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Abstract 

Accurate medium-range global weather forecasts serve as a critical cornerstone in informing 
decision-making processes across various societal and economic sectors. The development of 
machine learning (ML)-based models has significantly changed the field of weather prediction in 
recent years, demonstrating previously unheard-of levels of effectiveness when contrasted with 
conventional numerical weather prediction (NWP) models. These cutting-edge models leverage 
diverse ML architectures, such as Graph Neural Networks (GNNs), Convolutional Neural 
Networks (CNNs), Fourier Neural Operators (FNOs), and Transformers. Among these 
advancements, GraphCast, a pioneering ML-based approach developed by Google DeepMind, 
has received particular attention in the community. Leveraging direct training from reanalysis 
data, GraphCast expedites global weather predictions across numerous variables within 
minutes. Impressively, GraphCast forecasts show improved accuracy in predicting severe 
weather events, including phenomena such as tropical cyclones (TC), atmospheric rivers, and 
extreme heat. The performance of the current version of the GraphCast relies on high-quality 
historical weather data for training, typically sourced from the European Center for Medium 
Range Weather Forecast (ECMWF)'s ERA5 reanalysis. Concurrently, the National Centers for 
Environmental Prediction (NCEP) has initiated collaborative endeavors with the research 
community to develop machine learning weather prediction (MLWP) models. Within this context, 
our study represents the efforts to advance the state-of-the-art by devising a methodology for 
parallel training of GraphCast using Global Data Assimilation System (GDAS) data obtained 
from NCEP’s current operational Global Forecast System (GFS version 16). GDAS provides 
real-time initial conditions to make the experimental real-time MLWP global forecasts possible. 
Our study includes a framework that includes model training, validation, and testing processes, 
along with a performance comparison of GraphCast. In addition to this comparative analysis, we 
examine the benefits and drawbacks of GraphCast's forecasting ability using GDAS data and 
suggest possible ways to improve subsequent iterations of this research. 

Keywords: Global Data Assimilation System (GDAS), GraphCast, Machine Learning-based 
Weather Prediction, Graph Neural Networks 
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1. Introduction

Weather forecasting is a critical application of scientific computing, providing invaluable 
insights into future weather patterns and the potential occurrence of extreme weather events 
such as floods, droughts, hurricanes, and more. These forecasts play a pivotal role in various 
aspects of society, including daily activities, agriculture, energy production, transportation, and 
industrial operations. In the realm of weather forecasting, traditional numerical weather 
prediction (NWP) models have long been the cornerstone, leveraging High-Performance 
Computing (HPC) architectures extensively to simulate atmospheric conditions. Over the past 
decade, the rapid advancement of HPC systems has catalyzed significant progress in this field 
(Bauer et al., 2015).  

Conventional NWP methods typically adopt a simulation-based approach. This approach 
uses numerical methods to solve partial differential equations (PDEs) that mathematically 
represent the physical laws governing atmospheric conditions (Ritchie et al., 1995; Molteni et 
al., 1996; Skamarock et al., 2008). However, the computational demands of solving these PDEs 
are substantial. For instance, with a spatial resolution of 0.25 degrees, a single simulation for a 
10-day weather forecast can require hours of computation across multiple nodes on an HPC 
cluster (Bauer et al., 2020). This computational burden limits the higher resolution real-time 
capability of daily weather forecasts and restricts the number of ensemble members feasible for 
probabilistic weather prediction. Additionally, parameterized numerical representations of 
atmospheric processes are a major component of conventional NWP models, but they are 
frequently considered inadequate (Palmer et al., 2005; Allen et al., 2002) despite their 
complexity (Bauer et al., 2015). These parametric models introduce errors due to the 
simplification of unresolved phenomena, posing challenges to the accuracy and reliability of 
weather forecasts. The weather and climate history, however, is detailed in the reanalysis and 
reforecasts generated by the NWP models (Kalnay et al., 1996; Saha et al., 2010; Hersbach et 
al., 2020; Hamill et al., 2022; Guan et al., 2022). The NWP models, however, mainly rely on 
advancements in model design, numerical schemes and algorithms, bias correction, and 
calibrations based on these historical data to enhance the model rather than directly using these 
data to increase accuracy.

Machine learning-based weather prediction (MLWP) offers a promising alternative and 
enhancement to traditional NWP. MLWP harnesses historical data to train forecast models 
directly with billions of neural network parameters. The purpose is to resolve the physics laws 
hidden in the data and to capture intricate patterns and scales. This new approach leverages 
the advancements in computing power, data storage, and Artificial Intelligence (AI) algorithm 
breakthroughs to build ML models for weather and climate predictions. The first cutting-edge 
data-driven MLWP model was introduced in 2022 by Keisler (2022). Keisler conducted a 
groundbreaking study that introduced a data-driven approach for global weather forecasting 
using graph neural networks (GNNs). This innovative system was designed to predict the future 
3D atmospheric state every six hours autoregressively, with successive steps combined to 
generate accurate forecasts spanning multiple days ahead. When compared to previous 
data-driven approaches, the model demonstrated significant performance improvements on 
important metrics like Z500 (geopotential height at 500 hPa)  and T850 (temperature at 850 
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hPa) after being trained on ERA5 reanalysis data (Hersbach et al., 2020). Most importantly, the 
model's performance was found to be comparable to operational, full-resolution physical models 
from GFS and ECMWF. This research marks a milestone in weather forecasting, demonstrating 
the potential of data-driven approaches to rival traditional physical models in accuracy and 
forecast skill.  

    NVIDIA, Pathak et al. (2022) developed the data-driven MLWP model FourCastNet, which is 
especially effective at forecasting small-scale variables like precipitation and surface wind speed 
and producing high-resolution forecasts remarkably fast and efficiently. Huawei's 
Pangu-Weather model (Bi et al., 2022) achieves superior forecasting accuracy across various 
factors, surpassing conventional NWP methods. Similarly, GraphCast from Google DeepMind 
(Lam et al., 2023) offers efficient, high-resolution forecasts and excels in predicting severe 
weather events. Chen et al. (2023) introduced the FuXi model, which offers ensemble forecasts 
to handle uncertainty and increases the accurate lead time for Z500 and T2M ((temperature at 2 
meters) forecasts. Lastly, GenCast by Google (Price et al., 2023) delivers skillful 
ensemble forecasts for up to 15 days, outperforming ECMWF ensemble system (ENS) 
in multiple verification metrics. More recently, ECMWF introduced the Artificial Intelligence 
Forecasting System (AIFS) in real-time operations (Lang et al., 2024), based on a graph 
neural network (GNN) that has a sliding window transformer processor, an encoder, and a 
decoder. AIFS is trained on ECMWF’s ERA5 reanalysis and ECMWF’s operational NWP 
analyses. It has a flexible and modular design and supports several levels of parallelism to 
enable training on high-resolution input data. Results indicated that AIFS produces highly 
skilled forecasts for upper-air variables, surface weather parameters, and Tropical Cyclone 
(TC) tracks. These advancements collectively enhance the accuracy, speed, and reliability of 
weather forecasting, improving early warning systems and disaster preparedness.  

The majority of MLWP models have been trained and verified primarily with ECMWF ERA5 
reanalysis data (Hersbach et al., 2020). One question is whether these MLWP models can be 
trained to produce good performance forecasts with different initial conditions generated at other 
operational centers and if these models can learn additional information from analysis data 
generated from these centers. To address this question, researchers at the NOAA National 
Centers for Environmental Prediction (NCEP) are collaborating with the broader research 
community to advance MLWP methodologies. This study represents efforts aimed at introducing 
a new method for distributed and parallel training of the GraphCast model using different 
sources as ground truth, including the NCEP Global Data Assimilation System (GDAS) data 
from the operational Global Forecast System (GFSv16) model. The GDAS data used in this 
study is 6 hourly 0.25 degrees latitude-longitude products post-processed from 13 km high 
resolution runs. We proposed multiple scenarios to fine-tune the pre-trained GraphCast model 
on ERA5 reanalysis leveraging GDAS data. It includes initializing GraphCast with GDAS data, 
fine-tuning and training Graphcast with GDAS,  and evaluating the forecast results from these 
experiments. Once trained, the new MLWP model runs remarkably faster than the operational 
NWP model; it produces 10-day forecasts in 2 minutes using a single Nvidia A100 Graphical 
Processing Unit (GPU) core. In conclusion, we tried to clarify the benefits and drawbacks of 
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using GraphCast to leverage GDAS data in addition to developing the framework for MLWP 
training processes. We also suggested possible directions for improving this study in the future.  

Through the use of GDAS data in the MLWP framework, our study pushes the boundaries of 
weather forecasting at NCEP. Additionally, it clarifies the effectiveness of various initial 
conditions and training datasets and paves the way for improved MLWP forecast performance in 
operational centers. The remainder of this paper is organized as follows: Section 2 provides a 
description of several datasets utilized in this study, the GraphCast model structure, as well as 
the experimental design and model training procedure. In Section 3, we elaborate on the results 
obtained from the fine-tuned and trained GraphCast model using GDAS data. The model state 
vertical structure of forecasts is analyzed, the tropical cyclone forecast errors are verified, and 
the model forecasts are evaluated using standard metrics. Finally, Section 4 concludes the 
study by summarizing key findings and insights gained, as well as outlining potential directions 
for future research endeavors in the field of MLWP. 

2. Methodology

2.1. Datasets 

 We utilized several datasets throughout our experiments with GraphCast training and 
fine-tuning. This section provides a detailed inventory of all the datasets used in the process. 
We built the datasets from GDAS analysis (Kleist et al., 2023) and ERA5 reanalysis (Hersbach 
et al., 2020). We got these datasets from NOAA and ECMWF archives, a large corpus of data 
representing the global weather at 0.25-degree latitude/longitude resolution for hundreds of 
static, surface, and atmospheric variables. We extracted a subset from these datasets from 
March 21, 2021 to January 1, 2024 at 6-hourly time steps. In order to facilitate the efficient 
storage and retrieval of large-dimensional datasets for model training and verification, all of the 
datasets, along with the ERA5 climatology data, are stored in a cloud-based Zarr format (Miles 
et al., 2020). 

GDAS analysis data (Kleist et al., 2023) is an extensive meteorological dataset produced by 
NCEP. Through data assimilation in the GFS system, this dataset combines data from multiple 
observational sources, such as satellite measurements, surface observations, aircraft data, and 
radiosonde data. GDAS analysis provides a consistent and continuous record of atmospheric 
conditions, offering detailed information on the whole globe for variables such as temperature, 
humidity, wind speed, and pressure across model vertical levels. The operational GFSv16 
GDAS data is accessible from March 20, 2021, to the present through platforms like NOAA's 
National Centers for Environmental Information (NCEI) or NOAA’s Amazon Web Services 
(AWS) S3 bucket. 

This study also uses forecast data from the operational GFS model (NOAA, 2024a). The 
model provides operational forecasts with a base resolution of 13 km. Here, we use the  
0.25-degree post-processed products for evaluation. 
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ERA5 reanalysis (Hersbach et al., 2020) is a global reanalysis dataset from ECMWF for 
weather and climate. Similar to GDAS, since reanalysis data combines observational data with 
simulation data, it provides the best estimate of the total state of the weather at 0.25 degree 
resolution. We used ERA5 climatology to compute anomaly metrics such as the anomaly 
correlation coefficient (ACC). In this study, the climatology data was gathered from 
WeatherBench2, and computed for 1990-2019 using a running window for smoothing (Rasp 
et al., 2024) for each day of the year and the sixth hour of the day. The climatologies 
are computed for 1990-2019.

The operational high-resolution global analysis data from ECMWF (HRES-T0 Analysis; we 
refer to it as HRES in this study) that starts the ECMWF high-resolution run is also utilized as 
the ground truth in addition to ERA5 reanalysis. Both data sets are used to evaluate the quality 
of the machine learning model forecasts (Rasp et al., 2024). 

2.2. GraphCast Model 

In this study, we fine-tuned GraphCast, a novel MLWP approach developed by Lam et al. 
(2023). The fine-tuned model is designed for global medium-range weather forecasting, 
leveraging NOAA’s GDAS data as well as ECMWF HRES and ERA5 reanalysis 
data. GraphCast supports various applications, including the prediction of TC tracks, 
atmospheric rivers, and extreme temperatures (Lam et al., 2023). In the inference 
stage, GraphCast produces a 10-day forecast in under a minute on a single-core GPU (or 
TPU) with at least 32GB of memory. GraphCast predicts future atmospheric states by using the 
current time and previous six-hour model states as inputs. The resolution used in this 
study is a 0.25-degree latitude/longitude grid. A set of surface and atmospheric variables 
(Table 1 in Lam et al., 2023) are located on each grid point. GraphCast produces forecasts 
through autoregressive steps. The model uses the forecasts from previous steps as inputs to 
generate forecasts at the next step, as shown in Figures 1.b and 1c in Lam et al. (2023). 

2.2.1. Model Architecture 

GraphCast is a neural network architecture with 36.7 million parameters that is based on 
GNNs and is implemented in an encode-process-decode configuration (Battaglia et al., 2018). 
The encoder, processor, and decoder parts of GraphCast are described in the 
following subsections. For further information, please see Lam et al., 2023. 

A single GNN layer is used by the encoder component of GraphCast (Lam et al., 2023) to 
translate model variables on the input latitude-longitude grid into node attributes on internal 
meshes that the GNN processor can use. The internal multi-meshes are located on resolution 
regular icosahedron grids on the sphere created iteratively six times. As a result, the multi-mesh 
facilitates high-resolution spatial representation over the globe with less amount of total data 
than the original latitude-longitude input data. The processor, which contains 16 separate 
GNN layers to execute message passing across the multi-meshes, allows effective 
transmissions of information at different scales through a few number of message-
passing iterations. The features learned by the processor at the last processor layer in the 
latent multi-meshes space are transformed back into forecasts on the latitude-longitude 
output grid by the GraphCast decoder component. This output can be used as input for the 
next step forecast.  
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2.2.2. Available GraphCast Versions 

Currently, there are two versions of GraphCast weights available, both trained (and 
developed) by Google DeepMind. The first version (GraphCast-operational) has 13 pressure 
levels trained on 1979-2017 ERA5 reanalysis data and fine-tuned on 2016-2021 using HRES 
analysis data. The second version (GraphCast) has 37 pressure levels trained on 1979-2017 
ERA5 reanalysis data. This study focused on GraphCast-13 due to its more accurate forecasts 
as it is fine-tuned on most recent HRES data (for more information, please see 
https://sites.research.google/weatherbench/) as well as its lower computational cost for 
fine-tuning.  

2.3. Experimental Design and Model Training 

In this study, we looked at the same structure with precisely the same number of parameters 
as DeepMind offered for the 13-pressure-level GraphCast operational model. In the following 
subsections, we provide details of our training setup to fine-tune the GraphCast model with 
GDAS data. 

2.3.1. Training/Fine-tuning Data and Schedule 

As we discussed in Section 2.1, we considered multiple sources of data for fine-tuning 
GraphCast. We prepared Zarr databases and generated NetCDF batch files; each file includes 
16 weather state time steps that match the GraphCast inputs (current and past 6-hour weather 
states) as well as the upcoming 14 weather states as truth data. The input states in all cases 
were provided from GDAS data (from March 20, 2021, to Jan 1, 2023), while the truth data were 
selected from multiple sources, including GDAS analysis, ERA5 reanalysis, and HRES analysis 
data. We split the data into training and validation sets from March 20, 2021, to September 1, 
2022, and September 1, 2022, to Jan 1, 2023, respectively (4 cycles per day). For the 
verification step, we verified the model forecasts against the GDAS analysis and ERA5 
reanalysis data, and compared them with GFS forecasts for the entire year 2023 (two cycles 
per day; 00z and 12z). Table 1 explains different scenarios considered in this study. 
We call these models GCGFS (GraphCastGFS) for simplicity. Please note Scenario #1 
and #2 are the same model fine-tuned with GDAS but verified against different data sets 
(ERA5 reanalysis for Scenario #1 or GDAS analysis for Scenario #2). 

Scenario 
# 

Training/Fine-Tuning Input 
Dataset 

Truth Dataset Verification 
Dataset 

# of AR 
Training Steps 

1 Fine-Tuning GDAS GDAS/HRES/ERA
5 

GDAS 14 

2 Fine-Tuning GDAS GDAS/HRES/ERA
5 

ERA5 14 

3 Training GDAS GDAS GDAS 12 

Table 1. GCGFS training and verification configurations  
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2.3.3. Training Setup 

The GraphCast training setup code was not supplied by the DeepMind team because it was 
closely linked to their internal infrastructure. We obtained the core model from the DeepMind 
GraphCast repository and developed our own training setup code and were able to train and 
fine-tune GraphCast using multiple GPU cores. 

Figure 1. EMC training setup for fine-tuning GraphCast model 

To train or fine-tune GraphCast, we leveraged pre-trained model weights provided by 
DeepMind as the initial weights. Similar to the original setup of GraphCast, we considered 
processing 32 batches (mini-batch) for every weight update. We utilized 32 GPU cores of 
NVIDIA H100 nodes, each with 80 GB of memory, provided through NOAA Parallel Works with 
AWS cloud nodes (4 nodes of P5 instances, each with 8 GPU cores).  For fine-tuning (scenario 
#1 and #2), we trained the model for 2 more AR steps starting from step 12, where the Google 
Deepmind stops to let the model learn different initial conditions and to improve the longer lead 
time forecasts. For scenario #3, we trained the model following the curriculum training schedule 
(Lam et al., 2023). We started from AR step 1 to let the model learn the impact of different 
inputs from the beginning of the forecast. Due to computational costs and limited GPU node 
availability, we trained the model for 12AR steps as Deepmind did. To train the model with 
parallelization, we followed a Data Parallel (DP) paradigm. The GraphCast model, as well as its 
parameters, is replicated on 32 GPU cores while we randomly selected 32 batches with 
replacement from training data in batch files prepared in advance for the whole training and 
validation cycles. Using Jax’s PMAP mechanism (​​Sapunov, 2024), the batch files were 
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distributed parallelly on 32 GPU cores. The GraphCast model and its parameters are copied 
over and run with the decomposed data. Next, the losses, as well as the gradients, were 
aggregated from 32 mini-batches, and the model weights were updated using the AdamW 
optimization method (Loshchilov, 2017). The training objective in the loss function is computed 
following Lam et al. (2023). To enhance the training process and prevent overfitting, we 
implemented early stopping steps and monitored convergence. Specifically, for every fine-tuning 
step explained above, the training process is stopped when the loss value ceases to improve for 
25 consecutive epochs. This approach ensures that the model maintains generalization 
capabilities by stopping the training at the optimal point before overfitting occurs. Figure 2 
shows the loss change during the fine-tuning (Scenario #1). 

Figure 2: Training and validation loss for fine-tuning GraphCast with GDAS as input and 
ERA5 for truth.  

 Given that there were four AWS P5 nodes available, each with 32 GPU cores, the entire 
fine-tuning and training procedure took about four weeks. It is worth noting that sometimes we 
were only able to reserve two (or even one) nodes of AWS P5 instances, so we applied a loop 
of two (or four) steps prior to combining the gradients and losses to ensure consistency with the 
available time for each of the four nodes.   

2.4. Verification and Evaluation Metrics 

We compared the results with operational GFS forecast validation after using 
WeatherBench2 (Rasp et al., 2024) to validate the forecasts for the full year 2023 against GDAS 
analysis (Scenarios #1 and #3) and ERA5 reanalysis (Scenario #2). The goal is to show the 
improvement relative to operational GFS as well as the impact from the different verification 
data sets. The forecasts were verified over the global and regional domains, including North 
America, the Northern Hemisphere, the Southern Hemisphere, and Tropics. To quantify the 
skillfulness of GraphCast, we utilized the root mean square error (RMSE) and the anomaly 
correlation coefficient (ACC) metrics. The RMSE measures the magnitude of the differences 
between forecasts and ground truth for a given variable and a given lead time. The RMSE is 
defined in WeatherBench2 Equation (2) (Rasp et al., 2024). We list it here as a reference: 
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After the training, we set up experimental real-time forecasts from Scenario #1, from April 28, 
2024, and Scenario #3, from September 11, 2024. We evaluated the atmosphere states and 
surface fields against GDAS using the NCEP’s Verification Statistics Data Base (VSDB, Zhou et 
al., 2015; Shafran et al., 2015) system for Boreal fall during September 11 to October 11, 2024.  
We also evaluated several hurricane cases and computed some statistics for TC track and 
intensity errors using NCEP’s hurricane verification package (Marchok T., 2021; Franklin JL, 
2010). 

3. Results and Discussion

We compared the fine-tuned and trained GraphCast model results with GFS forecasts for
the entire year 2023 for 2 cycles per day (00Z and 12Z; total 730 cycles). Just like the 
operational GFS, the refined model (Scenario #1) and the fully trained model (Scenario #3) are 
validated against GDAS analysis. We also validated these results using ERA5 reanalysis data 
(Scenario #2 in Table 1) to demonstrate the impact of training data sets on forecasting abilities. 
In the following subsections, we presented the verification results for global and the tropics 
region. As we got similar results as the globe for regions including North America, the Northern 
Hemisphere, the Southern Hemisphere, and the Tropics, we presented the results for these 
regions in the supplementary section. From now on, for simplicity, we use "verification” referring 
to “verification against GDAS analysis”, unless we specifically mention the verifications that are 
against ERA5 reanalysis data.  

3.1. Forecast verification against operational GFS 

Figure 3 shows the global average RMSE values of the fine-tuned  GCGFS (Scenario #1), 
trained GCGFS (Scenario #3), and fine-tuned GCGFS against ERA5 (Scenario #2), as well as 
operational GFS forecasts. The x-axis is 6 hourly forecast steps, up to 10 days. We utilized 
WeatherBench2 (RMSE is defined in Section 2.4) to calculate the metrics for the entire year of 
2023 for surface and atmospheric variables. 
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Figure 3. RMSEs of  fine-tuned GCGFS (blue), trained GCGFS (orange), and fine-tuned 
GCGFS against ERA5 (green), and GFS (red) forecasts for the full year 2023 (00z and 12z). a) - 
j) are RMSEs for the following fields: 2 meter temperature (a) , mean sea level pressure (b), 10
meter v wind component (c), 700 hPa specific humidity (d), 850 hPa temperature (e), 200 hPa v
wind component (f), 200 hPa v wind component (g), 10 meter u wind component (h), 500 hPa
geopotential, (i) and 6 hourly total precipitation (j).

From the figure, it shows that GCGFS forecasts are similar in the three scenarios and have 
smaller RMSE compared to operational GFS at longer lead time (> 2 days) for fields including 
10 meter and 200 hPa wind fields, 700 hPa specific humidity, 500 hPa geopotential, and 6 
hourly total precipitation. For example, the GCGFS 500 hPa geopotential forecasts have about 
10% reduced RMSE compared to GFS on day 10 (figure 3i). These fields have a larger RMSE 
than operation GFS at forecast time less than 2 days, especially for fine-tuned GCGFS 
(scenario 1 and 2). This is probably caused by the long AR step (12-14) training in the 
fine-tuning process when we intend to improve the long lead time forecast skills. In scenario 3, 
where the model was trained from AR steps 1 to 12, the RMSE is reduced compared to that in 
scenarios 1) and 2). It is still somewhat bigger than GFS. This may result from two causes: 1) 
the 12 AR steps training process that targets improving forecasts at long lead time may 
surrender short time forecast skills as the training weights are updated when the AR step 
increases; 2) insufficient training data (2 years of GDAS data) that results in inadequate learning 
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to effectively reduce the initial shock caused by different input data. It is worth noting that 2 
meter and 850 hPa temperature fields and mean sea level pressure show larger RMSE up to 
4-5 days lead time than GFS in scenario 1, while when verified against ERA5 (scenario 2) ,
those fields show smaller RMSE than GFS after GFS after day 1. This indicates that there are
noticeable differences between ERA5 reanalysis and GDAS analysis for those fields; also, even
though the model is fine-tuned with GDAS, the 2 meter temperature field still performs closer to
ERA5 in longer lead time (see blue and green lines in Figures 3a, 3b, and 3e). In both scenarios
1 and 2, the initial shock is prominent. The two reasons for the AR steps in the fine-tuning
process and inadequate training data may also apply here. We plan to redo the training later
when we have enough GDAS data and additional resources. In this paper, we focus on the
initial model fine-tuning and training process and verify the ML forecasts with common metrics.

Figure 4. as in Figure 3, but for ACC metrics. 

Figure 4 is the same as Figure 3 but shows the global average ACC metrics. Similar 
improvements have been seen in the ACC scores for both the atmospheric and surface fields at 
longer lead times. The ACC scores are very close in the three GCGFS scenarios except that the 
forecasts in scenario 3 have higher ACC scores at the short lead time, which is very close to 
GFS. It is worth noting that the 2 meter temperature ACC score in scenario 1 is noticeably below 
the GFS ACC score, while in scenario 3 it is about the same as GFS on day 1 and then higher 
than GFS after day 1. This indicates the training starting from the short lead time allows the 
GCGFS to learn adjusting predictions from different inputs at that lead time. The results confirm 
the training's efficacy even more. 
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3.2. Verification for boreal fall from NCEP VSDB verification system 

The figures below show the performance of fine-tuned GCGFS and trained GCGFS 
compared to operational GFS (GFSv16). Figures 5 and 6 show the vertical structure differences 
of two model fields compared to GFSv16. The evaluations only show pressure levels up to 50 
hPa, as the GraphCast operation version we used in this study only has 13 pressure levels with 
50 hPa at the top. Figure 5 shows the boreal fall RMSE comparison of geopotential height 
(HGT, Fig. 5a-c) and temperature (T, Fig. 5d-f) averaged over September 11 to October 11, 
2024, in three regions (Northern Hemisphere, Southern Hemisphere, and Tropics). It is clear 
that two GCGFS models reduce RMSEs for both fields in most of the troposphere in the three 
regions at long lead time (green area). However, both models show larger errors compared to 
GFSv16 for the two verified fields at the pressure levels above 100 hPa. The fine-tuned GCGFS 
has the largest error reduction in the two fields in the northern hemisphere among the three 
regions. The model has more than 9.6 gpm reduction in HGT RMSE at pressure levels between 
300 and 200 hPa. The model also shows increased errors in the three regions at short lead 
times, especially for temperature. The RMSEs of HGT in the southern hemisphere and 
temperature in the northern hemisphere increase at the lower atmosphere, where pressure 
levels are below 850 hPa for all the lead time. Compared to fine-tuned GCGFS, in general the 
trained GCGFS has lower error in the lower atmosphere. This result could be attributed to the 
training process, which includes short lead time training steps.  
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Figure 5. RMSE comparison of geopotential height on a) Northern Hemisphere, b) Southern 
Hemisphere, and c) Tropics and RMSE comparison of temperature on d) Northern Hemisphere, 
e) Southern Hemisphere, and f) Tropics. The x-axis is the forecast hour, and the y-axis is the
pressure levels in hPa. In each plot of a-f), the top left is RMSE from GFSv16 against the
reference, the bottom left is the RMSE difference between fine-tuned GCGFS and GFSv16, and
the top right is the RMSE difference between trained GCGFS and GFSv16.

Figure 6 shows the bias comparison of the HGT and temperature fields on the northern 
hemisphere, the southern hemisphere, and the tropics. In general for HGT, the fine-tuned 
GCGFS shows a slight positive bias in the lower atmosphere, but it has a larger negative bias at 
the upper atmosphere and a longer lead time. The trained GCGFS starts to have negative bias 
earlier and from lower levels than the fine-tuned model, and it has higher negative bias at model 
top at long lead time. For temperature bias, the three models show different patterns. Unlike 
GFSv16, the fine-tuned GCGFS shows negative bias in lower atmosphere levels and positive 
bias in higher levels in the northern hemisphere, while it has positive bias in the near surface 
and negative bias in the upper atmosphere in the southern hemisphere. The trained GCGFS 
shows negative biases in all three regions. It shows the largest negative bias in the 
mid-troposphere in the northern hemisphere and the troposphere in the southern hemisphere. In 
summary, both models show comparable vertical structure to GFSv16 except at the top 
pressure layers. The trained GCGFS is slightly degraded compared to the fine-tuned model, 
while it has better temperature performance near the surface, which is consistent with the 
RMSE results.    
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Figure 6. Bias comparison of geopotential height on a) Northern Hemisphere, b) Southern 
Hemisphere, and c) Tropics and bias comparison of temperature on d) Northern Hemisphere, e) 
Southern Hemisphere, and f) Tropics. In each plot of a-f), the top left is the bias in GFSv16, the 
bottom left is the bias in the fine-tuned GCGFS, and the top right is the bias in the trained 
GCGFS.  

Figure 7 shows the 6-hourly total precipitation averaged over September 11, 2024, to 
October 11, 2024. It’s clear that both the GCGFS models (Figs. 7c and 7d; Figs. 7k and 7j) 
capture the features in observations (Figs. 7a and 7i). The position and the shape of the 
Inter-Tropical Convergence Zone (ITCZ) from GCGFS models are found to be very close to the 
operational GFSv16 forecasts. It is also evident that the fields in the GCGFS models are 
smoother than those in GFSv16 and observations, especially at long lead time.  
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Figure 7. Global 6 hourly total precipitation at lead time 0 (0-24 hour forecast), (a-h) on left 
panel,  and 5 day lead time (96-120 hour forecast), (i-p) on right panel. (a) and (i) represent 
observations; b) and j) represent GFSv16 forecasts; c) and k) represent fine-tuned GCGFS 
forecasts; d) and l) represent trained GCGFS forecasts; e) and m) represent the differences 
between GFSv16 and observations; f) and n) represent the differences between fine-tuned 
GCGFS and observations; g) and o) represent the differences between trained GCGFS and 
observations; and h) and p) represent the differences between trained GCGFS and fine-tuned 
GCGFS. 

Figure 8 shows the time series of the 24-hour total precipitation averaged over several 
regions at 1-day and 5-day lead time. At the 1-day lead time, it’s clear that the two GCGFS 
models match the GFS forecasts over the Maritime Continent (MC), Indian Ocean (IO), CONUS, 
and East Asia regions. Although the fine-tuned GCGFS is more in line with observations than 
the trained GCGFS, it tends to have the least amount of precipitation of the three models. At the 
5-day lead time, the two ML models generally follow the monthly variability  in the observations,
and they are generally closer to observations than GFS over the tropics and globally.
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Figure 8. Time series of the total precipitation averaged over different regions for analysis, 
GFSv16 forecast, fine tuned GCGFS, and trained GCGFS at 1-day lead time (forecast hour 
0-24) on the left panel and at 5-day lead time (forecast hour 96-120) on the right panel. a) and
g) are for Maritime Continent (MC); b) and h) for CONUS region; c) and i) for tropical region; d)
and i) for Indian Ocean (IO) region; e) and k) for East Asia; and f) and l) for global.

3.3 Tropical cyclones evaluations 

The performance of the MLWP models in a TC case study was analyzed using the 
experimental real-time GCGFS outputs. Figure 9 shows a comparison of the composite tracks of 
the fine-tuned GCGFS and operational GFSv16 forecasts for Typhoon Gaemi, a category 4 
equivalent tropic cyclone that occurred in July 2024. The fine-tuned GCGFS demonstrated 
improved accuracy and cycle-to-cycle consistency over GFS track forecasts, except for the track 
forecast at 00Z on 20240720 (track 1), which exhibited left of the track bias compared to the 
best track. It is worth noting that for track forecasts at 2024072006 (track 2) and 2025072012 
(track 3), GFS forecasts had a right of the track bias, while GCGFS accurately predicted the 
landfall of Typhoon Gaemi along the northeastern coast of Taiwan. GCGFS continued 
performing better for the rest of forecast cycles, including after the typhoon’s second landfall 
along the eastern China coast, where GFS incorrectly predicted the storm would move 
westward, while GCGFS correctly forecasted a northward direction. Overall, GCGFS 
demonstrated better forecast skills compared to GFS, particularly in capturing the storm’s land 
interactions and directional shifts. 
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Figure 9. Composite tracks for Typhoon Gaemi in July 2024. The predicted tropical cyclone 
tracks from 00Z July 20, 2024, to 12Z July 25, 2024, are shown along with the best track from 
observations. a) is the GFSv16 forecasts, and b) is the fine-tuned GCGFS forecasts. 

The forecast abilities of the GCGFS models for TC track and intensity were also assessed 
statistically. Figure 10 shows the mean absolute errors of TC track and intensity against TC’s 
best track for North Atlantic Basin ((a), (b)) and North Western Pacific Basin ((c), (d)). Both 
GCGFS models perform similarly and better than operational GFS TC track forecasts, especially 
in the North Atlantic basin in TC track prediction. However, both GCGFS models show intensity 
degradation for all lead times. The fine-tuned GCGFS has even larger errors than the trained 
GCGFS. In the North Western Pacific Basin, both GCGFS models show slight track 
improvement but degraded intensity up to day 5. After day 5, track accuracy declines while 
intensity predictions improve, although the sample size is very small after day 5. In summary, 
both MLWP models show TC track improvement but intensity degradation in both basins. The 
Mean Square Error (MSE) in the training loss function is most likely the cause of this intensity 
degradation (Lam et al., 2023). 
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Figure 10. TC track errors in GFSv16, fine-tuned GCGFS, and trained GCGFS in a) North 
Atlantic and c) North Western Pacific basins. TC maximum wind errors in the b) North Atlantic 
and d) North Western Pacific basins. 

4. Summary and Conclusions

In this paper, we present the work of integrating the data-driven weather prediction models
based on GraphCast using NCEP’s operational GDAS data. Specifically, we set up two versions 
of GCGFS based on Google DeepMind’s GraphCast model with GDAS data as input, one that  
was fine-tuned the model with analysis data including GDAS, and another trained with GDAS 
analysis. The forecast results were evaluated using WeatherBench2 for 2023 model forecasts 
during the training and validation phase, and NCEP's operational evaluation packages for global 
weather and TC forecasts with experimental real-time data in 2024. Evaluation of the GCGFS 
forecast skills showed that both the trained and fine-tuned GCGFS models outperform the 
operational GFSv16 forecasts, especially at longer lead times. Both GCGFS models show 
reasonable vertical structure compared to operational GFS in most of the troposphere region. 
Even though the fine-tuned GCGFS has a larger overall improvement than the trained GCGFS, 
compared to the operational GFS, the fine-tuned GCGFS exhibits larger biases and errors at 
the model top layers and close to the surface, whereas the trained GCGFS exhibits smaller 
biases and errors close to the surface. Both GCGFS models show significant TC track 
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improvement in the North Atlantic Basin and North Western Pacific Basin at about a 5-6 day 
lead time while the intensity is degraded in both GCGFS models compared to the operational 
GFS. As for the computational resources, the GCGFS models run efficiently on a single Nvidia 
A100 GPU node, and in less than 4 minutes it produces 16-day global forecasts at 0.25 degree 
resolution for the selected 83 variables. The MLWP models, although don’t solve atmospheric 
governing equations, can learn directly from the model states that are represented by the 
analysis data. We believe it opens new avenues to significantly improve weather and climate 
forecasts, providing accurate and accessible predictions to strengthen the breadth of 
weather-dependent decision-making with efficient utilization of resources.  

There are several areas we are going to explore for future work. First, we will modify the loss 
function used in the GCGFS training. It is known that grid point MSE could lead the model to 
create less sharp features. Combining other evaluation criteria with the grid point MSE can help 
resolve the blurry issue as seen in the total precipitation forecasts and the intensity degradation 
in tropical cyclone forecasts. In addition, ongoing work is to update the loss weights on pressure 
levels to alleviate the significant error in the model top levels. Currently the weights at the top 
levels are close to zero, which could lead to unconstrained fields at the model top. Second, 
the data length of the consistent GDAS analysis is short, which has limited our training set. We 
will fine-tune GraphCast with more GDAS data that becomes available and also train the 
GraphCast with UFS replay data (NOAA, 2024) to improve the forecast skills. Third, we are 
going to address the forecast uncertainty as discussed in several MLWP model publications (Bi 
et al., 2022, and Lam et al., 2023). We also plan to develop hybrid MLWP and NWP multi-model 
ensembles for the global ensemble forecasting system (GEFS). The GCGFS models show 
different error growth characteristics than physical models, and we expect a wide range of 
probabilities that can be captured when training the ML models with different data sets. The 
hybrid ensembles can be used in conjunction with NWP models to address forecast uncertainty, 
increase model predictability, and decrease systematic errors in the ensemble mean. 

5. Data and Code Availability Statement

The GDAS data used in this study is publicly available from NOAA S3 bucket storage
(https://noaa-gfs-bdp-pds.s3.amazonaws.com/index.html). The HRES and ERA5 reanalysis 
data are publicly available in the Weather Bench 2 repository 
(https://weatherbench2.readthedocs.io/en/latest/data-guide.html). The GraphCast core model 
(forked from the DeepMind repository: https://github.com/google-deepmind/graphcast), as well 
as optimal weights and training scripts, are available at the NOAA-EMC GitHub repository 
(https://github.com/NOAA-EMC/graphcast). For further information, please contact Jun Wang 
(jun.wang@noaa.gov). 
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Supplementary Information Section 

North America: 
 

 
Figure 11: RMSEs of  fine-tuned GCGFS (blue), trained GCGFS (orange), and fine-tuned 

GCGFS against ERA5 (green), and GFS (red) forecasts averaged over North America 
for the entire year 2023 (00z and 12z).  

23



 
Figure 12, as Figure 11, but for ACC. 
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Northern Hemisphere: 

 
Figure 13: RMSEs of fine-tuned GCGFS (blue), trained GCGFS (orange), and fine-tuned 

GCGFS against ERA5 (green), and GFS (red) forecasts averaged over the Northern 
Hemisphere for the entire year 2023 (00z and 12z).  
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Figure 14, as in Figure 13, but for ACC. 

 

26



Southern Hemisphere: 
 

 
Figure 15: RMSEs of fine-tuned GCGFS (blue), trained GCGFS (orange), and fine-tuned 

GCGFS against ERA5 (green), and GFS (red) forecasts averaged over the Southern 
Hemisphere for the entire year 2023 (00z and 12z). 
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Figure 16. as in Figure 15, but for ACC. 
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Tropics:  

 
Figure 17: RMSEs of fine-tuned GCGFS (blue), trained GCGFS (orange), and fine-tuned 

GCGFS against ERA5 (green), and GFS (red) forecasts averaged over tropics for the 
entire year 2023 (00z and 12z). 
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Figure 18. as in Figure 17, but for ACC. 
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