3GFS backgrounds in these
corrections when assimilating the Rayleigh winds in the
FV3GFS system. Second, biases remain that vary with lat-
itude, height, and wind speed, which have been removed
with a TLS bias correction in other experiments (Liu
et al., 2022). It is expected that Aeolus follow-on mis-
sions will provide higher vertical resolution and higher
accuracy wind profiles, which may then provide sufficient
anchoring for the FTC method to realize the synergy of
DWL and AMV observations as hypothesized.

The findings of this study suggest the potential positive
impact of implementing the FTC-OO in the NOAA NWP
system. Several possible research opportunities, includ-
ing extensions of the implementation of the FTC-OO, are
listed below.

• Subsets by AMV type could be replaced with finer sub-
sets by AMV subtype: for example, stratify each GOES
AMV type by satellite (e.g., GOES East and GOES West).

• Conduct OSEs for BASE+Mie and FTC+Mie, where
“+Mie” indicates assimilation of Aeolus Mie-cloudy
winds, without any bias correction and without Aeo-
lus Rayleigh winds. These OSEs would test the synergy
between Aeolus winds assimilated without bias correc-
tions and AMVs assimilated with the FTC-OO. In fact,
there is a bias correction, which accounts for the effect
of fluctuations of temperature across the main mirror of
the Aeolus DWL, that is applied to the Mie winds, but
according to Weiler et al. (2021) it is an order of mag-
nitude smaller than this correction is for the Rayleigh
winds.

• Implement an “inline” version of the FTC method using
AMV samples from the current DA cycle iteratively
within the GSI (as described in Appendix A.4).

• Averaging weights with different shapes, for example, a
triangle or a truncated Gaussian hill, could be used (as
described in Appendix A.1).
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APPENDIX

Four sections are presented below. The first three pro-
vide details for the implementation of the evaluation,
inner optimization, and outer optimization of the feature
track correction (FTC) observation operator (FTC-OO)
and the fourth outlines a proposal to build variational
FTC (VarFTC) systems based on the FTC-OO. The imple-
mentation descriptions include a number of efficiencies,
including (1) interpolating the FTC-OO parameters across
latitude and height boundaries rather than interpolating
the FTC-OO values to reduce the burden on the adjoint
calculation, (2) traversing the observation sample a sin-
gle time while accumulating “universal sums” that can be
used to solve all the least-squares optimizations within the
outer optimization, and (3) using a directed search to solve
the outer optimization. The VarFTC proposal includes a
simple extension of the current study to implement the
FTC-OO inline in the outer loop of the GSI immediately
after the inline quality-control procedures.

A.1 FTC OBSERVATION OPERATOR EVALUATION
The initial step of the FTC-OO interpolates the model wind
profile in the model native vertical coordinate system to
a regular pressure grid pk = po + k𝛿p. The grid spacing is
𝛿p and the grid is indexed by k in [kmin, kmax] centered on
the observation level (k = 0). In the experiments reported
here, 𝛿p = 25 hPa and −kmin = kmax = 12. Then, to evalu-
ate Equation (3), the vertical average is set up as a weighted
sum over the vertical grid, so that Equation (2) becomes

̂V = f (V(p)) = 𝛾V + 𝛿V =
kmax∑

k=kmin

wkVk + 𝛿V, (A1)

where Vk are the values of the model winds interpolated
to the FTC-OO vertical grid and wk are the weights. For a
single subset, the weights wk are identically equal to 𝛾∕n
for k ∈ [m,m + n − 1] and zero otherwise. In terms of m
and n, Δz = n𝛿p and h = (m + (n − 1)∕2)𝛿p. In what fol-
lows, we will refer to the “FTC-OO null solution,” which
is identical to the ordinary AMV observation operator and
occurs when m = 0, n = 1, 𝛾 = 1, and 𝛿V = 0.

The definition of the wk used here allows interpolation
of wk near latitude and height boundaries even when m
and n are different for different geographic regions and/or
height bins. This device is needed because the FTC solu-
tions (i.e., m, n, 𝛾 , and 𝛿V) are calculated separately for
different subsets. Each subset is defined by an AMV type,
a geographic region (NHX, Tropics, or SHX), and a height
bin (low, middle, or high; Section 2). Near the bound-
aries (the 20◦ parallels and the 800- and 450-hPa levels)
we interpolate the FTC estimates for the subsets on either
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side of the boundaries. This interpolation is linear in lati-
tude between 15◦ and 25◦, and linear in the log of pressure
between 850 and 750 hPa and between 500 and 400 hPa.
As a simple example, consider an observation at 20◦N
and 447.21 hPa (i.e., the halfway point between 500 and
400 hPa in log space). The interpolated solution in this case
is the average of four solutions—for the high-level Tropics,
high-level NHX, mid-level Tropics, and mid-level NHX.
For each specific AMV, the Vk are fixed, and Equation (A1)
depends linearly on wk and 𝛿V. Instead of calculating
and then interpolating several solutions of Equation (A1),
we interpolate wk and 𝛿V and then solve Equation (A1)
once for the interpolated values of wk and 𝛿V. With this
approach, changes to the GSI are minimal. In addition to
implementing Equation (A1), the only new coding within
the adjoint calculation is to calculate Vk on the regular
pressure grid. Since the GSI already interpolates the model
state to po, the pressure of the AMV, it is a simple matter to
reuse that procedure to interpolate to the regular pressure
grid.

Equation (A1) allows for alternative vertical averaging
operators. In the experiments described here we always
use the boxcar vertical average, that is, wk = 𝛾∕n. How-
ever, any shape that can be described by Δz, h, and some
measure of the amplitude of the shape (𝛾) can be accom-
modated. We experimented with an isosceles triangular
weighting scheme and saw minor improvements.

A.2 FTC OBERVATION OPERATOR INNER OPTI-
MIZATION
We optimize the parameters of Equation (A1) by minimiz-
ing the squared difference between the observation, Vo,
and its estimate, ̂V. Since the optimization is subset by sub-
set, the optimization is with respect to 𝛾 and not wk. In the
inner optimization, the parameters m and n are fixed and
𝛾 and 𝛿V are free. Thus, the inner optimization is a simple
least-squares problem with the complication that the con-
stant term, that is, one of the components of 𝛿V, is different
for the u- and v-winds. An additional issue is that, during
the outer optimization, this problem must be solved mul-
tiple times for different values of m and n. To address the
first issue, we do the following.

1. Center (i.e., remove the sample mean of) the data sep-
arately for the u- and v-wind components.

2. Determine 𝛾 by solving the least-squares
through-the-origin problem for the centered data.

3. Evaluate 𝛿V making use of the mean values determined
in step 1.

The statistics needed here involve summing over all
observations in the sample. Rather than evaluate these
statistics directly, we evaluate them by combining a set of

universal statistics pre-calculated for the individual levels
and subsamples. The statistics needed include the mean of
Vo and V, the covariance of Vo and V, and the covariance
of V with itself. However, each of these is easily calculated
in terms of the universal statistics—the mean of Vo and Vk,
the covariances of Vo and Vk, and the covariances of Vk
with itself. Note that the universal statistics must be main-
tained separately for the u- and v-winds. The advantage
of this approach is that the universal statistics can be cal-
culated once per subsample and saved and then used for
any values of m and n and any combination of subsamples.
As a result, this approach is much more efficient than the
standard linear model used by Hoffman et al. (2022). The
remainder of this section fills in the details.

For arbitrary Q and R, we use the notation ⟨Q⟩ to indi-
cate the expectation of Q, which in practice is implemented
as a sample average

⟨Q⟩ = SQ∕N, (A2)

where SQ is the sum of Q over the sample of size N. Some
useful properties of the expectation operator are the fol-
lowing. Because the expectation of an expectation is the
original expectation, that is, ⟨⟨Q⟩⟩ = ⟨Q⟩, we have, for q =
Q − ⟨Q⟩ and r = R − ⟨R⟩, that

⟨q⟩ = 0, (A3)

⟨q2⟩ = ⟨Q2⟩ − ⟨Q⟩2
, and (A4)

⟨qr⟩ = ⟨QR⟩ − ⟨Q⟩⟨R⟩. (A5)

In what follows, to emphasize the parallel with the
usual ordinary least-squares (OLS) notation of y = ax +
b + 𝜀, we will use Y and y for observation values and X
and x for model values. For each observation location,
let Yu be the observed u-wind, Xu,k be the model u-wind
at level k, and Xu be the layer-averaged model u-wind,
given by

Xu =
∑

wkXu,k. (A6)

These definitions also hold with v replacing u.
To center the wind data, we remove the expected values

for each component separately and stack them into vectors
x and y, defined by

x =

(
xu

xv

)
=

(
Xu

Xv

)
−

(
⟨Xu⟩
⟨Xv⟩

)
,

y =

(
yu

yv

)
=

(
Yu

Yv

)
−

(
⟨Yu⟩
⟨Yv⟩

)
. (A7)
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Because of Equation (A3), ⟨x⟩ = ⟨y⟩ = 0.
The OLS regression model through the origin is given

by
y = ax + 𝜀, (A8)

where we have replaced 𝛾 with a. The OLS solution must
satisfy ⟨x𝜀⟩ = 0. If this does not hold, the predictor is cor-
related with the error and the predictor could be used to
eliminate (predict) at least part of the error. Therefore,
multiplying Equation (A8) by x and taking the expectation,
the solution for a is given by

a =
⟨xy⟩
⟨x2⟩ . (A9)

Given a and ignoring 𝜀, we substitute Equation (A7)
into Equation (A8) to find

(
Yu

Yv

)
= a

(
Xu

Xv

)
+

[(
⟨Yu⟩
⟨Yv⟩

)
− a

(
⟨Xu⟩
⟨Xv⟩

)]
,

(
Yu

Yv

)
= a

(
Xu

Xv

)
+

(
bu

bv

)
, (A10)

Thereby defining bu and bv. The last form in
Equation (A10) is identical to the second form in
Equation (A1) if we identify bu and bv as the components
of 𝛿V.

Given a, bu, and bv, we can evaluate the mean and
mean squared difference for an independent sample in
terms of expectations for the u- and v-winds separately. For
the u-winds, this gives

⟨𝜀u⟩ = ⟨Yu − (aXu + bu)⟩
= ⟨Yu⟩ − a⟨Xu⟩ − bu, and

⟨𝜀2
u⟩ = ⟨(Yu − (aXu + bu))2⟩

= ⟨Y 2
u − 2aXuYu − 2buYu + a2X

2
u + 2abuXu + b2

u⟩

= ⟨Y 2
u − 2aXuYu + a2X

2
u − 2bu𝜀u − b2

u⟩

= ⟨Y 2
u⟩ − 2a⟨XuYu⟩ + a2⟨X2

u⟩ − 2bu⟨𝜀u⟩ − b2
u. (A11)

This also holds with v replacing u. For the depen-
dent sample, ⟨𝜀u⟩ = ⟨𝜀v⟩ = 0. The u- and v-wind mean
and mean squared difference are then averaged to get the
corresponding values for the combined dataset,

⟨𝜀⟩ = (⟨𝜀u⟩ + ⟨𝜀v⟩)∕2, and
⟨𝜀2⟩1∕2 = ((⟨𝜀2

u⟩ + ⟨𝜀2
v⟩)∕2)1∕2

. (A12)

To solve Equation (A9) we need, for the u-wind com-
ponents, ⟨xuyu⟩ and ⟨x2

u⟩. Using Equations (A5) and (A4),

these can be determined from

⟨xuyu⟩ = ⟨XuYu⟩ − ⟨Xu⟩⟨Yu⟩,

⟨x2
u⟩ = ⟨X2

u⟩ − ⟨Xu⟩2
. (A13)

This also holds for v replacing u. The statistics
we need to solve Equation (A7), Equation (A11), and
Equation (A13) are ⟨Yu⟩, ⟨Xu⟩, ⟨Y 2

u⟩, ⟨XuYu⟩, ⟨X
2
u⟩, and

similar statistics with v replacing u. Using Equation (A6),
expectations involving Xu are given by

⟨Xu⟩ =
∑

wk⟨Xu,k⟩,

⟨YuXu⟩ =
∑

wk⟨YuXu,k⟩,

⟨X2
u⟩ =

∑∑
w
𝑗
wk⟨Xu,𝑗Xu,k⟩. (A14)

This also holds with v replacing u. Finally, the univeral
statistics needed are ⟨Yu⟩, ⟨Xu,k⟩, ⟨Y 2

u⟩, ⟨Xu,kYu⟩, ⟨Xu,𝑗Xu,k⟩,
and similar statistics with v replacing u. To combine these
universal statistics over multiple subsamples, the subsam-
ple sizes are also needed.

A.3 FTC OBSERVATION OPERATOR OUTER OPTI-
MIZATION
The outer optimization of the FTC-OO parameters finds
the minimum of a 2D cost function in a m − n grid cor-
responding to a discrete set of Δz and h values. This cost
function has a single minimum, is well behaved, and a
brute force search can be replaced with a directed search
starting from a prior estimate. A reasonable prior would
be a previous solution or the null FTC solution. Given the
current estimate, the directed search finds the new esti-
mate as the minimum within a 5 × 5 window centered on
the current estimate in 2D space. If the current and new
estimates are the same, the process terminates. (Note that
a minimizing central point of a 3 × 3 window is not guar-
anteed to be a global minimum, but a minimizing central
point of a 5 × 5 window is guaranteed to be a global min-
imum.) Every time the inner linear model is solved in a
directed search, that cost-function value is saved in the
2D grid. As a practical matter, the m − n grid is extended
beyond the allowed search area and points outside the
search area are initialized to infinity, while points within
the search area are initialized to missing. Thus, solving the
linear model is only required for unexplored (i.e., missing)
points in the 5 × 5 window. The resulting 2D cost function
at the end of such a directed search is shown in Figure A1.
In Figure A1 the directed search began with a prior esti-
mate of Δz = 125 hPa and h = 0 hPa and concluded at the
global minimum atΔz = 325 hPa and h = −25 hPa. For the
most part, the search jumps along odd values of n on the
line h = −25 hPa. For n even, the smallest grid values are
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F I G U R E A1 The value of the cost function that is minimized
to determine the FTC parameters. The plotted values are normalized
so that the normalized value is 100 for Δz = 25 hPa and h = 0 hPa,
that is, the case when the layer averaged over is just the single level
at the AMV pressure. (In this example, this cost-function value is
7073.) The cost function is plotted as a function of m and n in panel
(a) and of z and h (in units of 25 hPa) in panel (b). The figure shows
the state of the directed search when the minimum is found. The
red square indicates the initial guess, and the red circles indicate the
series of candidate minima found as the search progressed.

for h∕25 = −0.5 and −1.5, but they are not as small as the
neighboring grid values for odd n and h∕25 = −1. This is
the reason the directed search fails when using a 3 × 3
window.

A.4 PROPOSED VARIATIONAL FTC IMPLEMEN-
TATION APPROACHES
Developing variational FTC (VarFTC) (or ensemble FTC)
systems based on the FTC-OO would require embedding
the evaluation of the FTC-OO parameters within the DA
system. In this context the model state vector will be aug-
mented by the FTC-OO parameters 𝛾 and 𝛿V, as well as
Δz and h. In the current study, Δz and h took on discrete
values, but this limitation would be relaxed in a VarFTC
system with suitable changes in the implementation of the
vertical average in Equation (A1).

Usually, and in the current case, the augmented vari-
ables evolve according to persistence. That is, the back-
ground vector of the augmented variables is just the previ-
ous analysis value. An alternative to persistence is damped
persistence towards some a priori values. In the current
case, these a priori values might correspond to the null
FTC solution, and e-folding times would have to be spec-
ified or estimated. In any case, the analyzed augmented
variables would be constrained by a measure of the dif-
ference between the analysis and background augmented
parameters. One approach is to treat the augmented state
vector in the same way as the model state vector. That is,
estimate the background-error covariance matrix for the
augmented state vector. Conceptually, this is easy to do
in any DA system that uses an ensemble of forecasts to
estimate the background-error covariance matrix, but we
anticipate there will be challenges in tuning such a system.

As a next step, we propose a simple extension of the
current algorithm to an inline implementation in the GSI.
In the GSI, the analysis minimization is done as a lin-
earized inner-loop iterative calculation within an outer
nonlinear loop with only a few (typically three) outer iter-
ations. Before the start of each inner loop, quality controls
are performed and the objective function is linearized. For
inline calculations, the FTC-OO parameters would be cal-
culated before the start of each inner loop immediately
after the inline quality control, and the FTC-OO parame-
ters would be held fixed within the inner loop. Note that,
during the minimization, ̂V is always evaluated for the cur-
rent estimate of the state vector, which is the analysis when
the process terminates.

The inline calculations of the FTC-OO parameters
must be constrained, since, in a single DA cycle, for a sin-
gle subset, the subset sample may be too small. That is,
the sample for a particular AMV type, geographic region,
and height bin may be too small to calculate the FTC-OO
parameters reliably. As an alternative to estimating an
error covariance matrix of the FTC-OO parameters, we
propose to choose the FTC-OO parameters to simultane-
ously minimize the mean squared difference between Vo

and ̂V for the current cycle plus the mean squared dif-
ference between Vo and ̂V for recent previous cycles. The
number of previous cycles would be selected so that the
size of the prior sample exceeds a tunable constant. The
second term (for the prior data) would be multiplied by a
second tunable constant (𝛽).

This proposed empirical data constraint for the inline
implementation avoids estimating the parameters of some
assumed distribution of the AMV errors. Only two param-
eters must be tuned, the multiplier (𝛽) and the minimum
size of the prior sample. Note that in the first term, that
is, for the current cycle, ̂V is evaluated for the current
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estimate of the state vector, but in the second term,
that is, for the prior cycles, ̂V is evaluated for the prior
analyses but with the current estimate of the FTC-OO
parameters.

Finally, the two mean squared differences can be
combined into one weighted-average squared differ-
ence, which can then be solved using the methods of
Sections A.2 and A.3, except that the estimates of the
expectations would be determined as weighted averages,

with smaller weight given to the prior data. That is, instead
of Equation (A2), we would use

⟨Q⟩ =
NcSQ,c + 𝛽NpSQ,p

Nc + 𝛽Np
, (A15)

where subscripts c and p denote current and prior cycles
respectively. Note that the sums for the prior cycles do not
change during the current cycle.
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