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Abstract: NEXRAD radars detect biological scatterers in the atmosphere, i.e., birds and insects,
without distinguishing between them. A method is proposed to discriminate these bird and insect
echoes. Multiple scans are collected for mass migration of birds (insects) and coherently averaged
along their different aspects to improve the data quality. Additional features are also computed
to capture the dependence of bird (insect) echoes on the observed aspect, range, and local regions
of space. Next, ridge classifier and decision tree machine learning algorithms are trained on the
collected data. For each method, classifiers are trained, first with the averaged dual pol inputs and
then different combinations of the remaining features are added. The performance of both methods,
are analyzed using metrics computed on a held-out test data set. Further case studies on roosting
birds, bird migration, and insect migration cases, are conducted to investigate the performance of the
classifiers when applied to new scenarios. Overall, the ridge classifier using only dual polarization
variables was found to perform consistently well on both the test data and in the case studies. This
classifier is recommended for operational use on the US Next-Generation Radars (NEXRAD) in
conjunction with the existing Hydrometeor Classification Algorithm (HCA). The HCA would be
used first to separate biological from non-biological echoes, then the ridge classifier could be applied
to categorize biological echoes into birds and insects. To the best of our knowledge, this study is the
first to train a machine learning classifier that can detect diverse patterns of bird and insect echoes,
based on dual polarization variables at each range gate.

Keywords: machine learning; weather radar; aeroecology; algorithm; birds; insects

1. Introduction

The Next-Generation Radar (NEXRAD) network consists of 160+ S-band polarimetric
Doppler weather radars (WSR-88D), deployed across the continental US, Alaska, Hawaii,
and Puerto Rico. Each WSR-88D measures six variables comprising of three single polar-
ization variables and three dual polarization variables. The single polarization variables
are the radar reflectivity factor (Z), which is proportional to the power of the received
signal; Doppler velocity (V;), which is determined from the power-weighted mean Doppler
frequency shift of targets within the radar sampling volume; and spectrum width (oy),
which measures the variability of Doppler velocities within the sampling volume [1-3].
The dual polarization variables include differential reflectivity (Zpg), the logarithmic ratio
of the reflectivity factors from the Horizontal (H) and Vertical (V) polarizations, differential
propagation phase shift (®pp), the difference in phase shift between H and V polarizations
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and cross correlation coefficient (p1/), which measures the diversity in type, shape and/or
orientation of scatterers in the sampling volume [1].

In addition to weather echoes, the WSR-88D can detect biological scatterers such as
birds, bats, and insects [4], opening potential applications for broad scale studies of their
behavior. For example, large-scale radar monitoring can improve our understanding of
the spread of avian diseases by allowing a detailed mapping of migratory flyways [5,6].
Additionally, bird strikes are a serious aviation hazard for low-level flights [6]. NEXRAD
could be used to detect and avoid migrating birds, thereby improving aviation safety [6,7].
Another application is the identification of wind tracers. Insects have been found to be
mostly driven by the wind during flight while birds are active fliers and can contaminate
the wind derived from radar. Previous research has been dedicated to retrieve velocities
contaminated by birds, using the features of reflectivity and Doppler velocity fields [8-10].
Correctly separating insect echoes from bird echoes can improve the quality of radar wind
products.

Many advances have been made in characterizing hydrometeor types [11-13]. How-
ever, the classification of biological echoes is still an active research field [7,14-16]. A major
obstacle to classifying biological echoes is that the shapes of birds and insects are strongly
non-spherical [4]. Moreover, polarimetric measurements have a strong dependence on their
size, shape, and orientation [4,17]. Thus, even in single-species ensembles, polarimetric
quantities could have high variance depending on the azimuthal orientation [18]. This
sometimes leads to similar measurements for bird and insect echoes, making it difficult
to differentiate them. For example, the Zpr of Purple Martin colonies have been found
to range from —4 to 6 dB [19] while insects have been found to have Zpg between 2 and
9 dB [20].

Various methods have been explored to detect biological echoes with radars [14-16,21-25],
though much less work has been done in distinguishing bird and insect radar echoes. Non-
polarimetric radar was used in [26] to discriminate these echoes by measuring their radar
cross sections within close ranges from radar. However, only two cases were examined
with this approach. A fuzzy logic algorithm was also developed for separating birds and
insects echoes in [7]. However, the use of Z as an input complicates the resolution of
densely aggregated insects and sparse groups of large birds.

Machine learning models have been trained for detecting roosting birds, focused
on identifying their distinct toroidal shape. Convolutional neural networks were used
in [27] to detect whether an individual radar image contained at least one Purple Martin
or Tree Swallow roost, with correct predictions made about 90% of the time. Another
machine learning system was developed in [28] that locates roosts within images and
tracks them across frames. Although these methods are useful, they are designed to detect
one orientation of birds while using the entire radar image as an input. They cannot be
applied to a single range gate and cannot be used in situations where birds are not roosting.

We propose a machine learning model that can classify diverse orientations of bird and
insect echoes, by operating on individual radar range gates. Two supervised machine learn-
ing methods are investigated: ridge classifier and decision tree. Dual polarization radar
scans containing separate large-scale bird and insect migration were collected (Section 2).
Next, the migrating bird (insect) echoes are segmented using blob coloring and then their
textures were computed (Section 3). Velocity azimuth display (VAD) is applied to change
the measurement coordinates from being relative to the radar to be relative to the tar-
get and multiple bird (insect) dominated scans are averaged to reduce contamination by
other echoes in Section 3. The averaged scans are used to derive training inputs for the
classifiers. The next sections summarize machine learning methods used (Section 4) and
the metrics for evaluation (Section 5). Both machine learning methods are trained, first
on only dual polarization variables and then on different combinations of the remaining
features (Section 6). Their performances are evaluated using metrics computed on test data
(Section 7). Further case studies (Section 8) are conducted to analyze performance on new
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scenarios from different WSR-88D radars. Finally, our conclusions and recommendations
are presented in Section 9.

2. Data Collection
2.1. Selection of Bird and Insect Scans

The radar resolution volume is much larger than biological targets. As a result, it is
common for a single volume to contain a mix of birds, insects, and weather. Ideally we
would want a homogenous composition of echoes. Furthermore, biota echoes can cover a
large area (hundreds of kilometers). Thus, it is impossible to inspect and label each volume.
These create difficulties in obtaining ground truth. Our approach was to collect multiple
scans of mass bird (insect) migration in clear air (this term is used for radar observations
free from precipitation), where we expect to obtain the highest possible number of range
gates containing birds (insects). We leveraged some known features of biological echoes to
accomplish this step. A substantial part of nocturnal echoes in spring and fall have been
found to be migrating birds [20]. Such migration is characterized by a large area of echoes
centered around the radar site with velocities having the same direction (highly aligned).
Further analysis of birds (Purple Martins) has shown that they have modes around 0 dB
for Zpg and 110° for ®pp [29]. Insects, on the other hand, are commonly observed in clear
air during warm seasons in Oklahoma, reaching peak intensity in the late afternoon [20].
Compared to birds, insects have been found to have higher Zpp, often saturating at the
8 dB limit of the WSR-88D, and lower ®pp [29]. These properties were used to select
90 clear air scans in which 45 PPIs are dominated by migrating birds and the other 45 scans
by insects. All scans were collected from KTLX (located near Oklahoma City, Oklahoma) at
the 0.5° elevation. Each scan was also chosen such that the majority of echoes were due to
biological migration activity. This is important for the subsequent extraction of migration
echoes by blob coloring. Finally, all gates with range less than 10 km were excluded to
reduce contamination by ground clutter.

2.2. Selection of Radar Variables for Machine Learning Algorithms

None of the single polarization variables are used in training our models. In general,
birds are larger than insects. Since Z depends on the size of targets within the radar
resolution volume, it could be a good differentiator. However, Z also depends on their
population. In other words, a large Z value could be due to a sparse group of larger birds or
a dense aggregation of insects. Due to this ambiguity in interpretating Z, it was not used for
training the models. Similarly, birds typically fly faster than insects. However, biological
targets leverage the underlying wind field to aid their flight. As a result, passively flying
insects on a windy day could migrate with larger velocities than actively flying birds in a
mild wind field. Furthermore, radial projection and aliasing complicates the interpretation
of V;. Thus, V; is also excluded as an input to the model though it is used in VAD analysis
to recover measurements from the target’s aspect. Signal-to-noise ratio from biological
scatterers are frequently low for the reliable measurement of spectrum width (oy). Due to
this high noise contamination, oy is also excluded.

Dual polarization variables have been used for the identification of biological
echoes [7,14-16,20,29]. They are used in training our models to distinguish between birds
and insects. Using only dual polarization variables also has the advantage of ensuring
temporal coherence. Biological echoes are predominant at the lowest antenna elevation
scan of 0.5° in clear air. At this elevation, the WSR-88D completes two sweeps, about 30 s
apart. The first (surveillance) sweep measures the dual polarization variables and Z. The
second (Doppler) sweep measures the legacy single polarization variables. Combining
variables from both sweeps could introduce errors.

3. Feature Processing to Prepare Inputs

In this section, further processing is performed on the collected bird (insect) scans to
prepare inputs for training and evaluating the classifiers. All scans in the data set are for
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highly aligned migration cases. First, the texture of each dual-pol variable is computed
for each scan. Next, blob coloring and minor region removal are used to extract only
range gates containing migrating birds (or insects), followed by VAD analysis to find their
heading. Ideally, we would desire a bird migration scan to be purely comprised of bird
echoes. However, they usually also contain few insect echoes. This is also the case for
insect dominated scans. We propose a way of coherently averaging multiple scans along
the target’s aspect to improve reduce this contamination.

3.1. Texture

Many image operations are performed on a local section defined by a window. Such
windows are usually described with respect to a reference pixel, where the result of any
computation is output. In our case the reference pixel is the middle one. Textures are the
result of one of such operations, that characterizes the spatial variation of radar variables
in the two-dimensional fields, i.e., azimuth and range directions [13,29]. We calculated
texture using an 8-connected window, which a 3 x 3 grid of pixels with the reference at the
center. Mathematically, at a given radar gate with range r and azimuth angle ¢, the mean
absolute deviation of a variable x from its neighbor gates is calculated as

1 1 1
Axy,p = N_1 Zi:—l j=—1 |Xrp — Xrtip+j

’ )

where i is the range gate offset, j is the azimuth offset, and N is the window size. Calcula-
tions were performed only when all the surrounding gates contained echoes.

3.2. Blob Coloring and Minor Region Remouval to Extract Migration Echoes

Blob coloring is an image processing method used to identify connected groups of
pixels with the same value [30,31]. It is applied to detect regions comprised of migrating
echoes. We would define some relevant terms before describing the algorithm. All def-
initions are with respect to a binary image where a pixel either contains a target (pixel
value 1) or background (pixel value 0). A region (or blob) is a group of contiguous pixels
with the same value. Two types of windows were applied in this study. The first is the
previously described 8-connected window. The second window type is the 4-connected,
which refers to a reference pixel, and the neighbors directly above, below, left, and right.
Another operation performed is dilation, which involves iterating a window over an image
and setting the reference pixel at each step as the OR of all pixels within the window. The
result is an expanded region of target pixels.

Data for bird and insect migration were collected for clear air days, which are charac-
terized by a large area of biological echoes around the radar. An example for bird migration
Z in clear air is shown in Figure 1a within a maximum range of approximately 150 km.
Z is only chosen for demonstration, it is not used at any other point of this study. The
data matrix for this scan can be considered as an image I where rows correspond to ranges
and columns correspond to azimuth angles. The blob coloring with minor region removal
algorithm is implemented as follows. First, the radar image [ is binarized by setting all
gates containing echoes to 1 while the remaining gates are set to 0. The second step involves
dilating the binarized image twice to connect regions with nearby isolated echoes. The
dilated image J is given as

J=(U®B)®B, )

where @ is the dilation operator and B is the 8-connected window. In the third step,
a region labelling algorithm [30] is applied to identify the different target regions in J. Next,
minor region removal [30] is applied, where the largest target region is retained and the
remaining target regions are set to background pixels. Often, this major region contains few
isolated holes of background pixels. These holes are plugged, by complementing the image,
repeating the blob coloring with minor region removal algorithm, and re-complementing
the image [30]. The resulting mask M is a binary image with one solid target blob (shown in
Figure 1b) indicating the region containing migration echoes. The final image K (Figure 1c)
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is obtained by the element wise multiplication of the map M and the original image I. This
is expressed as
K=I16oM, (3)

where © represents the multiplication operation. This image would contain the migrating
birds. The same procedure is repeated for insect cases. Figure 1d shows Z for insects with
a minor precipitation region west of the radar. The generated map excludes this minor
region (Figure le). The final extracted echoes would contain insects (Figure 1f).
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Figure 1. Blob coloring with minor region removal to extract large scale biological migration echoes. (a) Reflectivity (in dBZ)
of bird migration echoes. (b) Mask of bird migration echoes. (c) Gates containing birds extracted using mask. (d) Reflectivity
(in dBZ) of insect echoes. (e) Mask of insect echoes (f) gates containing insects extracted using mask.

3.3. Reference with Respect to the Target's Azimuth

Due to the non-spherical shape of biological targets, their radar returns would depend
on the angle from which they are observed, hereafter referred to as their aspect. As such,
methods for identifying biological echoes will have to account for this dependence. Cases
of wide spread alignment can leverage traditional VAD [2,32,33] or azimuthal patterns
in the correlation coefficient [18] to recover aspect information. We used VAD to rotate
the variables, so they become a function of their aspect azimuth (@gspect). First a sinusoid
model is fit to V; at every range,

Vi(¢) = |Vlcos(2nf +), )

where V, is the fitted radial velocity, ¢ is the radar’s azimuth, |V| is the magnitude of
velocity along the migration direction, f is frequency, and b is a phase offset. It is assumed
that the wind field is uniform at every height so f ~ 515 cycles/degree. The migration
direction is defined as the direction toward which the targets are heading. It is obtained as
the radar azimuth that maximizes V,,

Pmigration = ngﬂxzpvr(cp), ()
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This direction captures measurements from the tail aspect. Scattering from other
azimuthal aspects can be deduced by the lag from Pmigration as

(,baspect = 47 - (Pmigmtion/ (6)

such that a ¢yspect of 0° represents the tail region of biota, 90° represents the left-wing
region, 180° represents the head region and so on.

An example for this procedure is shown in Figure 2. Figure 2a shows the VAD at
range 70 km for one of the scans in the training set. The blue line is the filtered velocity
obtained by applying a 10th order one dimensional median filter on V,. The green line
is the fitted V. Migration was found to be toward 13.73°. The radial velocity w.r.t to the
target Vr (¢aspect), sShown in Figure 2b, is obtained by shifting V;(¢) to the left by 13.73°.
Migration would be toward @gspect of 0°. This process is applied at every range ring to find
the migration direction and rotate all dual polarization measurements and their textures.
All measurements are now relative to the aspects of the targets.

Doppler velocity VAD for 70 km, True Wind direction — 13.73°
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Figure 2. VAD analysis to reorient radial velocity to be relative to the target aspect for 70 km range
gates. The blue line shows filtered V;, while the green line is the sine fit. (a) Initial VAD finds targets to
be migrating toward 13.73°. (b) VAD after reorienting radial velocities. Migration is now toward 0°.

3.4. Averaging Bird and Insect Cases

To reduce the contamination of our bird migration cases by insect echoes and vice
versa, multiple scans are averaged. Following blob coloring and rotation of the collected
scans and their textures, they are grouped into three batches. Let us call them batches A,
B, and C. Each batch contains 15 randomly selected scans per class (a total of 30 scans per
batch). The following discussion will be focused on A though all steps equally apply to
B. Each scan will have different azimuths, so we created a new range and aspect azimuth
grid both starting at 0 and with resolutions of 250 m and 0.5° respectively. All scans were
interpolated to this common grid. The new 15 scans for birds (insects) are then averaged.
In the last step, all range gates in the resulting averaged scans from A and B are combined
to form the training set, containing 1,711,624 samples: 57% bird and 43% insect cases. Batch
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ZDR at 15 km . by at 15km

C is used as the test set. It is not averaged so that it represents the kind of measurements
we expect from the WSR-88Ds. The test set contained 9,402,821 range gates with 60% bird
and 40% insect cases.

Some visualizations of the averaged training cases are shown in Figure 3. The blue
curve is for birds and the red for insects. Each plot is for a dual polarization variable against
the target aspect at specific ranges. From top to bottom, rows correspond to measurements
15, 30, and 45 km from the radar. From left to right, columns correspond to Zpr, ®pp, and
prv respectively. The averaging procedure shows that dual-pol variables have a strong
dependence on Paspect and exposes clear delineations between birds and insects. The results
are also consistent with previous literature. Analysis in [19] found that echoes attributed
to birds (Purple Martins) had Zpg between —4 and 6 dB. In our case, the averaged Zpgr
(shown in Figure 4a) for birds is generally low, between —2 and 4 dB. The highest value is
around 230° (between the head and right wing) and the lowest around 75° (between the
tail and left wing). Insects were found to have high Zpg (up to 10 dB) in [20]. Our averaged
insect Zpp is also generally higher with most gates between 3 and 6 dB. Interestingly, the
values dip below the bird Zpg values between ¢gspect of 230° and 300°. ®pp (shown in
Figure 3b) for birds is generally higher than insects, with peaks around 50° and 300°. This
is consistent with the observed symmetry of ®pp about the direction of migration [20].
Insects have lower ®pp values. pyy (Figure 3c) for bird migration have been observed
to have low values corresponding to tail-on viewing angles and high values for head-on
angles [18,19]. This can be seen in the sinusoid-like pattern in Figure 3c, with high values
(around 0.7) between 60° and 250° and low values (around 0.4) otherwise. Insects generally
have higher pyy than birds with a mean value around 0.7.
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Figure 3. Averaged dual polarization variables as a function of @sspect for the training set. (a) Zpr vs. @aspect; (b) @pp vs.

Paspect; (€) PHV VS. Paspect- Birds are in blue and insects red. Rows represent ranges of 15, 30, and 45 km from the radar.
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Figure 4. Ridge classification results (a-h) for bird migration observed with KTLX radar at 04:13 UTC on 2 May 2015. BIR
represent birds and INS represent insects.

After the averaging procedure, both the training and test data sets are normalized.
The mean and standard deviation for each variable was computed from the 60 scans in
batches A and B. They are used to normalize each variable by mean centering and scaling
by their standard deviation. This ensures that all variables are on the same scale. The same
procedure was applied to normalize their textures.

3.5. Input Features for Classifiers

The normalized dual polarization variables and their textures are used as input
features for the classifiers. Additionally, inspection of the data revealed that variables
varied gradually with range and ¢,,. Thus, two new discrete features were created to
capture this variation. The first is range interval, which refers to 10 km bins. The second is
sector, which refers to 20° sectors computed from ¢,,. All echoes collected in this study
were from 10 to 230 km, so range interval would contain 22 elements. Sector contains
18 elements.

4. Machine Learning Methods

Our goal was to train an algorithm for distinguishing bird from insect echoes, that
could be implemented operationally on NEXRAD. Traditionally, fuzzy logic has been used
for classifying weather radar echoes. However, we opted for a supervised machine learning
(ML) approach mainly because they predict probabilities for each range gate in addition to
predicting output classes. They can also be easily updated as new data is available since
they learn a model that minimizes prediction errors on the training data.

More complex neural networks have been successfully applied to detect [27] and track
roosting birds [28]; however, they were not designed to make classification on a single
radar range gate, and rather use a rendered image of a full radar scan as input. They are
also trained to specifically detect birds emerging from their roosting sites. As such, these
networks cannot be generalized to other patterns of bird activity or types of biological
echoes. In this study, we investigate a supervised ML approach for distinguishing birds
and insects, that can use inputs from a single range gate, is able to provide a probability
that a range gate contains birds (or insects) and is easy to retrain as more data is collected.
We explored using both the ridge classifier and decision tree.
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The ridge classifier learns a linear combination of input variables that achieves the best
separation between classes in the output. We used the SGDClassifier [34] in scikit-learn.
For a single range gate, the function is given as

f(x) = wlx+0, (7)

where w is the weight vector, x is the input vector, and b is a bias term. The goal is to find
parameters that minimizes the log loss error given by

L(yi, f(x;)) = log(1 + exp(—yif(xi))), (8)

where y; is the label for each training example. A scaled L2-norm of the weights is also
added to the above loss to stabilize learning by penalizing any explosion of the weights.
The final loss function is given by

Cleby) = & Yy Ly f(3) +afwl} ©)

where 1 is the number of training examples and « controls the effect of the weight penalty.
The learning process uses stochastic gradient descent [35] on w and b, and a search on « to
find values that minimize C(w, b, x).

Our second technique, decision trees, learns rules to recursively partition data so that
samples with the same labels are grouped together. We used the DecisionTreeClassifier [34]
from scikit-learn. Within the context of decision trees, an attribute A is a question asked
about the data e.g., is Zpgr > threshold? Answers to this question, like True or False,
are called values V; and are used to partition the data set. There are also two classes ¢;
containing p positive examples (birds) and # negative examples (insects). The entropy of
an attribute measures its homogeneity. It is defined as

E(p(cj), - plem)) = Y0, —p(cj) logy p(c)), (10)

where p(c;) is proportion of the jth class. High entropy indicates a uniform distribution
over classes while low entropy indicates the dominance of some classes. Information gain
measures the reduction in entropy for a given split. It is defined as

G(A) =E(p(cj) ... plem)) — Zi:l n; 1 ng(p(cj) oplem)| Vi), (11)

where 71, and py are the number of positive and negative examples, respectively, in the
kth split. In order words, G(A) is the difference between the entropy before a split and
the mean entropy after the split. Decision trees learn by finding attributes that maximizes
G(A).

5. Metrics

We used four metrics to assess our classifiers. They are accuracy (ACC), true positive
rate (TPR), true negative rate (TNR), and area under curve (AUC). Table 1 below shows the
confusion matrix for our classification problem. Birds are used as the positive class, so true
positives (TP) are birds that are correctly classified as birds, false positives (FP) are insects
classified as birds, false negatives (FN) are birds classified as insects and true negatives
(TN) are correctly classified insects. Each instance corresponds to a range gate.
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Table 1. Confusion matrix for bird detection.

True Labels
Classifier Output Birds Insects
Birds TP FP
Insects FN N

Accuracy is the proportion of the whole data set that is correctly predicted. TPR is
the proportion of correct predictions only on bird cases. Similarly, TNR is the proportion
of correct predictions for the insect cases. They are calculated as shown in the following
equations:

TP+ TN
ACC = 12
cc TP+ FN+FP+FN’ (12)
TP
TPR = ——— 1
TP+ FN’ 13
TN
TNR = Fp TN’ (19

Binary classifiers usually predict a probability (or score) for the positive class and
then a threshold is applied to obtain the final class. The receiver operating characteristics
(ROC) curve plots TPR against the false positive rate, FPR (FPR is 1 — TPR) for varying
probability thresholds [36]. The goal of the ROC curve is to find an intermediate threshold
that maximizes TPR and minimizes FPR. The area under curve (AUC) metric summarizes
the area under the ROC curve [36]. Good classifiers should have an AUC close to 100%.

6. Model Training and Validation

Classifiers are sensitive to the class distribution of the training set. Thus, we applied
class weights [34] to balance the effect of each sample on the loss function. For each machine
learning method, eight models are trained using different combinations of inputs. First,
a base model is trained on only dual polarization variables and then different combinations
of the remaining features are added to investigate their effect on performance. It should
also be noted that not all inputs features can always be obtained from the radar scan. For
example, sector is calculated using a sinusoid fit to the velocity of migration echoes. These
echoes are mostly composed of a single species moving in a particular direction. In cases
containing diverse species without a common heading, the sinusoid fit will not be possible,
and sector would be unrecoverable. Velocity aliasing could also prevent the recovery of
sector. In these cases however, the base model can always be used.

K fold cross validation [37] was used to tune the model hyperparameters. In this
method, the data set is divided into K folds. Model training is performed on K-2 folds,
validation on one fold and testing on the last fold. Since we already held out a test set
(batch C), training was performed on K-1 folds and validation on one fold. The whole
process is repeated K times where each fold is used as training and validation once. A total
of five folds were used. After cross validation, the hyperparameters that have the best
performance are chosen for each model. Final training is performed using the selected
hyperparameters and the full training set. An ROC curve is then generated and a critical
threshold found, such that it maximizes TPR and TNR. This threshold would be used to
convert predictions into classes. The training process is stochastic so each run produces
slightly different results. To have a robust assessment of performance, 30 independent
training runs are repeated for each model. All the trained models are then evaluated on
the test data. Confidence intervals for each metric is calculated using the bootstrapping
percentile method where each metric is computed from an iteratively chosen random
sample of the test data [27,38]. We computed each metric for 100 iterations based on
1000 randomly chosen samples. The 100 metrics for 30 repeated runs forms a distribution



Enwviron. Sci. Proc. 2021, 8, 48

11 of 18

with 3000 estimates. The confidence interval is found as the 2.5% and the 97.5% points of
the distribution [27,38].

7. Performance

The 95% confidence interval for the model metrics are shown in Table 2. All the ridge
classifiers are predictive with ACC > 0.81, TPR > 0.82, TNR > 0.77, and AUC > 0.86.
Sector is expected to greatly improve results; however, its addition to ridge classifiers
cause marginal changes to performance. It slightly improves TNR, slightly reduces TPR
and does not seem to have a noticeable effect on AUC. This could be because the training
data was already averaged along the aspect angles creating a clearer delineation between
both classes, so that classification can be effectively performed without sector. (Recall
that sectors are 20° ¢, bins). Addition of range interval marginally changes performance,
improving ACC, TPR, and AUC, and reducing TNR. The addition of texture generally
improves the model metrics.

Table 2. The 95% confidence interval for the ridge classifiers” and decision trees’ metrics on migration data. The possible

inputs are Dual-Pol (DP), their textures (ADP), sector (sect) and range interval (RI).

ACC TPR TNR AUC
Ridge classifiers
Dual-Pol 0.814-0.858 0.832-0.892 0.778-0.844 0.868-0.911
Dual-Pol + texture 0.849-0.891 0.874-0.924 0.808-0.874 0.909-0.943
Dual-Pol + sector 0.812-0.858 0.822-0.886 0.784-0.85 0.869-0.911
Dual-Pol + range interval 0.815-0.86 0.836-0.894 0.774-0.844 0.869-0.912
Dual-Pol + texture + sector 0.849-0.891 0.87-0.924 0.81-0.874 0.91-0.943
Dual-Pol + sector + range interval 0.813-0.858 0.826-0.884 0.78-0.848 0.869-0.912
Dual-Pol + texture + range interval 0.849-0.891 0.872-0.926 0.81-0.872 0.91-0.944
Dual-Pol + texture + sector + range interval 0.85-0.891 0.87-0.922 0.812-0.876 0.91-0.944
Decision trees
Dual-Pol 0.8-0.856 0.786-0.892 0.762-0.852 0.872-0.92
Dual-Pol + texture 0.778-0.852 0.786-0.902 0.718-0.846 0.866-0.925
Dual-Pol + sector 0.751-0.815 0.658-0.8 0.79-0.88 0.831-0.884
Dual-Pol + range interval 0.75-0.82 0.668-0.794 0.79-0.882 0.792-0.868
Dual-Pol + texture + sector 0.713-0.804 0.628-0.79 0.768-0.866 0.793-0.873
Dual-Pol + sector + range interval 0.684-0.762 0.518-0.68 0.814-0.894 0.711-0.796
Dual-Pol + texture + range interval 0.714-0.813 0.7-0.828 0.676-0.844 0.751-0.871
Dual-Pol + texture + sector + range interval 0.669-0.796 0.572-0.732 0.71-0.87 0.702-0.832

The decision tree models are also predictive for TPR, TNR, and AUC but perform
significantly worse on TPR with some models having values around 0.5. This seems to
coincide with models using range interval and/or sector. A possible cause could be that
its binary decision making tends to prefer classifying whole range intervals (or sectors) as
one class in contrast to ridge classifiers that only learns a probability adjustment. Using
smaller range intervals and sectors might mitigate this problem. Like the ridge classifiers,
incorporation of texture generally improves the model metrics. However, this might
not generalize to non-migration cases. Recall that labels were provided based on the
dominant migrating taxa. Textures have the effect of averaging measurements derived over
a3 x 3 neighborhood, so would emphasize the dominant class leading to better metrics for
migration cases. However, for non-migration cases with a heterogeneous mix of scatterers,
texture could lead to mis-classifications.
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Both models were compared using an independent two sample t-test with a signifi-
cance level of 0.05. The null hypothesis was that both metric distributions have the same
mean. The ridge classifiers proved to be the better performing method with higher means
on at least three metrics. Based on these results the ridge classifier was selected as a better
method. All further discussions would be focused on this classifier. The best ridge clas-
sifier uses dual polarization variables, texture, sector, and range interval as inputs with
AUC > 0.91. It is possible though, that the improvement caused by the added features
could be the classifiers over-fitting to migration cases. Thus, additional studies on a diverse
variety of cases (presented in the next section) are required to understand the effect of these
features on performance.

8. Case Studies and Discussion

In this section, the performance of the ridge classifiers are further tested on six cases.
The aim of these analysis is to verify that the classifiers” detections are consistent with the
available ground truth and to observe the effect of different features on their performance.
For operational use, we recommend that the ridge classifiers be used as a sub-classifier
for the HCA. This configuration is applied to cases in this section. The first case analyzes
two events of mass bird and insect migration from the test data set (collected from KTLX),
to explore the effect of the different inputs. The second case contain groups of bird roosts,
insects and weather echoes collected from KHTX (located in Huntsville, AL). Ground truth
was available from previous literature [29] so this would be a good test of the classifiers’
accuracy. It also tests the classifiers on a different WSR-88D radar. In the third case,
the classifier was tested on an event of birds observed fleeing their nests shortly after
an earthquake in Oklahoma. The next case investigates another bird roost from KMOB
(Mobile, AL) where ground truth was obtained from previous literature [27,39]. The final
case studies swarms of insects observed from six NEXRAD radars across the southern
US, evaluating the potential of the classifier to be applied for broad scale surveillance of
biological echoes.

8.1. Mass Migration of Biota, KTLX

The first case was collected from KTLX at 04:13 UTC on 2 May 2015 containing a
swarm of migrating birds. It is one of the PPIs in the test set, so all the input variables are
available. Sector could be recovered because migration was highly aligned. The classifier
predicts a probability of each range gate containing bird echoes. The critical threshold
(~0.5) is applied to binarize these probabilities to Os (insects) and 1s (birds) and obtain the
output class. The final ridge classifier outputs are shown in Figure 4. Birds are colored
blue while insects are colored red. Across the eight ridge classifiers, birds are detected in
94.4%-95.4% of classified gates, consistent with our hypothesis of birds as the main source
of echoes. Overall, the performance of the base model barely changes as the remaining
features (texture, sector, and range interval) are added, with at most a 1% difference in
proportion of birds detected. A similar study (not shown here) was performed on an insect
swarm case in our test data. This case was collected from KTLX at 17:08 UTC on 11 July
2019. The classifiers detected an insect majority of 92.3%-92.7% in classified gates. Again,
there is a minute difference at most 0.4% for additional input features, suggesting that they
might be playing a redundant role.

8.2. Bird Roosts from KHTX

The second case study was conducted on data collected from the KHTX radar (located
at Huntsville, AL, USA) at 11:15 UTC on 11 August 2015. This case assesses the ridge
classifiers on bird roosts from a different WSR-88D radar. The Z scan is shown in Figure 5b
with three groups of echoes, labelled based on analysis conducted in [29]. The first group
contains two colonies of purple martins engaging in their morning roosts, verified by
ground observers from the Purple Martin Conservation Society [29]. The roosts are located
north-west and west of the radar. Insects, surrounding the radar location were also
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Figure 5. Bird roosts observed with KHTX at 11:15 UTC on 11 August 2015. (a) Ridge Classifier (RC) using dual polarization
variables. (b) The 0.5° Z scan showing bird roosts (west and north-west), insects (around the radar) and weather echoes

(north-east and south). (c) RC using dual polarization variables and their textures. (d) RC using dual polarization variables

and range interval. (e) HCA classification into 5 classes: weather WEA, biological BI, unknown UK, ground clutter GC, and

range folded echoes RH. (f) RC using dual polarization variables, their textures and range interval.

The HCA is applied to classify range gates into the five groups: weather WEA,
biological BI, unknown UK, ground clutter GC, and range folded echoes RH. The results
(shown in Figure 5e) can be seen to corroborate the labels provided in [29]. Sector could
not be recovered here because of the presence of diverse scatterers with different velocities.
As such only the ridge classifiers that do not use sector are used. They are applied on gates
determined to be biological by the HCA. The base classifier (Figure 5a) and the classifier
with range interval (Figure 5d) identify the roosts as bird dominated and the insect region
as insect dominated. These results are consistent with the available ground truth. The
models with texture (Figure 5¢,f) identify the insect region but mis-classify large parts of
the roosting birds as insects, most noticeable where the western roost intersect with insect
echoes.

Overall, the base classifier’s detections match the labels provided, demonstrating
the efficacy of the classifier on new cases of biological activity and a different NEXRAD
radar. The addition of range interval does not have a noticeable effect on performance
while texture seems to degrade performance on fine and hollow features like bird roosts.
A similar case containing bird roosts (figure not included here) collected from KTLX at
11:47 UTC on 8 August 2017, was processed with the ridge classifier. Again, the base
classifier detected the roosts as bird dominated and the addition of other features did not
improve the result. Because of the redundancy of using these extra features and their
added complexity, we selected the base classifier as the best model. Performance analysis
for the remaining cases would be focused on this classifier.
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8.3. Birds Escaping Their Nests during an Earthquake, KTLX

Broad scale movement of biological echoes is commonly in response to natural phe-
nomena. The next case study is for one of such occurrences. An earthquake occurred in
Oklahoma on 29 October 2015 at 11:39 UTC, resulting in a splash of birds leaving their
nests observed on the KTLX radar. The reflectivity of echoes recorded two minutes after the
quake is shown in Figure 6a. Notice a line of high reflectivity values tracing the movement
of the birds away from their nests. This line progresses southward in the next few scans.
The base ridge classifier (shown) in Figure 6b detects a bird majority, with 86.8% of echoes
classified as birds further corroborating ground observations.
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Figure 6. Birds leaving their nests in response to an earthquake in Oklahoma on 29 October 2015 at
11:39 UTC, observed by KTLX. (a) Reflectivity showing a splash of birds leaving their nests. (b) RC
detect a bird majority with 86.8% of echoes classified as birds.

8.4. Bird Roosts from KMOB

The fourth case study involves a bird roost observed by KMOB (located in Mobile,
AL, USA) on 4 July 2015 at 11:19 UTC. This case is one of many labelled manually by Kelly
and Pletschet by searching radar imagery from one hour prior to local sunrise till 30 min
after local sunrise, an effort that required examining 70,000-140,000 images per year [27,39].
Figure 7a shows the reflectivity for this case with the observed bird roost enclosed in the
black circle. The base ridge classifier (Figure 7b) detects birds as the main cause of this
roost. Similar to the KHTX roost case, insects were also detected as the dominant echoes in
the low reflectivity region around the radar.
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Figure 7. Bird roost observed by KMOB (located in Mobile, AL, USA) on 4 July 2015, 11:19 UTC.
(a) Reflectivity image showing bird roost to the west of KMOB. (b) RC detects roosts to be mainly
comprised of birds.

8.5. Insects Observed over Southern United States

The final case study is performed on a snapshot of the Southern United States on
19 April 2016 at 00:00 UTC (approximately 22 min before local sunset). The snapshot
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includes returns from six NEXRAD radars: KNQA (located in Memphis, TN, USA), KHTX
(Huntsville, AL, USA), KGWX (Columbus AFB, MS, USA), KBMX (Birmingham, AL, USA),
KDGX (Jackson Brandon, MS, USA), and KMXX (Maxwell AFB, AL, USA). The ZDR of this
snapshot is shown in Figure 8a below. Insects were identified around the radars for this case
by their well-known dumbbell patterns in ZDR and Z [29]. Furthermore, airspeed analysis
using the 00 UTC Birmingham, AL, sounding on KBMX yielded airspeeds of 2.39 m/s in
the lowest kilometer of airspace, indicating insect presence [29]. The base ridge classifier
(shown in Figure 8b) detects these echoes around the radar as being predominantly insects,
matching observations in previous research. The holes in the detected insect swarms are
due to those areas not being classified as biological echoes by the HCA.
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Figure 8. Snapshots of insects over southern United States on 19 April 2016 at 00:00 UTC (approx-
imately 22 min before local sunset). (a) ZDR shows the characteristic dumbbell pattern with high
values horizontally across and lower values vertically across the insect swarms. (b) RC detects insect
swarm as predominantly insects.

9. Conclusions

NEXRAD'’s detection of birds and insects offers much promise for a variety of appli-
cations. In this work, we developed a classifier for distinguishing bird and insect radar
echoes based on dual polarization variables. Unique challenges were faced during data
collection due to complex scattering off their non-spherical bodies. This was addressed by
leveraging cases of large-scale single specie migration with a common heading to change
measurement coordinates from being relative to the radar to be relative to the body aspect
of biota. The mean flight direction, which would measure scattering off the tail, was found
by VAD analysis and then measurements from other aspects are deduced by the lag off
this direction. Another issue is the difficulty in labelling training data sets because of the
frequent collocation of birds, insects and other non-biological echoes in the radar sampling
volume. We addressed this by averaging 15 alignment calibrated bird (insect) migration
scans to reduce the effect of the less dominant class.

The data preparation pipeline is summarized in the following steps. First, 45 scans
containing mass migration in clear air were collected for each class. Blob coloring with
minor region removal was applied to segment regions of migration echoes and their
textures computed. Extracted migration echoes are then rotated to become relative to the
target’s aspect. The rotated scans are grouped into three batches, each containing 15 scans
per class. All 15 scans in two of the batches are averaged to reduced contamination. This is
done for both classes. Gates from the four resulting averaged scans are used as training
samples. The last unaveraged batch is used as the test set. All samples in both sets are
grouped into 10 km range intervals and 20° sectors of the target relative azimuth. The final
candidate feature set was made up of the dual pol variables, their textures, and the range
interval and sector bins.

Two machine learning methods were explored: ridge classifier and decision tree.
Eight models were trained for each method, starting with a base model using only dual
polarization variables and then adding other input features. Four metrics were used for
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evaluating the classifiers on the test data set. They are accuracy (ACC), true positive rate
(TPR), true negative rate (TNR), and area under curve (AUC). A comparison of the metrics
from both methods showed that the ridge classifiers performed better than decision trees
in at least three out of four metrics. Based on this, the ridge classifiers were selected
for classifying bird and insect radar echoes. All the ridge classifiers are predictive with
ACC > 0.81, TPR > 0.82, TNR > 0.77 and AUC > 0.86. The addition of other features
improve these metrics by up to 4%, however, later evidence suggests that this is probably
due to over-fitting to cases of large-scale migration.

Further qualitative case studies were conducted to assess the effect of using different
inputs to the classifier on a bird and insect migration scan from the test set. The ridge
classifiers detected birds in 94.4%-95.4% of range gates for the bird scan and insects in
92.3%-92.7% of gates for the insect scan, consistent with our hypothesis of the source of
these echoes. The addition of the remaining features to the base model has a bare effect on
performance, with an increase of at most 1% in the proportion of birds detected and 0.4%
for insect detections. This suggests that the additional input features might be superfluous.
The classifiers were also evaluated on diverse cases of biological activity across NEXRAD.
The training data was collected from KTLX, so the ability to detect biological patterns from
other WSR-88Ds would provide strong evidence that it can be applied on the network.
Furthermore, the training data did not contain bird roosts. Thus, the ability to detect
roosting birds would be evidence in favor of the generality of the classifier. The next case
explored bird roosts collected by the KHTX (located in Huntsville, AL, USA). Previous
studies [29] provided ground truth for bird roosts, insects, and weather echoes for this
scan. Sector could not be recovered here because of the heterogenous mix of scatterers. The
detections of the base classifier and the one with range interval match the provided ground
truth. The addition of texture seems to degrade performance on the roosts, probably
because it is less suited for capturing finer features. The classifier was also evaluated on a
similar case from KLTX containing four bird roosts identified by observing the expanding
ring over time. Again, the base classifier and the one with range interval detect all the
roosts as birds, while the addition of texture degraded performance. Overall, the tests
conducted show no evidence of improvements from adding features to the base classifier.
For the sake of simplicity, the base ridge classifier is selected as the final model for our
classification task.

Sometimes biological activity is a cue to underlying seismic events. In the next case,
the base ridge classifier is tested on a splash of birds (observed by KTLX) fleeing their nests
in response to an earthquake in Oklahoma. The classifier detects 86.8% of echoes to be
from birds. This demonstrates the potential of using this classifier to study natural events
of common interest to humans and aerial animals. For the fourth case study, the classifier
was tested on a bird roost from KMOB where ground truth labels are known from previous
research [27,39]. The base classifier detects the roost as predominantly birds. The final
case study demonstrates the use of the classifier for large scale surveillance on NEXRAD.
Here, swarms of insects were observed across the southern United States just before local
sunset using six NEXRAD radars. The insects were identified in previous literature by their
characteristic dumb-bell pattern in Z and ZDR, and low mean airspeeds in the lowest 1 km
of airspace. The classifier detects these swarms as inspects.

In our test cases, the base ridge classifier has been demonstrated to correctly classify
different orientations of biological echoes across NEXRAD. As such, we recommend this
classifier could be implemented on the network, as a sub-classifier on the HCA’s biological
class. The biggest challenge to developing biological classifiers is obtaining the ground
truth. For future research, we hope to conduct more experiments to validate the source of
these echoes. We also hope this research encourages other data collection and verification
efforts.
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