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ABSTRACT

Physically based models facilitate understanding of seasonal snow processes but require meteorological
forcing data beyond air temperature and precipitation (e.g., wind, humidity, shortwave radiation, and long-
wave radiation) that are typically unavailable at automatic weather stations (AWSs) and instead are often
represented with empirical estimates. Research is needed to understand which forcings (after temperature
and precipitation) would most benefit snow modeling through expanded observation or improved estimation
techniques. Here, the impact of forcing data availability on snow model output is assessed with data-
withholding experiments using 3-yr datasets at well-instrumented sites in four climates. The interplay between
forcing availability and model complexity is examined among the Utah Energy Balance (UEB), the Dis-
tributed Hydrology Soil Vegetation Model (DHSVM) snow submodel, and the snow thermal model
(SNTHERM). Sixty-four unique forcing scenarios were evaluated, with different assumptions regarding
availability of hourly meteorological observations at each site. Modeled snow water equivalent (SWE) and
snow surface temperature 7Ty, diverged most often because of availability of longwave radiation, which is the
least frequently measured forcing in cold regions in the western United States. Availability of longwave
radiation (i.e., observed vs empirically estimated) caused maximum SWE differences up to 234 mm (57% of
peak SWE), mean differences up to 6.2°C in Ty, and up to 32 days difference in snow disappearance timing.
From a model data perspective, more common observations of longwave radiation at AWSs could benefit
snow model development and applications, but other aspects (e.g., costs, site access, and maintenance) need
consideration.

1. Introduction
* Supplemental information related to this paper is available at .
the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14- Seasonal snow cover serves as a major water source
0235.s1. (Viviroli et al. 2003; Barnett et al. 2005), acts as a natural
+ 1 3 3 . .
. ;ll"h; N.atlorllag .Cente;: for ./C?trpospherlc Research is sponsored  jagervoir for hydropower (Madani and Lund 2010;
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v the Tational seience Foundation Winther and Hall 1999), impacts ecological activity
Corresponding author address: Mark Raleigh, National Center (KudO. 1991; Truj IHO. et al. 2912)’ and alter? weather
for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. (Hawkins et al. 2002; Jin and Miller 2007) and climate (Qu
E-mail: raleigh@ucar.edu and Hall 2006) through land—atmosphere interactions.
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Despite the importance of seasonal snow, there
remains a dearth of automatic weather stations (AWSs)
in cold regions (Lundquist et al. 2003; Viviroli et al. 2011;
Hijmans et al. 2005; Horel and Dong 2010). Thus,
available AWS observations provide only a glimpse into
the complexities of the cryosphere, which typically ex-
hibits high spatial variability in snow and meteorological
states (Scipion et al. 2013; Deems et al. 2006; Sturm and
Wagner 2010; Bloschl 1999; Bales et al. 2006; Dubayah
1992). Physically based snow models are useful for
predicting and understanding snow distributions and
processes in sparsely instrumented catchments, yet the
extensive requisite meteorological forcings to drive
these models are often unavailable.

It is often impossible to evaluate forcing estimation
methods and to diagnose model deficiencies because few
AWSs measure all forcings (Bales et al. 2006). At a
minimum, physically based snow models require six
near-surface forcings: air temperature 7T, precipitation
P, wind speed U, humidity (often as relative humidity
RH), incoming shortwave radiation Qg;, and incoming
longwave radiation Qy. A survey of 1318 AWSs across
multiple networks that measure either snow water
equivalent (SWE) or snow depth in the western United
States shows T, and P are most frequently measured,
while Qy; is least frequently measured (Fig. 1). Nearly
99% do not measure all six forcings. This survey ex-
cludes other fluxes measured only at specialized re-
search sites (i.e., fluxes of sensible heat, latent heat, and
upwelling radiation) because these are often treated as
response variables instead of forcings. Because snow
mass is measured more commonly than wind, humidity,
and radiation, it is generally only possible to evaluate
modeled SWE (Pan et al. 2003; Chen et al. 2014b;
Watson et al. 2006; Rasmussen et al. 2011; Livneh et al.
2010) and not all model inputs. Data scarcity limits
model diagnostics and may impair advances in hy-
drology because compensatory errors in key processes
can yield the “‘right answer for the wrong reasons”
(Kirchner 2006).

Given the prevalence of T3 and P observations, the
motivating question here is this: How would physical
model output change if less commonly measured forc-
ings (i.e., U, RH, Qg, and Qy) were observed more
frequently? In other words, what is the next “best”
sensor to install at an AWS for snow modeling? This
goes beyond an investigation of the relative importance
of snow model forcings (Zuzel and Cox 1975), as in-
vestments in new sensors may be unwarranted if a
forcing can be estimated reasonably from common data.
Indeed, numerous empirical models estimate forcing
data in ungauged areas (see section 4b), and these are
regularly used within mountain climate and hydrologic

JOURNAL OF HYDROMETEOROLOGY

VOLUME 17
100 3 99% T, = air temperature
o 1 P = precipitation
= ] U = wind speed E
L2 804 RH = relative humidity — F
-~ 11 . . r
o] 1 Q_ = incoming shortwave |
k7] 60 4 OH = incoming longwave |
= ] 5
o i L
& 404 36%  35% -
“— ] E
o 1 E
2 20 o
0 J

T. P U RH Q_
air si

Meteorological measurement

FIG. 1. Meteorological measurements at AWSs (n = 1318) in the
western United States where SWE or snow depth are also mea-
sured. Shown are the percentages of stations measuring each var-
iable. Station operators include (alphabetically): airports (FAA),
AmeriFlux/Fluxnet, avalanche centers, Bureau of Reclamation,
California Cooperative Snow Surveys, California Department of
Water Resources, Desert Research Institute, Long Term Ecolog-
ical Research sites, NOAA/NWS, NSF Critical Zone observatories,
specialized research campaigns (e.g., NASA Cold Land Pro-
cesses Field Experiment), transportation departments, university
research sites, U.S. Army (Corps of Engineers, Cold Regions
Research Laboratory), U.S. Department of Agriculture (e.g.,
Natural Resources Conservation Service SNOTEL, U.S. Forest
Service, Agricultural Research Service), and the Western Re-
gional Climate Center. Quality and completeness of the data are
not reflected. Survey completed June 2013.

modeling systems [e.g., mountain microclimate simu-
lation model (MTCLIM; Hungerford et al. 1989) and
Variable Infiltration Capacity model (Liang et al.
1994)]. It remains unclear how evaluations of forcing
data estimation techniques (e.g., Bohn et al. 2013;
Flerchinger et al. 2009) relate to specific data availability
scenarios and snowpack modeling. To identify future
research needs and deficiencies in AWS networKks, it is
vital to prioritize the relative importance of forcing
availability for snow modeling efforts. This is a valuable
topic, as adding new sensors to existing AWSs can have
lower infrastructure costs than adding a new station.
The purpose of this study is to assess how forcing
availability (i.e., observed vs estimated data) controls
physically based simulations of snowpack mass and en-
ergy states. Seasonal snowpack is modeled with three
snow models at well-instrumented AWSs in four cli-
mates with 3-yr observed datasets of all six required
meteorological forcings. These AWSs permit data-
withholding experiments, where hypothetical data avail-
ability scenarios are constructed and a single data
estimation method is used to replace each withheld
forcing. We assume that daily T;, (i.e., minimum tem-
perature Ty, and maximum temperature 7Tp,,) and
daily P are available (at a minimum) at an AWS and
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quantify model output divergence as a function of
hourly forcing availability.

2. Background and meotivation

High-quality hydrometeorological forcing data are
important for development, calibration, and simulations
of hydrology and snow models (e.g., Mizukami et al.
2014; Schmucki et al. 2014). To our knowledge, no study
has examined an extensive suite of data availability
scenarios for all required forcings across different cli-
mates and snow models.

Waichler and Wigmosta (2003) and Schnorbus and
Alila (2004) considered subdaily forcing scenarios for the
Distributed Hydrology Soil Vegetation Model (DHSVM)
in maritime basins, but they lacked a key measurement
(e.g., Q) and focused only on a single climate and model.
Walter et al. (2005) suggested that a simple physical
model could adequately simulate SWE using just daily
T.ir and P. Mizukami et al. (2014) tested how different
reanalysis datasets changed hydrologic simulations in a
continental climate. They found Qg estimation most im-
pacted basin hydrological processes, but surmised other
models might respond differently to contrasting forcing
datasets. Elsner et al. (2014) examined the impact of
forcing dataset selection on VIC calibration and stream-
flow simulation, finding notable differences in calibrated
parameters and monthly streamflow. Differences in T,
datasets propagated into their empirical estimates of ra-
diation, impacting snowmelt simulations.

Schmucki et al. (2014) presented the most related work,
in which six forcing availability scenarios were evaluated
for the SNOWPACK model (Lehning et al. 2002) at three
sites in the Swiss Alps. Their scenarios were dictated by
whether P data were raw, corrected, or calibrated, and
whether Qy, reflected shortwave, and outgoing longwave
radiation data were collectively available. They found P
data quality was essential while radiation (e.g., Q)
availability was less impactful. We expand on this work by
examining a greater number of climatic regions and data
availability scenarios, checking for model and climate
dependencies. One key difference is that the P data are
not calibrated here, as the purpose of the study is to
find the next “best”” AWS measurement after T, and
P. Unlike Schmucki et al. (2014), we do not assume U,
RH, and Q; are observed in all cases, which is more likely
true for most AWSs globally. Finally, Schmucki et al.
(2014) did not isolate the impact of Oy because the
availability of other radiation components varied with Oy
availability; we provide a more systematic and coherent
test of the impact of Qy; availability on SWE simulations.

Many studies have used empirical techniques to esti-
mate missing forcings and have compared empirical and
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observed values (e.g., Bohn et al. 2013; Flerchinger et al.
2009; Feld et al. 2013; Pierce et al. 2013). We examine how
synthetic forcing data impacts model behavior, relying on
previous studies to identify a reliable estimation method
for each forcing. Alternative forcing datasets are avail-
able, such as gridded datasets (Maurer et al. 2002; Livneh
et al. 2013), geostatistical interpolations (e.g., Jabot et al.
2012), numerical weather model output (Wayand et al.
2013; Rasmussen et al. 2011; Forster et al. 2014), and
satellite-based methods (Ma and Pinker 2012; Pinker and
Laszlo 1992; Forman and Margulis 2009). This study se-
lects empirical methods (when possible) because of their
sustained popularity in distributed hydrological modeling.

3. Study sites and observed forcing data

To assess whether the experiment had regional climate
dependencies, we selected four sites (Fig. 2a, Table 1):
1) the tundra Imnavait Creek (IC) site (Sturm and Wagner
2010; Kane et al. 1991; Euskirchen et al. 2012) in Alaska
(United States), 2) the maritime Col de Porte (CDP; Morin
et al. 2012) site in the Rhone-Alpes (France), 3) the in-
termountain Reynolds Mountain East (RME) sheltered
site (Reba et al. 2011) in Idaho (United States), and 4) the
continental Swamp Angel Study Plot (SASP; Landry et al.
2014) in Colorado (United States). Three consecutive water
years (WYs; October-September) were considered at each
site to capture annual climate variations (Table 1). The
study years at SASP (WYs 2006-08) were selected because
these years had the lowest annual dust concentration rela-
tive to other years with available data (Painter et al. 2012;
Skiles et al. 2012). Published (see above citations), serially
complete hourly data (all six forcings) were available at
CDP, RME, and SASP while data were prepared manually
at IC (see the supplemental material).

The sites exhibited distinct snow and meteorological
conditions (Figs. 2b-h). Peak SWE was typically highest
at SASP and lowest at IC (Fig. 2b). Winter T,;, was
coldest at IC and warmest at CDP (Fig. 2c). CDP, RME,
and SASP had similar accumulated P through April
(~900 mm), while IC had low P accumulation (<200 mm)
in the winter (Fig. 2d). Based on vapor pressure e, CDP
was the moistest site while IC and SASP were the driest
in the winter (Fig. 2e). Mean wind speeds were highest at
IC and typically less than 2ms ! at the other sites, which
were sheltered (Fig. 2f). Mean Qy; was greatest at SASP
in the winter and spring and lowest at IC in the winter
and CDP in the spring (Fig. 2g). Finally, mean Qy; was
greatest at CDP through winter and spring and lowest at
IC and SASP (Fig. 2h). Mean monthly Qg was only
greater than Q); from April to June at SASP, in May at
IC, and June at RME; monthly Q); was always greater
than Qg at CDP.
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FIG. 2. (a) Global locations of the study sites. Mean monthly values (over 3-yr study period) of observed (b) SWE, (c) Tair,
(d) accumulated P, (e) vapor pressure (calculated from RH and 7), (f) U, (g) Qs, and (h) Qy. The line colors and markers in

(b)—(h) correspond to the color and marker of each site in (a).

Observed snowpack data included SWE and snow
surface temperature Ty,r and were only used qualita-
tively to check the basic performance of the three snow
models and to conduct a cursory diagnosis of model dif-
ferences. SWE was measured with a snow pillow at IC
and RME. At CDP, SWE was measured with a cosmic
ray detector. At SASP, snow depths measured hourly
with an ultrasonic sensor were converted to SWE using
bulk snow density based on nearby SNOTEL data and
weekly snow pit observations of density (Raleigh 2013).
Manual SWE measurements were taken from weekly or
biweekly snow pits (CDP and SASP) and snow courses
(RME). Automatic measurements of T, were made at
IC with infrared radiometers at three towers; we esti-
mated missing values based on linear regressions with the
other infrared radiometers and with dewpoint tempera-
tures (Raleigh et al. 2013). At CDP, Ty, was derived
from infrared radiometer observations and data from a
down-looking pyrgeometer. RME Ty, was also derived
from longwave measurements from a down-looking

pyrgeometer at a nearby exposed site. Finally, SASP
T, data were observed with an infrared radiometer.
Corrected P data were available in the published datasets
at CDP, RME, and SASP. Raw P data at IC were corrected
assuming 75% undercatch, which was found for Wyoming-
type gauges (Yang et al. 2000). Because the study assesses
the next “best” forcing to measure at an AWS after T,;; and
P, rigorous correction of P was outside the scope. However,
P data quality can critically impact modeled SWE
(Schmucki et al. 2014; Raleigh et al. 2015). We allowed
each model to calculate the phase of P (rain or snow) at
each time step, a delineation that is more important at
sites with milder winter climate (e.g., CDP and RME).

4. Methods
a. Experiment design and evaluation metrics

For each site and model, a data-withholding experiment
was conducted at hourly resolution, where all observed
forcings were available initially, and then sequentially
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TABLE 1. Characteristics of the study years and sites, ordered by increasing elevation and decreasing latitude.

Site  Elev Site climate Study Mean winter Dec-Feb Mar-May Peak SWE
Site name ID (m) Lat(N) classification  period (WY) P (mm)?* temp (°C) temp (°C) (mm)
Imnavait Creek IC 930 68.6°  Tundra 2009° 200 -17.0 -1.9 180
2010 140 -17.0 -23 120
2011 190 —-18.5 +4.9 180
Col de Porte CDP 1330 453° Mountain 2006 790 -3.0 +10.2 440
(maritime) 2007 940 +1.3 +7.7 220
2008 1080 +0.5 +11.8 460
Reynolds Mountain RME 2060 43.1° Mountain 2006 1080 —3.6 +8.7 760
East (sheltered site) (intermountain) 2007 610 —3.8 +8.7 370
2008 860 -5.6 +12.7 720
Swamp Angel SASP 3370  37.9° Mountain 2006 860 -8.1 +3.5 840
Study Plot (continental) 2007 840 —-8.2 +4.0 700
2008 980 -10.1 +7.6 1010

#We sum winter precipitation from 1 Oct to 30 Apr at all sites except IC, where we sum it from 1 Sep to 30 Apr.
® Because of early snowfall, simulations in this year began on 15 Sep instead of 1 Oct.

removed and replaced with algorithm-derived values
until all forcings (except Trmax, Tmin, and daily P) were
estimated (Fig. 3a). A binary construction of scenarios
with six forcings was used, resulting in 2° = 64 unique
data availability scenarios. Each scenario can be envi-
sioned as a “‘hypothetical AWS,” where different sensors
are available. The T,; and P observations (either hourly
or daily) were assumed available in all cases because they
are common measurements (Fig. 1); we tested whether
temporal resolution in these core data mattered.

Preparation of hourly forcings for the nth scenario
proceeded by first examining data availability in the
scenario matrix (Fig. 3a), collecting the time series of
observed forcings (if any), and then estimating any
missing forcings using the methods selected in section
4b. Using daily Tihax, Tmin, and P, missing hourly forc-
ings were estimated sequentially in the order T, P,
RH, Qy;, and Q); because of data dependencies (Fig. 3b).
After assembling 3 years of forcing data for all 64 sce-
narios, the forcings were input into the three snow
models (see section 4c).

The analysis consisted of three parts. In the first part
of the analysis, differences between observed O and
estimated E hourly forcings were compared graphically
and with common metrics, including mean bias differ-
ence (MBD), root-mean-square deviation (RMSD), and
mean absolute difference (MAD):

MBD =n"' 2 (E, - 0), 1)
i=1
RMSD = (/n 1 Y (E,—O0)’, and (2)
i=1
MAD=n"'Y |E,—O,|. (3)

i=1

MBD is particularly important because biases can im-
pact snow modeling more than random errors (Raleigh
et al. 2015; Lapo et al. 2015). The metrics above are only
meaningful to a specific forcing, and thus it is not pos-
sible to compare metrics between two variables with
different units (e.g., T,y MBD vs Qi MBD). To gauge
the relative accuracy of estimation methods across
forcings, we conducted an auxiliary analysis (see the
supplemental material) that considers three dimension-
less metrics (Moriasi et al. 2007) and provides insights
into the relative skill of all forcings estimated.

In the second part, observed SWE and Ty, were
qualitatively compared to model outputs (scenario with
all observed forcings) to assess baseline differences in
the behavior of models when given the same ideal set of
forcing data. The impacts of data availability were not
examined in this comparison. Observed SWE and Ty,,¢
were used in this part only.

The third and final part focused on model output spread
(from all 64 data scenarios) and assessed how availability
of specific forcings contributed to the spread. We com-
pared means of the two data availability ensembles for
each forcing (e.g., 32 scenarios with observed Qy; vs 32
scenarios with estimated Qy;) and identified which forcings
exhibited the greatest divergence between ensemble
means. We focused on model divergence because differ-
ences in model output (for a given model structure and
parameter set) guarantees that forcing estimation
methods have deficiencies and/or observed forcing data
have measurement errors. Differences between ensemble
model means reflected 1) differences between observed
and estimated forcings and 2) the importance of each
forcing for simulating the response variable (e.g., SWE
and Ty,,¢) with each model. We considered differences in
SWE, T+, and snow disappearance date (SDD). SWE
and T, were summarizing indices of the snowpack mass
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and energy balance, while SDD was an index of both snow
accumulation and melt.

To further quantify the impact of forcing availability
on the mass and energy balances together, we used
modeled SWE and T, to compute a loss function
(Essery et al. 2013):

3 2 z]S
s 3y G-

i=1 j=1 k=1

l]k)

loss function = -
6Nijwij ’

(4)

where S* is a matrix (N;
simulations when a specific forcing is estimated, S is a
matrix of the corresponding simulations but with that
forcing observed, i is the water year index (3 yr), j is the
index of the model output (two outputs, SWE and T¢),
k is the time step index, N;; is the number of time steps,

; Tows X 32 columns) of model

and w;; is a weighting factor. Following Essery et al.
(2013), w;; was derived by setting Eq. (4) equal to 0 for
the case of lowest difference between S* and S°. We
calculated 196 values (32 scenarios X 6 forcings) of the
loss function for each site/model. To aid in interpret-
ability, we normalized loss functions in the [0, 1] range,
such that a value of 0 signified availability of that forcing
impacted model output the least while a value of 1 in-
dicated the greatest impact.

b. Forcing estimation methods

For each missing forcing variable (Fig. 3), a single
estimation method was selected based on prior com-
parison studies between alternative empirical methods
(whenever possible) and on popularity of usage. Liter-
ature values were used for any parameters in these
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methods. The goal was not to find the “best” forcing
estimator, but to apply a single method that might be
selected when missing observations. These methods are
briefly identified below.

The minimum data assumed available were daily
maximum and minimum temperatures and daily P.
Hourly T, was estimated from 7Tp,,x and T, with a
spline-based model, which was selected because it yielded
lower errors relative to other models (Cesaraccio et al.
2001). Hourly P was estimated from daily P by uni-
formly dividing the daily sum across all hours of the day.
This method has precedence in Waichler and Wigmosta
(2003) and the widely used Maurer et al. (2002) dataset.

No empirical methods estimate hourly U accu-
rately because of low correlation with other forcings
(Parlange and Katz 2000). Therefore, we used NCEP-
NCAR reanalyses data (Kalnay et al. 1996), which
were the basis for the popular Maurer et al. (2002)
dataset and have been used in recent snow model ap-
plications (Kang et al. 2014; Park and Markus 2014).
We estimated hourly U based on the long-term (1981-
2010) mean 6-hourly dataset of scalar wind speed at
each site to capture typical diurnal and seasonal cycles.
We considered using year-specific wind data from the
reanalysis, but found that MBD (relative to observa-
tions) was usually lower when using the long-term
mean dataset. Terrain-based downscaling of reanalysis
data might reduce bias (Winstral et al. 2009), but this
was not conducted.

Hourly RH was estimated assuming that daily dew-
point temperature Tgey equaled T, and Tgey Was
constant through each day (Running et al. 1987). Hourly
RH was calculated as a function of vapor pressure (at
T.;;) and saturated vapor pressure (at Tgey). Kimball
et al. (1997) developed an updated approach to address
biases in arid regions. However, we used the simpler
Running et al. (1987) method because it is easier to
implement (i.e., no requirement for simultaneous esti-
mation with Qg) and has had wider usage (Feld
et al. 2013).

Time series of Qg were estimated with empirical re-
lationships between daily 7T, range and daily atmo-
spheric transmissivity (Thornton and Running 1999).
We estimated hourly Qg assuming daily atmospheric
transmissivity was constant across hours, and with the
potential solar radiation changing with solar zenith an-
gle. Estimation of atmospheric transmissivity requires
vapor pressure, which we computed from 7,;, and RH.
Bohn et al. (2013) evaluated the Thornton and Running
(1999) daily model at 50 AWSs, finding biases ranging
from —0.7 to —47Wm 2. Ball et al. (2004) compared
this method to empirical and other mechanistic ap-
proaches and found similar accuracy across models,
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despite differences in model complexity. The method
was selected because it is commonly used in mountain
modeling (e.g., MTCLIM; Hungerford et al. 1989) and
land surface models (Bohn et al. 2013).

Hourly Q); was empirically estimated with the clear-
sky Dilley and O’Brien (1998) and the all-sky Unsworth
and Monteith (1975) parameterizations, based on fa-
vorable evaluation in prior intercomparisons (Flerchinger
et al. 2009; Juszak and Pellicciotti 2013). These were also
used in the similar experiment of Schmucki et al. (2014).
Hourly Oy was estimated with the Stefan-Boltzmann
equation:

Q=oey Thrs )

where all-sky emissivity &,y is scaled with cloud cover
fraction c and clear-sky emissivity e,

£, = 8,,(1—0.84c) + 0.84c, (6)

and e, is a function of precipitable water w and Ty

59.38 + 113.7( Lai ", 96.96, |~
‘ “"\273.17 V25
£, = .

clr 4
g Tair

In Egs. (5) and (7), Ty, is in units of kelvins. The Stefan—
Boltzmann constant o is 5.67 X 10 *Wm 2K * The
¢ values in Eq. (6) ranged from 0 to 1 and were calcu-
lated based on the hourly solar index of Crawford and
Duchon (1999). Nighttime ¢ values were interpolated
between the last 3 h prior to sunset and the first 3 h after
sunset the next day. Precipitable water (cm) was esti-
mated from vapor pressure and Ty;, (Prata 1996).

c. Snow models

We examined how hourly forcing availability im-
pacted snowpack simulations from three physically
based, 1D snow accumulation and melt models. The
models included the Utah Energy Balance (UEB), the
DHSVM snow submodel, and the snow thermal model
(SNTHERM). We used common parameters (e.g., Snow
surface roughness) across models whenever possible and
literature values otherwise. Model calibration was not
conducted because it can compensate for forcing errors.

These models were selected because they have been
used in snow model intercomparison studies and dis-
tributed model applications (Koivusalo and Heikinheimo
1999; Feng et al. 2008; Livneh et al. 2015) and because
they span a range of complexity and process parame-
terizations. We also included multiple models to check
for model dependencies in the results. Based on the
number of snowpack layers, UEB was least complex, and
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TABLE 2. Key differences between the physically based models in this study.

UEB

DHSVM

SNTHERM

Partitioning of
precipitation
into rainfall
vs snowfall

Radiation
penetration

Snow albedo

Snow layers

Time stepping

Based on air temperature
(U.S. Army Corps of Engineers
1956), all precipitation is snow
when T,;, = —1°C, all is rain
when T,;, = 3°C, linear mix for
temperatures in between

Only considered in shallow
snowpacks (depth <0.1 m),
snow albedo and bare ground
albedo interpolated in these
cases

Dependent on time since last
snowfall and solar illumination
angle, following Biosphere—
Atmosphere Transfer Scheme
(BATS) methodology
(Dickinson et al. 1993)

Lumped with infinitesimally
thin surface, implicit bulk
snow and soil layer

Fixed at resolution of forcing
data

Based on wet-bulb temperature
Twet (calculated from temperature,
humidity, and atmospheric
pressure), all precipitation is snow
when Ty < 1.6°C, all is rain
when Ty = 1.6°C

Not considered

Dependent on time since last
snowfall, based on U.S. Army
Corps of Engineers methodology
(U.S. Army Corps of Engineers
1956), switches albedo decay
curves as a function of Ty.¢

Two layer (thin top layer
of =100 mm)

Fixed at resolution of
forcing data

Based on air temperature, all
precipitation is snow when Ty, <
2.5°C, all is rain when T;, > 2.5°C.
Liquid water content in snowfall is
calculated linearly in the 0%-40%
range when 0° = T, = 2.5°C

Considered separately for near-infrared
and visible wavelengths, near-infrared
extinction limited to top 2 mm using
user-specified extinction coefficient;
visible extinction coefficient is a
function of grain size

Based on physical calculations
of snow grain size

Multilayer (up to 127-649 layers
here, site dependent), explicit
layers (snow and soil separated)

Adaptive (min = 15, max = 9005s)

Richardson number
parameterization with
aerodynamic resistance based
on wind speed and the surface
roughness parameter, stability
corrections based on the
Richardson number

Turbulent
fluxes

Similar scheme as UEB, but
different functional form

Obukhov length parameterization,
includes windless exchange of
sensible and latent heat

SNTHERM was most complex. Table 2 summarizes
notable model differences, such as differences in al-
bedo parameterization and turbulent heat exchange.
Key model parameters are listed in the supplemental
material.

1) UEB

UEB is a lumped snowpack (i.e., one layer with snow
mass) model developed for prediction of snowmelt
contributions to surface hydrology (Tarboton and Luce
1996; You et al. 2014; Mahat and Tarboton 2012). Key
snowpack processes represented with UEB include
snow accumulation, melt, sublimation, and liquid water
retention and refreezing within the snowpack. The UEB
snowpack has an infinitesimally thin surface layer where
the surface energy balance and T,,¢ are solved. We used
the latest version, UEBVeg (Mahat and Tarboton 2012;
Mahat 2011; available at http://www.neng.usu.edu/cee/
faculty/dtarb/snow/snow.html).

2) DHSVM

DHSVM is a distributed model developed for simu-
lating the effects of topography and vegetation on

hydrologic responses in complex terrain (Wigmosta
et al. 1994). DHSVM is often applied at spatial scales
ranging from 25 to 200m. Here DHSVM was applied
as a point model, with the snow model effectively iso-
lated from other land surface routines. Key snowpack
processes represented include snow accumulation, melt,
sublimation, liquid water retention, and refreezing.
DHSVM discretizes the snowpack into a thin (100 mm
maximum) surface layer and lumps the remaining snow
in a second layer below the surface. We used DHSVM,
version 2.6, as implemented in Livneh et al. (2015).

3) SNTHERM

SNTHERM (Jordan 1991) is a multilayer model de-
veloped for prediction of thermal characteristics of
seasonal snow and frozen soil. The model accounts for
snow accumulation, compaction, densification, meta-
morphosis, sublimation, liquid water retention, and
melt. Using mixture theory, SNTHERM simulates
layer-specific density and moisture content. The partial
differential equations governing heat and moisture ex-
change are solved with a finite control volume approach
across horizontal layers of snow and soil. As snow
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accumulates, the 1D grid compacts while maintaining
the original finite element structure. A maximum of
from 127 (at IC) to 649 (at SASP) snow layers was
generated. SNTHERM provided the most detailed
treatment of snowpack processes here, but at the ex-
pense of computational efficiency.

5. Results
a. Evaluation of estimated forcings

Figure 4 compares observed and estimated forcings
(daily resolution for clarity). Table 3 displays evaluation
statistics (hourly resolution). The T, estimates were
slightly colder than observations, with MBD ranging
from —0.3° to 0.0°C. Not surprisingly, estimated P had
MBD = 0, while RMSD and MAD in P were due to
errors in hourly disaggregation (Table 3). Estimated U
had MBD ranging from —0.30 to +0.81 ms ™' (Figs. 4e-h,
Table 3).

Two synthetic RH datasets were generated, one based
on hourly 7T, observations and the other based on es-
timated hourly 7,;; from daily temperature observations
(Fig. 3b). At each site, the MBD of these estimated RH
data were similar, ranging from +4% to +16% (ob-
served hourly Ty;;) and from +2% to +15% (observed
daily temperatures; Table 3). Estimated RH was typi-
cally greater than observed RH at all sites and data
scenarios, indicating that Tg., was usually lower than
Tmin, especially at RME and SASP (Figs. 4i-1).

Two synthetic Qg; datasets were created, one assum-
ing availability of observed T, P, and RH, and the
other assuming only observed T, and P (Fig. 3b).
Availability of hourly versus daily T3 and P did not
yield unique Qg datasets because transmissivity was
estimated from daily data. MBD in estimated Qg; ranged
from —18 to +22 W m ™2 with RH observed (Figs. 4m—p)
and from —19 to +22Wm 2 without RH observed
(Table 3).

Eight unique Qj; datasets were generated based on
different data availability in T,;;, RH, and Qg; (Fig. 3b,
Table 3). MBD across the eight datasets ranged
from —13 (CDP) to +18 Wm ™ (IC). Except at RME,
the sign of the O;; MBD was consistent at each site, with
positive MBD at IC and SASP and negative MBD at
CDP. The Q;; MBD was usually closest to 0 at RME
(Fig. 4s, Table 3), and the Qy; differences were often
greatest at IC, which may reflect issues with deriving Qy;
from other radiation observations (see the supplemental
material).

The dependence of estimated Qy; on Qg (Fig. 3b) re-
sulted in a relationship between the direction of MBD in
estimated Q); and Qg; (Table 3). For example, the biases
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for estimated Qg and Qy; had opposite signs at IC, CDP,
and SASP. This made physical sense in that negatively
biased Q; resulted in positively biased Qy; with cloudier
conditions [see c in Eq. (6)]. Likewise, positively biased
Qg vielded less cloudy conditions, resulting in negatively
biased Qy;. This linkage was important in the ensemble
analysis (see section 5c).

b. Comparison of observed and modeled snowpack
with all forcings observed

Observed SWE and T, were qualitatively compared
to model outputs (all forcings observed) at all sites
(Fig. 5). At IC, the models estimated similar SWE and
reasonably captured snowpack onset and disappearance
(Fig. 5a). However, notable differences in observed and
modeled SWE emerged at IC, such as during spring 2009
and the winter of WY 2011 (e.g., potential errors in
observed P and/or observed SWE). At CDP (WY 2006
and 2008) and RME (all years), UEB SWE was closer to
observations than the other models, which over-
estimated SWE (Figs. 5b,c). At CDP (WY 2007) and
SASP (all years), UEB underestimated SWE, while
SNTHERM and DHSVM overestimated SWE, partic-
ularly in the spring (Figs. 5Sb,d). UEB generally melted
earlier that the other models, while SNTHERM melted
last. At all sites, mean Ty, was colder in UEB than in
observations and other models.

Examining the modeled snow processes helped iden-
tify reasons for similarities and differences in modeled
SWE (Fig. 6). First, we considered the differences in
rainfall-snowfall partitioning (Table 2). At the colder
sites (IC and SASP), all models generally estimated
similar snowfall fractions (Figs. 6a,d). At the warmer
sites (CDP and RME), UEB generally had the lowest
snowfall while DHSVM consistently had the most
(Figs. 6b,c). SNTHERM generated similar (but 1%-3%
lower than) snowfall totals as DHSVM. DHSVM par-
titioned 11% more snowfall than UEB at CDP, but only
5% more at RME and SASP and 3% more at IC. As
expected, these snowfall estimates translated to monthly
patterns in SWE accumulation (Figs. 6e-h).

Next, we considered differences in modeled ablation
through decreases in monthly SWE (Figs. 6i-1). At IC,
the models were similar; all had negligible snowmelt
before April, and snowmelt in April was marginal
(<25mm; Fig. 6i). Starting in May at IC, UEB melted
26%-34% more snow than the other models (Fig. 6i),
contributing to lower late season SWE and earlier snow
disappearance in UEB (Fig. 5a). At CDP, all models
simulated melt from November to May, but the monthly
magnitudes varied across models (Fig. 6j). UEB had the
greatest snowmelt from December through March
(Fig. 6j), helping to explain why UEB SWE was lower
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FIG. 4. Scatterplots of 3 yr of mean daily observed and estimated forcings at (from left to right) the sites (IC, CDP, RME, and SASP):
(from top to bottom) T, U, RH, Qg;, and Q);. Shown are estimates of each forcing when all other forcings are available. Precipitation
observations and estimates are not shown because they are equivalent at the daily scale (see section 4b). The coefficient of determination
R? and MBD (estimated minus observed, units on left axis) are provided. Note that the scales change between sites for some forcings.

than other models (Fig. 5b). At RME, all models had (March—April), contributing to lower SWE and earlier
low snowmelt (<25 mm) in November and December, snow disappearance (Fig. 5c). At SASP, UEB had
negligible melt in January and February, and more snowmelt in November (<25 mm; Fig. 61), typically de-
substantial melt after March (Fig. 6k). Again, UEB laying the snow season and creating an offset from the
melted more snow than the other models in early spring  other models throughout most of the year (Fig. 5d).
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FI1G. 5. Observed (manual OBS, gray diamonds; auto OBS, black dots) and modeled (black dotted) SWE and snow surface temperature

(Tsurt) With the three models [UEB (magenta dotted), DHSVM (red dashed), and SNTHERM (solid blue)] from October 2008 to

September 2011 at (a) IC, (b) CDP, (c) RME, and (d) SASP. For all models, only the simulation generated with all observed forcings is

shown. For clarity, daily mean SWE and 3-day mean Ty, are shown. The number next to “J”” (January) represents the year (e.g., 6
signifies 2006).
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FIG. 6. Mean monthly summaries of simulated (a)—(d) snowfall fraction, (e)-(h) SWE increases, (i)-(1) SWE
decreases, (m)—(p) net shortwave radiation, and (q)—(t) net turbulent fluxes (sensible flux + latent flux) from each
model—UEB (black), DHSVM (gray), and SNTHERM (blank)—at (from left to right) the four sites. Values are
averaged over the 3-yr study period in each month and only during times with modeled SWE > 25 mm. Also shown
are observed values of net shortwave (red plus signs) at IC, CDP, and SASP and turbulent fluxes at IC.

simulations from the forcing data scenarios obscured
intermodel differences (e.g., CDP; Figs. 7b.f), while at
other sites the intermodel differences were larger (e.g.,
SASP; Fig. 7d).

Among the ensembles in Fig. 7, the scenarios with all
hourly forcings and with only daily T, and P were
highlighted. At IC and CDP, these scenarios tended
toward the middle of the ensemble in the spring
(Figs. 7a,b), suggesting compensatory errors in the
forcing estimation methods (Table 3) yielded similar
snowpack simulations. In contrast, these scenarios
enveloped the SWE and T, ensembles at the other
sites, particularly with UEB and SNTHERM at RME
(Figs. 7c,g) and SNTHERM at SASP (Figs. 7d,h). At
RME and SASP, the minimal forcing data scenario (i.e.,
daily T,;; and P only) tended to lower SWE relative to
the scenario with all forcings observed (Figs. 7c,d). This

was consistent with higher T, in the minimal forcing
data scenario (Figs. 7g,h), suggesting greater energy in-
put and greater snowmelt sensitivity.

Comparing the ensemble mean of model output as a
function of forcing availability clarified the major con-
trols on model spread. Results from an example season
are shown for SWE (Fig. 8). Maximum absolute SWE
differences and mean absolute T, differences in the
ensemble means over all study years appear in Table 4.
At IC, CDP, and SASP, maximum SWE differences
were often associated with Q); availability, and in several
cases, Qg; availability exerted an opposite effect on SWE
(Fig. 8). Across models, Qy; availability caused the
largest SWE differences at IC (65-67mm) and CDP
(174-234 mm; Table 4). At SASP, Qy; availability also
contributed the largest SWE differences in SNTHERM
(221 mm), but the second largest in UEB (130 mm) and
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FIG. 7. Example time series of (a)-(d) SWE and (e)—(h) mean daily T, from three snow models (UEB, DHSVM,

and SNTHERM) across 64 forcing data scenarios (gray lines) at (a),(e) IC in WY2009; (b),(f) CDP in WY2006;
(c),(g) RME in WY2007; and (d),(h) SASP in WY2008. The solid black line denotes the scenario with all hourly
forcings available, while the dashed line denotes the scenario with only daily 7,;, and P available. The period

between the vertical red lines in (a)—(d) is shown in (e)—(h).

DHSVM (218 mm). Availability of RH caused the
largest SWE differences at SASP with DHSVM
(225mm), and at RME with DHSVM (166 mm) and
SNTHERM (71 mm). RH availability was more impor-
tant for DHSVM than the other models (Table 4).
Availability of Qg only yielded the largest mean SWE
differences at SASP with UEB (160 mm). Expressing
SWE differences as a percentage of peak SWE (from the

ensemble mean with the observed forcing), Qy; yielded
differences of 4%-93%, RH yielded 4%-25%, and Qy;
yielded 4%-40%. The U availability created notable
(but not the greatest) SWE differences at IC (all
models), likely due to high wind speeds (Fig. 4e) and
higher turbulent fluxes (Fig. 6q). For all sites and
models, Qy; availability exhibited the strongest control
on Ty, (Table 4). The MAD between the ensemble
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FI1G. 8. Differences in mean SWE simulations for (from left to right) the three models at (from top to bottom) the

four sites based on whether each forcing (lines) was observed or estimated. The difference was taken as mean SWE
(across 32 scenarios with that forcing estimated) minus mean SWE (across 32 scenarios with that forcing observed).
Positive differences indicated the model had higher SWE when the forcing was unavailable. Negative differences
indicated the model had lower SWE when the forcing was unavailable. Only the late snow season is shown for
a single year (2009 at IC, 2006 at CDP, 2007 at RME, and 2008 at SASP); similar results were found for other years.

mean Ty, With Qy; available versus unavailable ranged
from 1.2° to 6.2°C (Table 4). Availability of T, U, and
Qs had secondary importance on simulations of Tyf.
When comparing differences in ensemble mean SDD
based on forcing availability, three key results emerged
(Fig. 9). First, Qy; availability often dictated the greatest
or second greatest change in SDD. This was found for all
models at IC, CDP, and SASP. Averaged across the study
years, Q); caused absolute differences in SDD ranging
from 0 to 18 days (maximum = 32 days), whereas QOg;
caused differences of 0-8 days (maximum = 9 days) and
RH caused differences of 0-9 days (maximum =
10 days). Second, the models and the study years both
exhibited qualitatively similar signatures (though dif-
ferent magnitudes) in the change in SDD because of
forcing availability. In other words, the shape of the lines
in Figs. 9a—d was similar to the lines in Figs. 9e-h and

Figs. 9i-1. Third, linked forcings, such as Q; and Qy;, had
opposing effects on modeled SDD in several cases (all
models at IC and CDP, and UEB at SASP). This was
related to the opposite sign of MBD in estimated Qg; and
Qj; (section 5a), implying error compensation when both
were unavailable.

The loss functions [Eq. (4)] summarized the impact of
forcing data availability simultaneously on the mass and
energy balances (Fig. 10). Availability of Q); generally
resulted in the highest loss function values, signifying
this forcing contributed most to the spread in both
SWE and Ty, At IC and CDP (all models), RME
(UEB and SNTHERM), and SASP (DHSVM and
SNTHERM), Qy; had the highest median loss function.
This was significantly higher than all other forcings
(95% level, Wilcoxon rank-sum test) for DHSVM and
SNTHERM at IC and at SASP, all models at CDP, and
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TABLE 4. Differences between the model ensemble mean (n = 32) when a given forcing (7, P, U, RH, Qg Qy;) is observed hourly vs the
model ensemble mean (n = 32) when that hourly forcing is unavailable. Shown are the maximum absolute SWE differences (expressed
as mm and % of peak SWE from mean ensemble with that forcing observed) and mean absolute Ty, differences, averaged across the
three study years at each site. The forcing that caused the greatest difference is in boldface for each site and model.

UEB DHSVM SNTHERM
Site Tair P U RH Qsi Qli Tair P U RH Qsi Qli Tair P U RH Qsi Qli
Max SWE IC 16 2 60 16 62 67 14 9 51 34 57 65 27 40 49 32 58 67

CDP 60 33 25 19 103 205 48
RME 47 35 15 25 42 25 42
SASP 33 51 14 36 160 130 63
Max SWE IC 10 1 38 10 40 41 9
difference (% of CDP 19 10 8 6 29 93 9
peak SWE) RME 8 6 3 4 7 4 6
SASP 6 9 2 6 29 21 8
Mean Tyt IC 12 00 29 05 15 46 1.1
difference (°C) CDP 0.7 04 0.6 03 13 32 03
RME 07 04 14 06 16 30 05
SASP 08 04 08 05 21 62 06

difference (mm)

51 24 34 71 174 60 42 19 31 113 234
37 40 166 40 50 34 19 28071 32 62
121 51 225 80 218 43 26 59 &2 44 221
5 36 20 36 38 15 23 27 18 33 35
10 5 7 14 40 12 9 4 7 24 57
6 6 24 5 8 5 3 4 10 4 9
15 6 25 10 24 5 3 7 9 5 25
00 1.7 06 07 21 13 02 12 04 07 25
01 04 03 03 14 04 02 01 01 05 18
01 1.2 09 04 12 07 03 09 05 06 14
03 07 08 07 30 08 03 05 04 10 39

was significantly higher than four out of the other five
forcings in all cases except DHSVM at RME. At RME,
the loss function for Q); was only significantly lower than
the median loss function from RH in DHSVM (Fig. 10h).
Qualitatively, the hierarchy of loss functions was similar
when comparing models at IC (Figs. 10a—) and CDP
(Figs. 10d-f). However, there was more intermodel vari-
ability at RME (Figs. 10g-i) and SASP (Figs. 10j-1). The
impact of forcing availability was not consistent across sites
because the accuracy of the estimation methods varied
(Table 3, Fig. 4).

6. Discussion

We aimed to identify which uncommonly measured
forcings (Fig. 1) would most impact physical simulations
of snowpack mass and energy states based on forcing data
availability (i.e., through new instrumentation). For SWE
and SDD, no single forcing was dominant across all cli-
mates and models, but Q); availability was often among
the most important (Figs. 8, 10 and Table 4). For T+, Oy
availability was consistently the largest contributor to
model spread (Table 4). When considering both SWE
and Ty, Q) availability often dictated model behavior
(Fig. 10). These results suggest snow modeling in many
climates would benefit from expanded observations of Qy;
(measured at only 1.4% of AWSs in the western United
States) or from improved Qj; estimation methods. This
important finding was not encountered in prior studies
because of a lack of Qy; observations (e.g., Waichler and
Wigmosta 2003; Mizukami et al. 2014) or confounding
factors in experiment designs (Schmucki et al. 2014).

When modeling snowpacks, it is important to consider
how forcing availability and selected forcing estimation

methods control model output. In general, differences
between estimated and observed forcings in this study
(Table 3) were similar to those found in previous studies.
For example, Q) estimation bias ranged from —12
to +18 Wm ™2 here, compared to —10 to +16 Wm ™ ? in
Flerchinger et al. (2009). Hourly RMSD in Qy; ranged
from +19 to +45 W m™ 2, comparable in range with +25
to +42Wm 2 found by Juszak and Pellicciotti (2013).
The Qg bias ranged from —19 to +22 W m 2 here, while
Bohn et al. (2013) found negative bias at their sites,
ranging from —1 to —47Wm 2 The RH bias ranged
from 2% to 11%, whereas Bohn et al. (2013) found bias
ranging from —5.5% to 6.6% for a similar RH estima-
tion method. Despite having positive bias, RH usually
did not cause the greatest divergence in model output.
The analysis across models provided context for how
differences between observed and estimated forcings
propagate to snow model output (Figs. 8-10).

Because only one estimation method was selected for
each forcing across climates, the results strongly depend
on the skill of that method for each climate and the
sensitivity of snow processes to that forcing. Different
methods do not always yield similar forcing estimates
[e.g., Oy (Flerchinger et al. 2009) and RH (Feld et al.
2013)], and performance of a method can be inconsistent
across sites (Gubler et al. 2012). For example, estimated
Qi had negative MBD at CDP but positive MBD at IC
and SASP (Table 3), and modeled SWE and SDD re-
flected these differences (Figs. 8, 9). Likewise, MBD at
RME was often closest to 0 (Figs. 4g-t, Table 3), which
explained why Q); availability did not appear as impor-
tant there as it did at the other sites. When considering
normalized error metrics (see the supplemental mate-
rial), Qy; was typically estimated with more skill than RH
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FIG. 9. Differences in mean SDDs by year 1, 2, and 3 at (from left to right) the four sites and for (from top to bottom) the three snow
models as a function of estimated minus observed forcings. For each of the six forcings (from left to right on x axes), mean SDD is
computed separately for all 32 scenarios where that forcing is estimated (E) and for all 32 scenarios where that forcing is observed (O). A
positive value indicates SDD with the estimated forcing occurs later than the SDD with the observed forcing, while a negative value
indicates SDD with the estimated forcing occurs earlier. The number at the bottom of each plot is the rank of the absolute SDD difference
compared to that of the other forcing variables based on a 3-yr average.

and U but less skill than Qg; hence, there is greater
potential for improved modeling through more reliable
Qy; data. Given incomplete forcings (Fig. 1), hydrologic
modeling might benefit from considering multiple
working hypotheses (Clark et al. 2008, 2011) about how
unmonitored forcings may be modeled (i.e., multiple
forcing estimation methods), which would provide in-
sights into uncertainty in model forcing. Other forcing
data estimators [e.g., reanalysis data (Mizukami et al.
2014) and numerical weather model output (Wayand et al.
2013)] provide alternative, albeit imperfect approaches
(Slater et al. 2013; Shook and Pomeroy 2011) to empirical
methods, but could be included in this framework.

The models had contrasting parameterizations and
model complexity (Table 2), thereby yielding differ-
ences in modeled SWE and Ty, at CDP, RME, and
SASP (Figs. 5, 6). The models had dissimilar portrayals
of the energy balance (Fig. 6), and these likely affected
each model’s sensitivity to snowmelt, a major control on
SWE (Fig. 6). Delayed snowmelt in DHSVM and
SNTHERM (Figs. 5, 6) was likely caused by albedo
specification; this is supported by Feng et al. (2008), who
found SNTHERM and VIC (similar to DHSVM) had

high albedo. Koivusalo and Heikinheimo (1999) also
found albedo is generally higher in SNTHERM than
UEB, consistent with UEB melting first and SNTHERM
last. These results support the prevailing understanding
that albedo parameterizations can create significant
model differences (e.g., Chen et al. 2014a). Even when
controlling for albedo differences, however, differences
in the energy balance can result because of factors such as
turbulent flux parameterization, as recently demon-
strated by Lapo et al. (2015) with SNTHERM and UEB.
Despite the above differences, qualitatively consistent
patterns emerged in how the models responded to
forcing availability (Figs. 8-10), suggesting the results
may apply to other snow models. For example, we
might expect that the availability and quality of Qy; data
at CDP would also have a major impact on SWE, Ty,
and SDD from other 1D physically based snow models
(e.g., Lapo et al. 2015).

The study addresses technical aspects but not practical
considerations, such as costs of purchasing, powering,
and maintaining new sensors. Sensor costs can become
progressively higher for radiation and humidity mea-
surements. A joint T,;; and RH sensor (e.g., HMP155A)
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FIG. 10. Boxplots of the loss function by (from top to bottom) site, (from left to right) model, and (x axis) forcing. The loss function
quantifies the importance of forcing availability for simulations of both SWE and snow surface temperature and is normalized such that
values of 0 and 1 indicate the smallest and greatest impact of data availability on model simulations, respectively. All panels have a box for
each of the six forcings, summarizing the distribution of loss functions (n = 32) for that forcing. The horizontal line in the box is the median,
the filled box spans the 25-75th quartiles, the vertical whiskers extend to 1.5 times the interquartile range, and the plus signs indicate
outliers. The forcing with the greatest median loss function appears in black if it is significantly different (95% level, Wilcoxon rank-sum

test) than that of all other forcings. Forcings appear from most (left) to least (right) commonly available (Fig. 1).

can cost twice as much as a Met One 014A three-cup
anemometer (to measure U), while a Kipp & Zonen
CNR4 four-stream radiometer (to measure both Qg and
Qy; and upwelling radiation) can cost 20 times as much as
an anemometer (D. Neff, Campbell Scientific, 2013,
personal communication). These costs depend on sensor
models and are reported for context. Coincidentally, this
study recommends more frequent installation of the most
expensive sensors, but financial and other considerations
may govern ASW design. For example, site access and
the frequency of site visits (maintenance and recalibra-
tion) are key considerations. More frequent (e.g., daily or
weekly) site visits may be required to clean and inspect
radiometer domes to ensure data quality (Augustine et al.
2000; World Meteorological Organization 2008), and
these additional labor costs can become significant over
time. Calibrations may incur additional costs and can

significantly influence data quality (Lundquist et al.
2015). The question also remains whether a forcing such
as Oy might be approximated using related data (e.g.,
observed Qy; for cloud factors or observed Tyy,¢, Which is
tightly coupled with Qy;). Hence, many factors must be
considered before upgrading existing AWS networks.
Our results apply most to sites where vegetation and
wind redistribution effects are negligible and radiation
drives snowmelt. In forests, the increasing contribution
of Oy; and decreasing contribution of turbulent fluxes to
the energy balance (Varhola et al. 2010; Lundquist et al.
2013) might emphasize our findings. Availability of Qg
may be more critical when dust on snow enhances the
radiative forcing (e.g., Skiles et al. 2012) and the model
accounts for this effect. Availability of U is likely more
important in exposed areas where wind redistribution is
important (Liston and Sturm 1998; Groot Zwaaftink
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et al. 2013; Winstral et al. 2002). These accumulation
processes were not considered because CDP, RME, and
SASP are sheltered sites, and the effects of wind drift on
P at the windiest site (IC) were reduced with correction.
Thus, U primarily impacted modeled SWE through
turbulent fluxes, which was less important than radiation
at all sites (Fig. 6). Forcings related to turbulent fluxes
(e.g., Uand RH) are likely more important under special
ablation conditions, such as rain on snow (Marks et al.
1998), chinook wind events, ephemeral low-elevation
snowmelt, or wind-enhanced sublimation in dry climates.
Turbulent fluxes also feedback with Ty, variations,
which are tightly coupled with Qj; and atmospheric
stability (e.g., Lapo et al. 2015; Raleigh et al. 2013;
Slater et al. 2001). Therefore, the availability and quality
of one or more forcings can have critical implications for
the surface energy balance.

7. Conclusions

We conducted data-withholding experiments at four
well-instrumented AWSs in contrasting snow climates.
We were motivated to understand which meteorological
forcings, beyond commonly measured 7T,;, and P, most
impact physically based snow model output and there-
fore need expanded observation or improved estimation
in cold regions. While the hierarchy of forcings varied
somewhat between models and sites, we found Q;,
which is measured least frequently in the western United
States, most often caused the greatest divergences in
model behavior. A more general conclusion that can be
drawn from the results is that the particular configura-
tion (i.e., collection of sensors) and location of an AWS
impacts model performance.

Based on our snowpack modeling results, we conclude
that the priority of expanded forcing observations at
existing AWSs s (in order of decreasing importance) Qy;
(primary), RH and Qy; (secondary), and U (tertiary).
This recommendation demands detailed consideration
of factors not assessed here, such as sensor costs and
power, maintenance, model spatial scale, spatial vari-
ability, other purposes of AWSs (e.g., importance of U
and RH for fire risk monitoring), and dominant mete-
orological conditions. Future research should continue
evaluating methods for estimating forcings and for de-
tecting and correcting errors in observations. Work is
also needed to examine how data availability impacts
modeled snow states across a wider range of landscapes
where dominant snow processes differ. Finally, because
this study only considered the case of adding sensors to
an existing AWS, work is needed to understand how
estimation errors propagate spatially to unmonitored
locations in basinwide modeling applications.
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