499 Appendix

Table S1: Mean relative bias (RB) and root mean square error (RMSE) for estimates of survival (ϕ) and capture probability (p) from the standard and birth-integrated Jolly-Seber (J-S) models fit to simulated capture-recapture data. Simulation scenarios varied by percentage of known-age individuals and the specified probability of offspring mortality (κ) .

			$\hat{\phi}$		\hat{p}	
J-S Model	Known age (%)	κ	RB	RMSE	RB	RMSE
standard	0	0.1	0.000	0.00	0.000	0.01
$\operatorname{standard}$	0	0.3	0.000	0.00	0.000	0.01
$\operatorname{standard}$	0	0.5	0.000	0.00	0.001	0.01
standard	60	0.1	0.001	0.00	0.001	0.01
standard	60	0.3	0.001	0.00	0.001	0.01
$\operatorname{standard}$	60	0.5	0.001	0.00	0.002	0.01
birth-integrated	0	0.1	0.000	0.00	0.001	0.01
birth-integrated	0	0.3	0.000	0.00	0.000	0.01
birth-integrated	0	0.5	0.000	0.00	0.001	0.01
birth-integrated	60	0.1	0.001	0.00	0.001	0.01
birth-integrated	60	0.3	0.001	0.00	0.001	0.01
birth-integrated	60	0.5	0.001	0.00	0.002	0.01

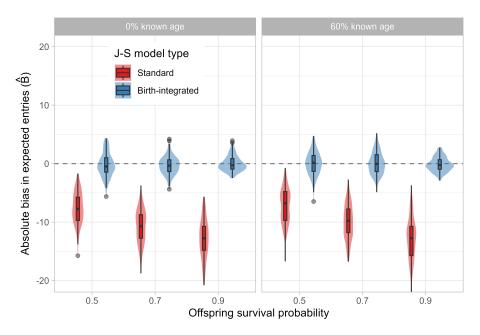


Figure S1: Distributions of absolute bias for estimates of terminal-year entries (\hat{B}_T) from the standard and birth-integrated Jolly-Seber (J-S) models fit to simulated capture-recapture data. Simulation scenarios varied by percentage of known-age individuals and the specified probability of offspring mortality (κ) , here represented as survival $(1 - \kappa)$.

Table S2: Mean and standard deviation of the coefficients of determination (R^2) between actual entries (B_t) and estimated entries $(\hat{B_t})$ from the standard and birth-integrated Jolly-Seber (J-S) models fit to simulated capture-recapture data. Simulation scenarios varied by percentage of known-age individuals and the specified probability of offspring mortality (κ) . Comparions excluded the first year (t=1) and terminal year (t=20).

			$\hat{N_t}$		$\hat{B_t}$	
J-S Model	Known age (%)	κ	R^2 mean	R^2 SD	R^2 mean	R^2 SD
standard	0	0.1	0.82	0.14	0.52	0.19
standard	0	0.3	0.90	0.09	0.49	0.21
standard	0	0.5	0.98	0.01	0.49	0.22
standard	60	0.1	0.92	0.07	0.81	0.10
standard	60	0.3	0.93	0.07	0.81	0.11
standard	60	0.5	0.99	0.01	0.79	0.11
birth-integrated	0	0.1	0.87	0.11	0.79	0.11
birth-integrated	0	0.3	0.93	0.07	0.75	0.12
birth-integrated	0	0.5	0.99	0.01	0.68	0.15
birth-integrated	60	0.1	0.93	0.06	0.86	0.07
birth-integrated	60	0.3	0.94	0.07	0.86	0.09
birth-integrated	60	0.5	0.99	0.01	0.83	0.09

Table S3: Posterior distributions of estimated North Atlantic right whale population size using both standard and birth-integrated Jolly-Seber (J-S) models. Old model estimates using sightings data that were available at the time of estimation, while the current model estimates are from 2023.

		Standard J-S (old)		Birth-integra	ated J-S (old)	Standard J-S (current)	
Year	Calves	N_t median	95% CI	N_t median	95% CI	$\overline{N_t \text{ median}}$	95% CI
2019	7	370	(359,381)	375	(362,387)	378	(376,382)
2020	10	337	(325, 350)	345	(331,360)	356	(352,360)
2021	18	341	(333,350)	358	(347,370)	364	(360, 369)

500 Code

- R code for the birth-integrated Jolly-Seber model, compatible with
- 502 BUGS/JAGS/NIMBLE.

```
model {
     p ~ dbeta(1,1)
                                                                    #capture probability
     phi ~ dbeta(1,1)
                                                                    #survival probability
     kappa ~ dbeta(1,1) #offspring loss probability
      # Prior for entry probabilities
      gamma[1] ~ dbeta(1,1)
     for (t in 2:(n.occasions - 1)) {
    # Entry a function of observed births and offspring loss
             gamma[t] \leftarrow (births[t]*(1-kappa)) / (M*prod(1-gamma[1:(t-1)]))
     # Define state-transition and observation matrices # Given state S(t), define probabilities of S(t+1)
      for (t in 1:(n.occasions - 1)) {
            ps[1,t,1] <- 1 - gamma[t]
            ps[1,t,2] <- gamma[t]
            ps[1,t,3] \leftarrow 0
            ps[2,t,1] <- 0
            ps[2,t,2] <- phi
            ps[2,t,3] < -1 - phi
            ps[3,t,1] \leftarrow 0
            ps[3,t,2] \leftarrow 0
            ps[3,t,3] <- 1
      } #t
     po[1] <- 0
     po[2] <- p
     po[3] <- 0
      # Likelihood
     # Intelligence | The content of the 
            for (t in 2:n.occasions) {
                  # State process: draw S(t) given S(t-1)
                  z[i,t] \sim dcat(ps[z[i,t-1],t-1,1:3])
                  # Observation process: draw O(t) given S(t)
                  # NOTE: entries in year t=T have \vec{p}=0
                  y[i,t] \sim dbern(po[z[i,t]]*(1-equals(z[i,n.occasions - 1], 1)))
     } #i
      # Derived parameters
     for (i in 1:M) {
            for (t in 1:(n.occasions - 1)) { al[i,t] \leftarrow equals(z[i,t+1], 2)
                   ent[i,t] \leftarrow equals(z[i,t] - al[i,t], 0)
     } #i
```

503

```
for (t in 1:(n.occasions - 1)) {
    N[t] <- sum(al[1:M,t])
    B[t] <- sum(ent[1:M,t])  # Number of entries
} #t
}</pre>
```