

1 **Hyposaline conditions impact the early life-stages of commercially important high-  
2 latitude kelp species.**

3 **Authors:** Veronica Farrugia Drakard<sup>1\*</sup>, Jordan A. Hollarsmith<sup>2</sup>, Michael S. Stekoll<sup>1</sup>

4 <sup>1</sup>*College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska.*

5 <sup>2</sup>*Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and  
6 Atmospheric Administration, Juneau, Alaska.*

7 \*vhfarrugiadrakard@alaska.edu

8

9 **ABSTRACT:**

10 This study examines how hyposaline stress impacts the early life-stages of commercial kelp  
11 species from Alaska. Kelp are important species both ecologically and commercially, and are  
12 likely to experience significant impacts due to ongoing climate change. Climate-driven glacial  
13 melt and changing rainfall patterns globally will release large amounts of freshwater into  
14 coastal systems in the coming decades. Both bull kelp (*Nereocystis luetkeana*) and ribbon kelp  
15 (*Alaria marginata*) are high-latitude species of commercial and ecological importance. These  
16 species inhabit very different environments: while bull kelp is a subtidal, canopy-forming  
17 species, ribbon kelp is an intertidal subcanopy species. In this study, fertile specimens of both  
18 were collected from various locations in Alaska and induced to release spores. These were  
19 cultivated for 30 days in four salinity treatments: 32 ppt, 25 ppt, 20 ppt, and 13 ppt. Both species  
20 grew and produced gametophytes in salinities down to 20 ppt, although *A. marginata* seems to  
21 be better adapted to hyposaline conditions. Below 20 ppt, we observed several impacts on  
22 progression between life-stages. The response of gametophyte growth and the production of  
23 eggs and sporophytes to different salinities varied both by species and by population.  
24 Gametophytes of *N. luetkeana* grew fastest at 32 ppt, while those of *A. marginata* grew fastest  
25 between 20 and 25 ppt (Juneau) or 25 and 32 ppt (Kodiak). In terms of egg production, *A.*  
26 *marginata* displayed significant population-level variation. Juneau individuals produced the  
27 same number of eggs regardless of salinity. Kodiak individuals produced fewer eggs in  
28 hyposaline conditions. The production of sporophytes from eggs for both species from all  
29 locations was unaffected by salinities above 20 ppt; however, no sporophytes at all were  
30 produced at 13 ppt. All of this has implications for commercial production in the hatchery  
31 phase, as hyposaline stress may induce *N. luetkeana* to produce sporophytes faster than in full  
32 oceanic salinity. In terms of wild populations, the observed population-level and species-level  
33 differences in adaptation to hyposaline conditions suggest that decreased salinities in coastal  
34 areas are likely to impact the distribution of these two species over the coming decades.

35 **1 Introduction**

36 The ongoing process of climate change is altering the world's oceans in profound and complex  
37 ways. Some of these impacts are well-known and their effects are extensively documented,  
38 particularly the global rise in sea surface temperatures and increase in frequency and duration  
39 of marine heatwaves (Leathers et al., 2023; Hobday et al., 2016; Smith et al., 2024). At high  
40 latitudes, climate change may have additional impacts related to the seasonality of low-salinity  
41 events, a reduction in glacial coverage and release of glacial melt into coastal waters (Bliss et  
42 al., 2014). Glacial runoff introduces increased amounts of freshwater and glacial sediment into  
43 the coastal environment, decreasing salinities and altering light attenuation (Arimitsu et al.,  
44 2016). We will also likely see an increase in stressor synergies, including an increase in nutrient  
45 and pollutant runoff (Schoenrock et al., 2018). Localized decreases in coastal water  
46 temperatures due to glacial runoff are also likely (Schoenrock et al., 2018). This is likely to  
47 have significant impacts for marine benthos, particularly primary producers and foundation  
48 species.

49 Foundation species are fundamental to the physical and ecological structure of the ecosystems  
50 in which they occur, and so climate change impacts on these species are likely to have  
51 cascading effects on ecosystems as a whole (summarized in Wernberg et al., 2024). Kelps are  
52 a group of foundation species and primary producers of the Order Laminariales which dominate  
53 temperate, subpolar, and polar rocky coastlines worldwide (Steneck et al., 2003). They form  
54 vast underwater forests which support a network of associated species and may themselves be  
55 of commercial importance. A number of kelp species are farmed or harvested globally and are  
56 processed and used for a variety of applications (Kim et al., 2019). Kelp are consequently of  
57 tremendous importance to human populations both ecologically and economically.

58 There has been increased interest recently in the impact of stressors, including hyposaline  
59 stress, on kelp physiology, particularly reproduction and development during the early life-  
60 stages. Overall, a decrease in environmental salinity has been associated with reduced  
61 photosynthetic capacity and a loss of photosynthetic pigments (Karsten, 2007; Li et al., 2020;  
62 Monteiro et al., 2019; Spurkland and Iken, 2011). Studies have also noted declines in  
63 sporophyte and gametophyte growth rates and spore settlement densities (Buschmann et al.  
64 2004; Lind and Konar, 2017; Monteiro et al., 2021; Muth et al., 2021). However, most existing  
65 research on this topic has focused on sugar kelp (*Saccharina latissima*) or winged kelp (*Alaria*  
66 *esculenta*), as both of these are of great commercial importance in the North Atlantic. In terms

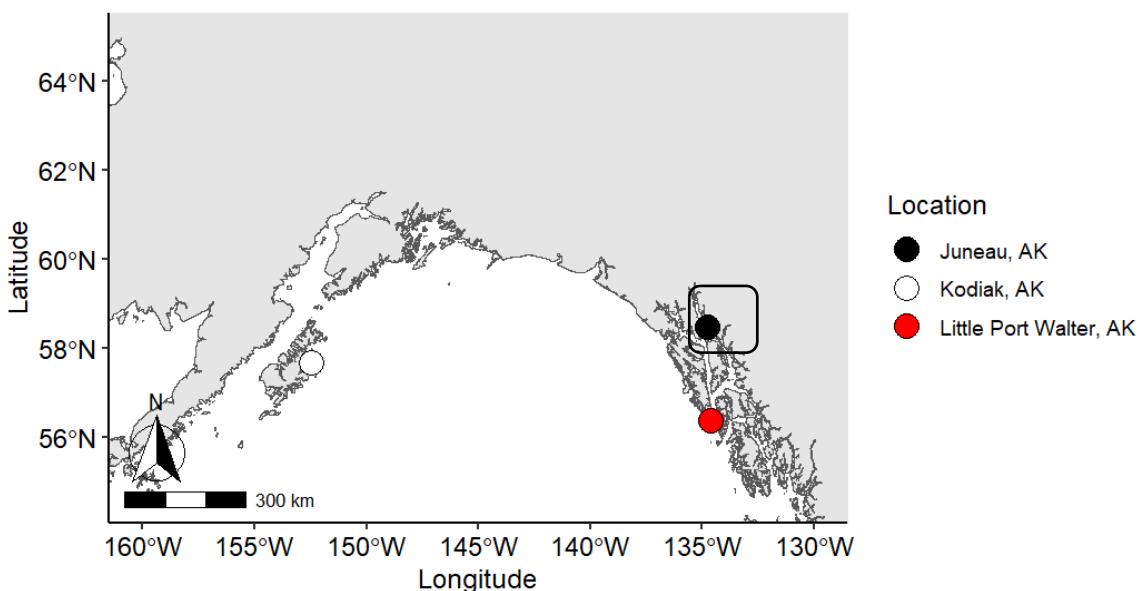
67 of other seaweed groups, hyposaline stress has been shown to cause oxidative damage (Wang  
68 et al., 2020), change metabolite expression (Siddiqui et al., 2022), and decrease photosynthetic  
69 capacity (Marambio et al., 2022) in rhodophytes. In chlorophytes, hyposaline stress has been  
70 shown to induce the accumulation of polyamines in tissues (Lee, 1998). Chen et al. (2023)  
71 investigated the impacts of hyposaline stress on five common intertidal seaweed species from  
72 Fujian Province, China, including reds, greens, and browns, and found that decreased salinity  
73 universally increased the release of dissolved organic carbon and decreased photosynthesis.  
74 This has been corroborated in subsequent studies (Bennett et al., 2024).

75 Very few studies thus far have investigated the impacts of hyposaline stress on bull kelp  
76 (*Nereocystis luetkeana*) or ribbon kelp (*Alaria marginata*). Both of these species are of major  
77 ecological and commercial importance in the northeast Pacific. *N. luetkeana* is a primary  
78 canopy-forming species in this region and is generally wild-harvested for commercial use  
79 (Springer et al., 2010; Stekoll et al., 2006; Stekoll, 2019), although there has been significant  
80 interest in its commercial cultivation (Stekoll et al., 2024). This species has suffered extensive  
81 declines along parts of its range in recent years, which have prompted numerous research and  
82 conservation initiatives (Supratya and Martone, 2023). On the other hand, *Alaria* spp. is an  
83 intertidal subcanopy genus which is extensively farmed in the subpolar and cold-temperate  
84 Pacific and Atlantic regions. Most research involving the genus *Alaria* has focused on *A.*  
85 *esculenta*, but even these studies are limited in number (Farrugia Drakard et al., 2023). Both of  
86 these species are annuals, experiencing massive spore production in the late summer and early  
87 autumn, followed by the persistence of microscopic life-stages (spores, gametophytes, and  
88 juvenile sporophytes) on the benthos until around late spring (McConnico and Foster, 2005).  
89 Juvenile sporophytes undergo rapid maturation in mid-to-late spring, resulting in the  
90 persistence of populations from year to year (McConnico and Foster, 2005).

91 Gametophytes of both species are present on the benthos in late fall through winter and into  
92 spring (Weigel et al., 2023; McConnico and Foster, 2005), when heavy rainfall and snowfall  
93 in the intertidal zone are likely to contribute to hyposaline conditions in coastal areas.  
94 Freshwater influx during these periods generally results in a less dense surface layer of  
95 freshwater lying atop denser seawater in coastal areas (Brown et al., 2019). However, while *N.*  
96 *luetkeana* is subtidal (Carney et al., 2005), *A. marginata* occurs in the lower intertidal  
97 (McConnico and Foster, 2005). With this in mind, we can expect gametophytes of the latter  
98 species to be more frequently exposed to oscillations in salinity due to their relative proximity  
99 both to the surface freshwater layer and to coastal precipitation runoff. Additionally, much of

100 Alaska is subject to high levels of precipitation in the form of rain or snow year-round, which  
101 would expose intertidal species directly to freshwater influx.

102 There are significant biological and ecological differences between the two species which have  
103 the potential to impact tolerance and resilience of the microscopic stages to specific stressors.  
104 For example, *A. marginata* develops dedicated sporophylls (sorus-bearing structures) close to  
105 the base of the thallus just above the holdfast, while in *N. luetkeana* the sorus tissue develops  
106 in patches along the blades. Therefore, spores in *A. marginata* are released relatively close to  
107 the benthos, while spores from *N. luetkeana* are released at the surface. While both species  
108 experience peak spore production during summer, sorus tissue of *A. marginata* tends to mature  
109 earlier and can be induced to release spores as early as May. On the other hand, sorus tissue of  
110 *N. luetkeana* persists for longer, and spores are released well into autumn. As has already been  
111 discussed, while *N. luetkeana* is a subtidal, canopy-forming species, *A. marginata* is an  
112 intertidal sub-canopy species. Therefore, *A. marginata* is exposed to frequent hyposaline stress  
113 due to freshwater influx from rainfall and riverine input, while *N. luetkeana* is exposed to  
114 hyposaline stress only infrequently and likely only at the canopy level.


115 The aim of this study was therefore to investigate the impacts of hyposaline stress on the  
116 microstages of bull kelp (*N. luetkeana*) and ribbon kelp (*A. marginata*), with a view to  
117 determining the impacts of ongoing climate change in cold-temperate, subpolar, and polar  
118 regions on both commercial cultivation and the ecology of wild populations. We hypothesize  
119 here that spore germination, gametophyte growth, egg and sporophyte production, and  
120 sporophyte growth of both species decrease with decreasing salinity.

## 121 **2 Methodology**

### 122 *2.1 Sorus collection and sporulation*

123 We collected fertile specimens of *Alaria marginata* and *Nereocystis luetkeana* from two  
124 locations each in July 2023 (Figure 1). *A. marginata* was collected from Juneau, Alaska, and  
125 Kodiak, Alaska, while *N. luetkeana* was collected from Little Port Walter, Alaska, and Kodiak,  
126 Alaska. Juneau is located among the straits and passages of the North American Fjordland, and  
127 experiences significant glacial influence from the glaciers of the Juneau Icefield (Ziemen et al.,  
128 2016). The closest of these to the collection site, Mendenhall Glacier, terminates in the  
129 Mendenhall Lake and discharges into expansive estuarine wetlands (Siegela, 1988). The  
130 coastline in this region is greatly influenced by these wetlands, and kelp populations established  
131 here are likely to experience more frequent hyposaline events. The Juneau coastline is subject

132 to freshwater input from glacial melt, rainfall, and snowmelt. Little Port Walter is on the south  
133 end of Baranof Island, closer to the exterior of the North American Fjordland. It has no glacial  
134 influence but is still subject to significant freshwater input from snowmelt and rainfall. Kodiak  
135 Island lies across the Gulf of Alaska just east of the Aleutian Peninsula, and constitutes a much  
136 more oceanic environment with no glacial influence. Changes in salinity along the Kodiak  
137 coastline are likely to be rapidly equalized with the open ocean due to the higher exposure of  
138 this environment. We would expect the adaptations of kelp populations established in these  
139 locations to reflect surrounding environmental conditions.



140  
141 *Figure 1*: Map of the study sites. *Alaria marginata* was collected from Juneau (JNU), while  
142 *Nereocystis luetkeana* was collected from Juneau (JNU) and Little Port Walter (LPW). Black square represents  
143 the approximate location and extent of the Juneau Icefield.

144 Sporophylls from 10 individuals from each location were cleaned in 10% iodine solution  
145 (Betadine®) in freshwater, dried with paper towels, and stored for 24 hours in a cold (4 °C),  
146 dark, dry environment. Sporophylls from each location were then separately placed in filtered,  
147 UV-sterilized seawater at 12 °C under fluorescent lighting (40 – 60  $\mu\text{mol m}^{-2} \text{s}^{-1}$ ) for one hour  
148 to induce sporulation. We filtered the resultant spore solutions (one solution for each  
149 population, consisting of spores pooled from 10 individuals) through a 46  $\mu\text{m}$  sieve and  
150 determined zoospore densities using a hemocytometer with an Improved Neubauer grid.  
151 Subsequently, the spore solutions were diluted with UV-sterilized seawater to a density of 2000  
152 zoospores  $\text{mL}^{-1}$ .

153 2.2 *Experimental set-up and design*

154 The experimental design consisted of four salinity treatments: 32 ppt, 25 ppt, 20 ppt, and 13  
155 ppt. 32 ppt is a fully oceanic treatment, and 13 ppt is the approximate lower tolerance threshold  
156 for Arctic kelp species (Karsten, 2007). Intervals between these two treatments were selected  
157 based on ease of dilution from full oceanic salinity. For each treatment, we filled 5 petri dishes  
158 of surface area 23.76 cm<sup>2</sup> with 15 mL of the 2000 zoospores mL<sup>-1</sup> spore solution, for a total of  
159 20 petri dishes per location/species combination and 80 petri dishes for the whole experiment.  
160 These were stored in the dark at 12 °C for 48 hours to allow zoospore settlement.

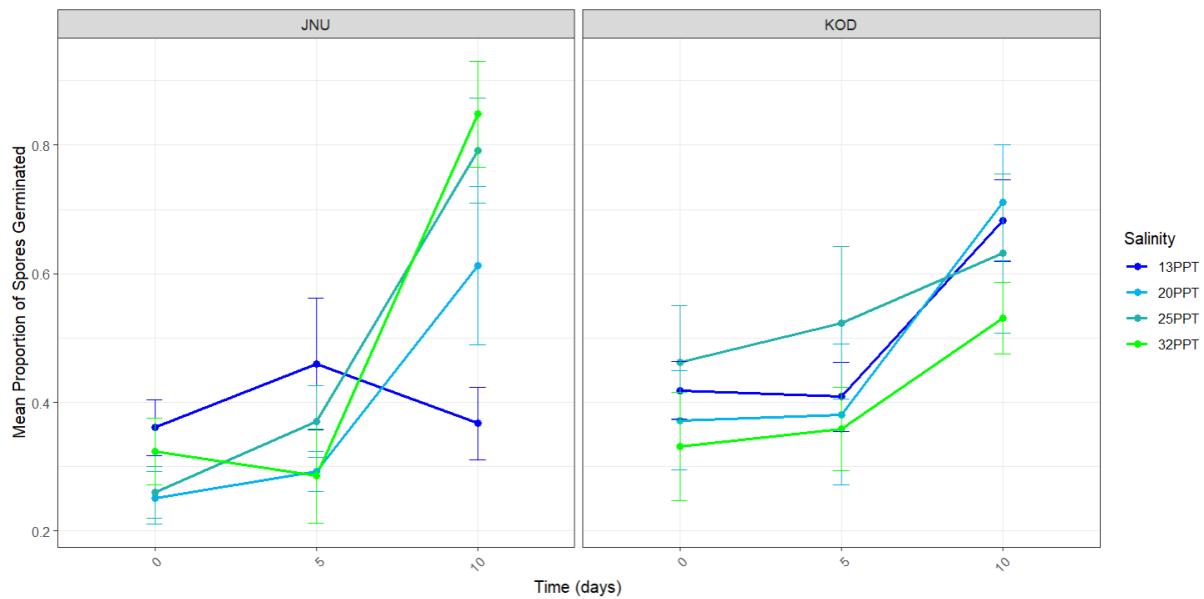
161 After 48 hours, microphotographs were taken at 200x phase contrast magnification of 5  
162 haphazardly selected fields of view per petri dish using a Leica DMI8 S inverted microscope.  
163 These were used to determine the average initial settled zoospore count. Separate culture media  
164 were prepared for each of the salinities to be tested as follows: for 1000 mL of a) 32 ppt – 990  
165 mL UV-sterilised seawater, 10 mL Provasoli's enriched seawater medium with iodine (PESI)  
166 working solution (Provasoli, 1968; Tatewaki, 1966), b) 25 ppt – 800 mL UV-sterilised  
167 seawater, 190 mL Milli-Q water, 10 mL PESI working solution c) 20ppt – 600 mL UV-  
168 sterilised seawater, 390 mL Milli-Q water, 10 mL PESI working solution d) 13ppt – 400 mL  
169 UV-sterilised seawater, 590 mL Milli-Q water, 10 mL PESI working solution. Salinities were  
170 checked after preparation of the culture media using a handheld refractometer. The solution in  
171 each petri dish was decanted out and replaced with 15 mL of the appropriate culture medium  
172 – 5 petri dishes per salinity treatment within each location/species combination.

173 We then placed the petri dishes in incubators set at 12 °C, light intensity 40 – 60 µmol m<sup>-2</sup> s<sup>-1</sup>  
174 and a L:D regime of 12h:12h. Microphotographs at 200x magnification of 5 fields of view per  
175 petri dish were taken after 5 days and 10 days. These were used to determine the average  
176 number of zoospores and average number of germinated zoospores per location and  
177 temperature treatment. Subsequently, microphotographs of 10 gametophytes per petri dish  
178 were taken at 15 days, 20 days, 25 days, and 30 days. These were used to determine the average  
179 gametophyte size, average number of eggs produced per female, average number of  
180 sporophytes produced per female, and average sporophyte size per location and salinity  
181 treatment. Medium changes were conducted every 5 days until the conclusion of the  
182 experiment after 30 days.

183 2.3 Data analysis

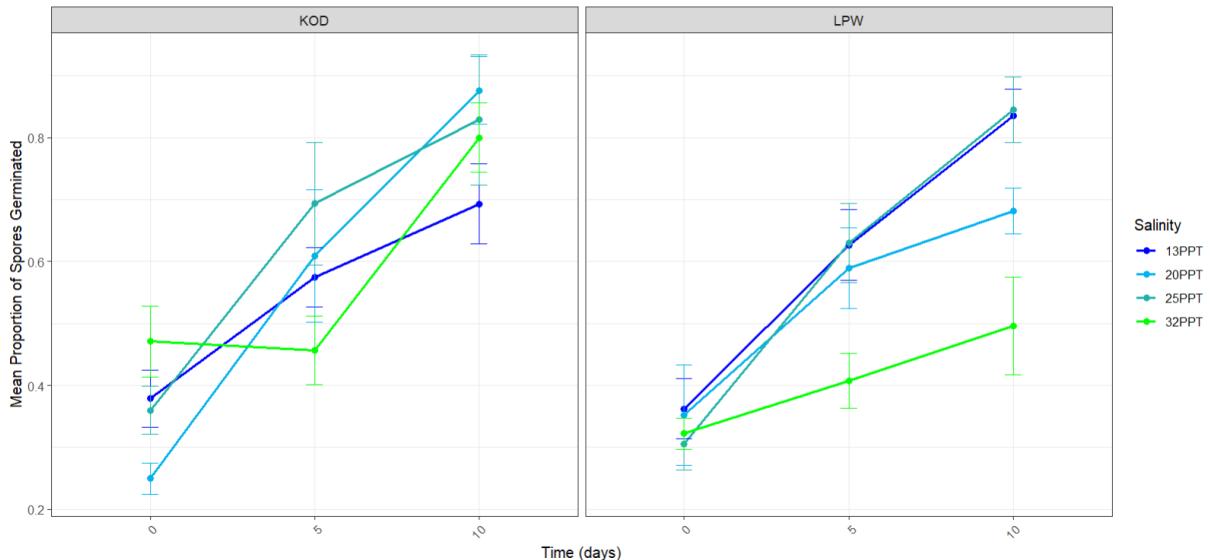
184 All statistical analyses were carried out using R version 4.0.2 in RStudio version 2024.04.2  
185 Build 764 (R Core Team, 2024). All analyses were carried out for *A. marginata* and *N.*  
186 *luetkeana* separately.

187 For each sampling point up to 10 days, the average number of zoospores and the average  
188 number of germinated zoospores per petri dish (N = 5 fields of view) were used to calculate  
189 the average proportion of zoospores germinated for each location and each salinity treatment  
190 (N = 5 petri dishes). These data were arcsine-transformed and analyzed using a three-way  
191 mixed ANOVA with Time (0DAY, 5DAY, 10DAY) as a within-subjects factor and Location  
192 (JNU vs KOD or LPW vs KOD) and Salinity (32PPT, 25PPT, 20PPT, 13PPT) as between-  
193 subjects factors. *Post-hoc* pairwise ANOVAs with Bonferroni correction were performed to  
194 explore significant effects.


195 For the 30 day sampling point, average gametophyte size per location and salinity treatment  
196 (N = 5 petri dishes) was calculated as the average of the lengths of each photographed  
197 gametophyte measured along the longest axis (N = up to 10 gametophytes). Both male and  
198 female gametophytes were included. These data were analyzed using two-way ANOVAs with  
199 Location (JNU vs KOD or LPW vs KOD) and Salinity (32PPT, 25PPT, 20PPT, 13PPT) as  
200 between-subjects factors. *Post-hoc* pairwise ANOVAs with Bonferroni correction were  
201 performed to explore significant effects.

202 The average numbers of eggs and sporophytes produced per female were calculated for  
203 sampling points from 15 to 30 days and used to obtain averages per location and salinity  
204 treatment. These data were analyzed using three-way mixed ANOVAs as described above.  
205 *Post-hoc* two-way ANOVAs split by Location (JNU and KOD or LPW and KOD) and pairwise  
206 ANOVAs with Bonferroni correction were performed to explore significant effects.

207 At 30 days, the average sporophyte size per location and salinity treatment was calculated as  
208 the average of the lengths of up to 10 sporophytes per petri dish (using no more than 3  
209 sporophytes per female gametophyte) measured along the longest axis. These data were  
210 analyzed using two-way ANOVAs with Location (JNU vs KOD or LPW vs KOD) and Salinity  
211 (32PPT, 25PPT, 20PPT, 13PPT) as between-subjects factors. *Post-hoc* pairwise ANOVAs with  
212 Bonferroni correction were performed to explore significant effects.


213 **3 Results**214 *3.1 Zoospore survival and germination*

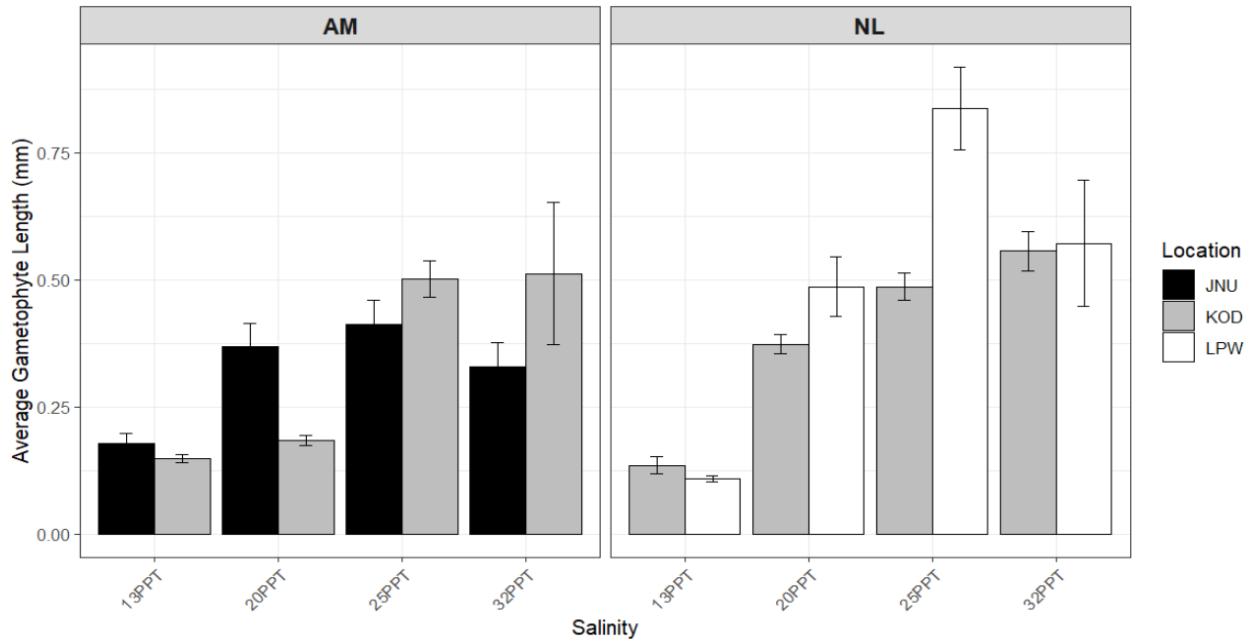
215 For *Alaria marginata*, a three-way interaction between Location, Time, and Salinity  
 216 determined the proportion of zoospores germinated ( $F_{6,64} = 3.288, p < 0.05$ ; Supplementary  
 217 Material Table 1). Specifically, the lowest salinity tested had a negative effect on the proportion  
 218 of *A. marginata* zoospores germinated from the Juneau population at the 10 day timepoint  
 219 (Figure 2). There was no effect of salinity on the Kodiak population or at any other timepoint  
 220 (Figure 2).



221  
 222 *Figure 2: Mean proportion of *Alaria marginata* zoospores germinated for specimens from Juneau (JNU) and*  
 223 *Kodiak (KOD) at 32 ppt, 25 ppt, 20 ppt and 13 ppt. Error bars show standard error.*

224 For *Nereocystis luetkeana*, we observed significant two-way interactions between Time and  
 225 Salinity ( $F_{6,64} = 2.498, p < 0.05$ ; Supplementary Material Table 2) and between Location and  
 226 Salinity ( $F_{3,32} = 3.903, p < 0.05$ ; Supplementary Material Table 2). Specifically, the proportion  
 227 of spores germinated was higher in the 13 ppt treatment than in the 32 ppt treatment at KOD at  
 228 5 days, and at LPW at all timepoints (pairwise *t*-test within 5DAY across LPW and KOD:  
 229 13PPT v 32PPT  $t = 3.41, p < 0.05$ ; pairwise *t*-test within LPW across 0DAY, 5DAY and  
 230 10DAY:  $t = 4.14, p < 0.05$ ; Figure 3).




231

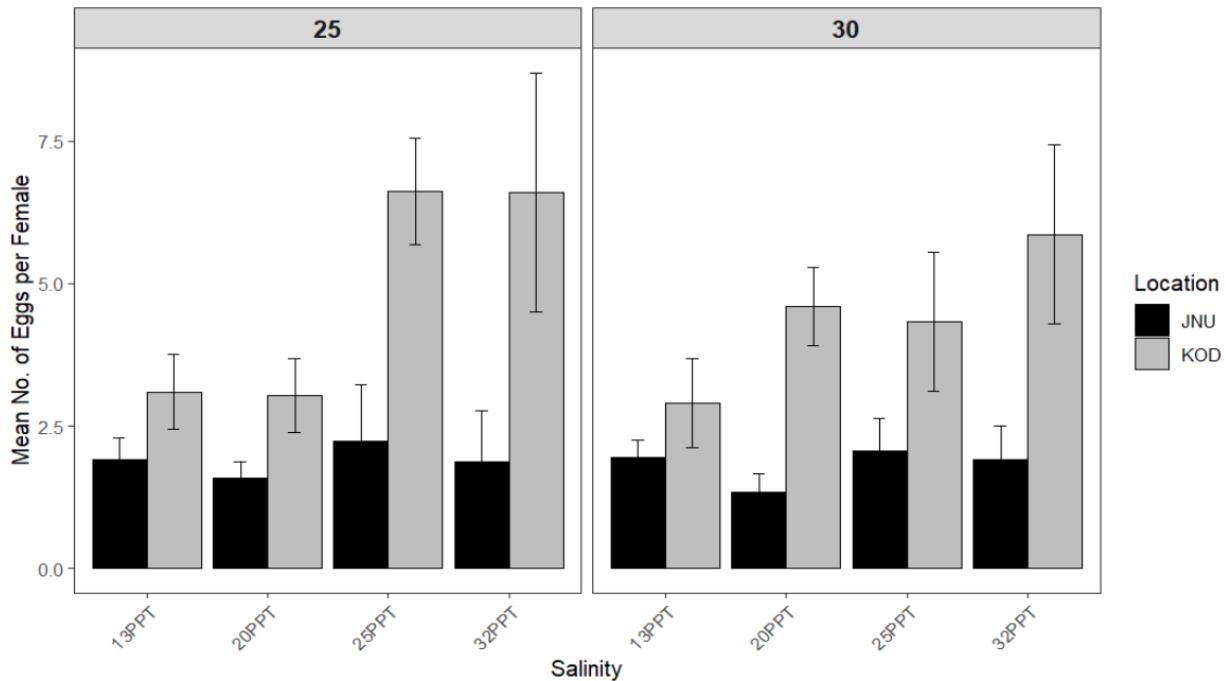
232 *Figure 3*: Mean proportion of *Nereocystis luetkeana* zoospores germinated for specimens from Kodiak (KOD)  
 233 and Little Port Walter (LPW) at 32 ppt, 25 ppt, 20 ppt and 13 ppt. Error bars show standard error.

234 **3.2 Gametophyte size**

235 In terms of gametophyte size at 30 days, there was a significant two-way interaction between  
 236 Location and Salinity for both *A. marginata* ( $F_{3,32} = 3.639, p < 0.05$ ; Supplementary Material  
 237 Table 3) and *N. luetkeana* ( $F_{3,32} = 4.051, p < 0.05$ ; Supplementary Material Table 3). Salinity  
 238 had an effect on gametophyte size for gametophytes of both species and from both locations  
 239 within each species (JNU and KOD, or LPW and KOD) (Supplementary Material Table 4).

240 Overall, *A. marginata* gametophytes from Kodiak grew faster in the 25 ppt treatment compared  
 241 to the 13 ppt and 20 ppt treatments (pairwise *t*-test at 30DAY: 13PPT v 25PPT  $t = -12.3, p <$   
 242  $0.05$ , 20PPT v 25PPT  $t = -8.85, p < 0.05$ ; Figure 4). Pairwise testing could not distinguish  
 243 differences between treatments for gametophytes from Juneau, but we observed a trend of  
 244 higher growth rates at 20 ppt and 25 ppt (Figure 4). *N. luetkeana* gametophytes from both  
 245 locations grew faster in higher salinity treatments. For *N. luetkeana* from Little Port Walter,  
 246 gametophyte size increased as salinity increased up to 25 ppt (pairwise *t*-test 13PPT v 20PPT  
 247  $t = -6.80, p < 0.05$ ; 13PPT v 25PPT  $t = -9.46, p < 0.05$ ; Figure 4). A similar pattern was observed  
 248 for *N. luetkeana* gametophytes from Kodiak, wherein gametophyte size increased with salinity  
 249 up to 32 ppt (pairwise *t*-test 13PPT v 20PPT  $t = -9.33, p < 0.05$ ; 13PPT v 25PPT  $t = -11.2, p <$   
 250  $0.05$ ; 13PPT v 32PPT  $t = -10.6, p < 0.05$ ; 20PPT v 32PPT  $t = -5.21, p < 0.05$ ; Figure 4).

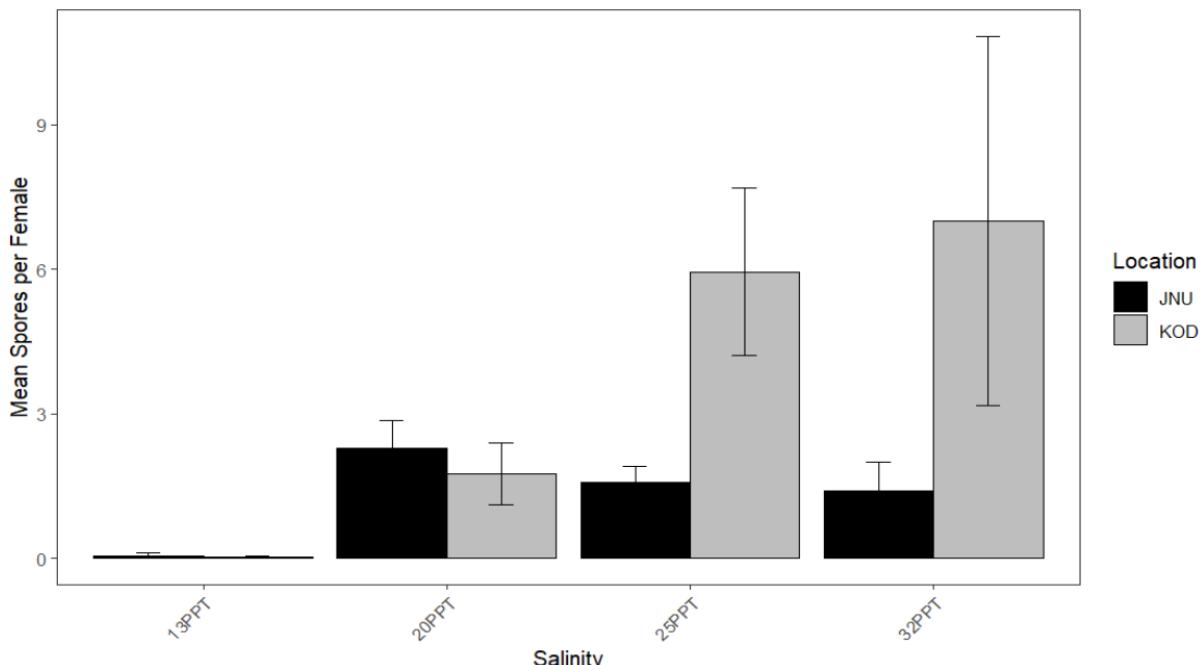



251

252 Figure 4: Mean gametophyte length for *Alaria marginata* (AM) and *Nereocystis luetkeana* (NL) specimens from  
253 Juneau (JNU), Kodiak (KOD), and Little Port Walter (LPW) at 30 days. Error bars showing standard error.

254 *3.3 Egg and sporophyte production*

255 This study investigated female fecundity in terms of egg production and sporophyte production  
256 per female of each species. Data is presented here for the 30 day timepoint for sporophyte  
257 production, but for the 25 and 30 day timepoint for egg production. This is because the number  
258 of eggs produced is expected to peak between 20 – 25 days and then decline as eggs develop  
259 into sporophytes. Presenting both the 25 and 30 day egg production data is expected to provide  
260 a more representative picture of egg production overall. *A. marginata* females from Kodiak  
261 produced more eggs compared to Juneau females, and salinity had a significant effect on egg  
262 production only in Kodiak, where fewer eggs were produced at lower salinities (Supplementary  
263 Material Table 5; pairwise *t*-test within KOD: 13PPT v 25PPT *t* = 4.23, *p* < 0.05, 13PPT v  
264 32PPT *t* = 3.59, *p* < 0.05; Figure 5).


265 The development of sporophytes from eggs varied significantly between Locations ( $F_{1,32} =$   
266 4.661, *p* < 0.05) and between Salinities ( $F_{3,32} = 3.048$ , *p* < 0.05; Supplementary Material Table  
267 6). Fewer sporophytes per gametophyte were produced in Juneau cultures compared to Kodiak  
268 cultures, and fewer sporophytes per gametophyte were produced at lower salinities overall  
269 (Figure 6). Pairwise testing could not distinguish differences between treatments for either  
270 location, but we observed a trend of higher sporophyte production at 25 and 32 ppt for Kodiak  
271 females, and at 20, 25 and 32 ppt for Juneau females (Figure 6).



272  
273  
274

Figure 5: Mean number of eggs produced per female across salinity treatments for *Alaria marginata* specimens from Juneau (JNU) and Kodiak (KOD) at 25 days (left) and 30 days (right). Error bars showing standard error.

275



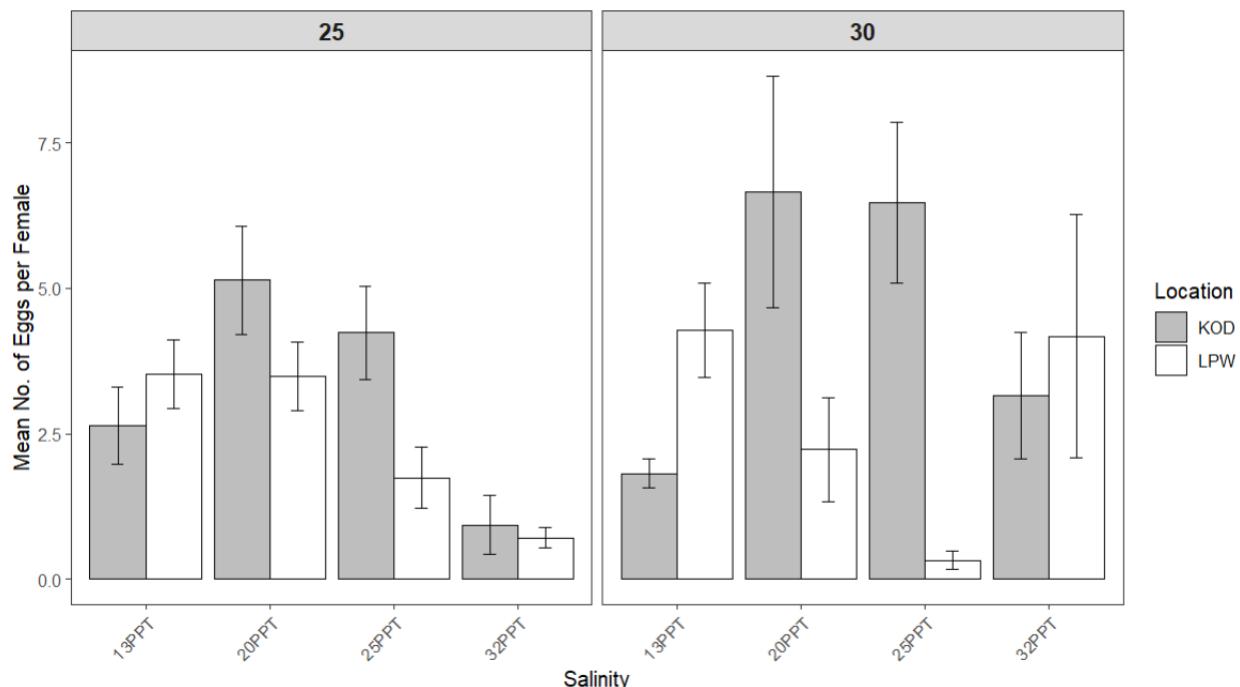
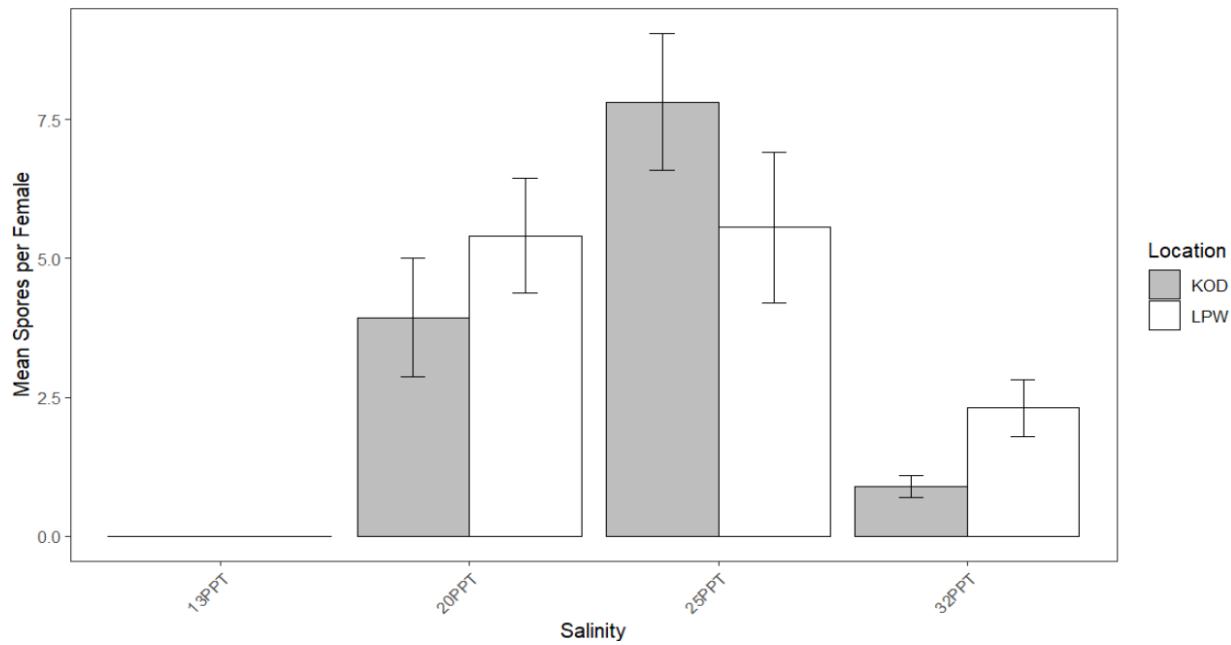

276  
277  
278

Figure 6: Mean number of sporophytes produced per female at 30 days across salinity treatments for *Alaria marginata* specimens from Juneau (JNU) and Kodiak (KOD). Error bars showing standard error.

279 In terms of egg production in *N. luetkeana*, we observed a significant Location\*Salinity\*Time  
280 interaction ( $F_{4.11,43.88} = 4.062, p < 0.05$ ; Supplementary Material Table 7). Splitting this dataset  
281 by Location indicated a significant Salinity\*Time interaction for Little Port Walter ( $F_{4.17,22.24}$   
282 = 3.737,  $p < 0.05$ ; Supplementary Material Table 8). Time ( $F_{1.35,21.57} = 36.767, p < 0.05$ ) and


283 Salinity ( $F_{3,16} = 12.663, p < 0.05$ ) individually had a significant effect on egg production for  
284 specimens from Kodiak (Supplementary Material Table 8). Individuals from Little Port Walter  
285 were subject to a significant effect of Salinity only at the 25 day timepoint: overall, more eggs  
286 were produced in 20 ppt at this timepoint than in 32 ppt (Figure 7). For individuals from  
287 Kodiak, at both 25 and 30 days more eggs were produced in 20 ppt and 25 ppt than in 13 or 32  
288 ppt (pairwise *t*-test within KOD: 25PPT v 32PPT  $t = 2.95, p < 0.05$ ; Figure 7).

289 Sporophyte production in *N. luetkeana* was influenced by Salinity, but was not significantly  
290 different between locations ( $F_{3,32} = 24.758, p < 0.05$ ; Supplementary Material Table 9). *Post-*  
291 *hoc* pairwise tests indicated the existence of three disparate groupings: a) 13 ppt, b) 20 ppt and  
292 25 ppt, and c) 32 ppt (pairwise *t*-test within 30DAY: 13PPT v 20PPT  $t = -6.30, p < 0.05$ ; 13PPT  
293 v 25PPT  $t = -7.12, p < 0.05$ ; 13PPT v 32PPT  $t = 4.54, p < 0.05$ ; 20PPT v 32PPT  $t = 4.62, p <$   
294  $0.05$ ; 25PPT v 32PPT  $t = 4.86, p < 0.05$ ). Overall, no sporophytes were produced at 13 ppt,  
295 very few at 32 ppt, and most at 20 ppt and 25 ppt (Figure 8).

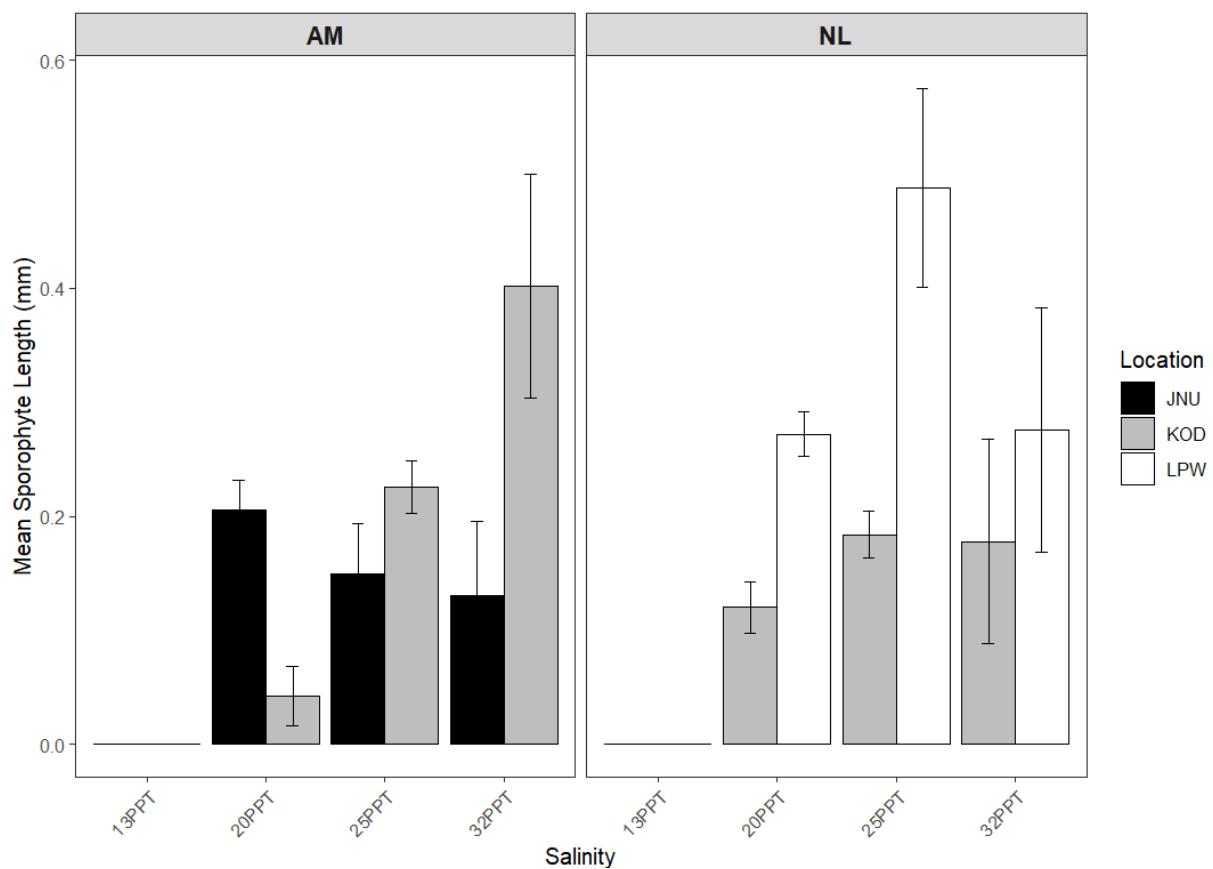


296

297 Figure 7: Mean number of eggs produced per female across salinity treatments for *Nereocystis luetkeana*  
298 specimens from Little Port Walter (LPW) and Kodiak (KOD) at 25 days (left) and 30 days (right). Error bars  
299 showing standard error.



300


301 Figure 8: Mean number of sporophytes produced per female at 30 days across salinity treatments for *Nereocystis*  
 302 *luetkeana* specimens from Little Port Walter (LPW) and Kodiak (KOD). Error bars showing standard error.

303 In summary, *A. marginata* individuals from Kodiak produced more eggs and more sporophytes  
 304 than those from Juneau and appeared to be more reproductive at higher salinities (25 ppt and  
 305 32 ppt). Egg production in *N. luetkeana* individuals from Little Port Walter was affected by  
 306 salinity only up to 25 days and peaked at 20ppt at these timepoints. On the other hand,  
 307 individuals from Kodiak produced most eggs consistently at 20 ppt and 25 ppt. Most *N.*  
 308 *luetkeana* sporophytes were produced at 20 ppt and 25 ppt. No sporophytes were produced for  
 309 either species at 13 ppt.

310 **3.4 Sporophyte size**

311 For *A. marginata* at 30 days, we observed a significant two-way Location\*Salinity interaction  
 312 ( $F_{3,32} = 7.464, p < 0.05$ ; Supplementary Material Table 10), and Salinity appeared to be a  
 313 significant factor at both locations (JNU:  $F_{3,16} = 4.50, p < 0.05$ , KOD:  $F_{3,16} = 12.60, p < 0.05$ ;  
 314 Supplementary Material Table 11). Juneau sporophytes grew faster at 20 ppt than in any other  
 315 salinity (pairwise *t*-test within JNU: 13PPT v 20PPT  $t = -8.10, p < 0.05$ ; Figure 9) – growth  
 316 was not observed at 13 ppt as no sporophytes were produced in this treatment. Kodiak  
 317 sporophytes appeared to be split into two distinct groups: a) the 13 ppt and 20 ppt treatments  
 318 and b) the 25 ppt and 32 ppt treatments (pairwise *t*-test within KOD: 13PPT v 25PPT  $t = -9.85,$   
 319  $p < 0.05$ , 20PPT v 25PPT  $t = -6.92, p < 0.05$ ; Figure 9). Overall, Kodiak sporophytes grew  
 320 larger at 25 ppt and 32 ppt within the experimental period (Figure 9).

321 For sporophytes of *N. luetkeana*, Location ( $F_{1,32} = 10.737, p < 0.05$ ) and Salinity ( $F_{3,32} = 10.975, p < 0.05$ ) were significant as main effects (Supplementary Material Table 11). Overall, 323 sporophytes from Little Port Walter grew larger than those from Kodiak within the 324 experimental period (Figure 9). Although sporophytes from Little Port Walter trended towards 325 a larger size at 25 ppt compared to other salinities, there was no significant difference between 326 the 20 ppt, 25 ppt and 32 ppt treatments (pairwise *t*-test within 30DAY: 13PPT v 20PPT  $t = -$  327 6.76,  $p < 0.05$ , 13PPT v 25PPT  $t = -5.09, p < 0.05$ ; Figure 9). Once again, growth was not 328 observed at 13 ppt as no sporophytes were produced in this treatment.



329  
330 Figure 9: Mean sporophyte length at 30 days for *Alaria marginata* (AM) and *Nereocystis luetkeana* (NL) cultures  
331 from Juneau (JNU), Kodiak (KOD), and Little Port Walter (LPW) across salinity treatments. Error bars showing  
332 standard error.

333 **4 Discussion**

334 This study investigated the impact of hyposaline conditions on the early life-stages of *Alaria*  
335 *marginata* and *Nereocystis luetkeana*. Both species were resilient to some extent to decreased  
336 salinities down to 20 ppt. Below this point, we observed several impacts on reproduction and  
337 progression between life-stages. The response of gametophyte growth and the production of  
338 eggs and sporophytes to changes in salinity varied both by species and by population.

339 Of the two species considered here, *A. marginata* seems to be markedly more resilient to  
340 hyposaline conditions. Gametophytes of *N. luetkeana* displayed a mostly linear response to  
341 salinity in terms of growth: as conditions became less saline, gametophytes grew slower. On  
342 the other hand, gametophytes of *A. marginata* from Kodiak grew equally well at 25 ppt and 32  
343 ppt, and specimens from Juneau actually grew faster at 20 ppt and 25 ppt compared to fully  
344 oceanic conditions. This indicates that gametophytes of *A. marginata* have wider salinity  
345 tolerance margins and may have lower salinity optima than gametophytes of *N. luetkeana*. This  
346 may be due to the different ecological niches of these two species, as previously described. The  
347 relatively high tolerance of *A. marginata* gametophytes to hyposaline conditions is therefore  
348 likely to be adaptive. While no studies have considered the response of *A. marginata* to salinity,  
349 gametophytes of *N. luetkeana* have been shown to experience declines in growth rate under  
350 hyposaline conditions (Lind and Konar, 2017).

351 In addition to being overall more tolerant of hyposaline conditions, gametophytes of *A.*  
352 *marginata* also appeared to vary in their response to differences in salinity depending on their  
353 population of origin. Specifically, gametophytes from Juneau exhibited a lower salinity  
354 optimum than gametophytes from Kodiak. Gametophytes from Juneau grew fastest at 20 ppt  
355 and 25 ppt, and actually displayed decreased growth rates at 32 ppt. Once again, this is likely  
356 to have an ecological explanation. As previously described, Juneau is a more glaciated region  
357 than Kodiak and kelp populations established there are therefore more likely to experience  
358 frequent hyposaline events. Consequently, we would expect *A. marginata* populations in  
359 Juneau to be exposed to a constant slightly hyposaline environment compared to populations  
360 in Kodiak. Therefore, the lower salinity optimum for gametophytes from Juneau is likely to be  
361 adaptive. Indeed, studies have shown that in general, responses to salinity in high-latitude kelp  
362 species tend to be population-specific (Buschmann et al., 2004; Monteiro et al., 2019). This is  
363 not unexpected, as coastal salinity is influenced extensively by point sources of freshwater such  
364 as glacial outflows and rivers and is likely to be more variable than other environmental  
365 stressors of interest (Farrugia Drakard et al., 2023). All of this indicates that within a given  
366 species, certain populations may be more resilient to climate-induced changes in salinity than  
367 others.

368 The same patterns are evident in terms of the production of eggs and sporophytes. Once again,  
369 *A. marginata* displayed significant population-level variation. Gametophytes from Kodiak  
370 produced more eggs overall than those from Juneau. However, gametophytes from Juneau  
371 produced the same number of eggs regardless of salinity, while those from Kodiak produced

372 slightly more eggs at 25 ppt and 32 ppt. This suggests a tolerance to hyposaline conditions in  
373 this species; Juneau *A. marginata* will produce the same number of eggs regardless of salinity,  
374 and Kodiak *A. marginata* will produce the same number of eggs down to 25PPT. Conversely,  
375 *N. luetkeana* gametophytes had uniformly produced more eggs at salinities below 32 ppt by  
376 Day 25, and only began to produce significant numbers of eggs in 32 ppt towards the end of  
377 the experiment at Day 30. This may be a stress response rather than an environmental  
378 adaptation, as it appears to be related to timing of egg production rather than overall number  
379 of eggs produced. It is likely that *N. luetkeana* held at 32PPT would have continued to produce  
380 an equivalent or higher number of eggs than those held at lower salinities had the experiment  
381 been extended for a further week. Strasser et al. (2022) showed that gametophytes of *Laminaria*  
382 *ochroleuca* exhibited higher levels of reproductive success after a simulated marine heatwave  
383 of 27°C compared to those maintained under control conditions of 17°C. The authors attributed  
384 this to a stress-induced survival mechanism promoting gametogenesis (Strasser et al., 2022).  
385 Similarly, Dethier et al. (2005) showed that moderate stress resulted in earlier reproduction and  
386 increased reproductive parameters in *Fucus gardneri*. The relationship between abiotic stress  
387 and reproduction in seaweeds is not well understood. However, it is possible that in the case of  
388 this experiment, moderate hyposaline stress makes the allocation of energy to vegetative  
389 growth unfavorable, and the gametophytes in question switch to reproductive allocation in  
390 order to ensure successful reproduction prior to mortality. This does have implications for the  
391 commercial production of *N. luetkeana*, as it suggests that lowering salinities to between 20–  
392 25 ppt will induce the production of eggs – and consequently juvenile sporophytes – up to a  
393 week earlier than culturing at full oceanic salinity. This could significantly reduce hatchery  
394 costs in commercial operations.

395 Conversely, the germination response of *N. luetkeana* spores is likely to be due to adaptation.  
396 While spores of this species from Kodiak germinated in equivalent proportions at all salinities,  
397 a higher proportion of spores from Little Port Walter germinated at salinities below 32 ppt. *N.*  
398 *luetkeana* populations in Kodiak experience fully marine conditions almost exclusively,  
399 whereas populations at Little Port Walter are likely to experience influxes of freshwater during  
400 outflow events from the nearby creek. In *A. marginata*, the opposite is true: while spores from  
401 Kodiak once again germinated in equivalent proportions at all salinities, a higher proportion of  
402 spores from Juneau germinated at salinities above 13 ppt. Although we can only speculate  
403 based on the data presented here, it is possible that successful spore germination is controlled  
404 in large part by population-level genetic differences.

405 At this point, it is important to put these results in the context of the genetic environment. The  
406 genetic diversity of most Alaskan kelp species, as well as the genetic structure of their  
407 populations, is not particularly well understood. The phylogeography of both split kelp  
408 (*Hedophyllum nigripes*) and sugar kelp (*Saccharina latissima*) in the Gulf of Alaska has been  
409 resolved (Grant et al., 2020; Grant and Chenoweth, 2021; Mao et al., 2020). However, while  
410 genetic differentiation of *N. luetkeana* has been studied range-wide, the specific population  
411 genetics within the Gulf of Alaska have not been resolved (Gierke et al., 2023), and no studies  
412 have considered *A. marginata*. As genetic diversity and range-wide genetic differentiation  
413 among populations is likely to vary significantly across species, we consider this to be a high  
414 priority for future research.

415 Although both species produced eggs at all salinities, no sporophytes of either species were  
416 produced at 13 ppt. This could be the result of either failed fertilization or a high mortality rate  
417 for embryonic sporophytes at low salinities. Gametophytes of both species were confirmed to  
418 be present in an approximately 50:50 male:female ratio at all salinities, and so if this is a case  
419 of failed fertilization, it is likely to be due either to failure of the males to produce sperm or  
420 failure of the sperm to reach and successfully fertilize the eggs. Both sperm release and  
421 chemotactic orientation towards the egg are induced by pheromones secreted by the eggs  
422 (Maier et al., 2001), but these secretions are complex and the mechanism of chemotaxis in kelp  
423 gametes is not well understood. Further research into the effects of a hyposaline state on the  
424 pheromonal secretions of eggs and chemotaxis by sperm is recommended.

425 *N. luetkeana* produced approximately equal numbers of sporophytes per female at all salinities  
426 above 13 ppt, and these sporophytes did not vary significantly in size between salinities. On  
427 the other hand, *A. marginata* once again exhibited a degree of population-level variation.  
428 Females from Juneau produced approximately equal numbers of sporophytes at all salinities  
429 above 13 ppt, and these sporophytes were of approximately equal size across salinities.  
430 However, females from Kodiak produced more sporophytes at 25 ppt and 32 ppt, and these  
431 sporophytes were also larger than those at 20 ppt. Once again, it is likely that sporophytes from  
432 Juneau populations are adapted to relatively lower salinities, and are able to persist and grow  
433 at 20 ppt as well as at 25 ppt and 32 ppt, whereas sporophytes from Kodiak populations have  
434 a narrower range of tolerance.

435 In this study, we utilized fixed levels of salinity as stressor treatments. This is not necessarily  
436 representative of the natural environment, where salinity can fluctuate at a much finer temporal  
437 scale due to stochastic events. Conducting a study of this nature *in-situ* would be challenging

438 due to the microscopic nature of the life-stages under consideration. However, we would  
439 recommend that future studies consider including an element of stochastic variation in their  
440 stressor conditions. Additionally, it would be very interesting to consider the impacts of  
441 magnitude and duration of stress events on kelp early life-stages. For example, how do  
442 gametophytes respond to an acute, severe stress event as opposed to a chronic stress conditions?

443 There is a general lack of information regarding the responses of high-latitude kelp species to  
444 major environmental and climate-related stressors. The results presented here show that the  
445 responses to salinity of gametophytes and sporophytes in *N. luetkeana* (a subtidal canopy-  
446 former) and *A. marginata* (an intertidal subcanopy species) seem to be determined largely by  
447 environmental adaptation. *A. marginata* showed significant adaptation to hyposaline  
448 conditions and population-level variation in response to salinity at all the life-stages considered  
449 here. *N. luetkeana* was particularly sensitive to hyposaline conditions and may be induced to  
450 produce juvenile sporophytes earlier at lower salinities.

451 **5 Acknowledgements**

452 The authors would like to thank Tamsen Peeples and Muriel Dittrich for their contributions to  
453 fieldwork and valuable insights. We would also like to thank Juliana Cornett for providing the  
454 R code used to construct the sitemap. Heather Fulton-Bennett supplied specimens from Little  
455 Port Walter, and Nick Mangini supplied specimens from Kodiak. We would like to thank both  
456 anonymous reviewers for their constructive comments, which contributed greatly to the  
457 improvement of this manuscript. Veronica Farrugia Drakard is funded by the Cooperative  
458 Institute for Climate, Ocean, and Ecosystem Studies (CICOES), through the CICOES  
459 Postdoctoral Program.

460 **6 References**

461 Arimitsu, M. L., Platt, J. F. and Mueter, F. (2016). Influence of glacier runoff on ecosystem  
462 structure in Gulf of Alaska fjords. *Marine Ecology Progress Series*, 560, pp. 19 – 40.

463 Bennett, E., Paine, E.R., Hovenden, M., Smith, G., Fitzgibbon Q. and Hurd, C.L. (2024). Short-  
464 term hyposalinity stress increases dissolved organic carbon (DOC) release by the  
465 macroalga *Sargassum fallax* (Ochrophyta). *Journal of Phycology*, 60(5), pp. 1210 –  
466 1219.

467 Bliss, A., Hock, R. and Radić, V. (2014). Global response of glacier runoff to twenty-first  
468 century climate change. *JGR Earth Surface*, 119(4), pp. 717 – 730.

469 Brown, N. J., Nilsson, J. and Pemberton, P. (2019). Arctic ocean freshwater dynamics: transient  
470 response to increasing river runoff and precipitation. *JGR Oceans*, 124(7), pp 5205 –  
471 5219.

472 Buschmann, A. H., Vásquez, J. A., Osorio, P., Reyes, E., Filún, L., ... and Vega, A. (2004).  
473 The effect of water movement, temperature and salinity on abundance and reproductive  
474 patterns of *Macrocystis* spp. (Phaeophyta) at different latitudes in Chile. *Marine  
475 Biology*, 145, pp. 849 – 862.

476 Carney, L. T., Waaland, J. R., Klinger, T. and Ewing, K. (2005). Restoration of the bull kelp  
477 *Nereocystis luetkeana* in nearshore rocky habitats. *Marine Ecology Progress Series*,  
478 302, pp. 49 – 61.

479 Chen, J., Ji, D., Xu, Y., Chen, C., Wang, W., ... and Xu, K. (2023). Effect of hyposaline stress  
480 on the release of dissolved organic carbon from five common macroalgal species.  
481 *Frontiers in Marine Science*, 9, DOI: <https://doi.org/10.3389/fmars.2022.1106703>.

482 Dethier, M. N., Williams, S. L. and Freeman, A. (2005). Seaweeds under stress: manipulated  
483 stress and herbivory affect critical life-history functions. *Ecological Monographs*,  
484 75(3), pp. 403 – 418.

485 Farrugia Drakard, V., Hollarsmith, J. A. and Stekoll, M. S. (2023). High-latitude kelps and  
486 future oceans: a review of multiple stressor impacts in a changing world. *Ecology and  
487 Evolution*, 13(7), e10277.

488 Gierke, L., Coelho, N.C., Khangaonkar, T., Mumford, T. and Alberto, F. (2023). Range wide  
489 genetic differentiation in the bull kelp *Nereocystis luetkeana* with a seascape genetic

490 focus on the Salish Sea. *Frontiers in Marine Science*, DOI:  
491 <https://doi.org/10.3389/fmars.2023.1275905>

492 Grant, W.S. and Chenoweth, E. (2021). Phylogeography of sugar kelp: northern ice-age refugia  
493 in the Gulf of Alaska. *Ecology and Evolution*, 11, pp. 4670 – 4687.

494 Grant, W.S., Lydon, A. and Bringloe, T.T. (2020). Phylogeography of split kelp *Hedophyllum*  
495 *nigripes*: northern ice-age refugia and trans-Arctic dispersal. *Polar Biology*, 43, pp.  
496 1829 – 1841.

497 Hobday, A.J., Alexander, L.V., Perkins, S.E., Smale, D.A., Straub, S.C., ... and Wernberg, T.  
498 (2016). A hierarchical approach to defining marine heatwaves. *Progress in  
499 Oceanography*, 141, pp. 227 – 238.

500 Karsten, U. (2007). Research note: Salinity tolerance of Arctic kelps from Spitsbergen.  
501 *Phycological Research*, 55(4), 257–262. <https://doi.org/10.1111/j.1440-1835.2007.00468.x>

503 Kim, J. K., Stekoll, M. S. and Yarish, C. (2019). Opportunities, challenges and future directions  
504 of open water seaweed aquaculture in the United States. *Phycologia*, 58, pp. 446-461.

505 Leathers, T., King, N. G., Foggo, A. and Smale, D. A. (2023). Marine heatwave duration and  
506 intensity interact to reduce physiological tipping points of kelp species with contrasting  
507 thermal affinities. *Annals of Botany*, 133(1), pp. 51 – 60.

508 Lee, T. (1998). Investigations of some intertidal green macroalgae to hyposaline stress:  
509 Detrimental role of putrescine under extreme hyposaline conditions. *Plant Science*,  
510 138(1), pp. 1 – 8.

511 Li, H., Monteiro, C., Heinrich, S., Bartsch, I., Valentin, K., ... and Bischof, K. (2020).  
512 Responses of the kelp *Saccharina latissima* (Phaeophyceae) to the warming Arctic:  
513 From physiology to transcriptomics. *Physiologia Plantarum*, 168(1), 5–26.  
514 <https://doi.org/10.1111/ppl.13009>

515 Lind, A. C. and Konar, B. (2017). Effects of abiotic stressors on kelp early life-history stages.  
516 *Algae*, 32(3), 223–233. <https://doi.org/10.4490/algae.2017.32.8.7>

517 Maier, I., Hertweck, C. and Boland, W. (2001). Stereochemical specificity of lamoxirene, the  
518 sperm-releasing pheromone in kelp (Laminariales, Phaeophyceae). *The Biological  
519 Bulletin*, 201(2), pp. 121 – 125.

520 Mao, X., Augyte, S., Huang, M., Hare, M.P., Bailey, D., ... and Jannink, J-L. (2020).  
521 Population genetics of sugar kelp throughout the Northeastern United States using  
522 genome-wide markers. *Frontiers in Marine Science*, DOI:  
523 <https://doi.org/10.3389/fmars.2020.00694>

524 Marambio, J., Rosenfeld, S. and Bischof, K. (2022). Hyposalinity affects diurnal  
525 photoacclimation patterns in the rhodophyte *Palmaria palmata* under mimicked Arctic  
526 summer conditions. *Journal of Photochemistry and Photobiology*, 11, DOI:  
527 <https://doi.org/10.1016/j.jpap.2022.100124>.

528 McConnico, L. A. and Foster, M. S. (2005). Population biology of the intertidal kelp, *Alaria*  
529 *marginata* Postels and Rupprech: a non-fugitive annual. *Journal of Experimental Marine*  
530 *Biology and Ecology*, 324(1), pp. 61 – 75.

531 Monteiro, C., Li, H., Bischof, K., Bartsch, I., Valentin, K. U., ... and Heinrich, S. (2019). Is  
532 geographical variation driving the transcriptomic responses to multiple stressors in the  
533 kelp *Saccharina latissima*? *BMC Plant Biology*, 19(1), pp. 1–15.  
534 <https://doi.org/10.1186/s12870-019-2124-0>

535 Monteiro, C., Li, H., Diehl, N., Collén, J., Heinrich, S., ... and Bartsch, I. (2021). Modulation  
536 of physiological performance by temperature and salinity in the sugar kelp *Saccharina*  
537 *latissima*. *Phycological Research*, 69(1), 48–57. <https://doi.org/10.1111/pre.12443>

538 Muth, A. F., Bonsell, C. and Dunton, K. H. (2021). Inherent tolerance of extreme seasonal  
539 variability in light and salinity in an Arctic endemic kelp (*Laminaria solidungula*).  
540 *Journal of Phycology*, 57(5), 1554–1562. <https://doi.org/10.1111/jpy.13187>

541 Provasoli, L. (1968). Media and prospects for the cultivation of marine algae. Paper presented  
542 at the Proceedings of the US-Japan Conference, Hakone, 12 – 15 September 1968, 63  
543 – 75.

544 R Core Team (2021). R: A language and environment for statistical computing. R Foundation  
545 for Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

546 Schoenrock, K.M., Bacquet, M., Pearce, D., Rea, B. R., Schofield, J.E., ... and Kamenos, N.  
547 (2018). Influences of salinity on the physiology and distribution of the Arctic coralline  
548 algae, *Lithothamnion glaciale* (Corallinales, Rhodophyta).

549 Siddiqui, S.A., Agrawal, S., Brahmbhatt, H. and Rathore, M.S. (2022). Metabolite expression  
550 changes in *Kappaphycus alvarezii* (a red alga) under hypo- and hyper-saline conditions.  
551 *Algal Research*, 63, DOI: <https://doi.org/10.1016/j.algal.2022.102650>.

552 Siegela, D. I. (1988). The recharge-discharge function of wetlands near Juneau, Alaska: Part I.  
553 Hydrogeological Investigations. *Groundwater*, 26, pp. 427 – 434.

554

555 Smith, K. E., Aubin, M., Burrows, M. T., Filbee-Dexter, K., Hobday, A. J., ... and Smale, D.  
556 A. (2024). Global impacts of marine heatwaves on coastal foundation species. *Nature  
557 Communications*, 15, pp. 5052.

558 Springer, Y. P., Hays, C. G., Carr, M. H., and Mackey, M. R. (2010). Toward ecosystem-based  
559 management of marine macroalgae—The bull kelp, *Nereocystis luetkeana*.  
560 *Oceanography and Marine Biology: An Annual Review*, 48, 1–41.  
561 <https://doi.org/10.1201/EBK1439821169>

562 Spurkland, T. and Iken, K. (2011). Salinity and irradiance effects on growth and maximum  
563 photosynthetic quantum yield in subarctic *Saccharina latissima* (Laminariales,  
564 Laminariaceae). *Botanica Marina*, 54(4), 355–365.  
565 <https://doi.org/10.1515/BOT.2011.042>

566 Stekoll, M. S., Deysher, L. E., and Hess, M. (2006). A remote sensing approach to estimating  
567 harvestable kelp biomass. *Journal of Applied Phycology*, 18(3–5), 323–334.  
568 <https://doi.org/10.1007/s10811-006-9029-7>

569 Stekoll, M. S. (2019). The seaweed resources of Alaska. *Botanica Marina*, 62(3), pp. 227 –  
570 235.

571 Stekoll, M. S., Pryor, A., Meyer, A., Kite-Powell, H. L., Bailey, D., ... and Yarish, C. (2024).  
572 Optimizing seaweed biomass production – a two kelp solution. *Journal of Applied  
573 Phycology*, DOI: 10.1007/s10811-024-03296-w

574 Steneck, R.S., Graham, M.H., Bourque, B.J., Corbett, D., Erlandson, J.M., ... and Tegner, M.J.  
575 (2003). Kelp forest ecosystems: biodiversity, stability, resilience and future.  
576 *Environmental Conservation*, 29(4), pp. 436 – 459.

577 Strasser, F., Barreto, L. M., Kaidi, S., Sabour, B., Serrao, E., ... and Martins, N. (2022).  
578 Population level variation in reproductive development and output in the golden kelp

579                   *Laminaria ochroleuca* under marine heat wave scenarios. *Frontiers in Marine Science*,  
580                   9, DOI: <https://doi.org/10.3389/fmars.2022.943511>

581                   Supratya, V. P. and Martone, P. T. (2023). Kelps on demand: Closed-system protocols for  
582                   culturing large bull kelp sporophytes for research and restoration. *Journal of Phycology*,  
583                   60, 73 – 82.

584                   Tatewaki, M. (1966). Formation of a crustaceous sporophyte with unilocular sporangia in  
585                   *Scytoniphon lomentaria*. *Phycologia*, 6, pp 62 – 66.

586                   Wang, W., Chen, T., Xu, T., Xu, K., Xu, Y., ... and Xie, C. (2020). Investigating the  
587                   mechanisms underlying the hyposaline tolerance of intertidal seaweed, *Pyropia*  
588                   *haitanensis*. *Algal Research*, 47, DOI: <https://doi.org/10.1016/j.algal.2020.101886>.

589                   Weigel, B. L., Small, S. L., Berry, H. D. and Dethier, M. N. (2023). Effects of temperature and  
590                   nutrients on microscopic stages of the bull kelp (*Nereocystis luetkeana*, Phaeophyceae).  
591                   *Journal of Phycology*, 59(5), pp. 893 – 907.

592                   Wernberg, T., Thomsen, M. S., Baum, J. K., Bishop, M. J., Bruno, J. F., ... and Vanderklift,  
593                   M. A. (2024). Impacts of climate change on marine foundation species. *Annual Review*  
594                   of *Marine Science*, 16, pp. 247 – 282.

595                   Ziemen, F. A., Hock, R., Aschwanden, A., Khroulev, C., Kienholz, C., ... and Zhang, J. (2016).  
596                   Modeling the evolution of the Juneau Icefield between 1971 and 2100 using the Parallel  
597                   Ice Sheet Model (PISM). *Journal of Glaciology*, 62(231), pp. 199 – 214.