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ABSTRACT. — Currently, the genetic population structure of only 3 green turtle, Chelonia mydas,
rookeries is used to categorize the Eastern Caribbean grouping of the South Atlantic distinct
population segment. Tissue samples were collected from 66 nesting green turtles on the East End
beaches of St. Croix, US Virgin Islands from 2012 to 2015, and we sequenced ~ 800 base pairs of
the mitochondrial DNA (mtDNA) control region to characterize the genetic structure and test for
differentiation with the adjacent Buck Island rookery. The haplotypes CmAS.1, CmAS.2, and
CmA3.1 were identified on the East End beaches. Results of pairwise tests for differentiation were
mixed, with frequency-based Fgy failing to detect differentiation at the p < 0.05 threshold
(Fst = 0.01148, p = 0.18503), and an exact test indicating significant differentiation (p = 0.02146).
The detection of CmA3.1 and not CmA16.1 within the East End beaches adds to the haplotype
diversity previously observed in the Eastern Caribbean region and suggests that genetic diversity
has been underestimated in previous studies. Further investigation including mitogenomic
markers and nuclear DNA analyses would provide additional clarity as to the population
structure in this region.

Kty Worps. — mtDNA; Chelonia mydas; genetic diversity; sea turtle

Sea turtles exhibit natal homing where females return
to the regions of their natal beaches (rookeries) to lay their
eggs. This natal homing limits the amount of gene flow
from rookery to rookery (Avise and Bowen 1994) and
delineates the geographic boundaries of breeding popula-
tions, which are made up of one or several adjacent
rookeries (FitzSimmons 1998; Bjorndal et al. 2006;
Formia et al. 2006; Shamblin et al. 2012). The matrilineal
mode of inheritance of mitochondrial DNA (mtDNA)
means it is well-suited for studying nesting population
structure (Bowen et al. 1992). Rookeries with significantly
different mtDNA haplotype frequencies are delineated as
separate management units (MUs; Moritz 1994). It is vital
that the threats to specific MUs be addressed individually.
Characteristically high nest-site fidelity would indicate that
females from another MU are not likely to repopulate a
nesting population that has been extirpated within
ecologically relevant timeframes (Bowen et al. 1993).
Conservation of all distinct MUs ensures preservation of
the greatest genetic diversity within the species (Proietti et
al. 2009). Identification of these individual MUs is
necessary for strategic planning of conservation efforts
and is a priority for US Recovery Plans for sea turtles

(National Marine Fisheries Service and US Fish and
Wildlife Service 1991).

Green turtles have been classified into 12 distinct
population segments (DPSs) under the US Endangered
Species Act (ESA 2016). These classifications are based
on haplotype distribution as well as known life-history
characteristics of breeding populations from around the
world (81 FR 20057, 2016). A global phylogeographic
analysis based on 386-base-pair (bp) mtDNA sequence
data from 127 rookeries identified 12 major regional
groupings of evolutionary distinct green turtle, Chelonia
mydas, MUs (Jensen et al. 2019). These groupings
generally correspond to the 12 DPSs described in Semin-
off et al. (2015). The Eastern Caribbean grouping, which is
classified as part of the South Atlantic DPS, included only
3 rookeries for which data are available—Buck Island, St.
Croix (US Virgin Islands [USVI]), Aves Island (Venezu-
ela), and Suriname (Shamblin et al. 2012; Jensen et al.
2019)—despite widespread nesting across the region
(Seminoff et al. 2015). Furthermore, the USVI data set
was based primarily on green turtle samples from the Buck
Island Reef National Monument rookery described by
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Figure 1. Map identifying Buck Island Reef National Monument, Sandy Point National Wildlife Refuge, and the East End beaches,
which are adjacent to East End, Isaac, and Jack Bay in St. Croix, USVI, where green turtle rookeries were studied.

Shamblin et al. (2012). Further research is therefore
needed to provide additional data within this area.
Recent surveys have identified significant nesting
activity on the East End beaches of St. Croix (USVI),
including adjacent beaches within Jack, Isaac, and East
End bays with increased green turtle nesting recorded
since 2007 (Harvey 2008; E.A. Schultz, unpubl. data,
2016; Fig. 1). This East End rookery is thought to be
genetically linked to the rookery on Buck Island because
of their close proximity. Shamblin et al. (2012) hypoth-
esized that the Buck Island rookery may be part of a larger
USVI genetic stock, and they suggested that further
genetic analyses were warranted to clarify the connection
between these rookeries. Hill et al. (2018) found that the
hawksbill turtle, Eretmochelys imbricata, rookery on Buck
Island was genetically distinct from the hawksbill rookery
on the Sandy Point National Wildlife Refuge, on the west
end of St. Croix, USVI, which are only separated by 30
km. These findings give support to the theory that
geographic distance is not necessarily a predictive factor
for genetic connectivity, as also noted by FitzSimmons and
Limpus (2014) and Shamblin et al. (2015). However,
Jensen et al. (2019) notes that green turtle rookeries in
close proximity (< 500 km) tend to show no genetic
differentiation based on their analysis of 127 rookeries
globally. To date, no research has been conducted to
investigate the connectivity among the relatively large
green nesting rookeries (Buck Island and the East End
beaches) in St. Croix, which are only separated by 10 km
(Fig. 1). Both of these rookeries have > 100 green turtles
crawls every year, making them among the largest green
sea turtle rookeries in the Greater Antilles region (Dow et
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al. 2007). The East End beaches average 200-300 green
turtle nests/yr (E.A. Schultz, unpubl. data, 2016). The lack
of fine-scale genetic structure evaluation of these rookeries
constitutes a gap in data necessary for management of this
regional nesting population.

Here, we conduct extensive sampling of green turtles
nesting on the St. Croix East End beaches in order to
characterize the mtDNA diversity. We then compare this
data with published findings for the Buck Island rookery
(Shamblin et al. 2012) in order to test for fine-scale
population structure. We also reexamine population
structure within the Eastern Caribbean region by incorpo-
rating new data for the East End rookery from our study
into the previously published findings.

METHODS

Study Site. — The East End beaches of St. Croix,
USVI (17°44'59N, 64°34'21W) are a 600-acre (243-ha)
area, which includes approximately 2.0 km of total beach
within Jack, Isaac, and East End bays that is located on the
southeast corner of the island (Fig. 1). The Nature
Conservancy established a sea turtle monitoring program
on these beaches in 1994 to document hawksbill and green
sea turtle nesting activity through a combination of
daytime and nighttime surveys (Harvey 2008). The area
is characterized by steep sloped hills with pocket beaches
at their base. The East End beaches are located
approximately 10 km from the Buck Island Reef National
Monument, which is a separate island located to the
northeast of the main island of St. Croix (Fig. 1).

Tissue Collection. — The Nature Conservancy
collected skin biopsy samples from individual nesting
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Table 1. Haplotype frequencies of the green turtle, Chelonia mydas, with 817-base-pair (bp) fragment analyses of mtDNA from control
region from within the Eastern Caribbean Region. Rookery sites include East End beaches (EEB; present study), Buck Island (BUC),
Tortuguero (TRT), Aves (AVE), and Suriname (SUR). CmA3.X and CmA4 counts represent published data based on 490-bp sequences

(Shamblin et al. 2012). — = no presence of the haplotype detected from rookery sampled.

Haplotype EEB BUC TRT AVE SUR GenBank
CmA3.X — — 393 — —

CmA3.1 4 — 2 5 1 IN632497
CmA4 — — 1 — —

CmAS.1 60 44 32 48 55 JIN632498
CmAS5.2 2 1 — 14 — IN632499
CmA6.1 — — — — 2 JQ366073
CmA16.1 — 4 — — — IN632500
CmA20.1 — — 2 — — IN632501
CmAZ21.1 — — 3 — — IN632502
Sample size 66 49 3 67 58

female green sea turtles on the East End beaches during the
nesting season in 2012, 2014, and 2015. Females were
sampled using a 6.0-mm biopsy punch during the egg-laying
process and skin samples were stored in vials in a saline
solution as described by Dutton and Balazs (1995). Each
female was then flipper and/or passive integrated transpon-
der (PIT) tagged to avoid duplicate sampling efforts.
Laboratory Analyses. — DNA was isolated from 66
tissue samples using a modified sodium chloride extraction
protocol (Miller et al. 1988). An ~ 800-bp fragment of the
mitochondrial control region was amplified using primers
LCM-15382 (5 GCT TAA CCC TAA AGC ATT GG 3')
and H950g (5’ GTC TCG GAT TTA GGG GTT TG 3)
and standardized polymerase chain reaction (PCR) proce-
dures (Abreu-Grobois et al. 2006; Dutton et al. 2007). The
25-ul PCR reaction was composed of 1X buffer, 0.8 mM
MgCl,, 0.6 mM deoxynucleotide triphosphate (ANTP), 0.3
UM of each primer, 1.25 U Tag polymerase (New England
BioLabs) and 20-50 ng of template DNA. The PCR was
performed using the following profile: initial DNA
denaturation at 94°C for 2 min, followed by 30 cycles of
1) DNA denaturation at 94°C for 50 sec, 2) annealing of
primers at 56°C for 50 sec, 3) extension of primers at 72°C
for 1 min, and 4) extension of primers at 72°C for 5 min. In
order to detect contamination, negative controls were
included in each PCR. The products were purified and
sequenced using procedures similar to Dutton et al. (2014).
Statistical Analysis. — Sequences were edited and
aligned using the program Geneious (Kearse et al. 2012)
and compared with a reference database to identify

haplotypes following the nomenclature for the 817-bp
control region fragment on the Archie Carr Center for Sea
Turtle Research web site (http://accstr.ufl.edu/resources/
mtdna-sequences/). Haplotype frequencies for Buck Is-
land, USVI (BUC); Tortuguero, Costa Rica (TRT); Aves
Island, Venezuela (AVE); and Galibi, Suriname (SUR)
were utilized from Shamblin et al. (2012). We tested for
stock structure by conducting haplotype frequency—based
pairwise Fgr with 10,000 permutations and exact tests for
differentiation with 100,000 steps in Markov chain and
10,000 dememorization steps (Raymond and Rousset
1995) in Arlequin v3.5 (Excoffier and Lischer 2010).

RESULTS

Three haplotypes were identified from the samples
collected on the East End beaches of St. Croix (n = 66),
which consisted of CmA3.1 (n = 4, 6.0%), CmAS5.1
(n =60, 91.0%), and CmAS5.2 (n = 2, 3.0%). Comparison
of haplotypes that have been identified based on the 817-bp
mtDNA control region fragment within other Caribbean
and Atlantic green sea turtle rookeries are listed in Table 1.
The Fgt results indicated lack of significant differentiation
between the Buck Island and East End beach rookeries
(p > 0.1; Table 2); however, the exact tests results did
reveal a significant difference (p < 0.05; Table 2).

DISCUSSION

Our study revealed additional genetic diversity within
the USVI green turtle population that had not been

Table 2. Pairwise Fgr values (above the diagonal) and p-values of exact tests of population differentiation (below the diagonal) among 5
green turtle rookeries based on 817-bp sequence mtDNA haplotypes. Rookery sites include Buck Island (BUC), East End beaches
(EEB; present study), Tortuguero (TRT), Aves (AVE), and Suriname (SUR). * = significant at p < 0.05.

BUC EEB TRT AVE SUR
BUC 0.01148 0.82071* 0.09256* 0.01987
EEB 0.02146* 0.81262* 0.08845* 0.00371
TRT < 0.0001* < 0.0001* 0.74275* 0.83414*
AVE < 0.0001* 0.00520* < 0.0001* 0.13986*
SUR 0.01649* 0.11882 < 0.0001* < 0.0001%*
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detected in previous studies, which only used data from
the Buck Island rookery to represent this region. In
addition, our analyses show mixed evidence for genetic
differentiation between the East End beaches (EEB) and
Buck Island (BUC) rookeries and a need for further
mitogenomic analyses. Both of these nesting populations
are dominated by the CmAS.1 haplotype (EEB = 91.0%,
BUC = 90.0%), but detection of the CmA3.1 haplotype on
the East End beaches is novel because that haplotype has
not been identified within the Buck Island rookery and
adds to the haplotypic diversity previously documented
within the USVL It is unclear whether CmA3 might also
be present at Buck Island but was not detected in the
samples analyzed by Shamblin et al. (2012). Conversely,
we did not detect CmA16, unique to Buck Island, at the
East End beaches. Given that the sample size for both
studies is fairly representative relative to the small number
of nesters, it is possible that this pattern reflects some
degree of demographic independence as signaled by the
significant differentiation detected with the exact test.
Additional sampling of all the beaches in the local region
would help establish whether these, and potentially other
rarer haplotypes, might be present. Furthermore, the
presence of the CmA3 haplotype warrants further
phylogenetic analysis to investigate evolutionary history
and possible links to the Northwestern Atlantic rookeries.
The detection of the CmA16 haplotype solely within the
Buck Island rookery also provides additional support for
further investigation within this region.

The distance between green turtle nesting beaches is
not always a determinant of separate MU classification.
Green turtle rookeries in the Rocas Atoll and Fernando de
Noronha (off the coast of Brazil) were found to be
genetically different based on sequencing of mitochondrial
short tandem repeat (mtSTR) haplotypes even though
these rookeries are only 150 km apart (Shamblin et al.
2015). However, in the Caribbean there may be more
“leakage” (females utilizing other nesting beaches) than
first thought by Bowen et al. (1992) because of the close
proximity of the islands as noted by nesting female
telemetry data from Esteban et al. (2015) and E.A. Schultz
et al. (unpubl. data, 2016). Satellite telemetry data from a
female nesting on the East End beaches in 2015 revealed
this female also nested on Antigua and St. Kitts, nearly
180 km away, during the same nesting season (E.A.
Schultz et al., unpubl. data, 2016). Some females in this
region seem to exhibit behavioral plasticity in regard to
nesting beach selection and may be using beaches in the
region interchangeably, although the frequency of occur-
rence is not well-studied. Bjorndal et al. (2005) also
mentions these natal homing “mistakes,” but explains that
genetic analyses have shown these occurrences to be rare.
Data from genetic studies combined with spatial data
obtained through traditional tagging (flipper and PIT tags)
and satellite telemetry should continue to enhance
conservation managers’ understanding of the true move-
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ments and behavior of turtles from rookeries within the
Eastern Caribbean region.

The apparent genetic connectivity identified between
the East End beaches and Buck Island may suggest that the
East End beaches and Buck Island rookeries should be
considered part of a larger USVI breeding population.
However, the slight haplotype frequency shift, presence of
unique haplotypes, and the low power of the mtDNA
marker to detect weak differentiation caution against
combining these into one MU. Previous studies illustrate
that there are mitogenomic markers outside of the 817-bp
control region that have been shown to differentiate the
CmAS.1 haplotype, which was identified in both USVI
rookeries (Shamblin et al. 2012). Utilizing single nucleo-
tide polymorphisms (SNPs) to further delineate the specific
haplotypes within these rookeries that can be broken down
into variants would provide more clarity on the connectiv-
ity of these populations (Shamblin et al. 2012). Future work
should apply these mitogenomic markers on the East End
beaches to provide additional insight into the complexity of
the adjacent rookeries and better understand the genetic
variability within the Eastern Caribbean region. This study
could be expanded further to include multilocus nuclear
DNA analyses to investigate demographically independent
populations within this region. Dutton et al. (2013) found
that leatherback, Dermochelys coriacea, nesting sites
previously classified within the same MU were able to be
further differentiated into demographically independent
populations (DIPs). The application of mtSTR markers
may also be helpful in distinguishing local green rookeries
as has been done in the Mediterranean (Bradshaw et al.
2018; Tikochinski et al. 2018), Brazil (Shamblin et al.
2015), and Florida (Shamblin et al. 2020). Additional
investigations should also examine the haplotype frequen-
cies of the green sea turtle rookery on the Sandy Point
National Wildlife Refuge on St. Croix (as suggested by Hill
et al. 2018). It has a very active population for which
> 1000 crawls/yr have been observed and is approximate-
ly 30 km west of Buck Island and the East End beaches
(King et al. 2014; Fig. 1).

The identification of fine-scale differences in rooker-
ies within such a small geographic region could provide
evidence that there may be more genetic variability within
the green turtle population than understood from current
research. The significant differentiation between the East
End beaches and Buck Island rookery detected with the
exact test provides evidence for considering these as
independent MUs. This study is the first step to better
understanding the genetic variability present within the
green turtle rookeries in St. Croix and additional analyses
are needed to fully identify the diversity present in the
Eastern Caribbean region.
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