

1 Journal: Continental Shelf Research

2

3 Title: Oceanographic influences on spotted seal foraging in the Pacific Arctic

4

5 Authors: Olnes, J.^{1*}, Crawford, J.¹, Okkonen, S.², Citta, J.J.³, Quakenbush, L.¹, Von Duyke,
6 A.L.³, Maslowski, W.⁴, Osinski, R.⁵, Druckenmiller, M.L.⁶

7

8

9 ¹ Alaska Department of Fish and Game, 1300 College Road, Fairbanks, AK, 99701, USA

10 ² Institute of Marine Science, University of Alaska Fairbanks, AK, 99775, USA

11 ³ North Slope Borough, Department of Wildlife Management, PO Box 69, Utqiagvik, AK,
12 99723, USA

13 ⁴Department of Oceanography, Naval Postgraduate School, Monterey, CA, 93943, USA

14 ⁵Institute of Oceanology, Polish Academy of Sciences, Powstancow Warszawy 55, 81-712,
15 Sopot, Poland

16 ⁶National Snow and Ice Data Center, University of Colorado Boulder, Boulder, CO, 80309,
17 USA

18

19 *Corresponding author: justin.olnes@alaska.gov

20

21 **Abstract**

22 Satellite Relay Data Loggers that are equipped with Conductivity, Temperature, and Depth
23 sensors (CTD-SRDLs) are an important tool for identifying how oceanography influences an
24 animal's foraging behavior and how foraging may be affected by environmental change. Spotted
25 seals (*Phoca largha*) are one of four species of sea ice-associated seals that occur in the Bering,
26 Chukchi, and Beaufort seas of the Pacific Arctic. Between 2016 and 2020, 23 spotted seals were
27 equipped with CTD-SRDLs, which collected temperature and salinity profiles as the seals dove
28 through the water column. We first examined the oceanographic characteristics along seal tracks
29 using data from the CTD-SRDLs, and then modeled seal behavioral state (resident or transiting)
30 as a function of sea ice and oceanographic conditions extracted from the inferred oceanographic
31 space. We then related these findings to habitat associated with the predominant fish prey species
32 identified from seal stomach contents, which included Arctic cod, saffron cod, Pacific herring,
33 rainbow smelt, and capelin. Spotted seals mostly dove to near-bottom depths, including frequent
34 dives to the sea floor. During the ice-free season in the Chukchi Sea, pups were mostly likely to
35 be in the resident state (i.e., possible foraging) when near-bottom conditions were colder and less
36 saline. Seals were also more likely to be in the resident state when far offshore and in areas with
37 colder bottom temperatures. Behavior related to possible offshore foraging was more associated
38 with non-pup seals and possible nearshore foraging was more associated with pups. During the
39 ice-covered season, seals were more likely to be in the resident state when bottom temperatures
40 were colder, and this relationship was stronger for non-pups than for pups and for females than
41 for males. Our use of satellite telemetry, oceanographic modeling, and biological sampling
42 support the understanding that spotted seals are generalists in both prey species and foraging
43 habitat.

44 **Key words:** Ice seals; biologging; Alaska; Bering Sea; Beaufort Sea; Chukchi Sea

45

46 **1. Introduction**

47 Satellite Relay Data Loggers (SRDLs), or transmitters, are an extremely important tool
48 for better understanding the movements and dive behavior of marine mammals in large,
49 challenging environments such as the Pacific Arctic (Lowry et al. 1998, Crawford et al. 2011,
50 Jay et al. 2014, Von Duyke et al. 2020, Olnes et al. 2020a,b). Information collected from SRDLs
51 equipped with Conductivity, Temperature, and Depth (CTD) sensors (hereafter referred to as
52 CTD-SRDLs) provide temperature and salinity profiles as an animal moves through the water
53 column and are particularly useful in describing the marine environment at a spatial scale
54 relevant to the animal (Gryba et al. 2019, Citta et al. 2020, 2021). Thus, movements that may be
55 associated with foraging, such as periods of resident behavior (also known as area-restricted
56 search) or targeted dive depths can be associated with oceanographic conditions.

57 Spotted seals (*Phoca largha*) are one of four species of sea ice-associated seals that occur
58 in the Bering, Chukchi, and Beaufort (BCB) seas of the Pacific Arctic. Ice-associated seals
59 depend upon sea ice for part of their life cycle. In winter, BCB spotted seals associate with the
60 ice edge in the Bering Sea (Burns 1970, Lowry et al. 1998, Rugh et al. 1997), using it as a
61 platform for resting between feeding bouts, as well as a platform for pupping and molting in the
62 spring. In summer, spotted seals disassociate from sea ice, forage in open water, and haul out on
63 land (Burns 1970, Frost et al. 1993, Lowry et al. 1998). As such, spotted seals occur in the
64 Bering Sea year-round, but expand their range into the Chukchi and Beaufort seas in summer as
65 the sea ice retreats northward (Burns 1970, Citta et al. 2018). Within these waters, spotted seals
66 remain on the continental shelf, where depths are less than 200 m (Burns 1970, Citta et al. 2018).

67 Shelf waters make up the entire northern Bering and Chukchi seas, whereas the shelf in the
68 Beaufort Sea is relatively narrow (~100 km) along Alaska's northern coast.

69 Spotted seals primarily eat fish (Bukhtiyarov et al. 1984, Dehn et al. 2007), but also
70 consume amphipods and shrimp (Quakenbush et al. 2009). Such prey have various habitat
71 associations and the conditions that aggregate them may vary by species or over space and time.
72 On the continental shelf, habitats for spotted seal prey are partly defined by water masses with
73 temperature and salinity characteristics that reflect their spatial origins and seasonal evolution
74 (e.g., Eisner et al. 2013). These water masses trend from warmer and fresher over the eastern
75 shelf to cooler and saltier over the western shelf. The main shelf currents flow south to north,
76 carrying nutrients, heat, fresh water, and biota from the Bering Sea through the Bering Strait and
77 across the Chukchi Sea to the Arctic Basin (Coachman et al. 1975, Walsh et al. 1989, Stabeno et
78 al. 1999, Weingartner et al. 2005, Berline et al. 2008, Clement Kinney et al. 2009, Maslowski et
79 al. 2014). Boundaries between water masses (i.e., fronts and stratifications) may have strong
80 salinity or temperature gradients that can aggregate zooplankton and attract higher trophic level
81 predators such as fish (e.g., Woodson and Litvin 2015) or whales (Moore et al. 1995, Citta et al.
82 2015, Citta et al. 2020, Citta et al. 2021). Spotted seals may forage along fronts, stratified
83 regimes, or target water masses with specific temperatures or salinities that contain their primary
84 prey.

85 In addition to hydrography, sea ice may also influence spotted seal foraging patterns.
86 This is because sea ice alters the marine environment below it and spotted seals may be more
87 likely to forage in productive areas near ice upon which they can rest, as is known for walruses
88 (*Odobenus rosmarus divergens*, Jay et al. 2014) and likely the case for ice seals (Burns 1970).
89 Both sea ice and oceanographic conditions are changing in the Pacific Arctic (Huntington et al.

90 2020). Sea ice extent, concentration, and thickness have declined during the 21st century; the
91 autumn advance of sea ice southward now occurs later in the year, while the spring retreat of sea
92 ice to the north occurs earlier in the year (Wang et al. 2018). Reductions in sea ice contribute to
93 warming surface waters in many parts of the region (Baker et al. 2020). In years with low ice
94 extent, the area of the Bering Sea Cold Pool, cold water (<2° C) that persists along the bottom
95 throughout the year, is diminished (Clement Kinney et al. 2022). These changes may alter
96 invertebrate, fish, and marine mammal distributions, and associated trophic dynamics (Mueter et
97 al. 2021). For example, less sea ice resulting in less sympagic (ice-associated) primary
98 production and more pelagic primary production could reduce benthic productivity because less
99 phytoplankton gets deposited on the sea floor, with potential consequences for species at higher
100 trophic levels that feed on benthic organisms (Bluhm and Gradinger 2008, Wang et al. 2016,
101 Mueter et al. 2021). However, recent measurements of significant carbon deposition to the sea
102 floor during the warm summer of 2018 suggest a potential for benthic productivity to remain
103 high in the region despite sea ice loss and warmer waters (O'Daly et al. 2020). Less ice, warmer
104 water temperatures, and a shrinking of the Bering Sea Cold Pool may also allow subarctic fish
105 species to expand their range into Arctic waters (Grebmeier et al. 2006a), altering the assemblage
106 of available prey species. Such changes are likely to affect spotted seal distribution, foraging,
107 and movement behavior.

108 Changes to the Pacific Arctic may also lead to changes in how spotted seals interact with
109 human populations in Alaska. Spotted seals are an important subsistence species for Alaska
110 Natives in most coastal villages from Bristol Bay to the Canadian border in the Beaufort Sea,
111 with an estimated 5,200–8,200 harvested annually in Alaska (Nelson et al. 2019). Environmental
112 change that would alter spotted seal distribution or movement patterns could affect their

113 availability for harvest by Alaska Natives. Further, environmental changes and shifts in species' 114 distributions may increase spotted seal predation of species targeted by commercial fisheries in 115 Alaskan waters (e.g., walleye pollock; *Gadus chalcogrammus*). Hence, improving our 116 understanding of spotted seal foraging and how they may be affected by environmental change is 117 important and timely.

118 Our primary goal was to better understand how the oceanography of the BCB area may 119 influence spotted seal foraging behavior using data collected by animal-borne instrumentation. 120 Between 2016 and 2020, 23 spotted seals were equipped with CTD-SRDLs that provided animal 121 movement and oceanographic data. We used these data to examine relationships among physical 122 oceanography and movements indicative of foraging for spotted seals during the ice-free period 123 (July–November) in the Chukchi Sea and the ice-covered period (December–April) in the Bering 124 Sea. We define 'foraging' as searching for and obtaining food and assume that examining 125 spotted seal dive and movement behavior provides insights into foraging behavior. We assumed 126 the depths targeted by spotted seal dives are indicative of where in the water column seals are 127 foraging. We hypothesized that spotted seal movement behavior, and more specifically, when 128 spotted seals exhibit resident behavior, would be influenced by water temperature and salinity, 129 and hydrographic fronts and stratified features in both seasons, and by sea ice presence during 130 the ice-covered period. We then summarized spotted seal prey from seal stomach contents, and 131 their habitat preferences, as potential explanations for relationships found between movement 132 behavior and oceanography. We discuss the advantages and limitations of oceanographic data 133 collected by animal-borne instrumentation based on the results of this study.

134

135 **2. Materials and Methods**

136 We first summarized the information provided by the CTD-SRDLs, spotted seal
137 movements and habitat use, and the dive depths that seals targeted. We then used a state-space
138 model to define seal movement behavioral states and explored how they relate to oceanographic
139 fields inferred from data provided by the CTD-SRDLs. Lastly, patterns of movement behavior
140 were related to the habitat associations of prey found in seal stomachs. All statistical analyses
141 were performed in R statistical software version 4.3.1 (R Core Team 2023).

142

143 *2.1. Spotted seal movements, habitat use, and dive behavior*

144

145 Information on seal movement, haul-out, and dive behavior was provided by CTD-
146 SRDLs that were attached to captured spotted seals (n = 23, Table 1). Seals were captured and
147 instrumented in the months of July through October (2016–2019) at three locations in Alaska:
148 the Colville River (near Nuiqsut) and Dease Inlet (near Utqiagvik), which are on the northern
149 coast in the Beaufort Sea, and at Scammon Bay on the western coast of Alaska in the Bering Sea.
150 Seal sex and age were determined in the field and seals were classified as adults (>5 years old),
151 subadults (1–5 years old), or pups (<1 year old) based on age estimates using claw annuli
152 (McLaren 1958). For our analyses, we grouped adults and subadults into a single ‘non-pup’ age
153 class.

154 The CTD-SRDLs were manufactured by the Sea Mammal Research Unit in St. Andrews,
155 Scotland (<http://www.smru.st-andrews.ac.uk/Instrumentation/CTD/>) and were programmed to
156 provide location data via the Argos satellite system (<http://www.argos-system.org/>), dive
157 behavior, haul-out durations, and temperature and salinity profiles for a subset of dives. Dive and

158 oceanographic data were continuously collected but subsampled and simplified to facilitate
159 transmission.

160 Raw location data returned by Argos includes estimates of error characterized by “quality
161 classes”. The error radius for higher-quality locations in classes 3, 2, or 1 is determined by
162 Argos, whereas lower-quality locations classified as 0, A, or B must have their error radius
163 estimated. Locations in class Z are unreliable and were removed. Raw location data and
164 associated error quality classes were used to estimate locations at specific time intervals and to
165 infer behavioral state (transiting or resident) using the R package ‘bsam’ (version 1.1.3, Jonsen et
166 al. 2005, Jonsen 2016). This 2-state switching state-space model (sSSM) is structured around a
167 correlated random walk process that accounts for location error, estimates movement parameters
168 for two inferred behavioral states across all seals, and then applies these parameters to estimate
169 individual seal locations and behavioral state for discrete time intervals. Seals that are ‘transiting’
170 make directed movements (i.e., low turn angles) and have longer step-lengths between
171 successive locations, whereas seals in a ‘resident’ state change direction frequently and have
172 shorter step-lengths. Behavioral state ranges from 0 to 1, with values near 0 indicating transiting
173 behavior and values near 1 indicating resident behavior.

174 To determine which time interval produced the most defined behavioral states (i.e.,
175 bimodal distribution), we compared model results using 3-hour, 6-hour, and 12-hour time
176 intervals. For each time interval, the model was run with 40,000 iterations and a burn-in period
177 of 10,000 iterations, which were then thinned by 10 to eliminate autocorrelation. Diagnostic plots
178 provided by the ‘bsam’ package affirmed that using a 6-hour interval resulted in the highest
179 quality model with the most well-defined behavioral states.

180 For each estimated 6-hour location, we determined the water depth, distance from land,
181 and sea ice concentration. Bathymetry came from a 1-km digital bathymetric model produced by
182 the Alaska Ocean Observing System (AOOS, Danielson et al. 2008). The shoreline was
183 determined using the global, self-consistent, hierarchical, high-resolution shoreline database
184 (Wessel and Smith 1996). Daily sea ice concentration was obtained from the National Snow and
185 Ice Data Center and consisted of remotely sensed, passive microwave data that assigned ice
186 concentration to a spatial grid with a cell resolution of 25 x 25 km (DiGirolamo et al. 2022).

187 All data types provided by the CTD-SRDLs include a time stamp that can be used to
188 locate each datum along an individual seal's track through linear interpolation. We first used the
189 R function 'as.ltraj' (package: 'adehabitatLT', Calenge 2006) to calculate the distance (in
190 meters) between each estimated location, and then generated a 'track distance' variable, which
191 was the cumulative distance traveled along each seal's track. We then interpolated the distance
192 along each track at which either a dive or CTD profile was recorded based on each datum's time
193 stamp relative to the time stamp of each estimated 6-hr location (package: 'zoo', function:
194 'na.approx', Zeileis and Grothendieck 2005). Aligning each data type along a seal's track via
195 their time stamps allowed us to relate information across datasets.

196 The CTD-SRDLs transmit dive behavior data for the calculation of the Time-At-Depth
197 (TAD) index (Fedak et al. 2001). The TAD index is a metric quantifying dive behavior, where
198 values approaching 1 indicate the animal spent most of its dive near the maximum depth of the
199 dive (i.e., 'square-shaped' dives). Conversely, values approaching 0 indicate the animal spent
200 most of its dive near the surface or at mid-depths and minimal time at the maximum dive depth
201 (i.e., 'V-shaped' dives). The maximum depth achieved during each dive and its duration were
202 also recorded by the CTD-SRDLs.

203 Haul-out behavior is determined by a wet-dry sensor on the CTD-SRDL that identifies
204 the start and end time for each haul-out bout. A seal haul-out bout begins when the CTD-SRDL
205 registers as dry for 10 minutes and ends when wet for 40 seconds. Using these haul-out bouts, we
206 formatted a haul-out variable as the proportion of time a seal was registered as hauled out during
207 a 6-hour period centered on each location estimate.

208 We summarized the distance from land, water depth, and sea ice concentration used by
209 seals, the proportion of the water column used during each seal dive, and the TAD index for
210 when seals were in the Chukchi Sea during the ice-free season and in the Bering Sea during the
211 ice-covered season. We examined differences in habitat use and dive behavior among seal sex
212 and age classes, and behavioral state. The proportion of time hauled out was only used in models
213 of seal movement behavior.

214

215 *2.2. Seal movement behavior and oceanography inferred from CTD-SRDLs*

216

217 For a subset of dives, the CTD-SRDLs collected oceanographic information in the form
218 of temperature and salinity profiles. Up to 18 temperature and salinity (derived from
219 conductivity) measurements were collected at depths throughout the dive, based on the dive
220 depth, including measurements at the maximum depth achieved.

221 We used data from the temperature and salinity profiles to fill in the oceanographic grid
222 space in which seals were moving and diving (e.g., Citta et al. 2021). The 2-dimensional grid
223 space was defined by track distance (km) along the horizontal axis and water depth (m) along the
224 vertical axis. The number of cells and cell size was determined by the ratio of maximum water
225 depth encountered and track distance and was specific to each seal track such that the grid was

square for the interpolation and then back-transformed to the original dimensions. Temperature and salinity values for each cell within the grid space were calculated by inverse distance weighting the 10 closest temperature or salinity measurements from the CTD profiles. The grid was then smoothed using a moving average of the 10 closest grid cells; the outcome being a track with estimated behavioral states (transiting or resident) aligned with dives of known depth, both of which were overlaid on the 2-D temperature and salinity fields. Near-surface (2 m depth) and near-bottom (5 m above sea floor) temperature and salinity data were extracted at each 6-hour location associated with a behavioral state. The near-surface and near-bottom sea water densities were then calculated from the corresponding temperature and salinity values after which the vertical density differences were calculated (bottom density minus surface density). Similarly, we calculated the horizontal difference for near-surface and near-bottom temperature and salinity as the difference over 10 km or 25 km of track distance, where values were extracted from the interpolated oceanographic space 5 km (or 12.5 km) in front of and 5 km (or 12.5 km) behind each 6-hour location estimate.

We modeled seal behavioral state as a function of oceanography extracted from the interpolated oceanographic space and sea ice conditions using linear mixed effects models (package: ‘nlme’, Pinheiro et al. 2022). We conducted separate modeling exercises based on region and season, for the Chukchi Sea during the open water season and for the Bering Sea during the ice-covered season. Locations above 65.6° N were considered in the Chukchi Sea and locations below were considered in the Bering Sea. Our response variable was the logit-transformed behavioral state. For both regions and seasons, surface temperature and salinity, bottom temperature and salinity, and the vertical density difference, all extracted from the interpolated oceanographic space, were explanatory variables associated with oceanography.

249 Horizontal differences were not used because most estimated values were zero. Additionally, we
250 considered other explanatory variables associated with season specific variables, including sea
251 ice and distance traveled from shore (see below). We also included a categorical haul-out
252 variable, where a seal was considered hauled out (“yes”) if the haul-out variable was > 0.33 ,
253 indicating a seal hauled out for at least 2 hours during a 6-hour period, and not hauled out (“no”)
254 if the value was < 0.33 . All explanatory variables included two-way interaction terms with seal
255 sex and age class (pup or non-pup). All numerical variables were standardized to facilitate model
256 convergence and interpretation of effect size. Temporal autocorrelation was addressed in all
257 models using a spherical autocorrelation function. Models were initially fitted using maximum
258 likelihood. We first determined the random effect structure using likelihood ratio tests (Zuur et
259 al. 2009). After determining the random effect structure, we then fit several candidate models
260 that were compared using Akaike’s Information Criterion (AIC) using a two-tiered approach. We
261 first compared several candidate models to test the broad hypotheses of whether seal movement
262 behavior was influenced by temperature or salinity, or by surface or bottom conditions. The top
263 performing model from this set was then fed into the ‘dredge’ function in R, which can fit and
264 provide AIC values for all possible combinations of explanatory variables (package: ‘MuMIn’,
265 Barton 2022). We selected the top performing model as the most parsimonious model within 2
266 AIC units of the lowest AIC score. The top performing model was fit again using restricted
267 maximum likelihood (REML) to achieve better parameter estimates (Zuur et al. 2009).

268 In addition to the modeling framework described above, we included unique variables
269 that were specific to each season and region, based on either seal behavior or the presence of sea
270 ice. For the Chukchi Sea during the ice-free season (July–November), we created a categorical
271 trip distance variable based on the observed behavior of spotted seals and their use of land-based

272 haul-outs during this time. We first separated individual ‘trips’ by periods when seals traveled
273 towards land and then turned back away from land within 20 km of shore. Trips where the
274 maximum distance traveled away from land was <20 km were labeled as ‘near’ distance, trips
275 where the maximum distance was >20 km but <75 km were labeled as ‘mid’ distance, and trips
276 where the maximum distance traveled from land was >75 km were labeled as ‘far’ distance. All
277 locations within 5 km of land were labeled as ‘coastal’ locations. Our categorical trip distance
278 variable was used as an interaction term with our oceanographic variables as we hypothesized
279 that the effect of each variable on seal movement behavior would differ based on trip distance.

280 For models of seal movement behavior in the Bering Sea during the ice-covered season
281 (December–April), we included sea ice variables. Specifically, we include sea ice concentration
282 and a ‘distance from the ice edge’ variable, where the ice edge was defined as the 15% ice
283 concentration contour. Spotted seals are known to strongly prefer the marginal ice zone near the
284 ice edge (Burns 1970, Lowry et al. 2000). We additionally created a categorical sea ice variable
285 where the ‘no ice’ category was defined as <15% ice concentration and the ‘ice’ category was
286 defined as >15% ice concentration. We included the categorical ice variable as an interaction
287 term with all oceanographic variables.

288

289 *2.3. Fish prey identified from seal stomach contents*

290

291 We summarized stomach contents data collected from spotted seals harvested for
292 subsistence during 2000–2020 (Quakenbush et al., 2009; ADF&G unpublished data), focusing
293 specifically on fish prey. Spotted seal stomachs were collected from the Alaska Native
294 subsistence harvest as part of a biomonitoring program for assessing the health and status of

295 seals. Fish prey are primarily identified to species by their otoliths, ear bones that are more
296 resistant to digestion and thus often found in stomachs. Left- and right-side otoliths are
297 distinguishable, and therefore a count of either side found within a seal stomach can provide a
298 minimum number of individuals of a given species that were recently consumed by the seal.
299 Otoliths from sculpins (Family Cottidae), flatfish (Family Pleuronectidae), snailfish (Family
300 Liparidae), and pricklebacks (Family Stichaeidae) are small and may have degraded faster than
301 otoliths of other species, making them more difficult to identify to genus or species; therefore,
302 these fish taxa were only considered at the family level for our analyses.

303 Digestion times in pinnipeds are relatively short; soft parts are typically identifiable
304 within 6 h of ingestion (Sheffield et al. 2001) and hard parts within 24 h (Murie and Lavigne
305 1986). Our sample of instrumented seals moved an average (\pm SE) of 44 ± 13 km in 24 h, and as
306 such, stomach contents represent the prey consumed near the sampling location. Samples
307 collected from Shishmaref were used to represent the coastal and nearshore environment of the
308 Chukchi Sea during the ice-free season. Samples collected from St. Lawrence Island (Gambell
309 and Savoonga) and Hooper Bay, were used to represent the central Bering Sea and eastern
310 Bering Sea, respectively, during the ice-covered season.

311 We first assigned whether each fish species was present (1) or absent (0) based on the
312 occurrence of species-specific otoliths in the stomach. We also determined the relative
313 abundance (RA) of each fish species to compare fish quantities consumed by each seal. RA_{ij} was
314 calculated as the number of fish species i consumed by an individual seal j divided by the total
315 number of fish consumed by seal j :

$$316 \quad RA_{ij} = \frac{n \text{ of fish } i \text{ found in seal } j}{\text{total } n \text{ of fish found in seal } j}$$

317 Thus, for each sampled seal, we determined the presence or absence of each fish species and the
318 proportion of otoliths that were from each fish species.

319 From these data, we estimated the frequency of occurrence (FO) and the mean RA for
320 each fish species within each of our region and season groupings using generalized linear models
321 (function: ‘glm’). We assessed differences between age classes for FO_i with the binary
322 presence/absence data, using a generalized linear model with a binomial distribution and a logit-
323 link function (i.e., logistic regression). Using this methodology, we are technically estimating the
324 *probability* of occurrence, however, we use the term *frequency* of occurrence to maintain
325 consistency with prior studies of seal diet (Pierce and Boyle 1991, Tollit et al. 2010, Crawford et
326 al. 2015). We also assessed differences between age classes for the mean RA_i using a generalized
327 linear model with a binomial distribution and a logit-link function, however, because the RA_{ij} is
328 a proportion, we also needed to weight each RA value by the total number of fish found within
329 each stomach, which effectively converts our proportional data into a binary format. Fish species
330 with a $FO > 0.2$ (i.e., 20%) for at least one region/season/age class category were considered
331 major prey species. Fish prey species with a $FO < 0.2$ and all unidentified fish were pooled into
332 one group (“other fish”), for which the mean RA was also calculated. Results for both the FO and
333 RA analyses are presented as percentages.

334

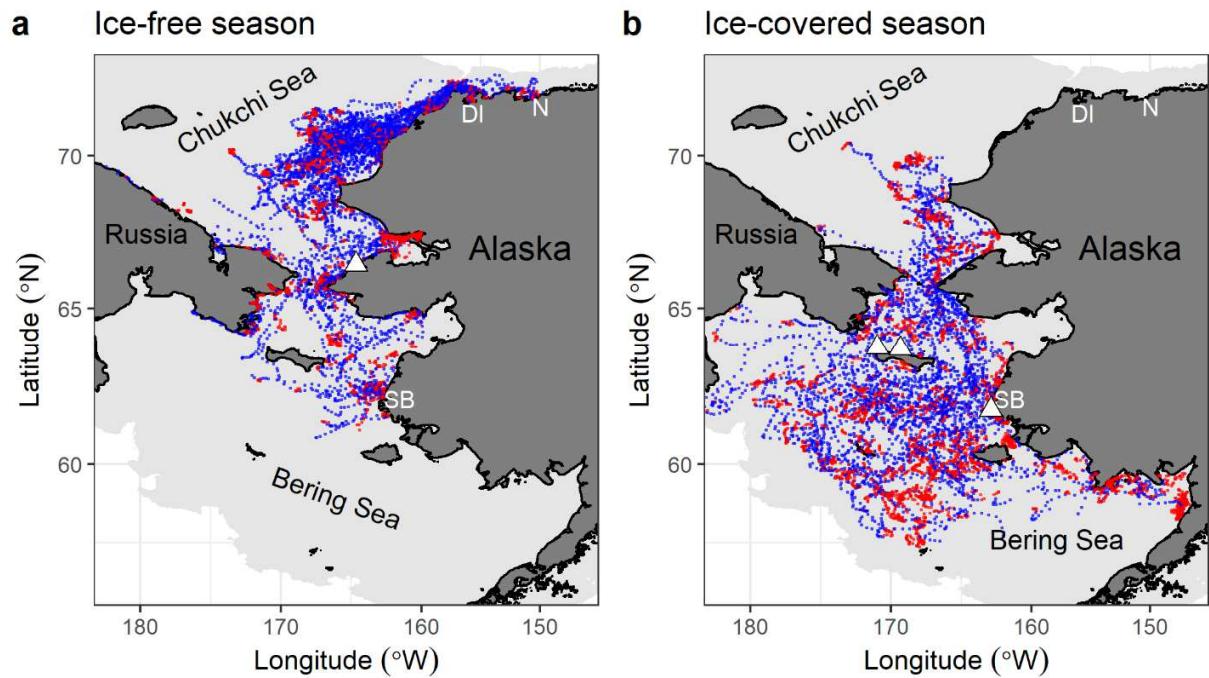
335 **3. Results**

336 All seals combined, we received data for 80,452 locations, 112,011 individual dives, and
337 7,109 CTD profiles. The CTD-SRDLs transmitted for 190 ± 47 days (mean \pm SD; range 117–
338 288 days) (Table 1). During the period each tag was operating, seals spent an average of 28 ± 29
339 cumulative days hauled out. Despite a large record of dives, total dive time covered by dive and

340 surface records only accounted for an average of $7 \pm 3\%$ of total operation time after accounting
341 for periods when seals were hauled out, meaning that most dive records were not transmitted,
342 likely due to the prioritization of CTD profile data. The median distance between CTD profiles
343 was 11 km (mean \pm SD: 20 ± 33 km).

344

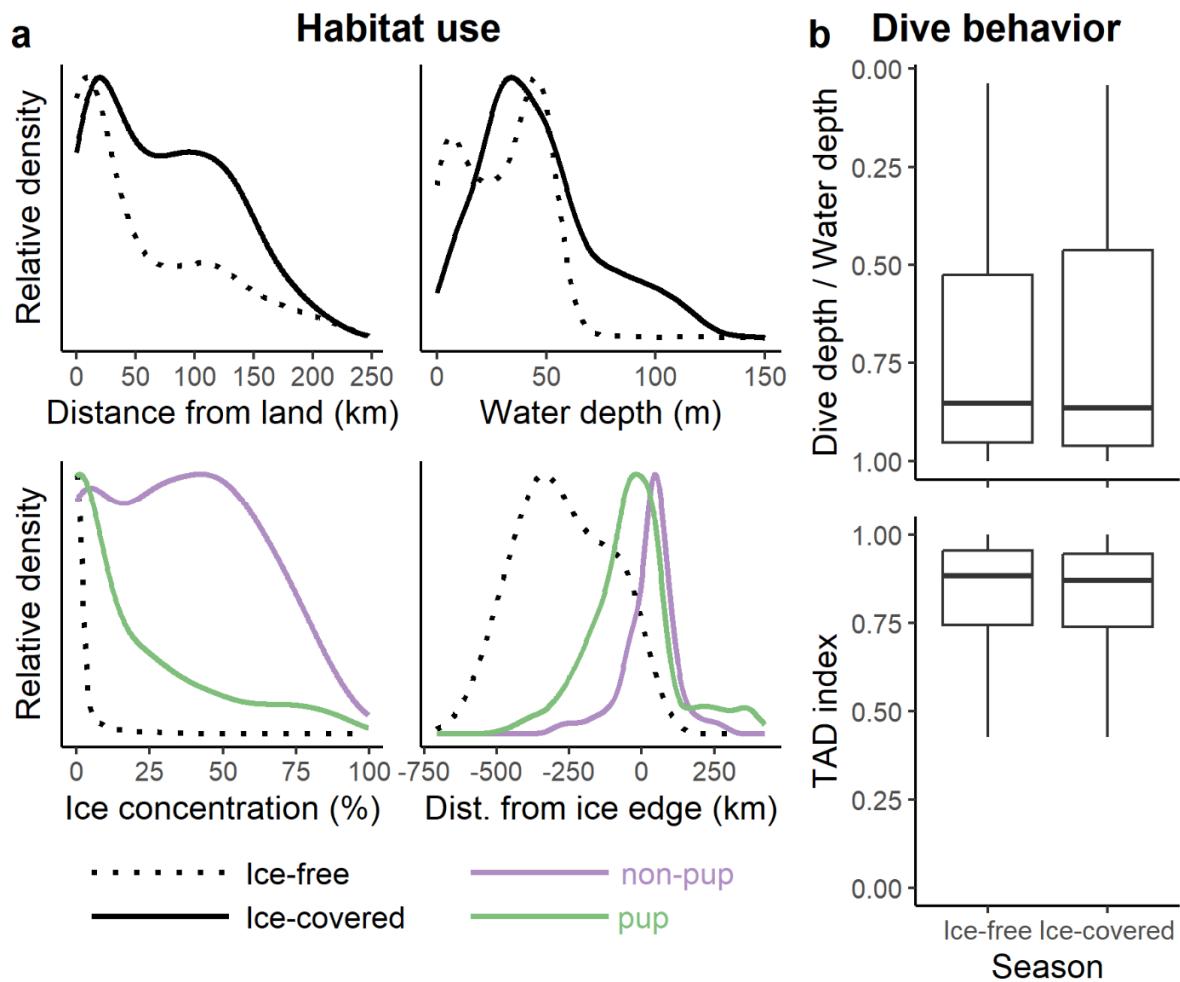
345 *3.1. Spotted seal movements, habitat use, and dive behavior*


346 Diagnostic plots affirmed that a 6-hour interval was most appropriate for estimating
347 locations and behavioral states using the sSSM, resulting in 14,981 estimated locations ('#sSSM
348 locs', Table 1). The median distance between estimated locations was 8 km (mean \pm SD: 11 ± 12
349 km). Seals exhibited periods of resident and transiting behavior throughout their movements
350 (Fig. 1). During the ice-free season, seals were primarily in the Chukchi Sea, Bering Strait, and
351 the northeastern Bering Sea, whereas during the ice-covered season seals were primarily in the
352 Bering Sea or moving south towards the Bering Sea (Fig. 1). Seals that were tagged in the Bering
353 Sea remained in the Bering Sea, whereas seals that were tagged in the Beaufort Sea moved into
354 the Chukchi Sea during the ice-free season and most continued south into the Bering Sea in
355 advance of the ice-covered season.

356 Seals tended to remain closer to land during the ice-free season (median: 24 km, mean \pm
357 SD: 52 ± 60 km) than during the ice-covered season (70 km, 75 ± 55 km) when seals were more
358 often at distances >100 km from land (Fig. 2 a). Seals tended to use shallower depths when in the
359 Chukchi Sea during the ice-free season (median: 31 m, (mean \pm SD: 28 ± 24 m) than in the
360 Bering Sea during the ice-covered season (40 m, 47 ± 30 m) when seals more often used waters
361 >75 m deep (Fig. 2 a). During the ice-free season, seals rarely encountered sea ice (4% of
362 locations in $>15\%$ sea ice concentration). Seals used sea ice during the ice-covered season (56%

363 of locations in sea ice) but were also in open water (44% of locations in open water). Both pup
364 (median: 0%, mean \pm SD: $18 \pm 25\%$) and non-pup (34%, $35 \pm 26\%$) seals were most often in
365 areas with low sea ice concentrations during the ice-covered season, however, non-pups also
366 frequently used areas with higher ice concentrations whereas pups primarily remained in areas
367 with $<25\%$ sea ice concentration (Fig. 2 a). Pups tended to occur outside the pack ice south of the
368 ice edge (median: -25 km, mean \pm SD: -32 ± 148 km) whereas non-pups were more often within
369 the pack ice (35 km, 27 ± 89 km), although seals of all age classes were distributed around the
370 marginal ice zone and the ice edge. There was no association between the habitat seals used and
371 behavioral state.

372 Dive behavior was nearly identical during both seasons and in both seas and did not
373 differ among sexes, age classes, or behavioral state (Fig. 2 b). While the maximum dive depths
374 reached by seals included depths throughout the water column, more were closer to the bottom
375 than near the surface (median dive depth: 85% of water column). Most dives (59%) were $>75\%$
376 of water depth, while only 10% of dives were $<25\%$ of water depth. In addition, 15% of all dives
377 in water >10 m deep were within 1 m of the sea floor. Most (73%) of all dives had a TAD index
378 >0.75 , and the median TAD index (0.87) indicated that seals primarily made square-shaped
379 dives, where most time was spent at the maximum depth of the dive.


380

381

382 Fig. 1. Estimated locations and behavioral states for spotted seals ($n = 23$) tagged in the Bering
 383 (Scammon Bay (SB)) and Beaufort (Nuiqsut (N), Dease inlet (DI)) seas of Alaska during the ice-
 384 free season (a, July–November) and the ice-covered season (b, December–April), 2016–2020.
 385 Red indicates resident behavior and blue indicates transiting behavior. Light gray shading is the
 386 continental shelf, defined by the 200 m depth contour. White triangles represent locations where
 387 spotted seal stomachs were collected from the Alaska Native subsistence harvest (Ice-free
 388 season: Shishmaref, Ice-covered season, north to south: Gambell, Savoonga, and Hooper Bay).
 389

390

391 Fig. 2. Habitat use (a) and dive behavior (b) for spotted seals during the ice-free (July–
 392 November) and ice-covered (December–April) seasons. For habitat use, distances from land,
 393 water depths, ice concentrations, and distances from the ice edge are shown with relative density
 394 plots. Plots for ice concentration and distance from the ice edge depict relative densities for all
 395 seals during the ice-free season and separately for non-pup and pup seals during the ice-covered
 396 season. Negative distances from the ice edge represent densities in ice concentrations <15% or
 397 open-water and positive distances represent densities in ice concentrations $\geq 15\%$. Dive behavior
 398 includes the proportion of the water column used by each dive, and the Time-At-Depth (TAD)
 399 index (where values approaching 1 indicate the seal spent most of its dive near the maximum
 400 depth of the dive and values approaching 0 indicate the seal spent most of its dive near the
 401 depth of the dive and values approaching 0 indicate the seal spent most of its dive near the

402 surface or at mid-depths), both of which are displayed as box plots, where the thick horizontal
403 line is the median, and the box is the interquartile range.

404

405 *3.2. Seal movement behavior and oceanography inferred from CTD-SRDLs*

406

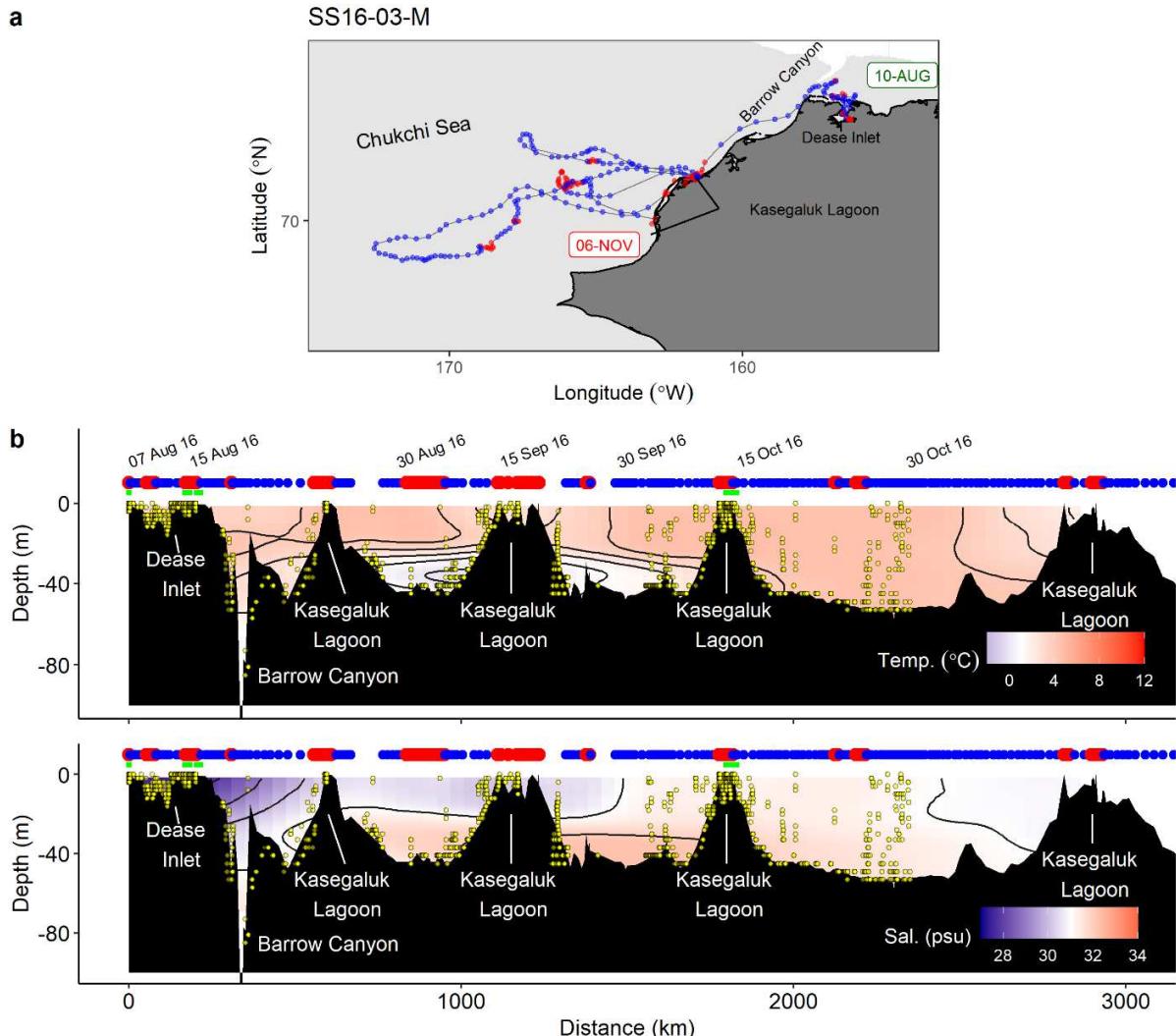
407 Merging location, dive, and CTD data by interpolating the location of each datum along a
408 seal's track allowed us to visualize how seal behavior relates to the oceanographic space seals
409 move through (Fig. 3, Supplement 1, Figs. S1–S44). In the Chukchi Sea during the ice-free
410 season, seals encountered areas with warmer and fresher water when closer to shore, and cooler,
411 more saline waters at the bottom and when farther from shore. During much of the ice-free
412 season, seals were in areas where warmer water ($>3^{\circ}$ C) extended to the sea floor ($60 \pm 20\%$ of
413 each seal track during the ice-free season (mean \pm SD)). In the Bering Sea during the ice-covered
414 season, ice-covered waters used by seals tended to be less stratified and cooler. In most cases
415 water temperatures were -1° C or colder throughout the water column when under sea ice. When
416 seals moved out of the sea ice and closer to the shelf break in the central Bering Sea, water
417 temperatures were warmer (see Fig. S18 or Fig. S26 in Supplement 1).

418 Our top-performing movement behavior model for the ice-free period in the Chukchi Sea
419 included bottom temperature ($X^2 = 19.43$, d.f. = 1, $p = <0.001$), bottom salinity ($X^2 = 13.11$, d.f.
420 = 1, $p < 0.001$), trip distance ($X^2 = 63.10$, d.f. = 1, $p < 0.001$), age class ($X^2 = 0.63$, d.f. = 1, $p =$
421 0.42), and interactions between these terms (Table 2, Supplement 2). The model included
422 interactions between bottom temperature and trip distance ($X^2 = 11.29$, d.f. = 1, $p = 0.01$),
423 bottom temperature and age class ($X^2 = 5.27$, d.f. = 1, $p = 0.02$), and bottom salinity and age
424 class ($X^2 = 4.99$, d.f. = 1, $p = 0.02$). The resident state was more likely when bottom

425 temperatures were colder for pups, and also for non-pups, but only during far-distance trips
426 (Table 2, Fig. 4). Among trip distances, seals were more likely to be in a resident state when near
427 the coast (<5 km from land), and during near-distance (<20 km) trips from land, however, the
428 interaction term between trip distance and bottom temperature resulted in the resident state also
429 being more likely during far distance trips when bottom temperatures were colder (Table 2, Fig.
430 4). Seals were least likely to enter the resident state during mid-distance trips from land (20 – 75
431 km). For bottom salinity, the relationship with seal movement was significant for pups only,
432 where pups were more likely to be in the resident state when bottom salinities were fresher (Fig.
433 4).

434 For the ice-covered season in the Bering Sea, our top performing model included bottom
435 temperature ($X^2 = 7.60$, d.f. = 1, $p = 0.005$), age class ($X^2 = 15.97$, d.f. = 1, $p < 0.001$), sex ($X^2 =$
436 1.30, d.f. = 1, $p = 0.25$), and interactions between bottom temperature and age class ($X^2 = 7.02$,
437 d.f. = 1, $p = 0.008$) and bottom temperature and sex ($X^2 = 6.59$, d.f. = 1, $p = 0.01$) (Table 2,
438 Supplement 2). The resident state was significantly associated with colder bottom temperatures,
439 and this relationship was stronger for females than males and for non-pups than for pups (Fig. 4).

440

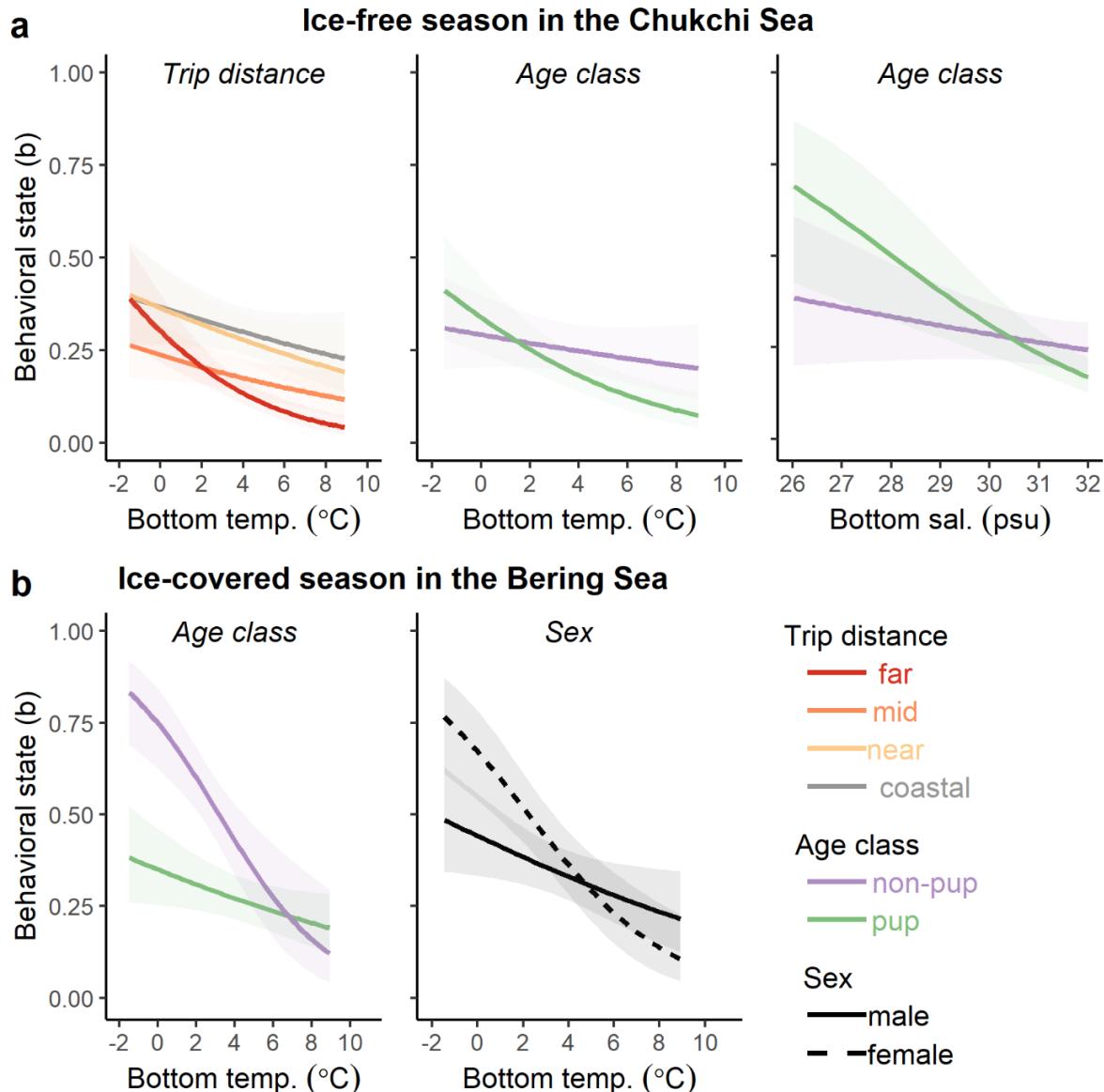

441

442

443

444

445


446

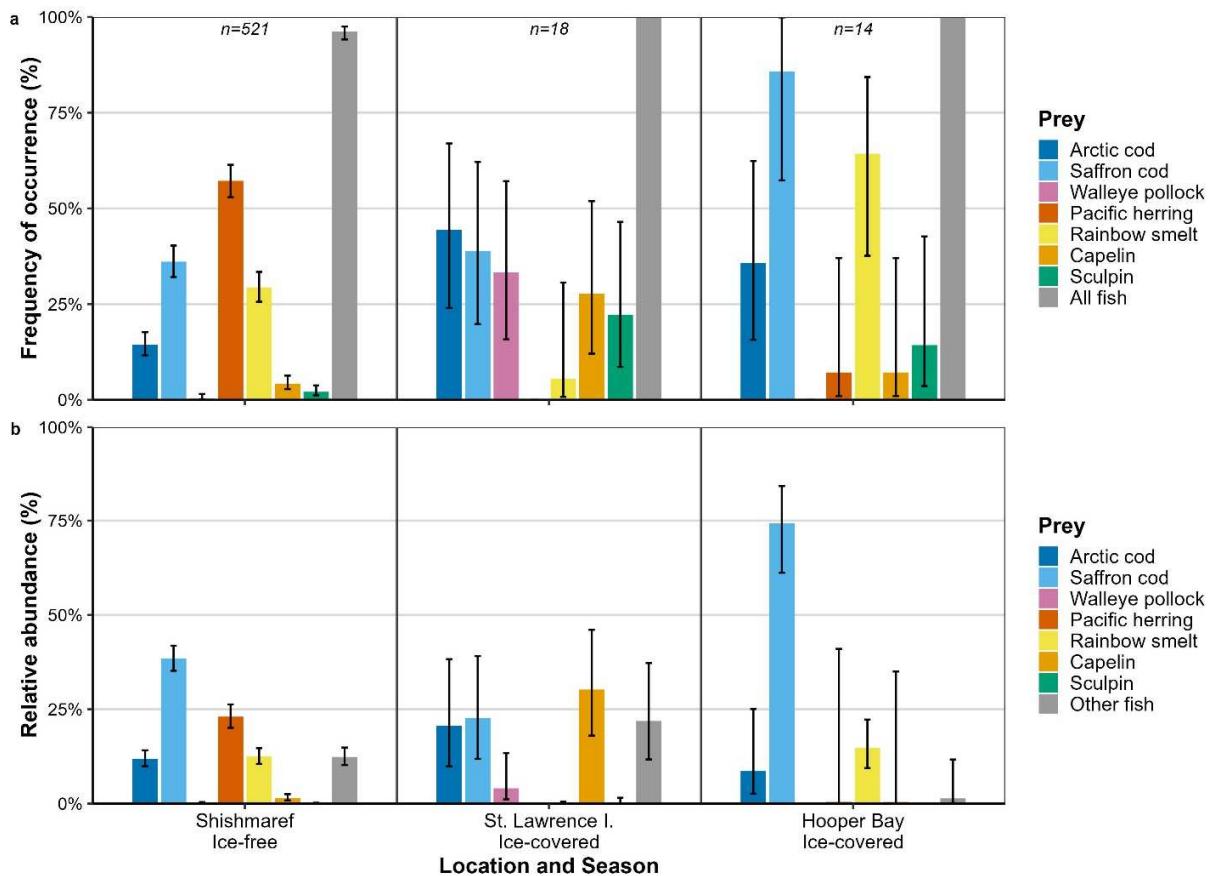
447 Fig. 3. (a) Track of estimated locations for spotted seal *SS16-03-M* that overlap with
448 oceanographic data presented in (b), from 10 August to 6 November 2016. Red locations indicate
449 resident behavior and blue locations indicate transiting behavior (start date in green, end date in
450 red). Light gray shading is the continental shelf, defined by the 200 m depth contour. (b)
451 Oceanographic and dive profile along the track of seal *SS16-03-M*, shown in (a). The location of
452 each CTD profile along a seal's track was determined by interpolating the location based on time
453 stamps. Then, inverse distance weighting was used to create a 2-dimensional representation of the
454 oceanographic conditions the seal moved through. Temperature (top panel) and salinity (bottom

455 panel) contour intervals are 1°C and 1 psu, respectively. Bathymetry is shown in black. Yellow
456 dots are maximum dive depth for dives transmitted as dive data (not CTD data). Circles above
457 each plot are location estimates along the track, colored by behavioral state as in (a). Green
458 squares below location estimates indicate periods when the seal was hauled out. This seal did not
459 encounter sea ice while the CTD-SRDL was transmitting.

460

461

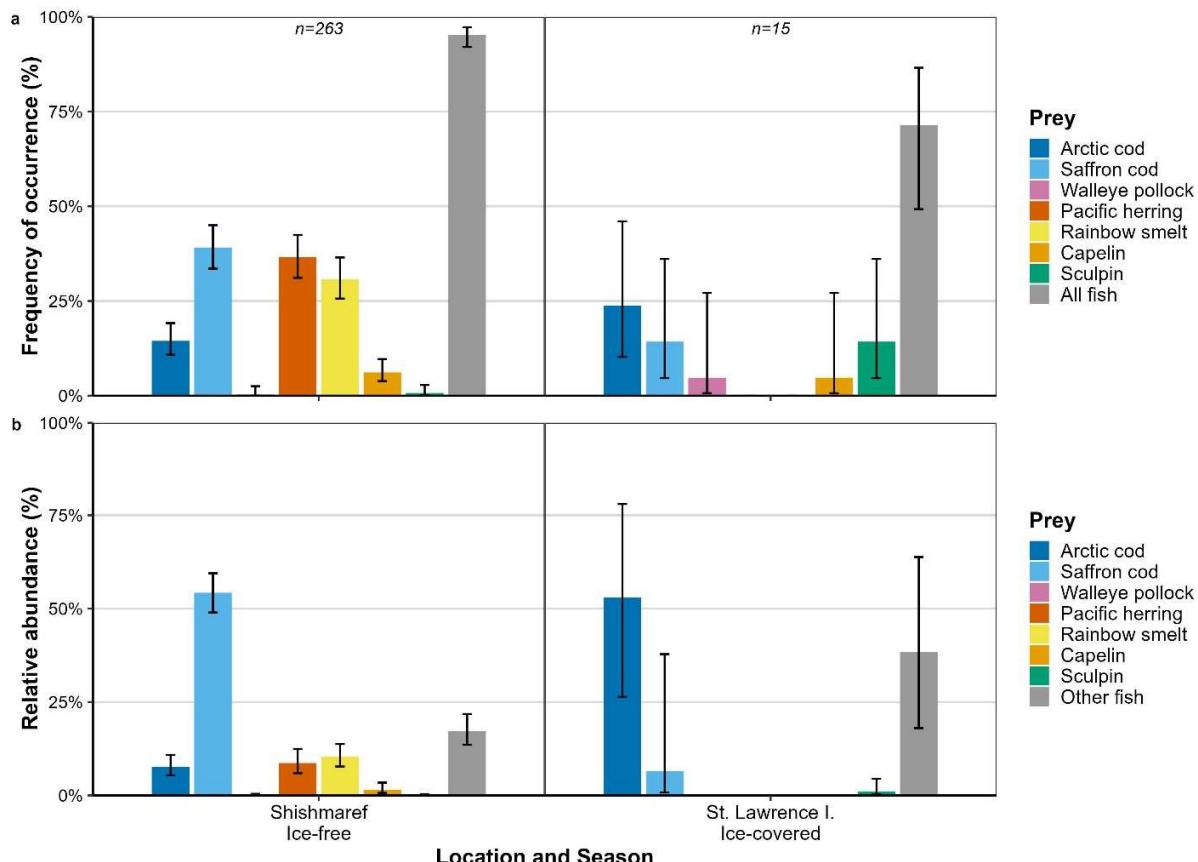
469 3.3. Fish prey identified from seal stomach contents


470 Stomach contents from 521 non-pup spotted seals harvested near Shishmaref were used
471 to represent the nearshore diet of seals in the Chukchi Sea during the ice-free season. Individual
472 seals consumed an average (\pm SE) of 2.1 ± 0.06 fish species (maximum = 9). Pacific herring
473 (*Clupea pallasii*, FO \pm 95% CI = $57\% \pm 3\%$), saffron cod (*Eleginus gracilis*, $36\% \pm 4\%$), and
474 rainbow smelt (*Osmerus mordax*, $29\% \pm 4\%$) had the highest frequencies of occurrence (Fig.
475 5a). Of these, saffron cod was the most abundant prey species in seal stomachs (mean RA \pm 95%
476 CI = $38\% \pm 3\%$); followed by Pacific herring ($23\% \pm 3\%$), rainbow smelt ($12\% \pm 2\%$), and
477 Arctic cod (*Boreogadus saida*, $12\% \pm 2\%$) (Fig. 5b). Pup (n = 276) and non-pup fish diets were
478 generally similar (Figs. 5 and 6); however, pups had a significantly lower FO ($36\% \pm 5\%$) and
479 mean RA ($8\% \pm 4\%$) for Pacific herring, lower mean RA for Arctic cod ($7\% \pm 3\%$) and a higher
480 mean RA for saffron cod ($54.3\% \pm 5.2\%$) (Supplement 3).

481 Stomach contents from 18 non-pup seals harvested at St. Lawrence Island were used to
482 represent seal diet during the ice-covered season in the central Bering Sea. Seals consumed an
483 average (\pm SE) of 3.4 ± 0.5 fish prey species (maximum = 10). Major fish prey species included
484 Arctic cod (FO \pm 95% CI = $44\% \pm 22\%$), saffron cod ($39\% \pm 23\%$), walleye pollock (*Gadus*
485 *chalcogrammus* $33\% \pm 24\%$), capelin (*Mallotus villosus*, $28\% \pm 24\%$), and sculpins ($22\% \pm$
486 24%). Capelin (mean RA \pm 95% CI = $30\% \pm 16\%$), saffron cod ($23\% \pm 16\%$) and Arctic cod
487 ($20\% \pm 17\%$) were the most abundant fish prey consumed by non-pup seals (Fig. 5). Most fish
488 species had a lower FO among pups than for non-pups (Figs. 5a and 6a), but this difference was
489 only significant for walleye pollock (FO for pups: $5\% \pm 22\%$) (Supplement 3). For pups, Arctic
490 cod had the highest FO ($24\% \pm 22\%$) and the mean RA for Arctic cod was significantly higher
491 than for non-pups ($53\% \pm 25\%$) (Fig. 6b, Supplement 3).

492 Stomach contents from 14 non-pup seals harvested at Hooper Bay were used to represent
493 the nearshore diet during the ice-covered season in the Bering Sea. The average number of fish
494 prey species (\pm SE) found in seal stomachs for this group was 3.6 ± 0.5 (maximum = 7). Prey
495 species with the highest frequencies of occurrence were saffron cod (FO \pm 95% CI = 86% \pm
496 14%), rainbow smelt (64% \pm 29%), and Arctic cod (36% \pm 29%). Saffron cod (mean RA \pm 95%
497 CI = 74% \pm 10%), rainbow smelt (14% \pm 7%), and Arctic cod (9% \pm 16%) were the most
498 abundant prey consumed by this group (Fig. 5). Too few pup seals were harvested at Hooper Bay
499 to make statistical comparisons.

500


501

502

503 Figure 5. Frequency of occurrence (a, $FO_i \pm 95\% \text{ CI}$) and mean relative
 504 abundance (b, $RA_i \pm 95\% \text{ CI}$) of fish prey identified in stomach contents of non-pup spotted
 505 seals (≥ 1 year of age). Spotted seals were sampled near Shishmaref during the ice-free season
 506 and near St. Lawrence Island and Hooper Bay during the ice-covered season during 2000–2020.
 507 Prey items presented were those with a $FO \geq 20\%$ for at least one location/season group of
 508 spotted seals.

509

510

511 Figure 6. Frequency of occurrence (a, $FO_i \pm 95\% \text{ CI}$) and mean relative
 512 abundance (b, $RA_i \pm 95\% \text{ CI}$) of fish prey identified in stomach contents of spotted seal pups (<1
 513 year of age). Spotted seals were sampled near Shishmaref during the ice-free season and near St.
 514 Lawrence Island and Hooper Bay during the ice-covered season during 2000–2020. Prey items
 515 presented were those with a $FO \geq 20\%$ for at least one location/season group of spotted seals.

516

517

518

519

520

521

522 **4. Discussion**

523

524 Spotted seals exhibited varying degrees of resident behavior, which we consider
525 indicative of foraging, in nearly all conditions they encountered. This is somewhat expected for
526 generalists, as spotted seals are considered (Boveng et al. 2009), given their broad movements
527 and piscivorous diet that includes many species. Nonetheless, we found patterns and
528 relationships that improve our understanding of spotted seal foraging, most notably that resident
529 behavior was consistently associated with near-bottom conditions and that spotted seal dives
530 were mainly to near-bottom depths. Differences in habitats used and movement behavior among
531 spotted seal sexes and age classes further suggest different foraging behavior among
532 demographic groups may be occurring.

533

534 *4.1. Assumptions*

535

536 We assumed that in most cases, the resident behavioral state was associated with
537 foraging. Alternatively, the resident state may also be associated with hauling out, resting at sea,
538 or possibly unknown behaviors. Using the haul-out data transmitted by the CTD-SRDLs, we
539 attempted to account for resident periods that were due to hauling out. For the ice-free period,
540 only 17% of all six-hour intervals contained haul-out bouts of any duration and only 28% of all
541 resident intervals contained a haul-out bout of any duration. Similarly for the ice-covered period,
542 19% of all six-hour intervals contained haul-out bouts of any duration and only 28% all resident
543 intervals contained a haul-out bout of any duration. As such, the behavior responsible for most
544 resident locations was not seals hauling out. Spotted seals may rest at sea, but this behavior is not

545 well documented for this species. We evaluated the potential for resting at sea when our limited
546 surface and dive records were available and found no differences between behavioral state and
547 time at the surface. It is likely, however, that some periods of resident behavior included in the
548 model dataset were not related to foraging, and that some foraging occurred while in the
549 transiting state, and that the occurrence of both reduced our ability to describe true relationships
550 between foraging and oceanography based on movement behavior.

551 Seal stomach content data represent a short period prior to the seal being harvested.
552 Thus, some prey found in areas away from harvest locations may not be present in the stomach,
553 or prey in the stomach may only be representative of the localized area around the harvest
554 location. However, the primary prey that we found in our samples of seal stomachs are broadly
555 distributed on the shelf (i.e., saffron cod throughout the nearshore environment or Arctic cod
556 abundant in northern Bering and Chukchi seas, Eisner et al. 2013, De Robertis et al, 2017).
557 Comparisons of prey found in our sample of seal stomachs with samples collected from other
558 locations in prior studies helps to affirm the broader importance of the species we identified from
559 our limited sample (see below).

560

561 *4.2. Spotted seal foraging ecology and prey*

562

563 *4.2.1. Ice-free season*

564 During the ice-free season, spotted seals were mostly nearshore, in part because they haul
565 out on land during this time (Frost et al. 1993, Lowry et al. 1998). This is one reason why the
566 ‘coastal’ trip distance category was most strongly associated with the resident state as it
567 encompassed land-based haul-outs and associated resting behavior as well as possible nearshore

568 foraging. In the Chukchi Sea, commonly used coastal areas included those around Kasegaluk
569 Lagoon, within Kotzebue Sound, and along the northern coast of Chukotka, Russia. In the Bering
570 Sea, commonly used areas included Scammon Bay and the nearby waters north of Nunivak
571 Island, Golovin Bay in Norton Sound, and bays along the eastern coast of Chukotka. Many of
572 these areas were also used by spotted seals tagged in the early 1990s (Lowry et al. 1998).
573 Commonly used coastal haulouts may appeal to seals for their relative safety as well as their
574 proximity to both nearshore and offshore foraging (Quakenbush 1988, Frost et al. 1993, Lowry
575 et al. 1998). For example, the use of Kasegaluk Lagoon by spotted seals is well documented
576 (Frost et al. 1993); the name, 'Kasegaluk' is a variation of the Iñupiaq word for spotted seal,
577 qasigiaq. The barrier islands offer a safe area to haul out that is less accessible to land-based
578 predators. Hunters have remarked that when seals arrive in the spring, they sink when killed, but
579 later in fall they float, indicating seals foraged intensely and built-up fat during this time (Frost et
580 al. 1992). This pattern is corroborated by changes in observed blubber thickness of subsistence
581 harvested seals, which tend to have thinner blubber in the spring and increasingly thicker blubber
582 in the summer and autumn (ADFG, unpublished data).

583 Warmer, fresher, and less stratified waters are prevalent along Alaska's coast in both the
584 Bering and Chukchi seas during the ice-free season (Stabeno et al. 1999, Eisner et al. 2013,
585 Baker and Hollowed 2014), and spotted seals appear to spend substantial time in this
586 environment. Fresher coastal waters are known to contain both Arctic and saffron cod (De
587 Robertis et al. 2017), as well as rainbow smelt (Eisner et al. 2013, Logerwell et al. 2015). These
588 species were among the most prevalent in subsistence harvested seal stomachs during the ice-
589 free season from Shishmaref, as was Pacific herring (Fig. 5). Although we only have prey
590 samples from Shishmaref, spotted seals are likely targeting these species in the nearshore

591 environment more broadly. For example, Arctic cod, rainbow smelt, and Pacific herring have all
592 been documented in the vicinity of Kasegaluk lagoon during the ice-free season when spotted
593 seals are present (Frost et al. 1993). Pacific herring may be more prevalent in the nearshore
594 environment of the Bering Sea than in the Chukchi Sea during the ice-free season (De Robertis et
595 al. 2017) and have been documented as an important prey species for spotted seals in the eastern
596 Bering Sea (Lowry et al. 1979). Although not prevalent in our sample from Shishmaref, pink
597 (*Oncorhynchus gorbuscha*) and chum salmon (*O. keta*) are also present in less stratified coastal
598 water during the ice-free season (Eisner et al. 2013), as well as lagoons (Logerwell et al. 2015),
599 and are likely important fish prey for spotted seals later in the summer (Fedoseev 2000).

600 Commonly used coastal haulouts may also be selected due to their proximity to offshore
601 foraging locations (Lowry et al. 1998). For example, spotted seals often moved offshore to
602 forage and then returned to the barrier islands at Kasegaluk lagoon (Figs. S1, S3, S5, S19, S21,
603 S29, S31, S35, S37, S39, S43 in Supplement 1). When far offshore in the Chukchi Sea (>75 km
604 from land), a resident state was more likely to occur in colder near-bottom waters indicative of a
605 western Bering Sea origin. Waters of western Bering Sea origin are known to be more productive
606 and carry nutrients that support a rich benthic community in the central Chukchi Sea (Feder et al.
607 1994), and to contain higher concentrations of zooplankton, such as copepods (Brodsky 1950,
608 Hopcroft et al. 2010) and euphausiids (Berline et al. 2008), that in turn may attract Arctic cod
609 (Gray et al. 2016) and Pacific herring (Volkov and Murphy 2007, Andrews et al. 2016),
610 respectively. Indeed, nearly half of all spotted seal resident locations in the Chukchi Sea during
611 the ice-free season occurred in the vicinity of the Central Channel, which is a primary pathway
612 by which nutrient-rich Bering Sea waters are moved across the Chukchi shelf (Weingartner et al.
613 2005).

614 Spotted seals of both age classes and sexes used both nearshore and offshore
615 environments while in the Chukchi Sea during the ice-free period. However, our movement
616 model results, along with where each demographic group was more likely to be in a resident
617 state, suggest that pups may behave differently than non-pups. Pups were most likely to enter the
618 resident state when encountering fresher and/or colder bottom water (Fig. 4). Fresher conditions
619 near the bottom would mostly occur in the coastal or nearshore environment where river
620 discharge would influence water salinity. As such, 42% of all resident locations for pups
621 occurred during coastal or near-distance trips, whereas 35% occurred during far-distance trips
622 (>75 km from land). For non-pups, however, most resident locations (60%) were associated with
623 far-distance trips whereas only 24% of resident locations occurred when seals were closer to land
624 (near-distance or coastal trips). Although the percentage of locations associated with far-distance
625 trips was nearly equal between age classes (53% non-pups, 47% pups), 65% of all far-distance
626 resident locations come from non-pup seals, therefore the significant relationship between
627 bottom temperature and behavioral state for far-distance trips is mainly representing the behavior
628 of non-pup seals. These results indicate a nearshore relationship between resident behavior and
629 near bottom water conditions that is more associated with pups, and an offshore relationship that
630 is more associated with non-pup seals, albeit with substantial overlap in behavior among age
631 classes. The prey identified from seal stomach contents fits this pattern, as the relative abundance
632 of saffron cod, prey found in the nearshore environment, was higher for pups than for non-pups
633 (Figs. 5 and 6). The higher occurrence of Pacific herring in the stomachs of non-pups may reflect
634 that this species is targeted by non-pups in the nearshore environment, but also may reflect some
635 offshore foraging, as adult Pacific herring occur in colder, offshore waters (Eisner et al. 2013).
636 Otolith lengths, which can be used to estimate fish length (Munk 2012), and therefore estimate

637 fish age (Niggol 1982), indicated that most Pacific herring in stomach samples from non-pup
638 seals harvested at Shishmaref were of adult size classes. Further, seals of both age classes were
639 least likely to enter the resident state during mid-distance trips (between 20 and 75 km from land,
640 Fig. 4, Table 2), resulting in a bimodal pattern of the resident state and trip distance. In terms of
641 foraging behavior, this pattern may reflect spotted seals foraging in both nearshore and offshore
642 environments, but that offshore foraging as a behavior is more likely for older seals. Such a
643 pattern is reasonable given the increased energetic demands and likelihood that the skills needed
644 to successfully travel to and forage in the deeper waters of the central Chukchi Sea are learned
645 over time.

646 Given the frequency of dives to the sea floor, spotted seals may also move offshore to
647 forage on benthic prey, as the Bering and Chukchi shelves are known to have high benthic
648 productivity (Grebmeier et al. 2006b). Although we focused on fish in this study, spotted seals
649 also consume crustaceans (e.g., amphipods, and shrimp, especially Crangonidae; Quakenbush et
650 al. 2009). In addition to stomach contents, stable isotope analysis has confirmed that a portion of
651 spotted seal diet is obtained from benthic communities sustained by sympagic production (Wang
652 et al. 2016). Spotted seals are not physiologically limited from foraging at the bottom of the
653 continental shelf, where depths are shallow (<200 m). As such, seals may dive throughout the
654 water column in search of food, as indicated by our dive data, and opportunistically feed on prey
655 that may occur at any depth.

656

657 *4.2.2. Ice-covered season*

658 Spotted seals are typically found in the Bering Sea during the ice-covered season where
659 they are known to be abundant in the marginal ice zone (Burns 1970, Lowry et al. 1998, Citta et

660 al. 2018), as was the case for seals in our study (Figs. 1 and 2). We expected that the resident
661 state would relate to sea ice conditions. Despite 84% of haul-outs occurring on sea ice during the
662 ice-covered season, and 76% of resident locations occurring in sea ice, none of the top
663 performing models of movement behavior included a sea ice variable (Supplement 2). This
664 outcome is partly explained by spotted seals using areas with low sea ice concentrations that
665 would not restrict their movements. Further, only 23% of resident locations were associated with
666 a haul-out during the ice-covered season, meaning that most resident locations were not
667 associated with seals hauling out on sea ice. Sea ice, and the ice edge specifically, are clearly
668 important habitats for spotted seals, but the lack of association between sea ice conditions and
669 behavioral state suggests that other factors are influencing spotted seal movements within the
670 marginal ice zone.

671 Relative to the ice-free season, waters were less stratified and more uniform under sea ice
672 and tended to be cooler and more saline. Although waters appeared more uniform, our movement
673 model still identified a relationship with bottom temperature, where the resident state was most
674 likely when bottom temperatures were colder. Saffron cod, Arctic cod, and rainbow smelt were
675 the most prevalent prey consumed by seals in the nearshore environment at Hooper Bay whereas
676 walleye pollock and capelin were identified in seal diets near St. Lawrence Island, our sample
677 representing the central Bering Sea (Fig. 5). Capelin are known to occur in cooler, more saline
678 waters of the central Bering Sea (Eisner et al. 2013) and to be consumed by seals in the western
679 Bering Sea (Bukhtiyarov et al. 1984, Fedoseev 2000). In addition to capelin, other primary prey
680 consumed by spotted seals in the western Bering Sea include walleye pollock, Arctic cod, saffron
681 cod, and sand lance (*Ammodytes hexapterus*) (Fedoseev 2000). Broad use of the marginal ice
682 zone, the resident state being associated with bottom temperature, and dives primarily to near-

683 bottom depths all suggest that seals may target the near-bottom zone throughout the Bering Sea
684 for foraging, where they may encounter many different prey species.

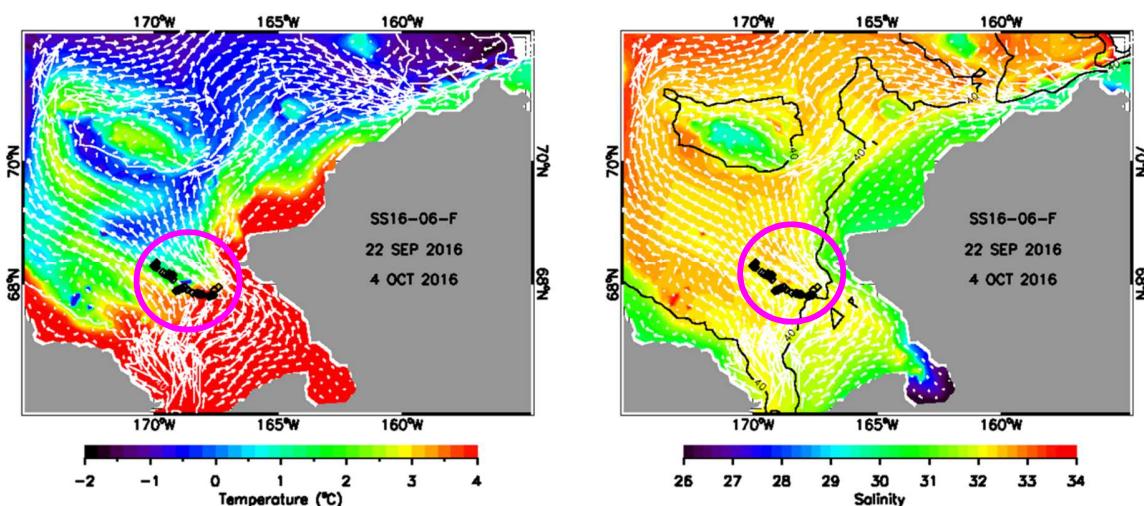
685 The relationship between bottom temperature and movement behavior was stronger for
686 non-pups than pups, and for females than for males. Non-pup females were in the resident state
687 77% of the time during the ice-covered season, versus 59% of the time for non-pup males and
688 ~40% of the time for pups. Adult females have greater energetic demands during this time of
689 pregnancy, pupping, and lactating. The strong relationship between the resident state and bottom
690 temperature for non-pups and for females suggests that these patterns may reflect non-pup
691 females spending more time foraging, and/or targeting specific, energy-rich prey with more
692 narrowly defined habitat associations, such as capelin (Perez 1994, Brodeur et al. 1999), which
693 were the most abundant prey for non-pups but among the least abundant prey for pups (Figs. 5
694 and 6).

695 Our study period aligned with two years of record-low sea ice in the Bering Sea that
696 dramatically altered many ecosystem processes in the region (Baker et al. 2020, Huntington et al.
697 2020). During the winters of 2017/2018 and 2018/2019, sea ice extent was minimal and much of
698 the central Bering Sea remained ice-free throughout the winter. During these years, seals
699 continued to use the central Bering Sea, but hauled out at St. Lawrence, St. Matthew, and
700 Nunivak islands between foraging bouts instead of using sea ice (Supplement 1, Figs. S17, S25,
701 S33, and S35). Interestingly, seals in the central Bering during these low ice years encountered
702 warmer waters that extended to the sea floor (Supplement 1, Fig. S18 and S26). Conditions
703 during the winter of 2019/2020 were more typical of previous years and seals in the central
704 Bering Sea encountered colder water, likely in part due to greater sea ice extent (Supplement 1,
705 Figs. S38, S42 and S44). The significant association between the resident state and colder bottom

706 temperatures for all seals, and for female non-pups in particular, could mean that reduced sea ice
707 extent and warmer waters occurring in the central Bering Sea would affect spotted seal
708 movements that are likely associated with foraging (i.e., seals would remain in more northern
709 waters with colder bottom temperatures). Years with less ice and warmer water may also allow
710 currently important or novel prey species (e.g., Pacific cod, *Gadus macrocephalus*; Spies et al.
711 2019) to occur farther north than usual (Stabeno et al. 2012, Mueter et al. 2021), or become more
712 abundant (e.g., pink and chum salmon, Logerwell et al. 2015). Such changes could allow spotted
713 seals to continue foraging in similar areas despite waters becoming warmer, in which case we
714 would expect the relationship between the resident state and colder bottom temperatures to
715 weaken over time. However, studies of other marine mammals in the BCB area have suggested
716 that altered diets or foraging behavior due to environmental change has contributed to declines in
717 body condition (Boveng et al. 2020, Choy et al. 2020), either due to a decoupling of sea ice and
718 good foraging habitat or lower nutritional quality of altered diets. It is not clear whether such
719 changes will result in cumulative fitness costs, or benefits, to spotted seals.

720

721 4.3 Opportunities and limitations of oceanographic data from CTD-SRDLs


722 Oceanographic data collected by CTD-SRDLs are useful for understanding the
723 environment animals encounter and how it may influence behavior. Our visualizations of the
724 environment seals encountered along their tracks (Fig. 3 and Supplement 1) highlight the utility
725 of these data for learning about marine mammal biology. We expect our approach of using the
726 CTD profile data to generate an interpolated oceanographic space that can then be related to
727 animal movements or dive behavior will be applicable to other studies using animal-borne
728 instrumentation. We programmed our tags to prioritize the transmission of CTD profiles over

729 dive behavior data, resulting in substantial gaps in dive records. Moving forward, we recommend
730 reconfiguring the CTD-SRDL settings to achieve a more balanced transmission of both data
731 types. This would allow for the incorporation of dive data into the movement model as described
732 in Gryba et al. (2019), while also providing sufficient information to generate the interpolated
733 oceanographic space. However, balancing these data products, which both require relatively
734 large amounts of data to transmit, may reduce the duration of tag operation. Alternatively,
735 researchers may find such data useful for more integrated approaches that could include
736 environmental data, such as oceanography, into the movement modeling and assignment of
737 multiple behavioral states using R packages such as ‘momentuHMM’ (McClintock et al. 2017,
738 McClintock and Michelot 2018). Further, data from CTD-SRDLs can be useful to
739 oceanographers seeking to better understand shelf environments in places and at times where
740 ship-based surveys are rare, such as in the winter under sea ice, for documenting changes in
741 oceanography over time, and to validate powerful oceanographic models.

742 One important limitation is that the CTD-SRDLs only provide information about the
743 oceanographic conditions seals encountered along their tracks, which may not include all
744 conditions available to them or that might influence their behavior. For example, we
745 hypothesized that the resident behavioral state would be associated with hydrographic fronts or
746 stratified waters. Hydrographic fronts are known to be oceanographic hotspots that can aggregate
747 prey at multiple trophic levels (Woodson and Litvin 2015), however, this is not well documented
748 in the BCB region. We attempted to capture fronts by calculating the horizontal differences in
749 temperature and salinity for various track distances, but most differences turned out to be zero.
750 This outcome could occur if spotted seals move along these fronts more so than crossing through
751 them. To explore this possibility, we selected periods where seals were in the resident state for at

752 least three days and overlaid these locations onto modeled temperature and salinity fields
753 obtained from the Regional Arctic System Model (RASM; Maslowski et al. 2012, Clement
754 Kinney et al. 2022; <https://nps.edu/web/rasm>), a pan-Arctic coupled ice-ocean simulation forced
755 with realistic reanalyzed atmospheric data from the 1958–2021 Japanese 55-year Reanalysis
756 (JRA-55, Kobayashi and Iwasaki 2016). Plotting locations onto RASM temperature and salinity
757 fields suggested that many of these longer periods of resident behavior occurred in the vicinity of
758 hydrographic fronts (Fig. 7, Supplement 4). More work is needed to establish the importance of
759 such fronts for foraging and doing so will require a combination of CTD-SRDL and modeled
760 oceanographic data.

761

762 Fig. 7. Oceanographic conditions (bottom temperature (left) and salinity (right)) of Chukchi Sea
763 22 September – 4 October 2016. Data are from the RASM model. Black dots within magenta
764 circles are resident locations for seal SS16-06-F during this period. White arrows are current
765 velocity. This potentially significant foraging event appears along a hydrographic front, which is
766 most apparent in the temperature field (left).

768

769

770 *4.4. Conclusion*

771 Spotted seals are generalists that likely exploit multiple habitats to forage on several fish
772 species. We found that spotted seals used nearshore and offshore habitats throughout the year.
773 During the ice-free season in the Chukchi Sea, spotted seals traveled far offshore and were most
774 likely to be in the resident state when encountering cold bottom temperatures, indicative of
775 waters originating in the Bering Sea. The resident state was also associated with cold bottom
776 temperatures during the ice-covered season in the Bering Sea. Combined with dive behavior that
777 showed seals mostly diving to near-bottom depths, these results suggest that spotted seals mainly
778 forage near the bottom. That the resident state was consistently associated with colder bottom
779 temperatures also suggests that seal behavior may be affected by warming conditions associated
780 with climate change. Annual sampling of stomachs from the subsistence harvest, at multiple
781 locations in both the Bering and Chukchi seas during both the ice-covered and ice-free seasons,
782 will improve our ability to determine the relative importance of spotted seal prey. Such sampling
783 will also document shifts in currently important and novel prey species as conditions change.

784

785 **Acknowledgements**

786 We dedicate this manuscript to Dr. Stephen Okkonen, in memory of his friendship and
787 contributions to the fields of both physical and biological oceanography. We thank Ryan Adam,
788 Isaac Leavitt, Aaron Morris, Joe Skin, Morgan and River Simon, Yukon and Wybon Rivers, and
789 Al Smith for their assistance with tagging seals. Seal captures were conducted under research
790 permits #15324 and 20466 issued by the National Marine Fisheries Service to the Alaska
791 Department of Fish and Game (ADF&G), and under ADF&G's Animal Care and Use protocols
792 #27-2017-27, 27-2018-28, 27-2019-41, and 27-2020-35. Information on seal diet would not be

793 available without the willingness of the seal hunters to contribute samples from their harvest, the
794 support of their communities, local governments, and Tribal Councils. We appreciate the support
795 from the North Slope Borough, Department of Wildlife Management, and the Ice Seal
796 Committee. John Burns, Kathy Frost, Lloyd Lowry, and others (ADF&G retired) were
797 instrumental in the development of seal biomonitoring and its great value comes from their early
798 efforts to collect, process, and analyze samples, as well as archive the data. Fish otoliths were
799 identified by William Walker and Louise Biderman. We thank Gay Sheffield, Letty Hughes,
800 Mark Nelson, and Anna Bryan for field collections and sample processing; Juan Leon Guerrero,
801 Heidi Isernhagen, Louise Biderman, Ryan Adam, and many others processed samples in the lab,
802 entered and error-checked data. Data analysis and manuscript preparation were funded by the
803 North Pacific Research Board (project #2118). Seal tagging was funded by the Office of Naval
804 Research (grant #N00014-16-1-3019). Biomonitoring collections were funded by the National
805 Oceanic and Atmospheric Administration (NOAA), National Marine Fisheries Service (NMFS)
806 under awards NA16FX2034, NA05NMF4391187, NA08NMF4390544, and NA11NMF4390200
807 to the ADFish&G. The RASM project was supported by the Department of Energy (DOE)
808 Regional and Global Model Analysis (RGMA) and the Office of Naval Research (ONR) Arctic
809 and Global Prediction (AGP) programs. The Department of Defense (DOD) High Performance
810 Computer Modernization Program (HPCMP) provided computer resources.

811

812 **Literature Cited**

813 Andrews, A.G., Strasburger, W.W., Farley, E.V., Murphy, J.M., and K.O. Coyle. 2016. Effects
814 of warm and cold climate conditions on capelin (*Mallotus villosus*) and Pacific herring
815 (*Clupea pallasi*) in the eastern Bering Sea. Deep Sea Research II 134: 235–246.

816 Baker, M.R., and A.B. Hollowed. 2014. Delineating ecological regions in marine systems:
817 Integrating physical structure and community composition to inform spatial management
818 in the eastern Bering Sea. Deep-Sea Research II: 109: 215–240.

819 Baker, M.R., Kivva, K.K., Pisareva, M.N., Watson, J.T., and J. Selivanova. 2020. Shifts in the
820 physical environment in the Pacific Arctic and implications for ecological timing and
821 conditions. Deep-Sea Research II 177: 104802.

822 Bartoń, K. 2022. MuMIn: Multi-model inference. R Package version 1.46.0
823 <https://cran.r-project.org/package=MuMIn>

824 Berline, L., Spitz, Y.H., Ashjian, C.J., Campbell, R.G., Maslowski, W., and S.E. Moore. 2008.
825 Euphausiid transport in the Western Arctic Ocean. Marine Ecology Progress Series 360:
826 163–178.

827 Bluhm, B.A., and R.R. Gradinger. 2008. Regional variability in food availability for Arctic
828 marine mammals. Ecological Applications 18: S77-S96.

829 Boveng, P.L., Bengtson, J.L., Buckley, T.W., Cameron, M.F., Dahle, S.P., Kelly, B.P., Megrey,
830 B.A., Overland, J.E., and N.J. Williamson. 2009. Status review of the spotted seal (*Phoca*
831 *larga*). U.S. Department of Commerce, NOAA Technical Memo. NMFS-AFSC-200,
832 153 p.

833 Boveng, P.L., Ziel, H.L., McClintock, B.T., and M.F. Cameron. 2020. Body condition of phocid
834 seals during a period of rapid environmental change in the Bering Sea and Aleutian
835 Islands, Alaska. Deep-Sea Research II 181-182: 104904.

836 Brodeur, R.D., Wilson, M.T., Walters, G.E., and I.V. Melnikov. 1999. Chapter 24: Forage
837 species in the Bering Sea: distribution, species associations, and biomass trends. In:
838 Loughlin, T.R., and K. Ohtani (Eds.). Dynamics of the Bering Sea: a summary of

839 physical, chemical, and biological characteristics and a synopsis of research on the
840 Bering Sea. Alaska Sea Grant College Program Report AK-SG-99-03. Fairbanks, AK.

841 Brodsky, K.A. 1950. Copepods (Calanoida) of the far-eastern seas of the USSR and polar basin.
842 Zoological Institute of the Academy of Sciences of the USSR, Leningrad, Russia
843 (translated from Russian)

844 Bukhtiyarov, Y.A., Frost, K.J., and L.F. Lowry. 1984. New information on foods of the spotted
845 seal, *Phoca largha*, in the Bering Sea in spring. Soviet-American cooperative. Research
846 on marine mammals, Pinnipeds, Vol 1. U.S. Department of Commerce, NOAA, NMFS.

847 Burns, J.J. 1970. Remarks on the distribution and natural history of pagophilic pinnipeds in the
848 Bering and Chukchi Seas. Journal of Mammalogy 51: 445–454.

849 Calenge, C. 2006. The package adehabitat for the R software: tool for the analysis of space and
850 habitat use by animals. Ecological Modeling 197: 516–519.

851 Choy, E.S., Giraldo, C., Rosenberg, B., Roth, J.D., Ehrman, A.D., Majewski, A., Swanson, H.,
852 Power, M., Reist, J.D., and L.L. Loseto. 2020. Variation in the diet of belugas whales in
853 response to changes in prey availability: insights on changes in the Beaufort Sea
854 ecosystem. Marine Ecology Progress Series 647: 195–210.

855 Citta, J.J., Quakenbush, L.T., Okkonen, S.R., Druckenmiller, M.L., Maslowski, W., Clement-
856 Kinney, J., George, J.C., Brower, H., Small, R.J., Ashjian, C.J., Harwood, L.A., and M.P.
857 Heide- Jørgensen. 2015. Ecological characteristics of core-use areas used by Bering-
858 Chukchi-Beaufort (BCB) bowhead whales, 2006–2012. Progress in Oceanography 136:
859 201–222.

860 Citta, J.J., Lowry, L.F., Quakenbush, L.T., Kelly, B.P., Fischbach, A.S., London, J.M., Jay, C.V.,

861 Frost, K.J., O'Corry-Crowe, G., Crawford, J.A., Boveng, P.L., Cameron, M., Von Duyke,
862 A.L., Nelson, M., Harwood, L.A., Richard, P., Suydam, R., Heide-Jørgensen, M.P.,
863 Hobbs, R.C., Litovka, D.I., Marcoux, M., Whiting, A., Kennedy, A.S., George, J.C., Orr,
864 J., and T. Gray. 2018. A multi-species synthesis of satellite telemetry data in the Pacific
865 Arctic (1987–2015): Overlap of marine mammal distributions and core use areas. Deep-
866 Sea Research II 152: 132–153.

867 Citta, J.J., Okkonen, S.R., Suydam, R.S., Quakenbush, L., Bryan, A.L., and J. Olnes. 2020.
868 Beluga dive behavior relative to fronts and stratified layers near Barrow Canyon, Alaska.
869 Deep-Sea Research II 165: 103392.

870 Citta, J.J., Olnes, J., Okkonen, S.R., Quakenbush, L., George, J.C., Maslowski, W., Osinski, R.,
871 and M.P. Heide-Jørgensen. 2021. Influence of oceanography on bowhead whale (*Balaena*
872 *mysticetus*) foraging in the Chukchi Sea as inferred from animal-borne instrumentation.
873 Continental Shelf Research 224: 104434.

874 Clement Kinney, J., Maslowski, W., and S. Okkonen. 2009. On the processes controlling shelf-
875 basin exchange and outer shelf dynamics in the Bering Sea. Deep Sea Research II 56:
876 1351–1362.

877 Clement Kinney, J., Maslowski, W., Osinski, R., Lee, Y.J., Goethel, C., Frey, K., and A. Craig.
878 2022. On the variability of the Bering Sea Cool Pool and implications for the biophysical
879 environment. PLoS ONE 17: e0266180.

880 Coachman, L.K., Aagaard, K., and R.B. Tripp. 1975. Bering Strait: the regional physical
881 oceanography. University of Washington Press, Seattle, WA. 172 pp.

882 Crawford, J.A., Frost, K.J., Quakenbush, L.T., and A. Whiting. 2011. Different habitat use

883 strategies by subadult and adult ringed seals (*Phoca hispida*) in the Bering and Chukchi
884 seas. *Polar Biology* 35: 241–255.

885 Crawford, J.A., Quakenbush, L.T., and J.J. Citta. 2015. A comparison of ringed and bearded seal
886 diet, condition and productivity between historical (1975–1984) and recent (2003–2012)
887 periods in the Alaskan Bering and Chukchi seas. *Progress in Oceanography* 136: 133–
888 150.

889 Danielson, S., Johnson, M., Solomon, S., Perrie, W. 2008. Alaska Ocean Observing System
890 Digital Elevation Model, v 1.03 <https://www.aoos.org/>

891 Dehn, L.A., Sheffield, G.G., Follmann, E.H., Duffy, L.K., Thomas, D.L., and T.M. O’Hara.
892 2007. Feeding ecology of phocid seals and some walrus in the Alaskan and Canadian
893 Arctic as determined by stomach contents and stable isotope analysis. *Polar Biology* 30:
894 167–181.

895 De Robertis, A., Taylor, K., Wilson, C.D., and E.V. Farley. 2017. Abundance and distribution of
896 Arctic cod (*Boreogadus saida*) and other pelagic fishes over the U.S. continental shelf of
897 the Northern Bering and Chukchi Seas. *Deep-Sea Research II* 135: 51–65.

898 DiGirolamo, N., Parkinson, C.L., Cavalieri, D.J., Gloersen, P., and H.J. Zwally. 2022. Sea ice
899 concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave
900 Data, Version 2 [NSIDC-0051]. Boulder, Colorado USA. NASA National Snow and Ice
901 Data Center Distributed Active Archive Center.
902 <https://doi.org/10.5067/8GQ8LZQVL0VL>.

903 Eisner, L., Hillgruber, N., Martinson, E., and J. Maselko. 2013. Pelagic fish and zooplankton
904 species assemblages in relation to water mass characteristics in the northern Bering and
905 southeast Chukchi seas. *Polar Biology* 36: 87–113.

906 Fedak, M.A., Lovell, P., and S.M. Grant. 2001. Two approaches to compressing and interpreting
907 time-depth information as collected by time-depth recorders and satellite-linked data
908 recorders. *Marine Mammal Science* 17: 94–110.

909 Fedoseev, G.A. 2000. Population biology of ice-associated forms of seals and their role in the
910 northern Pacific ecosystems. Center for Russian Environmental Policy, Moscow. 271 p.

911 Frost, K.J., Lowry, L.F., and G. Carroll. 1992. Use of Kasegaluk Lagoon, Chukchi Sea, Alaska,
912 by marine birds and mammals, III: marine mammals. OSC Study MMS 92-0028, U.S.
913 Minerals Management Service, Herndon, VA.

914 Frost, K.J., Lowry, L.F., and G. Carroll. 1993. Beluga whale and spotted seal use of a coastal
915 lagoon system in the northeastern Chukchi Sea. *Arctic* 40: 8–16.

916 Grebmeier, J.M., Overland, J.E., Moore, S.E., Farley, E.V., Carmack, E.C., Cooper, L.W., Frey,
917 K.E., Helle, J.H., McLaughlin, F.A., and S. Lyn McNutt. 2006a. A major ecosystem shift
918 in the northern Bering Sea. *Science* 311: 1461–1464.

919 Grebmeier, J.M., Cooper, L.W., Feder, H.M., and B.I. Sirenko 2006b. Ecosystem dynamics of
920 The Pacific-influenced Northern Bering and Chukchi seas in Amerasian Arctic. *Progress*
921 in *Oceanography* 71:331–361.

922 Gray, B.P., Norcross, B.L., Blanchard, A.L., Beaudreau, A.H., and A.C. Seitz. 2016. Variability
923 in the summer diets of juvenile polar cod (*Boreogadus saida*) in the northeastern Chukchi
924 and western Beaufort Seas. *Polar Biology* 39: 1069–1080.

925 Gryba, R.D., Wiese, F.K., Kelly, B.P., Von Duyke, A.L., Pickart, R.S., and D.A. Stockwell.
926 2019. Inferring foraging locations and water masses preferred by spotted seals *Phoca*
927 *larga* and bearded seals *Erignathus barbatus*. *Marine Ecology Progress Series* 631: 209
928 – 224.

929 Hopcroft, R.R., Kosobokova, K.N., and A.I. Pinchuk. 2010. Zooplankton community patterns in
930 the Chukchi Sea during summer 2004. Deep Sea Research II 57: 27–39.

931 Huntington, H.P., Danielson, S.L., Wiese, F.K., Baker, M., Boveng, P., Citta, J.J., De Robertis,
932 A., Dickson, D.M.S., Farley, E., George, J.C., Iken, K., Kimmel, D.G., Kuletz, K., Ladd,
933 C., Levine, R., Quakenbush, L., Stabeno, P., Stafford, K.M., Stockwell, D., and C.
934 Wilson. 2020. Evidence suggests potential transformation of the Pacific Arctic ecosystem
935 is underway. Nature Climate Change 10: 342–348.

936 Jay, C.V., Gremier, J.M., Fishbach, A.S., McDonald, T.L., Cooper, L.W., and F. Hornsby.
937 2014. Pacific walrus (*Odobenus rosmarus divergens*) resource selection in the Northern
938 Bering Sea. PLoS ONE 9: e93035.

939 Jonsen, I.D., Flemming, J.M., and R.A. Myers. 2005. Robust state-space modeling of animal
940 movement data. Ecology 86: 2874–2880.

941 Jonsen, I.D. 2016. Joint estimation over multiple individuals improves behavioral state inference
942 from animal movement data. Scientific Reports 6: 20625.

943 Kobayashi, C., and T. Iwasaki, 2016. Brewer-Dobson circulation diagnosed from JRA-55.
944 Journal of Geophysical Research Atmospheres 121: 1493 - 1510 doi:10.1002/2-
945 15JD023476

946 Logerwell, E., Busby, M., Carothers, C., Cotton, S., Duffy-Anderson, J., Farley, E., Goddard, P.,
947 Heintz, R., Holladay B., Horne, J., Johnson, S., Lauth, B., Moulton, L., Neff, D.,
948 Norcross, B., Parker-Stetter, S., Seigle, J., and T. Sformo. 2015. Fish communities across
949 a spectrum of habitats in the Western Beaufort Sea and Chukchi Sea. Progress in
950 Oceanography 136: 115–132.

951 Lowry, L.F. Frost, K.J., and J.J. Burns. 1979. Potential resource competition in the southeastern

952 Bering Sea: Fisheries and phocid seals. [In] B. R. Melteff, editor. Alaska fisheries: 200
953 years and 200 miles of change. Alaska Sea Grant Report 79-6. Proceedings of the 29th
954 Alaska Science Conference, 15-17 August 1978, Fairbanks, Alaska.

955 Lowry, L.F., Frost, K.J., Davis, R., DeMaster, D.P., and R.S. Suydam. 1998. Movements and
956 behavior of satellite-tagged spotted seals (*Phoca largha*) in the Bering and Chukchi Seas.
957 Polar Biology 19: 221–230.

958 Lowry, L.F., Burkanov, V.N., Frost, K.J., Simpkins, M.A., Davis, R., DeMaster, D.P., Suydam,
959 R., and A. Springer. 2000. Habitat use and habitat selection by spotted seals (*Phoca*
960 *largha*) in the Bering Sea. Canadian Journal of Zoology 78: 1959–1971.

961 Maslowski, W., Clement Kinney, J., Higgins, M., and A. Roberts. 2012. The future of Arctic sea
962 ice. Annual Review of Earth and Planetary Sciences 40: 625–654.

963 Maslowski, W., Clement Kinney, J., Okkonen, S.R., Osinski, R., Roberts, A.F., and W.
964 Williams. 2014. The large scale ocean circulation and physical processes controlling
965 Pacific-Arctic interaction. In: Grebmeier, J.M. and W. Maslowski (eds.). The Pacific
966 Arctic Region: Ecosystem Status and Trends in a Rapidly Changing Environment.
967 Springer Dordrecht, 450 p.

968 McClintock, B.T., London, J.M., Cameron, M.F., Boveng, P.L. 2017. Bridging the gaps in
969 animal movement: hidden behaviors and ecological relationships revealed by integrated
970 data streams. Ecosphere 8: e01751

971 McClintock, B.T., and T. Michelot. 2018. momentuHMM: R package for generalized hidden
972 Markov models of animal movement. Methods in Ecology and Evolution 9: 1518-1530.

973 McLaren, I.A. 1958. The biology of the ringed seal (*Phoca hispida* Schreber) in the eastern
974 Canadian Arctic. Bulletin of the Fisheries Research Board of Canada 118: 1 – 97.

975 Moore, S., George, J.C., Coyle, K.O., and T.J. Weingartner. 1995. Bowhead whales along the
976 Chukotka coast in Autumn. *Arctic* 48: 155–160.

977 Mueter, F.J., Planque, B., Hunt Jr, G.L., Alabia, I.D., Hirawake, T., Eisner, L., Dalpadado, P.,
978 Chierici, M., Drinkwater, K.F., Harada, N., Arneberg, P., and Saitoh, S. 2021. Possible
979 future scenarios in the gateways to the Arctic for subarctic and arctic marine systems: II.
980 Prey resources, food webs, fish, and fisheries. *ICES Journal of Marine Science* 78: 3017–
981 3045.

982 Munk, K.M. 2012. Somatic-otolith size correlations for 18 marine fish species and their
983 importance to age determination. *Alaska Department of Fish and Game, Regional
984 Information Report 5J12-13*, Anchorage.

985 Murie, D.J., and D.M. Lavigne. 1986. Interpretation of otoliths in stomach content analyses of
986 phocid seals: quantifying fish consumption. *Canadian Journal of Zoology* 64: 1152–1157.

987 Nelson, M.A., Quakenbush, L.T., Taras, B.D., and the Ice Seal Committee. 2019. Subsistence
988 harvest of ringed, bearded, spotted, and ribbon seals in Alaska is sustainable. *Endangered
989 Species Research* 40: 1–16.

990 Niggol, K. 1982. Data on Fish Species from the Bering Sea and Gulf of Alaska. NOAA
991 Technical Memorandum NMFS F/NWC-29.

992 O'Daly, S.H., Danielson, S.L., Hardy, S.M., Hopcroft, R.R., Lalande, C., Stockwell, D.A., and
993 A.M.P. McDonnell. 2020. Extraordinary carbon fluxes on the shallow Pacific Arctic shelf
994 during a remarkably warm and low sea ice period. *Frontiers in Marine Science* 7:
995 10.3389/fmars.2020.548931

996 Olnes, J., J.J. Citta, L. Quakenbush, L., C. George, L. Harwood, E. Lea, and M.P. Heide-

997 Jørgensen. 2020a. Use of the Alaskan Beaufort Sea by bowhead whales (*Balaena*
998 *mysticetus*) tagged with satellite transmitters, 2006 – 2018. *Arctic* 73: 278-291.

999 Olnes, J., J. Crawford, J. Citta, M.L. Druckenmiller, and L. Quakenbush. 2020b. Movement,
1000 Diving, and haul-out behaviors of juvenile bearded seals in the Bering, Chukchi and
1001 Beaufort seas, 2014–2018. *Polar Biology* 43: 1307-1320.

1002 Perez, M.A. 1994. Calorimetry measurements of energy value of some Alaskan fishes and
1003 squids. U.S. Department of Commerce, NOAA Technical Memo. NMFS-AFSC-32. 32 p.

1004 Pierce, G.J., and P.R. Boyle. 1991. A review of methods for diet analysis in piscivorous marine
1005 mammals. *Oceanography and Marine Biology* 29: 409–486.

1006 Pinheiro, J., Bates, D., and R Core Team. 2022. *nlme*: linear and nonlinear mixed effects models.
1007 R package version 3.1-157. <https://cran.r-project.org/package=nlme>

1008 Quakenbush, L.T. 1988. Spotted Seal, *Phoca largha*. In: Lentfer, J.W. (eds.). *Selected Marine*
1009 *Mammals of Alaska: Species accounts with research and management recommendations*.
1010 Marine Mammal Commission, Washington, D.C.

1011 Quakenbush, L., Citta, J., and J. Crawford. 2009. Biology of the spotted seal (*Phoca largha*) in
1012 Alaska from 1962 to 2008. Report to the National Marine Fisheries Service.

1013 R Core Team. 2021. *R: a language and environment for statistical computing*. R Foundation for
1014 Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

1015 Rugh, D.J., Sheldon, K.E.W. 1997. Spotted seals, *Phoca largha*, in Alaska. *Marine Fisheries*
1016 *Review* 59: 1–18.

1017 Sheffield, G.G., Fay, F.H., Fedak, M.A., and B.P. Kelly. 2001. Laboratory digestion of prey and
1018 interpretation of walrus stomach contents. *Marine Mammal Science* 17: 310–330.

1019 Spies, I., Gruenthal, K.M., Drinan, D.P., Hollowed, A.B., Stevenson, D.E., Tarpey, C.M., and L.

1020 Hauser. 2019. Genetic evidence of a northward range expansion in the eastern Bering Sea
1021 stock of Pacific cod. *Evolutionary Applications* 13: 362–375.

1022 Springer, A.M., McRoy, C.P., and M.V. Flint. The Bering Sea green belt: shelf-edge processes
1023 and ecosystem production. *Fisheries oceanography* 5: 205–223.

1024 Stabeno, P.J., Schumacher, J.D., and K. Ohtani. 1999. The physical oceanography of the Bering
1025 Sea. In: Loughlin, T.R., and K. Ohtani. (eds.) *Dynamics of the Bering Sea*. University of
1026 Alaska Sea Grant, Fairbanks, AK. p. 1–28.

1027 Stabeno, P.J., Farley Jr., E.V., Kachel, N.B., Moore, S., Mordy, C.W., Napp, J.M., Overland,
1028 J.E., Pinchuk, A.I., and M.F. Sigler. 2012. A comparison of the physics of the northern
1029 and southern shelves of the eastern Bering Sea and some implications for the ecosystem.
1030 *Deep-Sea Research II* 65-70: 14–30.

1031 Tollit, D.J., Pierce, G.J., Hobson, K.A., Bowen, W.D. and S.J. Iverson. 2010. Measurement of
1032 diet in marine mammals. In: Boyd, I.L., Bowen, W.D., and S.J. Iverson (eds.) *Marine
1033 Mammal Ecology and Conservation: A Handbook of Techniques*. Oxford University
1034 Press, Cambridge, UK, pp. 191–221.

1035 Volkov, A., and J. Murphy. 2007. Plankton and the diets of fish in the Chukchi and northern
1036 Bering Sea. The bulletin No. 2, realizations of “the Concept of the Far East program of
1037 studying of Pacific salmons”. FGUP TINRO-CENTER. ISSN 1606-9919 (in Russian),
1038 Vladivostok, Russia.

1039 Von Duyke, A.L., Douglas, D.C., Herreman, J.K., and J.A. Crawford. 2020. Ringed seal (*Pusa
1040 hispida*) seasonal movements, diving, and haul-out behavior in the Beaufort, Chukchi,
1041 and Bering Seas (2011–2017). *Ecology and Evolution* 10: 5595–5616.

1042 Walsh, J.J., McRoy, C.P., Coachman, L.K., Goering, J.J., Nihoul, J.J., Whitedge, T.E.,

1043 Blackburn, T.H., Parker, P.L., Wirick, C.D., Shuert, P.G., Grebmeier, J.M., Springer,
1044 A.M., Tripp, R.D., Hansell, D.A., Djenidi, S., Deleesnijder, E., Henrikson, K., Lund,
1045 B.A., Anderson, P., Müller-Karger, F.E., and K. Dean. 1989. Carbon and nutrient cycling
1046 within the Bering/Chukchi Seas: Source regions for organic matter effecting AOU
1047 demands of the Arctic Ocean. *Progress in Oceanography* 22: 277–359.

1048 Wang, S.W., Springer, A.M., Budge, S.M., Horstmann, L., Quakenbush, L.T., and M.J. Wooller.
1049 2016. Carbon sources and trophic relationships of ice seals during recent environmental
1050 shifts in the Bering Sea. *Ecological Applications* 26: 830–845.

1051 Wang, M., Yang, Q., Overland, J.E., and P. Stabeno. 2018. Sea-ice cover timing in the Pacific
1052 Arctic: The present and projections to mid-century by selected CMIP5 models. *Deep-Sea
1053 Research* II 152: 22–34.

1054 Weingartner, T., Aagaard, K., Woodgate, R., Danielson, S., Sasaki, Y., and D. Cavalieri. 2005.
1055 Circulation on the north central Chukchi Sea shelf. *Deep-Sea Research* II: 52: 3150–
1056 3174.

1057 Wessel, P., and W.H.F. Smith .1996. A global, self-consistent, hierarchical, high-resolution
1058 shoreline database. *Journal of Geophysical Research* 101: 8741–8743.

1059 Woodson C.B., and S.Y. Litvin. 2015. Ocean fronts drive marine fishery production and
1060 biogeochemical cycling. *Proceedings of the National Academy of Sciences* 112: 1710–
1061 1715.

1062 Zeileis, A. and G. Grothendieck. 2005. *zoo: S3 Infrastructure for Regular and Irregular Time
1063 Series*. *Journal of Statistical Software* 14: 1–27. doi: 10.18637/jss.v014.i06

1064 Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., and G.M. Smith. 2009. *Mixed effects
1065 models and extensions in ecology with R*. Springer, New York, NY.

1066 **Tables**

1067 Table 1. Summary information for the 23 spotted seals tagged with CTD-SRDL transmitters
 1068 during 2016–2019 in the Bering and Beaufort seas of Alaska. Summaries include the total
 1069 number of locations provided by the Argos system (# raw locs) and the number of 6-hour
 1070 location estimates determined by a 2-state switching state space model (# sSSM locs).

Seal ID	Tagging location	Sex	Age class	Tagging date	First location	Last location	Duration of location data (d)	# CTD profiles	# Dives	# raw locs.	# sSSM locs.
SS16-01-F	DI*	F**	S***	27-Jul-16	28-Jul-16	13-Mar-17	229	0	90	1260	623
SS16-03-M	DI	M	A	03-Aug-16	7-Aug-16	10-Feb-17	187	113	1896	3102	637
SS16-05-M	DI	M	S	14-Aug-16	15-Aug-16	1-Feb-17	170	313	5271	3278	596
SS16-06-F	DI	F	A	17-Aug-16	17-Aug-16	3-Feb-17	169	278	4796	4357	648
SS16-07-M	DI	M	A	17-Aug-16	17-Aug-16	17-Jan-17	153	106	2359	3174	573
SS16-08-M	DI	M	S	25-Aug-16	25-Aug-16	8-Apr-17	226	256	4778	3776	743
SS16-09-F	DI	F	A	25-Aug-16	25-Aug-16	5-Apr-17	223	521	8004	4279	729
SS16-10-F	SB	F	S	18-Oct-16	19-Oct-16	4-Mar-17	137	250	4356	3161	495
SS16-11-F	SB	F	S	18-Oct-16	19-Oct-16	6-May-17	199	352	5573	2942	640
SS17-02-M	SB	M	A	10-Jul-17	11-Jul-17	25-Apr-18	288	305	4354	2777	705
SS17-05-M	DI	M	S	25-Jul-17	27-Jul-17	14-Jan-18	170	429	7502	4895	608
SS17-06-F	N	F	P	09-Aug-17	12-Aug-17	27-Dec-17	137	338	6564	4056	510
SS17-07-M	N	M	S	16-Aug-17	17-Aug-17	11-Jan-18	148	321	5952	4520	516
SS17-08-F	N	F	S	16-Aug-17	17-Aug-17	26-Feb-18	194	428	8190	5476	710
SS18-01-M	SB	M	S	03-Jul-18	4-Jul-18	4-Feb-19	216	269	3768	2250	560
SS18-03-F	DI	F	A	26-Jul-18	26-Jul-18	20-Nov-18	117	185	2754	2006	450
SS18-05-F	N	F	A	09-Sep-18	9-Sep-18	9-Jan-19	122	324	5195	3381	482
SS18-06-M	DI	M	P	20-Sep-18	1-Oct-18	31-May-19	242	578	9109	4952	924
SS18-07-F	DI	F	S	20-Sep-18	21-Sep-18	22-May-19	243	460	5704	4152	914
SS19-01-M	DI	M	A	17-Sep-19	18-Sep-19	15-May-20	241	417	5153	4089	859
SS19-02-M	DI	M	S	17-Sep-19	18-Sep-19	22-Jan-20	127	244	2837	2678	497
SS19-03-M	DI	M	A	17-Sep-19	18-Sep-19	23-Apr-20	219	197	3083	2244	721
SS19-04-M	DI	M	A	18-Sep-19	19-Sep-19	9-May-20	233	425	4719	3647	841
TOTAL								7109	112011	80452	14981

1071 *DI = Dease Inlet, SB = Scammon Bay, N = Nuiqsut

1072 **F = female, M = male

1073 ***A = adult (≥ 5 yr), S = subadult (1-4 yr), P = pup (<1 yr)

1074 Table 2. Explanatory variables, parameter estimates, significance tests, and interpretation for top
 1075 candidate models of seal movement behavioral state (resident or transiting) for the ice-free
 1076 period in the Chukchi Sea and the ice-covered period in the Bering Sea. Parameter estimates are
 1077 from generalized linear models and the number gives the relative effect size (compared to other
 1078 parameters) and the sign indicates direction of the relationship with the probability that a seal is
 1079 in the resident state.

Explanatory variable	Parameter estimate (p-value)	Interpretation
Ice-free in the Chukchi Sea		
<i>Intercept</i>	-0.64 (0.005)	Baseline group is non-pups in coastal areas, which are more likely to be in the transiting state than the resident state
<i>Trip distance (near)</i>	-0.09 (0.36)	No difference in probability of being in resident state for near-distance trips versus using coastal areas for non-pups.
<i>Trip distance (mid)</i>	-0.69 (<0.001)	Less likely to enter resident state during mid-distance trips than when using coastal areas for non-pups.
<i>Trip distance (far)</i>	-0.91 (<0.001)	Less likely to enter resident state during far-distance trips than when using coastal areas, but significant interaction with bottom temperature (below).
<i>Age class (pup)</i>	-0.24 (0.40)	No difference in probability of entering resident state between non-pups and pups.
<i>Bottom temperature</i>	0.009 (0.93)	No trend in bottom temperature and behavioral state for non-pups in coastal areas.
<i>Bottom salinity</i>	-0.11 (0.18)	No trend in bottom salinity and behavioral state for non-pups.
<i>Bottom temp. × near</i>	-0.04 (0.14)	No trend in bottom temperature and behavioral state during near-distance trips for non-pups.
<i>Bottom temp. × mid</i>	-0.03 (0.69)	No trend in bottom temperature and behavioral state during mid-distance trips for non-pups.
<i>Bottom temp. × far</i>	-0.36 (0.001)	The resident state is more likely during far-distance trips when bottom temperatures are colder for non-pups.
<i>Bottom temp. × pup</i>	-0.31 (0.02)	The resident state is more likely when bottom temperatures are colder for pups.
<i>Bottom sal. × pup</i>	-0.27 (0.03)	The resident state is more likely when bottom salinities are fresher for pups.
Ice-covered in the Bering Sea		
<i>Intercept</i>	0.07 (0.76)	Baseline group is non-pup females.
<i>Bottom temperature</i>	-0.87 (<0.001)	The resident state is more likely when bottom temperatures are colder for non-pup females.
<i>Age class (pup)</i>	-0.86 (<0.001)	Pups are less likely to be in the resident state than non-pups.
<i>Sex (male)</i>	-0.27 (0.24)	No significant difference in probability of behavioral state between males and females.
<i>Bottom temp. × pup</i>	0.49 (0.008)	The resident state is more likely when bottom temperatures are colder for pups, but the relationship is weaker than for non-pup females.
<i>Bottom temp. × male</i>	0.39 (0.01)	The resident state is more likely when bottom temperatures are colder for males, but the relationship is flatter than for non-pup females.

1080