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ABSTRACT

Physically based models facilitate understanding of seasonal snow processes but require meteorological

forcing data beyond air temperature and precipitation (e.g., wind, humidity, shortwave radiation, and long-

wave radiation) that are typically unavailable at automatic weather stations (AWSs) and instead are often

represented with empirical estimates. Research is needed to understand which forcings (after temperature

and precipitation) would most benefit snow modeling through expanded observation or improved estimation

techniques. Here, the impact of forcing data availability on snow model output is assessed with data-

withholding experiments using 3-yr datasets at well-instrumented sites in four climates. The interplay between

forcing availability and model complexity is examined among the Utah Energy Balance (UEB), the Dis-

tributed Hydrology Soil Vegetation Model (DHSVM) snow submodel, and the snow thermal model

(SNTHERM). Sixty-four unique forcing scenarios were evaluated, with different assumptions regarding

availability of hourly meteorological observations at each site. Modeled snow water equivalent (SWE) and

snow surface temperatureTsurf divergedmost often because of availability of longwave radiation, which is the

least frequently measured forcing in cold regions in the western United States. Availability of longwave

radiation (i.e., observed vs empirically estimated) caused maximum SWE differences up to 234mm (57% of

peak SWE), mean differences up to 6.28C in Tsurf, and up to 32 days difference in snow disappearance timing.

From a model data perspective, more common observations of longwave radiation at AWSs could benefit

snow model development and applications, but other aspects (e.g., costs, site access, and maintenance) need

consideration.

1. Introduction

Seasonal snow cover serves as a major water source

(Viviroli et al. 2003; Barnett et al. 2005), acts as a natural

reservoir for hydropower (Madani and Lund 2010;

Winther and Hall 1999), impacts ecological activity

(Kudo 1991; Trujillo et al. 2012), and alters weather

(Hawkins et al. 2002; Jin and Miller 2007) and climate (Qu

and Hall 2006) through land–atmosphere interactions.
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Despite the importance of seasonal snow, there

remains a dearth of automatic weather stations (AWSs)

in cold regions (Lundquist et al. 2003; Viviroli et al. 2011;

Hijmans et al. 2005; Horel and Dong 2010). Thus,

available AWS observations provide only a glimpse into

the complexities of the cryosphere, which typically ex-

hibits high spatial variability in snow andmeteorological

states (Scipión et al. 2013; Deems et al. 2006; Sturm and

Wagner 2010; Blöschl 1999; Bales et al. 2006; Dubayah

1992). Physically based snow models are useful for

predicting and understanding snow distributions and

processes in sparsely instrumented catchments, yet the

extensive requisite meteorological forcings to drive

these models are often unavailable.

It is often impossible to evaluate forcing estimation

methods and to diagnosemodel deficiencies because few

AWSs measure all forcings (Bales et al. 2006). At a

minimum, physically based snow models require six

near-surface forcings: air temperature Tair, precipitation

P, wind speed U, humidity (often as relative humidity

RH), incoming shortwave radiation Qsi, and incoming

longwave radiation Qli. A survey of 1318 AWSs across

multiple networks that measure either snow water

equivalent (SWE) or snow depth in the western United

States shows Tair and P are most frequently measured,

while Qli is least frequently measured (Fig. 1). Nearly

99% do not measure all six forcings. This survey ex-

cludes other fluxes measured only at specialized re-

search sites (i.e., fluxes of sensible heat, latent heat, and

upwelling radiation) because these are often treated as

response variables instead of forcings. Because snow

mass is measured more commonly than wind, humidity,

and radiation, it is generally only possible to evaluate

modeled SWE (Pan et al. 2003; Chen et al. 2014b;

Watson et al. 2006; Rasmussen et al. 2011; Livneh et al.

2010) and not all model inputs. Data scarcity limits

model diagnostics and may impair advances in hy-

drology because compensatory errors in key processes

can yield the ‘‘right answer for the wrong reasons’’

(Kirchner 2006).

Given the prevalence of Tair and P observations, the

motivating question here is this: How would physical

model output change if less commonly measured forc-

ings (i.e., U, RH, Qsi, and Qli) were observed more

frequently? In other words, what is the next ‘‘best’’

sensor to install at an AWS for snow modeling? This

goes beyond an investigation of the relative importance

of snow model forcings (Zuzel and Cox 1975), as in-

vestments in new sensors may be unwarranted if a

forcing can be estimated reasonably from common data.

Indeed, numerous empirical models estimate forcing

data in ungauged areas (see section 4b), and these are

regularly used within mountain climate and hydrologic

modeling systems [e.g., mountain microclimate simu-

lation model (MTCLIM; Hungerford et al. 1989) and

Variable Infiltration Capacity model (Liang et al.

1994)]. It remains unclear how evaluations of forcing

data estimation techniques (e.g., Bohn et al. 2013;

Flerchinger et al. 2009) relate to specific data availability

scenarios and snowpack modeling. To identify future

research needs and deficiencies in AWS networks, it is

vital to prioritize the relative importance of forcing

availability for snow modeling efforts. This is a valuable

topic, as adding new sensors to existing AWSs can have

lower infrastructure costs than adding a new station.

The purpose of this study is to assess how forcing

availability (i.e., observed vs estimated data) controls

physically based simulations of snowpack mass and en-

ergy states. Seasonal snowpack is modeled with three

snow models at well-instrumented AWSs in four cli-

mates with 3-yr observed datasets of all six required

meteorological forcings. These AWSs permit data-

withholding experiments, where hypothetical data avail-

ability scenarios are constructed and a single data

estimation method is used to replace each withheld

forcing. We assume that daily Tair (i.e., minimum tem-

perature Tmin and maximum temperature Tmax) and

daily P are available (at a minimum) at an AWS and

FIG. 1. Meteorological measurements at AWSs (n5 1318) in the

western United States where SWE or snow depth are also mea-

sured. Shown are the percentages of stations measuring each var-

iable. Station operators include (alphabetically): airports (FAA),

AmeriFlux/Fluxnet, avalanche centers, Bureau of Reclamation,

California Cooperative Snow Surveys, California Department of

Water Resources, Desert Research Institute, Long Term Ecolog-

ical Research sites, NOAA/NWS, NSF Critical Zone observatories,

specialized research campaigns (e.g., NASA Cold Land Pro-

cesses Field Experiment), transportation departments, university

research sites, U.S. Army (Corps of Engineers, Cold Regions

Research Laboratory), U.S. Department of Agriculture (e.g.,

Natural Resources Conservation Service SNOTEL, U.S. Forest

Service, Agricultural Research Service), and the Western Re-

gional Climate Center. Quality and completeness of the data are

not reflected. Survey completed June 2013.
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quantify model output divergence as a function of

hourly forcing availability.

2. Background and motivation

High-quality hydrometeorological forcing data are

important for development, calibration, and simulations

of hydrology and snow models (e.g., Mizukami et al.

2014; Schmucki et al. 2014). To our knowledge, no study

has examined an extensive suite of data availability

scenarios for all required forcings across different cli-

mates and snow models.

Waichler and Wigmosta (2003) and Schnorbus and

Alila (2004) considered subdaily forcing scenarios for the

DistributedHydrology Soil VegetationModel (DHSVM)

in maritime basins, but they lacked a key measurement

(e.g.,Qli) and focused only on a single climate and model.

Walter et al. (2005) suggested that a simple physical

model could adequately simulate SWE using just daily

Tair and P. Mizukami et al. (2014) tested how different

reanalysis datasets changed hydrologic simulations in a

continental climate. They found Qsi estimation most im-

pacted basin hydrological processes, but surmised other

models might respond differently to contrasting forcing

datasets. Elsner et al. (2014) examined the impact of

forcing dataset selection on VIC calibration and stream-

flow simulation, finding notable differences in calibrated

parameters and monthly streamflow. Differences in Tair

datasets propagated into their empirical estimates of ra-

diation, impacting snowmelt simulations.

Schmucki et al. (2014) presented themost relatedwork,

in which six forcing availability scenarios were evaluated

for the SNOWPACKmodel (Lehning et al. 2002) at three

sites in the Swiss Alps. Their scenarios were dictated by

whether P data were raw, corrected, or calibrated, and

whether Qli, reflected shortwave, and outgoing longwave

radiation data were collectively available. They found P

data quality was essential while radiation (e.g., Qli)

availability was less impactful.We expand on this work by

examining a greater number of climatic regions and data

availability scenarios, checking for model and climate

dependencies. One key difference is that the P data are

not calibrated here, as the purpose of the study is to

find the next ‘‘best’’ AWS measurement after Tair and

P. Unlike Schmucki et al. (2014), we do not assume U,

RH, andQsi are observed in all cases, which is more likely

true for most AWSs globally. Finally, Schmucki et al.

(2014) did not isolate the impact of Qli because the

availability of other radiation components varied withQli

availability; we provide a more systematic and coherent

test of the impact of Qli availability on SWE simulations.

Many studies have used empirical techniques to esti-

mate missing forcings and have compared empirical and

observed values (e.g., Bohn et al. 2013; Flerchinger et al.

2009; Feld et al. 2013; Pierce et al. 2013).We examine how

synthetic forcing data impacts model behavior, relying on

previous studies to identify a reliable estimation method

for each forcing. Alternative forcing datasets are avail-

able, such as gridded datasets (Maurer et al. 2002; Livneh

et al. 2013), geostatistical interpolations (e.g., Jabot et al.

2012), numerical weather model output (Wayand et al.

2013; Rasmussen et al. 2011; Förster et al. 2014), and

satellite-based methods (Ma and Pinker 2012; Pinker and

Laszlo 1992; Forman and Margulis 2009). This study se-

lects empirical methods (when possible) because of their

sustained popularity in distributed hydrological modeling.

3. Study sites and observed forcing data

To assess whether the experiment had regional climate

dependencies, we selected four sites (Fig. 2a, Table 1):

1) the tundra Imnavait Creek (IC) site (Sturm andWagner

2010; Kane et al. 1991; Euskirchen et al. 2012) in Alaska

(United States), 2) themaritimeCol de Porte (CDP;Morin

et al. 2012) site in the Rhône-Alpes (France), 3) the in-

termountain Reynolds Mountain East (RME) sheltered

site (Reba et al. 2011) in Idaho (United States), and 4) the

continental Swamp Angel Study Plot (SASP; Landry et al.

2014) inColorado (UnitedStates). Three consecutivewater

years (WYs; October–September) were considered at each

site to capture annual climate variations (Table 1). The

study years at SASP (WYs 2006–08) were selected because

these years had the lowest annual dust concentration rela-

tive to other years with available data (Painter et al. 2012;

Skiles et al. 2012). Published (see above citations), serially

complete hourly data (all six forcings) were available at

CDP,RME, and SASPwhile data were preparedmanually

at IC (see the supplemental material).

The sites exhibited distinct snow and meteorological

conditions (Figs. 2b–h). Peak SWEwas typically highest

at SASP and lowest at IC (Fig. 2b). Winter Tair was

coldest at IC and warmest at CDP (Fig. 2c). CDP, RME,

and SASP had similar accumulated P through April

(;900mm), while IC had low P accumulation (,200mm)

in the winter (Fig. 2d). Based on vapor pressure e, CDP

was the moistest site while IC and SASP were the driest

in the winter (Fig. 2e). Mean wind speeds were highest at

IC and typically less than 2ms21 at the other sites, which

were sheltered (Fig. 2f). Mean Qsi was greatest at SASP

in the winter and spring and lowest at IC in the winter

and CDP in the spring (Fig. 2g). Finally, mean Qli was

greatest at CDP through winter and spring and lowest at

IC and SASP (Fig. 2h). Mean monthly Qsi was only

greater than Qli from April to June at SASP, in May at

IC, and June at RME; monthly Qli was always greater

than Qsi at CDP.
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Observed snowpack data included SWE and snow

surface temperature Tsurf and were only used qualita-

tively to check the basic performance of the three snow

models and to conduct a cursory diagnosis of model dif-

ferences. SWE was measured with a snow pillow at IC

and RME. At CDP, SWE was measured with a cosmic

ray detector. At SASP, snow depths measured hourly

with an ultrasonic sensor were converted to SWE using

bulk snow density based on nearby SNOTEL data and

weekly snow pit observations of density (Raleigh 2013).

Manual SWE measurements were taken from weekly or

biweekly snow pits (CDP and SASP) and snow courses

(RME). Automatic measurements of Tsurf were made at

IC with infrared radiometers at three towers; we esti-

matedmissing values based on linear regressions with the

other infrared radiometers and with dewpoint tempera-

tures (Raleigh et al. 2013). At CDP, Tsurf was derived

from infrared radiometer observations and data from a

down-looking pyrgeometer. RME Tsurf was also derived

from longwave measurements from a down-looking

pyrgeometer at a nearby exposed site. Finally, SASP

Tsurf data were observed with an infrared radiometer.

CorrectedP datawere available in the published datasets

atCDP,RME, and SASP.RawP data at ICwere corrected

assuming 75% undercatch, which was found forWyoming-

type gauges (Yang et al. 2000). Because the study assesses

the next ‘‘best’’ forcing tomeasure at anAWSafterTair and

P, rigorous correction ofPwas outside the scope.However,

P data quality can critically impact modeled SWE

(Schmucki et al. 2014; Raleigh et al. 2015). We allowed

each model to calculate the phase of P (rain or snow) at

each time step, a delineation that is more important at

sites with milder winter climate (e.g., CDP and RME).

4. Methods

a. Experiment design and evaluation metrics

For each site andmodel, a data-withholding experiment

was conducted at hourly resolution, where all observed

forcings were available initially, and then sequentially

FIG. 2. (a) Global locations of the study sites. Mean monthly values (over 3-yr study period) of observed (b) SWE, (c) Tair,

(d) accumulated P, (e) vapor pressure (calculated from RH and T), (f) U, (g) Qsi, and (h) Qli. The line colors and markers in

(b)–(h) correspond to the color and marker of each site in (a).
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removed and replaced with algorithm-derived values

until all forcings (except Tmax, Tmin, and daily P) were

estimated (Fig. 3a). A binary construction of scenarios

with six forcings was used, resulting in 26 5 64 unique

data availability scenarios. Each scenario can be envi-

sioned as a ‘‘hypothetical AWS,’’ where different sensors

are available. The Tair and P observations (either hourly

or daily) were assumed available in all cases because they

are common measurements (Fig. 1); we tested whether

temporal resolution in these core data mattered.

Preparation of hourly forcings for the nth scenario

proceeded by first examining data availability in the

scenario matrix (Fig. 3a), collecting the time series of

observed forcings (if any), and then estimating any

missing forcings using the methods selected in section

4b. Using daily Tmax, Tmin, and P, missing hourly forc-

ings were estimated sequentially in the order Tair, P,

RH,Qsi, andQli because of data dependencies (Fig. 3b).

After assembling 3 years of forcing data for all 64 sce-

narios, the forcings were input into the three snow

models (see section 4c).

The analysis consisted of three parts. In the first part

of the analysis, differences between observed O and

estimated E hourly forcings were compared graphically

and with common metrics, including mean bias differ-

ence (MBD), root-mean-square deviation (RMSD), and

mean absolute difference (MAD):

MBD5n21 �
n

i51

(E
i
2O

i
) , (1)

RMSD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 �

n

i51

(E
i
2O

i
)2

s
, and (2)

MAD5 n21 �
n

i51

jE
i
2O

i
j . (3)

MBD is particularly important because biases can im-

pact snow modeling more than random errors (Raleigh

et al. 2015; Lapo et al. 2015). The metrics above are only

meaningful to a specific forcing, and thus it is not pos-

sible to compare metrics between two variables with

different units (e.g., Tair MBD vs Qsi MBD). To gauge

the relative accuracy of estimation methods across

forcings, we conducted an auxiliary analysis (see the

supplemental material) that considers three dimension-

less metrics (Moriasi et al. 2007) and provides insights

into the relative skill of all forcings estimated.

In the second part, observed SWE and Tsurf were

qualitatively compared to model outputs (scenario with

all observed forcings) to assess baseline differences in

the behavior of models when given the same ideal set of

forcing data. The impacts of data availability were not

examined in this comparison. Observed SWE and Tsurf

were used in this part only.

The third and final part focused onmodel output spread

(from all 64 data scenarios) and assessed how availability

of specific forcings contributed to the spread. We com-

pared means of the two data availability ensembles for

each forcing (e.g., 32 scenarios with observed Qli vs 32

scenarios with estimatedQli) and identifiedwhich forcings

exhibited the greatest divergence between ensemble

means. We focused on model divergence because differ-

ences in model output (for a given model structure and

parameter set) guarantees that forcing estimation

methods have deficiencies and/or observed forcing data

have measurement errors. Differences between ensemble

model means reflected 1) differences between observed

and estimated forcings and 2) the importance of each

forcing for simulating the response variable (e.g., SWE

and Tsurf) with each model. We considered differences in

SWE, Tsurf, and snow disappearance date (SDD). SWE

and Tsurf were summarizing indices of the snowpack mass

TABLE 1. Characteristics of the study years and sites, ordered by increasing elevation and decreasing latitude.

Site name

Site

ID

Elev

(m) Lat (N)

Site climate

classification

Study

period (WY)

Mean winter

P (mm)a
Dec–Feb

temp (8C)
Mar–May

temp (8C)
Peak SWE

(mm)

Imnavait Creek IC 930 68.68 Tundra 2009b 200 217.0 21.9 180

2010 140 217.0 22.3 120

2011 190 218.5 14.9 180

Col de Porte CDP 1330 45.38 Mountain

(maritime)

2006 790 23.0 110.2 440

2007 940 11.3 17.7 220

2008 1080 10.5 111.8 460

Reynolds Mountain

East (sheltered site)

RME 2060 43.18 Mountain

(intermountain)

2006 1080 23.6 18.7 760

2007 610 23.8 18.7 370

2008 860 25.6 112.7 720

Swamp Angel

Study Plot

SASP 3370 37.98 Mountain

(continental)

2006 860 28.1 13.5 840

2007 840 28.2 14.0 700

2008 980 210.1 17.6 1010

aWe sum winter precipitation from 1 Oct to 30 Apr at all sites except IC, where we sum it from 1 Sep to 30 Apr.
b Because of early snowfall, simulations in this year began on 15 Sep instead of 1 Oct.
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and energy balance, while SDDwas an index of both snow

accumulation and melt.

To further quantify the impact of forcing availability

on the mass and energy balances together, we used

modeled SWE and Tsurf to compute a loss function

(Essery et al. 2013):

loss function5 �
3

i51
�
2

j51
�
Nij

k51

(SE
ijk 2SO

ijk)
2

6N
ij
w2

ij

2 1, (4)

where SE is a matrix (Nij rows 3 32 columns) of model

simulations when a specific forcing is estimated, SO is a

matrix of the corresponding simulations but with that

forcing observed, i is the water year index (3 yr), j is the

index of the model output (two outputs, SWE andTsurf),

k is the time step index, Nij is the number of time steps,

and wij is a weighting factor. Following Essery et al.

(2013), wij was derived by setting Eq. (4) equal to 0 for

the case of lowest difference between SE and SO. We

calculated 196 values (32 scenarios 3 6 forcings) of the

loss function for each site/model. To aid in interpret-

ability, we normalized loss functions in the [0, 1] range,

such that a value of 0 signified availability of that forcing

impacted model output the least while a value of 1 in-

dicated the greatest impact.

b. Forcing estimation methods

For each missing forcing variable (Fig. 3), a single

estimation method was selected based on prior com-

parison studies between alternative empirical methods

(whenever possible) and on popularity of usage. Liter-

ature values were used for any parameters in these

FIG. 3. Conceptual diagrams showing (a) the data assumed available in the 64 forcing scenarios used to force the

three snow models to simulate SWE and Tsurf, and (b) the dependencies among estimated forcing data.
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methods. The goal was not to find the ‘‘best’’ forcing

estimator, but to apply a single method that might be

selected when missing observations. These methods are

briefly identified below.

The minimum data assumed available were daily

maximum and minimum temperatures and daily P.

Hourly Tair was estimated from Tmax and Tmin with a

spline-based model, which was selected because it yielded

lower errors relative to other models (Cesaraccio et al.

2001). Hourly P was estimated from daily P by uni-

formly dividing the daily sum across all hours of the day.

This method has precedence in Waichler and Wigmosta

(2003) and the widely used Maurer et al. (2002) dataset.

No empirical methods estimate hourly U accu-

rately because of low correlation with other forcings

(Parlange and Katz 2000). Therefore, we used NCEP–

NCAR reanalyses data (Kalnay et al. 1996), which

were the basis for the popular Maurer et al. (2002)

dataset and have been used in recent snow model ap-

plications (Kang et al. 2014; Park and Markus 2014).

We estimated hourly U based on the long-term (1981–

2010) mean 6-hourly dataset of scalar wind speed at

each site to capture typical diurnal and seasonal cycles.

We considered using year-specific wind data from the

reanalysis, but found that MBD (relative to observa-

tions) was usually lower when using the long-term

mean dataset. Terrain-based downscaling of reanalysis

data might reduce bias (Winstral et al. 2009), but this

was not conducted.

Hourly RH was estimated assuming that daily dew-

point temperature Tdew equaled Tmin, and Tdew was

constant through each day (Running et al. 1987). Hourly

RH was calculated as a function of vapor pressure (at

Tair) and saturated vapor pressure (at Tdew). Kimball

et al. (1997) developed an updated approach to address

biases in arid regions. However, we used the simpler

Running et al. (1987) method because it is easier to

implement (i.e., no requirement for simultaneous esti-

mation with Qsi) and has had wider usage (Feld

et al. 2013).

Time series of Qsi were estimated with empirical re-

lationships between daily Tair range and daily atmo-

spheric transmissivity (Thornton and Running 1999).

We estimated hourly Qsi assuming daily atmospheric

transmissivity was constant across hours, and with the

potential solar radiation changing with solar zenith an-

gle. Estimation of atmospheric transmissivity requires

vapor pressure, which we computed from Tair and RH.

Bohn et al. (2013) evaluated the Thornton and Running

(1999) daily model at 50 AWSs, finding biases ranging

from 20.7 to 247Wm22. Ball et al. (2004) compared

this method to empirical and other mechanistic ap-

proaches and found similar accuracy across models,

despite differences in model complexity. The method

was selected because it is commonly used in mountain

modeling (e.g., MTCLIM; Hungerford et al. 1989) and

land surface models (Bohn et al. 2013).

Hourly Qli was empirically estimated with the clear-

sky Dilley and O’Brien (1998) and the all-sky Unsworth

and Monteith (1975) parameterizations, based on fa-

vorable evaluation in prior intercomparisons (Flerchinger

et al. 2009; Juszak and Pellicciotti 2013). These were also

used in the similar experiment of Schmucki et al. (2014).

Hourly Qli was estimated with the Stefan–Boltzmann

equation:

Q
li
5s«

all
T4

air , (5)

where all-sky emissivity «all is scaled with cloud cover

fraction c and clear-sky emissivity «clr:

«
all
5 «

clr
(12 0:84c)1 0:84c , (6)

and «clr is a function of precipitable water w and Tair:

«
clr
5

59:381 113:7

�
T
air

273:17

�6

1 96:96

ffiffiffiffiffiffiffi
w

2:5

r
sT4

air

. (7)

In Eqs. (5) and (7), Tair is in units of kelvins. The Stefan–

Boltzmann constant s is 5.67 3 1028Wm22K24. The

c values in Eq. (6) ranged from 0 to 1 and were calcu-

lated based on the hourly solar index of Crawford and

Duchon (1999). Nighttime c values were interpolated

between the last 3 h prior to sunset and the first 3 h after

sunset the next day. Precipitable water (cm) was esti-

mated from vapor pressure and Tair (Prata 1996).

c. Snow models

We examined how hourly forcing availability im-

pacted snowpack simulations from three physically

based, 1D snow accumulation and melt models. The

models included the Utah Energy Balance (UEB), the

DHSVM snow submodel, and the snow thermal model

(SNTHERM).We used common parameters (e.g., snow

surface roughness) acrossmodels whenever possible and

literature values otherwise. Model calibration was not

conducted because it can compensate for forcing errors.

These models were selected because they have been

used in snow model intercomparison studies and dis-

tributedmodel applications (Koivusalo andHeikinheimo

1999; Feng et al. 2008; Livneh et al. 2015) and because

they span a range of complexity and process parame-

terizations. We also included multiple models to check

for model dependencies in the results. Based on the

number of snowpack layers, UEBwas least complex, and
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SNTHERM was most complex. Table 2 summarizes

notable model differences, such as differences in al-

bedo parameterization and turbulent heat exchange.

Key model parameters are listed in the supplemental

material.

1) UEB

UEB is a lumped snowpack (i.e., one layer with snow

mass) model developed for prediction of snowmelt

contributions to surface hydrology (Tarboton and Luce

1996; You et al. 2014; Mahat and Tarboton 2012). Key

snowpack processes represented with UEB include

snow accumulation, melt, sublimation, and liquid water

retention and refreezing within the snowpack. The UEB

snowpack has an infinitesimally thin surface layer where

the surface energy balance andTsurf are solved. We used

the latest version, UEBVeg (Mahat and Tarboton 2012;

Mahat 2011; available at http://www.neng.usu.edu/cee/

faculty/dtarb/snow/snow.html).

2) DHSVM

DHSVM is a distributed model developed for simu-

lating the effects of topography and vegetation on

hydrologic responses in complex terrain (Wigmosta

et al. 1994). DHSVM is often applied at spatial scales

ranging from 25 to 200m. Here DHSVM was applied

as a point model, with the snow model effectively iso-

lated from other land surface routines. Key snowpack

processes represented include snow accumulation, melt,

sublimation, liquid water retention, and refreezing.

DHSVM discretizes the snowpack into a thin (100mm

maximum) surface layer and lumps the remaining snow

in a second layer below the surface. We used DHSVM,

version 2.6, as implemented in Livneh et al. (2015).

3) SNTHERM

SNTHERM (Jordan 1991) is a multilayer model de-

veloped for prediction of thermal characteristics of

seasonal snow and frozen soil. The model accounts for

snow accumulation, compaction, densification, meta-

morphosis, sublimation, liquid water retention, and

melt. Using mixture theory, SNTHERM simulates

layer-specific density and moisture content. The partial

differential equations governing heat and moisture ex-

change are solved with a finite control volume approach

across horizontal layers of snow and soil. As snow

TABLE 2. Key differences between the physically based models in this study.

UEB DHSVM SNTHERM

Partitioning of

precipitation

into rainfall

vs snowfall

Based on air temperature

(U.S. Army Corps of Engineers

1956), all precipitation is snow

when Tair # 218C, all is rain
when Tair $ 38C, linear mix for

temperatures in between

Based on wet-bulb temperature

Twet (calculated from temperature,

humidity, and atmospheric

pressure), all precipitation is snow

when Twet , 1.68C, all is rain
when Twet $ 1.68C

Based on air temperature, all

precipitation is snow when Tair #

2.58C, all is rain when Tair . 2.58C.
Liquid water content in snowfall is

calculated linearly in the 0%–40%

range when 08 # Tair # 2.58C
Radiation

penetration

Only considered in shallow

snowpacks (depth ,0.1m),

snow albedo and bare ground

albedo interpolated in these

cases

Not considered Considered separately for near-infrared

and visible wavelengths, near-infrared

extinction limited to top 2mm using

user-specified extinction coefficient;

visible extinction coefficient is a

function of grain size

Snow albedo Dependent on time since last

snowfall and solar illumination

angle, following Biosphere–

Atmosphere Transfer Scheme

(BATS) methodology

(Dickinson et al. 1993)

Dependent on time since last

snowfall, based on U.S. Army

Corps of Engineers methodology

(U.S. Army Corps of Engineers

1956), switches albedo decay

curves as a function of Tsurf

Based on physical calculations

of snow grain size

Snow layers Lumped with infinitesimally

thin surface, implicit bulk

snow and soil layer

Two layer (thin top layer

of #100mm)

Multilayer (up to 127–649 layers

here, site dependent), explicit

layers (snow and soil separated)

Time stepping Fixed at resolution of forcing

data

Fixed at resolution of

forcing data

Adaptive (min 5 1 s, max 5 900 s)

Turbulent

fluxes

Richardson number

parameterization with

aerodynamic resistance based

on wind speed and the surface

roughness parameter, stability

corrections based on the

Richardson number

Similar scheme as UEB, but

different functional form

Obukhov length parameterization,

includes windless exchange of

sensible and latent heat
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accumulates, the 1D grid compacts while maintaining

the original finite element structure. A maximum of

from 127 (at IC) to 649 (at SASP) snow layers was

generated. SNTHERM provided the most detailed

treatment of snowpack processes here, but at the ex-

pense of computational efficiency.

5. Results

a. Evaluation of estimated forcings

Figure 4 compares observed and estimated forcings

(daily resolution for clarity). Table 3 displays evaluation

statistics (hourly resolution). The Tair estimates were

slightly colder than observations, with MBD ranging

from 20.38 to 0.08C. Not surprisingly, estimated P had

MBD 5 0, while RMSD and MAD in P were due to

errors in hourly disaggregation (Table 3). Estimated U

hadMBD ranging from20.30 to10.81ms21 (Figs. 4e–h,

Table 3).

Two synthetic RH datasets were generated, one based

on hourly Tair observations and the other based on es-

timated hourly Tair from daily temperature observations

(Fig. 3b). At each site, the MBD of these estimated RH

data were similar, ranging from 14% to 116% (ob-

served hourly Tair) and from 12% to 115% (observed

daily temperatures; Table 3). Estimated RH was typi-

cally greater than observed RH at all sites and data

scenarios, indicating that Tdew was usually lower than

Tmin, especially at RME and SASP (Figs. 4i–l).

Two synthetic Qsi datasets were created, one assum-

ing availability of observed Tair, P, and RH, and the

other assuming only observed Tair and P (Fig. 3b).

Availability of hourly versus daily Tair and P did not

yield unique Qsi datasets because transmissivity was

estimated from daily data. MBD in estimatedQsi ranged

from218 to122Wm22 with RH observed (Figs. 4m–p)

and from 219 to 122Wm22 without RH observed

(Table 3).

Eight unique Qli datasets were generated based on

different data availability in Tair, RH, and Qsi (Fig. 3b,

Table 3). MBD across the eight datasets ranged

from 213 (CDP) to 118Wm22 (IC). Except at RME,

the sign of theQli MBD was consistent at each site, with

positive MBD at IC and SASP and negative MBD at

CDP. The Qli MBD was usually closest to 0 at RME

(Fig. 4s, Table 3), and the Qli differences were often

greatest at IC, which may reflect issues with derivingQli

from other radiation observations (see the supplemental

material).

The dependence of estimated Qli on Qsi (Fig. 3b) re-

sulted in a relationship between the direction ofMBD in

estimatedQli andQsi (Table 3). For example, the biases

for estimatedQsi andQli had opposite signs at IC, CDP,

and SASP. This made physical sense in that negatively

biasedQsi resulted in positively biasedQli with cloudier

conditions [see c in Eq. (6)]. Likewise, positively biased

Qsi yielded less cloudy conditions, resulting in negatively

biased Qli. This linkage was important in the ensemble

analysis (see section 5c).

b. Comparison of observed and modeled snowpack
with all forcings observed

Observed SWE and Tsurf were qualitatively compared

to model outputs (all forcings observed) at all sites

(Fig. 5). At IC, the models estimated similar SWE and

reasonably captured snowpack onset and disappearance

(Fig. 5a). However, notable differences in observed and

modeled SWE emerged at IC, such as during spring 2009

and the winter of WY 2011 (e.g., potential errors in

observed P and/or observed SWE). At CDP (WY 2006

and 2008) and RME (all years), UEB SWEwas closer to

observations than the other models, which over-

estimated SWE (Figs. 5b,c). At CDP (WY 2007) and

SASP (all years), UEB underestimated SWE, while

SNTHERM and DHSVM overestimated SWE, partic-

ularly in the spring (Figs. 5b,d). UEB generally melted

earlier that the other models, while SNTHERM melted

last. At all sites, mean Tsurf was colder in UEB than in

observations and other models.

Examining the modeled snow processes helped iden-

tify reasons for similarities and differences in modeled

SWE (Fig. 6). First, we considered the differences in

rainfall–snowfall partitioning (Table 2). At the colder

sites (IC and SASP), all models generally estimated

similar snowfall fractions (Figs. 6a,d). At the warmer

sites (CDP and RME), UEB generally had the lowest

snowfall while DHSVM consistently had the most

(Figs. 6b,c). SNTHERM generated similar (but 1%–3%

lower than) snowfall totals as DHSVM. DHSVM par-

titioned 11%more snowfall than UEB at CDP, but only

5% more at RME and SASP and 3% more at IC. As

expected, these snowfall estimates translated tomonthly

patterns in SWE accumulation (Figs. 6e–h).

Next, we considered differences in modeled ablation

through decreases in monthly SWE (Figs. 6i–l). At IC,

the models were similar; all had negligible snowmelt

before April, and snowmelt in April was marginal

(,25mm; Fig. 6i). Starting in May at IC, UEB melted

26%–34% more snow than the other models (Fig. 6i),

contributing to lower late season SWE and earlier snow

disappearance in UEB (Fig. 5a). At CDP, all models

simulated melt fromNovember toMay, but the monthly

magnitudes varied across models (Fig. 6j). UEB had the

greatest snowmelt from December through March

(Fig. 6j), helping to explain why UEB SWE was lower
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than other models (Fig. 5b). At RME, all models had

low snowmelt (,25mm) in November and December,

negligible melt in January and February, and more

substantial melt after March (Fig. 6k). Again, UEB

melted more snow than the other models in early spring

(March–April), contributing to lower SWE and earlier

snow disappearance (Fig. 5c). At SASP, UEB had

snowmelt in November (,25mm; Fig. 6l), typically de-

laying the snow season and creating an offset from the

other models throughout most of the year (Fig. 5d).

FIG. 4. Scatterplots of 3 yr of mean daily observed and estimated forcings at (from left to right) the sites (IC, CDP, RME, and SASP):

(from top to bottom) Tair, U, RH, Qsi, and Qli. Shown are estimates of each forcing when all other forcings are available. Precipitation

observations and estimates are not shown because they are equivalent at the daily scale (see section 4b). The coefficient of determination

R2 and MBD (estimated minus observed, units on left axis) are provided. Note that the scales change between sites for some forcings.
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UEB was also the only model to yield snowmelt ex-

ceeding 50mm before May at SASP, and UEB monthly

melt totals were 50–240mm greater than the other

models in March–May (Fig. 6l). These factors caused

UEB to have the lowest SWE (Fig. 5d).

UEB had lower SWE and earlier snow disappearance

than DHSVM and SNTHERM because of both lower

snow accumulation (at CDP and RME) and higher melt

(all sites) during winter and early spring. Differences in

albedo (Figs. 6m–p) and turbulent flux parameteriza-

tions (Figs. 6q–t) have caused major intermodel differ-

ences in prior studies (Lapo et al. 2015; Chen et al.

2014a). Here, patterns in modeled snowmelt were most

consistent with modeled net shortwave radiation Qsn.

Differences in modeled Qsn were due to albedo pa-

rameterization and radiation penetration because Qsi

was the same across models. UEB generally had higher

Qsn and higher melt compared to the other models

(Figs. 6m–p). The main exception occurred at CDP and

RME when UEB had melted out and the other models

continued melting (Figs. 6j,k). Albedo was typically

10% lower in UEB than SNTHERM. UEB accounted

for radiation penetration in shallow snowpacks (,100mm),

making it more susceptible to early season melt (e.g.,

November in SASP; Fig. 5d), while DHSVM did not

account for radiation penetration (Table 2). UEB and

DHSVM modeled Qsn data were generally closer to ob-

servations in midwinter than in spring, while SNTHERM

Qsn was consistently too low (Figs. 6n,p). All models

underestimated Qsn at SASP because they did not ac-

count for dust-on-snow effects. A more detailed assess-

ment of mechanistic differences between models was

beyond the scope; amodular approach (Essery et al. 2013;

Clark et al. 2015a,b) could better pinpoint reasons for

differences in model behavior.

c. Comparison of modeled snowpack with variable
forcing availability

The remainder of the study focused on how data

availability governed changes in modeled snow vari-

ables, and observed response variables were no longer

compared. To first illustrate the spread in snow simula-

tions across the 64 forcing scenarios, Fig. 7 shows SWE

and Tsurf ensembles from each model during an example

water year. For each model, the greatest spread in SWE

generally emerged in the spring. In some cases (e.g., all

models at CDP and SASP), SWE simulations tended to

cluster into distinct groups, with greatest coherency in

the spring (Figs. 7b,d). In other cases (e.g., all models at

RME), modeled SWE emerged as a continuum of re-

sponses (i.e., a single grouping). Like SWE, clustering

was observed in Tsurf, particularly at CDP and SASP

(Figs. 7f,h). At some sites, the spread in modelT
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FIG. 5. Observed (manual OBS, gray diamonds; auto OBS, black dots) andmodeled (black dotted) SWE and snow surface temperature

(Tsurf) with the three models [UEB (magenta dotted), DHSVM (red dashed), and SNTHERM (solid blue)] from October 2008 to

September 2011 at (a) IC, (b) CDP, (c) RME, and (d) SASP. For all models, only the simulation generated with all observed forcings is

shown. For clarity, daily mean SWE and 3-day mean Tsurf are shown. The number next to ‘‘J’’ (January) represents the year (e.g., 6

signifies 2006).
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simulations from the forcing data scenarios obscured

intermodel differences (e.g., CDP; Figs. 7b,f), while at

other sites the intermodel differences were larger (e.g.,

SASP; Fig. 7d).

Among the ensembles in Fig. 7, the scenarios with all

hourly forcings and with only daily Tair and P were

highlighted. At IC and CDP, these scenarios tended

toward the middle of the ensemble in the spring

(Figs. 7a,b), suggesting compensatory errors in the

forcing estimation methods (Table 3) yielded similar

snowpack simulations. In contrast, these scenarios

enveloped the SWE and Tsurf ensembles at the other

sites, particularly with UEB and SNTHERM at RME

(Figs. 7c,g) and SNTHERM at SASP (Figs. 7d,h). At

RME and SASP, the minimal forcing data scenario (i.e.,

daily Tair and P only) tended to lower SWE relative to

the scenario with all forcings observed (Figs. 7c,d). This

was consistent with higher Tsurf in the minimal forcing

data scenario (Figs. 7g,h), suggesting greater energy in-

put and greater snowmelt sensitivity.

Comparing the ensemble mean of model output as a

function of forcing availability clarified the major con-

trols on model spread. Results from an example season

are shown for SWE (Fig. 8). Maximum absolute SWE

differences and mean absolute Tsurf differences in the

ensemble means over all study years appear in Table 4.

At IC, CDP, and SASP, maximum SWE differences

were often associated withQli availability, and in several

cases,Qsi availability exerted an opposite effect on SWE

(Fig. 8). Across models, Qli availability caused the

largest SWE differences at IC (65–67mm) and CDP

(174–234mm; Table 4). At SASP, Qli availability also

contributed the largest SWE differences in SNTHERM

(221mm), but the second largest in UEB (130mm) and

FIG. 6. Mean monthly summaries of simulated (a)–(d) snowfall fraction, (e)–(h) SWE increases, (i)–(l) SWE

decreases, (m)–(p) net shortwave radiation, and (q)–(t) net turbulent fluxes (sensible flux1 latent flux) from each

model—UEB (black), DHSVM (gray), and SNTHERM (blank)—at (from left to right) the four sites. Values are

averaged over the 3-yr study period in eachmonth and only during times with modeled SWE. 25mm.Also shown

are observed values of net shortwave (red plus signs) at IC, CDP, and SASP and turbulent fluxes at IC.
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DHSVM (218mm). Availability of RH caused the

largest SWE differences at SASP with DHSVM

(225mm), and at RME with DHSVM (166mm) and

SNTHERM (71mm). RH availability was more impor-

tant for DHSVM than the other models (Table 4).

Availability of Qsi only yielded the largest mean SWE

differences at SASP with UEB (160mm). Expressing

SWEdifferences as a percentage of peak SWE (from the

ensemble mean with the observed forcing), Qli yielded

differences of 4%–93%, RH yielded 4%–25%, and Qsi

yielded 4%–40%. The U availability created notable

(but not the greatest) SWE differences at IC (all

models), likely due to high wind speeds (Fig. 4e) and

higher turbulent fluxes (Fig. 6q). For all sites and

models, Qli availability exhibited the strongest control

on Tsurf (Table 4). The MAD between the ensemble

FIG. 7. Example time series of (a)–(d) SWE and (e)–(h) mean dailyTsurf from three snowmodels (UEB, DHSVM,

and SNTHERM) across 64 forcing data scenarios (gray lines) at (a),(e) IC in WY2009; (b),(f) CDP in WY2006;

(c),(g) RME in WY2007; and (d),(h) SASP in WY2008. The solid black line denotes the scenario with all hourly

forcings available, while the dashed line denotes the scenario with only daily Tair and P available. The period

between the vertical red lines in (a)–(d) is shown in (e)–(h).
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mean Tsurf with Qli available versus unavailable ranged

from 1.28 to 6.28C (Table 4). Availability of Tair, U, and

Qsi had secondary importance on simulations of Tsurf.

When comparing differences in ensemble mean SDD

based on forcing availability, three key results emerged

(Fig. 9). First,Qli availability often dictated the greatest

or second greatest change in SDD. This was found for all

models at IC, CDP, and SASP.Averaged across the study

years, Qli caused absolute differences in SDD ranging

from 0 to 18 days (maximum 5 32 days), whereas Qsi

caused differences of 0–8 days (maximum 5 9 days) and

RH caused differences of 0–9 days (maximum 5
10 days). Second, the models and the study years both

exhibited qualitatively similar signatures (though dif-

ferent magnitudes) in the change in SDD because of

forcing availability. In other words, the shape of the lines

in Figs. 9a–d was similar to the lines in Figs. 9e–h and

Figs. 9i–l. Third, linked forcings, such asQsi andQli, had

opposing effects on modeled SDD in several cases (all

models at IC and CDP, and UEB at SASP). This was

related to the opposite sign ofMBD in estimatedQsi and

Qli (section 5a), implying error compensation when both

were unavailable.

The loss functions [Eq. (4)] summarized the impact of

forcing data availability simultaneously on the mass and

energy balances (Fig. 10). Availability of Qli generally

resulted in the highest loss function values, signifying

this forcing contributed most to the spread in both

SWE and Tsurf. At IC and CDP (all models), RME

(UEB and SNTHERM), and SASP (DHSVM and

SNTHERM),Qli had the highest median loss function.

This was significantly higher than all other forcings

(95% level, Wilcoxon rank-sum test) for DHSVM and

SNTHERM at IC and at SASP, all models at CDP, and

FIG. 8. Differences in mean SWE simulations for (from left to right) the three models at (from top to bottom) the

four sites based on whether each forcing (lines) was observed or estimated. The difference was taken as mean SWE

(across 32 scenarios with that forcing estimated) minusmean SWE (across 32 scenarios with that forcing observed).

Positive differences indicated the model had higher SWE when the forcing was unavailable. Negative differences

indicated the model had lower SWE when the forcing was unavailable. Only the late snow season is shown for

a single year (2009 at IC, 2006 at CDP, 2007 at RME, and 2008 at SASP); similar results were found for other years.
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was significantly higher than four out of the other five

forcings in all cases except DHSVM at RME. At RME,

the loss function for Qli was only significantly lower than

the median loss function fromRH inDHSVM (Fig. 10h).

Qualitatively, the hierarchy of loss functions was similar

when comparing models at IC (Figs. 10a–c) and CDP

(Figs. 10d–f). However, there was more intermodel vari-

ability at RME (Figs. 10g–i) and SASP (Figs. 10j–l). The

impact of forcing availability was not consistent across sites

because the accuracy of the estimation methods varied

(Table 3, Fig. 4).

6. Discussion

We aimed to identify which uncommonly measured

forcings (Fig. 1) would most impact physical simulations

of snowpackmass and energy states based on forcing data

availability (i.e., through new instrumentation). For SWE

and SDD, no single forcing was dominant across all cli-

mates and models, but Qli availability was often among

the most important (Figs. 8, 10 and Table 4). For Tsurf,Qli

availability was consistently the largest contributor to

model spread (Table 4). When considering both SWE

and Tsurf, Qli availability often dictated model behavior

(Fig. 10). These results suggest snow modeling in many

climateswould benefit from expanded observations ofQli

(measured at only 1.4% of AWSs in the western United

States) or from improved Qli estimation methods. This

important finding was not encountered in prior studies

because of a lack of Qli observations (e.g., Waichler and

Wigmosta 2003; Mizukami et al. 2014) or confounding

factors in experiment designs (Schmucki et al. 2014).

Whenmodeling snowpacks, it is important to consider

how forcing availability and selected forcing estimation

methods control model output. In general, differences

between estimated and observed forcings in this study

(Table 3) were similar to those found in previous studies.

For example, Qli estimation bias ranged from 212

to 118Wm22 here, compared to 210 to 116Wm22 in

Flerchinger et al. (2009). Hourly RMSD in Qli ranged

from119 to145Wm22, comparable in range with125

to 142Wm22 found by Juszak and Pellicciotti (2013).

TheQsi bias ranged from219 to122Wm22 here, while

Bohn et al. (2013) found negative bias at their sites,

ranging from 21 to 247Wm22. The RH bias ranged

from 2% to 11%, whereas Bohn et al. (2013) found bias

ranging from 25.5% to 6.6% for a similar RH estima-

tion method. Despite having positive bias, RH usually

did not cause the greatest divergence in model output.

The analysis across models provided context for how

differences between observed and estimated forcings

propagate to snow model output (Figs. 8–10).

Because only one estimation method was selected for

each forcing across climates, the results strongly depend

on the skill of that method for each climate and the

sensitivity of snow processes to that forcing. Different

methods do not always yield similar forcing estimates

[e.g., Qli (Flerchinger et al. 2009) and RH (Feld et al.

2013)], and performance of amethod can be inconsistent

across sites (Gubler et al. 2012). For example, estimated

Qli had negative MBD at CDP but positive MBD at IC

and SASP (Table 3), and modeled SWE and SDD re-

flected these differences (Figs. 8, 9). Likewise, MBD at

RME was often closest to 0 (Figs. 4q–t, Table 3), which

explained why Qli availability did not appear as impor-

tant there as it did at the other sites. When considering

normalized error metrics (see the supplemental mate-

rial),Qli was typically estimated withmore skill thanRH

TABLE 4. Differences between the model ensemblemean (n5 32) when a given forcing (T, P,U, RH,Qsi,Qli) is observed hourly vs the

model ensemble mean (n 5 32) when that hourly forcing is unavailable. Shown are the maximum absolute SWE differences (expressed

as mm and % of peak SWE from mean ensemble with that forcing observed) and mean absolute Tsurf differences, averaged across the

three study years at each site. The forcing that caused the greatest difference is in boldface for each site and model.

UEB DHSVM SNTHERM

Site Tair P U RH Qsi Qli Tair P U RH Qsi Qli Tair P U RH Qsi Qli

Max SWE

difference (mm)

IC 16 2 60 16 62 67 14 9 51 34 57 65 27 40 49 32 58 67

CDP 60 33 25 19 103 205 48 51 24 34 71 174 60 42 19 31 113 234

RME 47 35 15 25 42 25 42 37 40 166 40 50 34 19 28 71 32 62

SASP 33 51 14 36 160 130 63 121 51 225 80 218 43 26 59 82 44 221
Max SWE

difference (% of

peak SWE)

IC 10 1 38 10 40 41 9 5 36 20 36 38 15 23 27 18 33 35

CDP 19 10 8 6 29 93 9 10 5 7 14 40 12 9 4 7 24 57

RME 8 6 3 4 7 4 6 6 6 24 5 8 5 3 4 10 4 9

SASP 6 9 2 6 29 21 8 15 6 25 10 24 5 3 7 9 5 25
Mean Tsurf

difference (8C)
IC 1.2 0.0 2.9 0.5 1.5 4.6 1.1 0.0 1.7 0.6 0.7 2.1 1.3 0.2 1.2 0.4 0.7 2.5

CDP 0.7 0.4 0.6 0.3 1.3 3.2 0.3 0.1 0.4 0.3 0.3 1.4 0.4 0.2 0.1 0.1 0.5 1.8

RME 0.7 0.4 1.4 0.6 1.6 3.0 0.5 0.1 1.2 0.9 0.4 1.2 0.7 0.3 0.9 0.5 0.6 1.4
SASP 0.8 0.4 0.8 0.5 2.1 6.2 0.6 0.3 0.7 0.8 0.7 3.0 0.8 0.3 0.5 0.4 1.0 3.9
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and U but less skill than Qsi; hence, there is greater

potential for improved modeling through more reliable

Qli data. Given incomplete forcings (Fig. 1), hydrologic

modeling might benefit from considering multiple

working hypotheses (Clark et al. 2008, 2011) about how

unmonitored forcings may be modeled (i.e., multiple

forcing estimation methods), which would provide in-

sights into uncertainty in model forcing. Other forcing

data estimators [e.g., reanalysis data (Mizukami et al.

2014) and numerical weathermodel output (Wayand et al.

2013)] provide alternative, albeit imperfect approaches

(Slater et al. 2013; Shook and Pomeroy 2011) to empirical

methods, but could be included in this framework.

The models had contrasting parameterizations and

model complexity (Table 2), thereby yielding differ-

ences in modeled SWE and Tsurf at CDP, RME, and

SASP (Figs. 5, 6). The models had dissimilar portrayals

of the energy balance (Fig. 6), and these likely affected

each model’s sensitivity to snowmelt, a major control on

SWE (Fig. 6). Delayed snowmelt in DHSVM and

SNTHERM (Figs. 5, 6) was likely caused by albedo

specification; this is supported by Feng et al. (2008), who

found SNTHERM and VIC (similar to DHSVM) had

high albedo. Koivusalo and Heikinheimo (1999) also

found albedo is generally higher in SNTHERM than

UEB, consistent with UEBmelting first and SNTHERM

last. These results support the prevailing understanding

that albedo parameterizations can create significant

model differences (e.g., Chen et al. 2014a). Even when

controlling for albedo differences, however, differences

in the energy balance can result because of factors such as

turbulent flux parameterization, as recently demon-

strated by Lapo et al. (2015) with SNTHERMandUEB.

Despite the above differences, qualitatively consistent

patterns emerged in how the models responded to

forcing availability (Figs. 8–10), suggesting the results

may apply to other snow models. For example, we

might expect that the availability and quality ofQli data

at CDP would also have a major impact on SWE, Tsurf,

and SDD from other 1D physically based snow models

(e.g., Lapo et al. 2015).

The study addresses technical aspects but not practical

considerations, such as costs of purchasing, powering,

and maintaining new sensors. Sensor costs can become

progressively higher for radiation and humidity mea-

surements. A joint Tair and RH sensor (e.g., HMP155A)

FIG. 9. Differences in mean SDDs by year 1, 2, and 3 at (from left to right) the four sites and for (from top to bottom) the three snow

models as a function of estimated minus observed forcings. For each of the six forcings (from left to right on x axes), mean SDD is

computed separately for all 32 scenarios where that forcing is estimated (E) and for all 32 scenarios where that forcing is observed (O). A

positive value indicates SDD with the estimated forcing occurs later than the SDD with the observed forcing, while a negative value

indicates SDDwith the estimated forcing occurs earlier. The number at the bottom of each plot is the rank of the absolute SDDdifference

compared to that of the other forcing variables based on a 3-yr average.
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can cost twice as much as a Met One 014A three-cup

anemometer (to measure U), while a Kipp & Zonen

CNR4 four-stream radiometer (to measure both Qsi and

Qli and upwelling radiation) can cost 20 times as much as

an anemometer (D. Neff, Campbell Scientific, 2013,

personal communication). These costs depend on sensor

models and are reported for context. Coincidentally, this

study recommendsmore frequent installation of themost

expensive sensors, but financial and other considerations

may govern ASW design. For example, site access and

the frequency of site visits (maintenance and recalibra-

tion) are key considerations. More frequent (e.g., daily or

weekly) site visits may be required to clean and inspect

radiometer domes to ensure data quality (Augustine et al.

2000; World Meteorological Organization 2008), and

these additional labor costs can become significant over

time. Calibrations may incur additional costs and can

significantly influence data quality (Lundquist et al.

2015). The question also remains whether a forcing such

as Qli might be approximated using related data (e.g.,

observedQsi for cloud factors or observed Tsurf, which is

tightly coupled with Qli). Hence, many factors must be

considered before upgrading existing AWS networks.

Our results apply most to sites where vegetation and

wind redistribution effects are negligible and radiation

drives snowmelt. In forests, the increasing contribution

ofQli and decreasing contribution of turbulent fluxes to

the energy balance (Varhola et al. 2010; Lundquist et al.

2013) might emphasize our findings. Availability of Qsi

may be more critical when dust on snow enhances the

radiative forcing (e.g., Skiles et al. 2012) and the model

accounts for this effect. Availability of U is likely more

important in exposed areas where wind redistribution is

important (Liston and Sturm 1998; Groot Zwaaftink

FIG. 10. Boxplots of the loss function by (from top to bottom) site, (from left to right) model, and (x axis) forcing. The loss function

quantifies the importance of forcing availability for simulations of both SWE and snow surface temperature and is normalized such that

values of 0 and 1 indicate the smallest and greatest impact of data availability onmodel simulations, respectively. All panels have a box for

each of the six forcings, summarizing the distribution of loss functions (n5 32) for that forcing. The horizontal line in the box is themedian,

the filled box spans the 25–75th quartiles, the vertical whiskers extend to 1.5 times the interquartile range, and the plus signs indicate

outliers. The forcing with the greatest median loss function appears in black if it is significantly different (95% level, Wilcoxon rank-sum

test) than that of all other forcings. Forcings appear from most (left) to least (right) commonly available (Fig. 1).
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et al. 2013; Winstral et al. 2002). These accumulation

processes were not considered because CDP, RME, and

SASP are sheltered sites, and the effects of wind drift on

P at the windiest site (IC) were reduced with correction.

Thus, U primarily impacted modeled SWE through

turbulent fluxes, which was less important than radiation

at all sites (Fig. 6). Forcings related to turbulent fluxes

(e.g.,U andRH) are likelymore important under special

ablation conditions, such as rain on snow (Marks et al.

1998), chinook wind events, ephemeral low-elevation

snowmelt, or wind-enhanced sublimation in dry climates.

Turbulent fluxes also feedback with Tsurf variations,

which are tightly coupled with Qli and atmospheric

stability (e.g., Lapo et al. 2015; Raleigh et al. 2013;

Slater et al. 2001). Therefore, the availability and quality

of one or more forcings can have critical implications for

the surface energy balance.

7. Conclusions

We conducted data-withholding experiments at four

well-instrumented AWSs in contrasting snow climates.

We were motivated to understand which meteorological

forcings, beyond commonly measured Tair and P, most

impact physically based snow model output and there-

fore need expanded observation or improved estimation

in cold regions. While the hierarchy of forcings varied

somewhat between models and sites, we found Qli,

which ismeasured least frequently in the westernUnited

States, most often caused the greatest divergences in

model behavior. A more general conclusion that can be

drawn from the results is that the particular configura-

tion (i.e., collection of sensors) and location of an AWS

impacts model performance.

Based on our snowpackmodeling results, we conclude

that the priority of expanded forcing observations at

existing AWSs is (in order of decreasing importance)Qli

(primary), RH and Qsi (secondary), and U (tertiary).

This recommendation demands detailed consideration

of factors not assessed here, such as sensor costs and

power, maintenance, model spatial scale, spatial vari-

ability, other purposes of AWSs (e.g., importance of U

and RH for fire risk monitoring), and dominant mete-

orological conditions. Future research should continue

evaluating methods for estimating forcings and for de-

tecting and correcting errors in observations. Work is

also needed to examine how data availability impacts

modeled snow states across a wider range of landscapes

where dominant snow processes differ. Finally, because

this study only considered the case of adding sensors to

an existing AWS, work is needed to understand how

estimation errors propagate spatially to unmonitored

locations in basinwide modeling applications.
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