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El Nifio-Southern Oscillation (ENSO) exhibits a strong asymmetry between warm El Nifio and cold La
Nifia in amplitude and temporal evolution. An El Nifio often leads to a heat discharge in the equatorial
Pacific conducive to its rapid termination and transition to a La Nifia, whereas a La Nifia persists and
recharges the equatorial Pacific for consecutive years preconditioning development of a subsequent El
Nifio, as occurred in 2020-2023. Whether the multiyear-long heat recharge increases the likelihood of
a transition to a strong El Nifio remains unknown. Here, we show that such a transition is rare but more
likely under transient greenhouse warming. In boreal spring and early summer after a multiyear La Nifia,
despite a substantial recharge in the western Pacific, thermocline remains anomalously shallow and sea
surface temperature (SST) remains anomalously cold in the equatorial central Pacific. The cold conditions
inhibit an ensuing eastward movement of atmosphere deep convection out of the warm western Pacific,
delaying onset of ocean-atmosphere coupling, and hence growth of an El Nifio. Under a high emission
scenario, such a transition is still rare but more than twice as likely. The projected change is consistent
with a projected weakening in climatological zonal SST gradient that promotes the eastward movement
of atmosphere convection and a projected intensification in upper-ocean stratification of the equatorial
Pacific that enhances the ocean-atmosphere coupling. Our result provides predictive insight of El Nifio
after multiyear La Nifia, and advances our understanding of ENSO transition under greenhouse warming.
© 2024 The Authors. Published by Elsevier B.V. and Science China Press. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction intensifying the surface warming in a positive Bjerknes feedback
[5]. The eastward shift in convection is crucial for the growth of

El Nifio-Southern Oscillation (ENSO), varying irregularly El Nifio and its remote influence [6-11]. The deep convection usu-

between its warm phase El Nifio and cold phase La Nifia, is the
most energetic year-to-year climate variation on Earth and has
highly consequential impacts on global extreme weather, ecosys-
tem and economy [1-4]. During boreal spring when an El Nifio
develops, a relaxation of trade winds triggers downwelling equato-
rial Kelvin waves, creating a flattened equatorial Pacific thermo-
cline, a reduced upwelling in the eastern Pacific and a surface
warming in the central and eastern Pacific. The atmosphere con-
vection center moves eastward following the warm SST, which fur-
ther weakens the trade winds to the west of the convection, in turn
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ally reaches the Date Line during a moderate El Nifio, but extends
to the eastern Pacific during a strong and extreme El Nifio. Such
strong shifts bring intense rainfall to the normally cold and dry
eastern equatorial Pacific region, generating atmospheric telecon-
nections that severely disrupt global climate [7,10-13].

El Nifio wind anomalies discharge heat out of the equatorial
Pacific [14]. In boreal winter, the westerly wind anomalies shift
southward out of the equator due to a southward migration of
the western Pacific warm pool and an intensification of the South
Pacific convergence zone [15,16]. These anomalies, together with
the discharged equatorial upper ocean heat content and the sea-
sonally weakened ocean-atmosphere coupling, lead to a rapid ter-
mination of El Nifio. During La Nifia, the reverse occurs but with an
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asymmetric spatial pattern, amplitude and temporal evolution
[17-20]; the associated wind anomalies recharge the equatorial
Pacific for development of a subsequent El Nifio. Warm SST anoma-
lies of El Nifio develop and mature within one year, and are stron-
ger in amplitude and more eastward in anomaly center than cold
SST anomalies of La Nifia. A La Nifia often follows an El Nifio and
lasts for multiple years [21-25], as in 2020-2022, when a three-
year La Nifia occurred, causing prolonged and aggregated impacts
[26-29].

The asymmetric duration between El Nifio and La Nifa is influ-
enced by various processes, including a nonlinear atmospheric
response to SST [21,30], a contrasting effect of the Indian Ocean
during the decay phase of El Nifio and La Nifia [31], and an asym-
metric impact from the positive and negative phases of north Paci-
fic meridional mode [32]. Additionally, a large heat discharge as
well as delayed tropical inter-basin adjustment after strong El
Nifio events favors La Nifla persistence [23]. Nonlinear oceanic
dynamics also contribute; thermocline-driven SST anomalies are
less effective at terminating La Nifia [33], and cold SST from a pre-
vious La Nifia event interrupts the heat recharge, facilitating a
second-year La Nifia [34]. Overall, the equatorial Pacific heat
recharge associated with La Nifia is weaker and less effective than
the discharge related to El Nifio [35], such that a La Nifia decays
slower and the cold SST anomalies persist longer.

Understanding and predicting ENSO phase transition have been
alongstanding challenge. For example, prediction of the 2020-2022
La Nifia itself carried a large uncertainty [36,37], not to mention the
challenge of predicting the associated impact. After the event, sug-
gestions were ripe that the three-year heat recharge of the 2020-
2022 La Nifia could precondition an extreme El Nifio [38]. However,
none of the extreme El Nifio since 1950 follows a multiyear La Nifia.
Whether a multiyear La Nifla favors a transition to an extreme El
Nifio is unknown, nor is how such a transition might be affected
by greenhouse warming. Using observations and outputs from the
sixth phase of the Coupled Model Intercomparison Project (CMIP6)
[39], here we show that a transition from a multiyear La Nifia to a
strong or an extreme El Nifio rarely occurs but is projected to be less
rare under transient greenhouse warming.

2. Materials and methods
2.1. Observed and CMIP6 data

The SST data used here are averaged from three products,
including Hadley Centre Sea Ice and SST dataset version 1.1
(HadISST v1.1) [40], Extended Reconstructed Sea Surface Tempera-
ture version 5 (ERSSTv5) [41], and Centennial in situ Observation-
Based Estimates of Sea Surface Temperature version 2 (COBE-
SST2) [42]. Outgoing longwave radiation (OLR) data used here are
averaged from the fifth generation European Centre for Medium-
Range Weather Forecasts (ECMWF) atmospheric reanalysis of the
global climate (ERA5) [43] and the NOAA interpolated OLR product
[44]. Sea surface height (SSH), heat content of upper 300 m and
depth of 20 °C isotherm data are from the ECMWF Ocean Reanalysis
System 5 (ORAS5) [45] and the wind stress data are from ERA5. We
analyze datasets over the period of January 1958 to March 2024,
and obtain monthly anomalies of the variables by removing clima-
tological seasonal cycles of 1960-2022 period (1980-2022 period
for NOAA interpolated OLR) and quadratic trends in each dataset.

We examine monthly outputs over the 1900-2099 period from
42 CMIP6 models forced by historical forcing up to 2014 and there-
after future greenhouse-gas forcing under a Shared Socioeconomic
Pathway 5-8.5 (SSP585) scenario (Table S1 online) [39]. Changes in
transition of a multiyear La Nifla to an El Nifio are compared
between the 1900-1999 and the 2000-2099 period. Monthly
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anomalies of modelling outputs are obtained with reference to
the monthly climatology of 1900-1999 and quadratically
detrended on the basis of the full 200-year period (1900-2099)
[4,12,28]. To test the sensitivity of our results, available models
under different greenhouse-gas emission scenarios (SSP126,
SSP245 and SSP370; Table S1 online) are also analyzed. All the
observational and modelling data are interpolated to a 1° x 1° grid.

2.2. Definition of ENSO events

In both observation and CMIP6 model outputs, we use 0.5 stan-
dard deviation (s.d.) of Nifio3.4 index (i.e., SST anomalies in 5°S-
5°N, 170°W-120°W) averaged over October to February (OND]JF)
to define ENSO events, similar to ref. [28]. The s.d. is computed
based on the Nifio3.4 index over the 1958-2022 period of observa-
tion and 1900-1999 period of each CMIP6 model. A multiyear La
Nifa is identified as when the La Nifia persists for two consecutive
ONDJF seasons or more. We further use 1.5 s.d. and 2.0 s.d. of
ONDJF Nifio3.4 index to classify El Nifio into moderate (0.5 s.d. <
Nifio3.4 < 1.5 s.d.), strong (1.5 s.d. < Nifi03.4 < 2.0 s.d.) and extreme
(Nifio3.4 > 2.0 s.d.) events. In observation, seven multiyear La Nifia
(Fig. 1a), seventeen moderate El Nifio (1963/1964, 1965/1966,
1968/1969, 1969/1970, 1976/1977, 1977/1978, 1986/1987,
1987/1988, 1991/1992, 1994/1995, 2002/2003, 2004/2005,
2006/2007, 2009/2010, 2014/2015, 2018/2019, 2019/2020), one
strong El Nifio (1972/1973) and three extreme El Nifio
(1982/1983, 1997/1998, 2015/2016) events are identified, which
are generally consistent with previous studies using various meth-
ods to define ENSO amplitude and multiyear La Nifia
[4,23,28,29,46,47].

For a clear comparison, in our analyses of observation and
CMIP6 outputs, only moderate, strong and extreme El Niflo events
that do not transition from a La Nifia or a multiyear La Nifia are
included in the ‘moderate El Nifio’, ‘strong El Nifio’ and ‘extreme
El Nifio’ category (the events included in the observational analysis
are labelled in bold), respectively. Only multiyear La Nifia events
that transition to an El Nifio are included in the ‘multiyear La
Nifia’ category (in observation, these events are 1970-1971,
1973-1975, 2007-2008 and 2020-2022). Thus, there is no ‘strong
El Nifio’ category in the observational analysis because the only
strong event, the 1972/1973 strong El Nifo, follows 1970-1971
multiyear La Nifia and is classified into the ‘multiyear La Nifia’ cat-
egory. We combine the ‘strong El Nifio’ and ‘extreme EIl Nifio’ cat-
egories in the analysis of CMIP6 outputs, because the two types of
events have little distinct differences in the multievent-mean
anomalous pattern or evolution of SSH, SST, surface wind, and con-
vection during the period of February to June (FMAM)).

2.3. Metrics of tropical deep convection

OLR is frequently used as a proxy for tropical atmosphere deep
convection [6-11]. We use two metrics based on OLR to measure
the activity of deep convection, which is nonlinearly correlated
with local SST in the current and in a warmer climate [48]. Inten-
sity of convection is measured by the OLR anomalies averaged over
the equatorial central-eastern Pacific (5°S-5°N, 180°-100°W)
(Fig. S1a, b online, black rectangle). A negative value of intensity
indicates an enhanced deep convection. A location of convection
center is measured by the longitude where the minimum total
meridional mean (10°S-10°N, 120°E-90°W) of the OLR is located
(Fig. S1c, d online, black dots). A negative (positive) location anom-
aly indicates a westward (eastward) movement of deep convec-
tion. There is a statistically significant negative correlation
between the intensity and location of convection, as an eastward
movement of convection enhances convection over the equatorial
central-eastern Pacific. We apply a 3-month running mean to the
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Fig. 1. Observed rare transition from a multiyear La Nifia to a strong El Nifio. (a) Normalized ONDJF averaged Nifio3.4 SST index in the year during (blue bars) and after a
multiyear La Nifia, and of extreme El Nifio (purple bars). Yellow, orange and purple dashed lines indicate threshold of identifying El Nifio (0.5 s.d.), strong El Nifio (1.5 s.d.) and
extreme El Nifio (2.0 s.d.), respectively. Orange and yellow bars indicate respective strong and moderate El Nifio events, and hollow bars indicate neutral events. (b)
Composite maps of FMAM] averaged anomalous sea surface height (SSH; m) (left), SST (°C; colouring) and surface wind stress (N m~2; vectors) (middle) and outgoing
longwave radiation (OLR; W m~2) (right) in the developing year of extreme El Nifio events. (c) Same as (b) but for moderate El Nifio events. (d) Same as (b) but for the year
after multiyear La Nifia. Values of multi-event mean exceeding 1.0 s.d. of the events are hatched (SSH, SST and OLR anomalies) or shown (surface wind stress). The events
included in the composite are listed in ‘2.2 Definition of ENSO events’ of Materials and methods. Due to a decoupled ocean and atmosphere over the tropical central and
eastern Pacific during FMAM]J, a multiyear La Nifia may transition to an El Nifio in the subsequent winter, but rarely to a strong El Nifio, and none to an extreme El Nifio in the
observation.

monthly anomalies of convection intensity, convection center loca- examine the transition of multiyear La Nifia to El Nifio under other
tion and central Pacific SST. emission scenarios.
2.4. Bootstrap test 3. Results
As in previous studies [4,12,28,47], we use a bootstrap resam- 3.1. Observed rare transition to strong El Nifio
pling method [49] to examine whether the multimodel mean
increase in the occurrence of multiyear La Nifla transitioning to We use a 0.5 s.d. value of Nifio3.4 SST index averaged over

El Nifio is statistically significant. The 21 occurrence numbers ONDJF as a threshold to define ENSO events, and a multiyear La
under historical forcing are resampled randomly to construct  Nifia event involves at least two consecutive La Nifia [28]. El

10,000 realizations of mean occurrence number over 21 models,  Nifio events are classified into moderate (0.5 s.d. < Nifio3.4 < 1.5
in which any occurrence number can be selected again. The same s.d.), strong (1.5 s.d. < Nifio3.4 < 2.0 s.d.), and extreme (Nifio3.4
is carried out for the future period. The s.d. of the 10,000 inter- > 2.0 s.d.) events using the magnitude of ONDJF Nifio3.4 index
realizations of mean occurrence number for the two periods is (see ‘2.2 Definition of ENSO events’ in Materials and methods).
computed, and we consider the increased mean occurrence Seven multiyear La Nifia events are identified from 1958 to 2023

number in 2000-2099 to be statistically significant above the  (Fig. 1a), consistent with previous studies [23,24,28,29,46]. Four
95% confidence level if the increased mean is greater than the (Fig. 1a, orange and yellow bars) of the seven multiyear La Nifia
sum of these two s.d. values. We also use the bootstrap test to events transitioned to El Nifio events, of which only two were

758



F. Jia et al.

strong (Fig. 1a, orange bar) and none was extreme. The remaining
three multiyear La Nifia events transitioned to a neutral state
(Fig. 1a, hollow bars).

Collectively, the statistics indicate that a multiyear La Nifia may
transition to an El Nifio in the subsequent winter, but rarely to a
strong El Nifio, even less so to an extreme El Nifio. This is some-
what unexpected, as the recharged equatorial western Pacific heat
content tends to be greater after a multiyear La Nifia [38] than that
preceding a moderate or even an extreme El Nifio (Fig. S2 online). A
changing background condition might have an impact [50] but
whether it is related to greenhouse warming is not clear.

3.2. Decoupled ocean and atmosphere after a multiyear La Nifia

The slower growth of warm SST anomalies after a multiyear La
Nifia compared with those during moderate and extreme El Nifio
events results from a decoupled ocean and atmosphere over the
period of FMAM], the early developing stage of a typical El Nifio.
During FMAM] of an extreme El Nifio event, anomalous thermo-
cline deepening in the equatorial central-eastern Pacific (Fig. 1b,
left; Fig. S3a, d online) and anomalous westerly winds over the
equatorial western-central Pacific (Fig. 1b, middle) induce a warm
SST anomaly, involving thermocline feedback, zonal advective
feedback and Ekman pumping feedback [51,52]. In association,
atmosphere deep convection, as measured by negative OLR anoma-
lies, enhances over the eastern edge of warm pool and extends to
the eastern Pacific (Fig. 1b, right), further increasing the anomalous
westerlies that push the warm water and deep convection east-
ward (Fig. S3a online). The warm SST and westerly wind anomalies
reinforce each other under the Bjerknes feedback with a strong
ocean-atmosphere coupling, facilitating a rapid growth of warm
SST anomalies. An extreme El Nifio requires an eastward displaced
warm pool edge in addition to a recharged ocean heat content [53].

During a moderate El Nifio, anomalies of thermocline depth
(Fig. 1c, left; Fig. S3b, e online), surface wind and SST (Fig. 1c, mid-
dle) are weaker and more concentrated in the central Pacific com-
pared to those during an extreme ElI Nifio, resembling
characteristics of a central-Pacific type El Nifio [54]. The category
of moderate El Nifio involves many events that are usually identi-
fied as central-Pacific El Nifio (see ‘2.2 Definition of ENSO events’ in
Materials and methods). Although relatively weak, the deep con-
vection enhances and moves eastward (Fig. 1c, right), indicating
an active ocean-atmosphere coupling.

In a sharp contrast, during FMAM] after a multiyear La Nifia, the
thermocline deepens along the equator within a narrow merid-
ional band (2°S-2°N) in response to Kelvin waves, accompanied
by an anomalously shallow thermocline in broad regions both
sides of the equator (Fig. 1d, left; Fig. S3c, f online). The SST
remains anomalously cold in the equatorial Pacific except in a
small area of the far-eastern Pacific, and easterly wind anomalies
prevail in the equatorial western-central Pacific (Fig. 1d, middle).
The deep convection is confined to the warm pool because of the
central Pacific cold conditions (Fig. 1d, right), leading to a decou-
pled ocean and atmosphere that delay the growth of warm SST
anomalies.

We use two OLR-based metrics including a location of convec-
tion center and an intensity of convection to further examine the
activity of atmosphere deep convection (see ‘2.3 Metrics of tropical
deep convection’ in Materials and methods and Fig. S1 online). The
convection center is defined as the longitude where the minimum
total meridional mean (10°-10°N) of the OLR is located, and the
intensity is defined as OLR anomalies averaged over the equatorial
central-eastern Pacific (5°S-5°N, 180°-100°W), both of which are
closely related to the central Pacific warming [9,10,55]. The con-
vection center is sensitive to the central Pacific SST anomaly and
moves to the east (positive anomaly) during FMAM] of a moderate
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or an extreme El Nifio, underpinned by a statistically significant
regression slope (Fig. 2a, yellow and red dots).

In comparison, the convection center remains within the west-
ern Pacific (a negative location anomaly) during FMAM] after a
multiyear La Nifia, with negative central Pacific SST anomalies
inhibiting the eastward migration of deep convection (Fig. 2a, blue
dots). Consistent with an eastward movement of the convection
center, the intensity of convection enhances over the central-
eastern Pacific in response to an increased central Pacific SST
anomaly in a moderate or an extreme El Niflo (Fig. S4a online, yel-
low and red dots). By contrast, the response is much weaker after a
multiyear La Nifia (Fig. S4a online, blue dots), as indicated by a
smaller slope.

The contrast in deep convection activity is also manifested in a
monthly evolution. During an extreme El Nifio, a central Pacific
warming emerges early, activating a response of deep convection,
hence an onset of ocean-atmosphere coupling (Fig. 2b and Fig. S4b
online, red arrows). The Bjerknes positive feedback operates in the
ensuring months, producing extreme SST and convection anoma-
lies in boreal winter. The central Pacific SST increases approxi-
mately by 1.8 °C by December, associated with an approximately
50°-longitude eastward movement and approximately 40 W m—
enhancement of atmosphere convection. During a moderate El
Niflo, there is a weak central Pacific warming but active ocean-
atmosphere coupling (Fig. 2b and Fig. S4b online, yellow arrows),
consistent with the composites (Fig. 1c¢). The intensity of central
Pacific warm anomalies, eastward movement, and enhancement
of convection, are approximately 1/2, 1/3, and 1/8, respectively,
of that associated with an extreme El Nifio.

After a multiyear La Nifia, however, the equatorial cold condi-
tions persist until June, before which time establishment of deep
convection over the central Pacific does not occur (Fig. 2b and
Fig. S4b online, blue arrows). Growth of SST anomalies is curtailed
in the absence of an active ocean-atmosphere coupling, unfavor-
able to preconditioning a strong or an extreme El Nifio in the
ensuring months. The persistent cold SST anomalies in the central
equatorial Pacific prior to June reflect the slow-decay characteristic
of La Nifia [21,23,30-35].

3.3. Rare but more frequent future transition to strong El Nifio

Considering that multiyear La Nifia and its transition is a part of
ENSO asymmetry, we examine the ability of CMIP6 models to
reproduce the observed ENSO asymmetry in historical simulations
over the 1900-1999 period. The asymmetry of a longer persistence
but a weaker amplitude of La Nifia compared with El Nifio is man-
ifested in a positive skewness of SST anomalies in the central-
eastern equatorial Pacific (i.e., Nifio3.4 region). A total of 21 out
of 42 models simulate a positive Nifio3.4 skewness (Fig. S5 online,
red bars), and these 21 models are selected for further analysis as
in a previous study [28]. Models with a positive Nifio3.4 skewness
simulate reasonably well the observed nonlinear ENSO dynamics
and multiyear La Nifia properties [28,47].

The selected models reproduce the observed contrasting devel-
opment during FMAM] of different El Nifio events in the historical
simulations. For example, the anomalous deepening thermocline,
warm SST and westerlies grow fast under a strong ocean-
atmosphere coupling during an extreme or a strong El Nifio, asso-
ciated with enhanced and eastward extended deep convection
(Fig. 3a and Fig. 1b). Here, we combine the extreme and strong El
Nifio events in the modelling analyses as there are no distinct dif-
ferences in their early-developing features especially in the deep
convection activities. During a moderate El Nifio, ocean-
atmosphere coupling is active though weaker, and the growth of
El Nifio anomalies is similar to that of an extreme or a strong El
Nifio (Fig. 3b and Fig. 1c). By FMAM] after a multiyear La Nifia,
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Fig. 2. Decoupled ocean and atmosphere during an early developing stage of El Nifio after a multiyear La Nifia. (a) Relationship between anomalous location of convection
center and central Pacific SST anomalies (averaged in 5°S-5°N, 180°-140°W) during FMAM] of an extreme El Nifio (red dots), a moderate El Nifio (yellow dots) and after a
multiyear La Nifia (blue dots). Each dot represents a calendar month of FMAM]. Also shown are respective slopes with 95% confidence intervals. The contrast in slopes
between that after multiyear La Nifia and that of moderate and extreme El Nifio is statistically significantly above the 95% confidence level based on a t-test. (b) Monthly
evolution of relationship between anomalous location of convection center and central Pacific SST anomalies in multievent mean of extreme El Nifio (red arrow and number),
moderate El Nifio (yellow) and after multiyear La Nifia (blue). The numbers indicate respective calendar months. The ENSO events analyzed here are listed in ‘2.2 Definition of
ENSO events’ of Materials and methods. The location and intensity of convection are measured by OLR (see ‘2.3 Metrics of tropical deep convection’ in Materials and
methods). The persistent cold conditions in boreal spring and early summer after multiyear La Nifia inhibit an eastward movement and enhancement of atmosphere deep
convection, leading to a decoupled ocean and atmosphere that delay the growth of subsequent El Nifio.

however, warm SST and westerly wind anomalies have not devel-
oped in the equatorial western-central Pacific due to a decoupled
ocean and atmosphere (Fig. 3¢ and Fig. 1d).

We compute the occurrence of transition from a multiyear La
Nifla to an El Nifio over the 1900-1999 period in each of the
selected models, and compare with that over the 2000-2099 per-
iod, using outputs from simulations under a future high-emission
warming scenario (SSP585) [39]. A total of 16 of the 21 selected
models (76.2%) simulate an increase in such transition under
future climate, with another two models (MRI-ESM2-0 and
UKESM1-0-LL) simulating unchanged occurrences (Fig. 3d). The
multimodel mean increase is at 101.9% + 31.4%. The frequency of
transition from a multiyear La Nifia to a strong or an extreme El
Nifio increases, but is likewise rare. The multimodel total occur-
rences increase from 13 to 33 cases in the aggregated 2100 years
in terms of a multiyear La Nifia transition to a strong or an extreme
El Nifio, and from 4 to 18 cases in the aggregated 2100 years in
terms of a multiyear La Nifia transition to an extreme El Nifio.
These multimodel mean increases are statistically significant
above the 95% confidence level (Fig. 3d, ‘MME-all’, ‘MME-strong
& extreme’, ‘MME-extreme’), according to a Bootstrap method
(see ‘2.4 Bootstrap test’ in Materials and methods).

The transition of a multiyear La Nifia to an El Nifio in the twen-
tieth century (1900-1999) is underestimated by the models, com-
pared with approximately one case every 16.5 years (4 cases in
66 years) in the observation (Fig. 1a). The underestimation may
result from a long-standing model bias of a too-cold and too-far-
west Pacific cold tongue [4,56,57], which makes the establishment
and eastward movement of deep convection over the central-
eastern Pacific even more difficult after a multiyear La Nifia, hence
a lower probability of transition to an El Nifio. The increased fre-
quency in the transition from a multiyear La Nifla to an El Nifio
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occurs in other emission scenarios (Fig. 3d, right of the vertical
line), with a multimodel mean increase of 68.6% + 29.8%, 96.3% +
37.4% and 86.1% * 31.2%, respectively, under SSP126, SSP245 and
SSP370, statistically significant above the 95% confidence level
according to a bootstrap test (Fig. S6 online). Given that ENSO’s
response to greenhouse warming is nonlinear and substantially
modulated by the tropical Pacific mean warming pattern [58],
the extent to which the transition of multiyear La Nifia responds
to varying amplitudes of greenhouse-gas forcing remains an open
question.

3.4. Projected mean state change facilitates a transition

In the twenty-first century, during FMAM] after a multiyear La
Nifla, the ocean and atmosphere continue to be unfavorable to
ocean-atmosphere coupling (Fig. S7 online), a condition that deter-
mines the rare occurrence of a subsequent strong or extreme El
Nifio. The increased likelihood of transition from a multiyear La
Nifia to an El Nifio under global warming results from a stronger
convection sensitivity to SST anomalies in general [4,12,59,60].
The higher sensitivity of atmosphere convection intensity to an
anomalous central Pacific SST anomaly during FMAM] after a mul-
tiyear La Nifia (Fig. 4a, b, blue dots) is illustrated by a statistically
significant larger regression slope in 2000-2099 than that in
1900-1999, similar to the increased sensitivity during a moderate
El Nifio (Fig. 4a, b, yellow dots), but less so during an extreme El
Nifio (Fig. 4a, b, red dots), in which the anomalous convection is
already intense over the historical period. Using location of the
convection center to represent the convection activity yields a sim-
ilar result (Fig. S8a, b online).

For each selected model, we apply a regression of monthly
anomalous convection intensity onto time series of averaged cen-
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Fig. 3. Rare but more likely transitions from a multiyear La Nifia to a strong El Nifio under greenhouse warming. (a-c), Same as Fig. 1 b-d but for FMAM] of (a) strong and
extreme El Nifio events, (b) moderate El Nifio events and (c) after multiyear La Nifia over 1900-1999 in the selected models. The mean values that exceed 1.0 s.d. are hatched
(SSH, SST and OLR anomalies) or shown (surface wind stress). CESM2 is not involved in the OLR composite owing to data unavailability. (d) Comparison of the number of El
Nifio events transitioning from a multiyear La Nifia over 1900-1999 (blue bars) and 2000-2099 (red bars) in the selected models under historical and SSP585 scenario (left of
the vertical line). Models that simulate a decrease are greyed out. The multimodel ensemble mean (MME) numbers of all El Nifio events (Nifio3.4 > 0.5 s.d.), strong and
extreme El Nifio events (Nifio3.4 > 1.5 s.d.) and extreme El Nifio events (Nifio3.4 > 2.0 s.d.) transitioning from a multiyear La Nifia are labeled as ‘MME-all’, ‘MME-strong &
extreme’ and ‘MME-extreme’, respectively. MME results under other emission scenarios (right to the vertical line) are provided using the selected ensembles (Table S1
online). Error bars on the multimodel mean are calculated as 1.0 s.d. of 10,000 inter-realizations of a bootstrap method (see ‘2.4 Bootstrap test’ in Materials and methods).
Selected models reproduce the observed ocean-atmosphere decoupling after a multiyear La Nifia, and simulate an increase in the transition from a multiyear La Nifia to an El

Nifio under greenhouse warming, although still rare.

tral Pacific SST anomalies over their FMAM] values of every year,
separately over the 1900-1999 and 2000-2099 period (500 values
in each period), and multiply the regression coefficients by the
respective s.d. of the anomalous central Pacific SST anomalies to
obtain a total response. In the future climate, a stronger response
(more negative) is seen in most models (Fig. 4c), and models that
simulate a larger enhancement in the response systematically pro-
duce more occurrences of transition from a multiyear La Nifia to an
El Nifio, with a statistically significant inter-model correlation
(r=-0.56, P = 0.0107). The stronger convection response is facili-
tated by a projected mean state change, as indicated by an inter-
model correlation between changes in the total response and in
the mean SST pattern (Fig. 4d).

Under greenhouse warming, a western Pacific warm pool
expansion and a diminished climatological zonal SST gradient
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induced by a faster warming in the equatorial eastern Pacific than
in the western promotes establishment and its eastward shift of
atmosphere deep convection [4,12,59,60]. Further, the upper-
ocean stratification of the equatorial Pacific increases as the surface
ocean warms faster than the ocean below, leading to an enhanced
ocean-atmosphere coupling such that the SST anomalies are more
sensitive to a given wind forcing [2,47]. Both are conducive to an
onset of ocean-atmosphere coupling, hence to occurrences of El
Nifio transitioned from all preconditions, including multiyear La
Nifia condition. Results using the total response of convection
movement to the central Pacific SST anomalies further highlight
the crucial role of the mean state warming pattern and the associ-
ated stronger convection response in the more frequent transition
from a multiyear La Nifia to an El Nifio. The enhanced (a higher
positive value) response is significantly positively correlated
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Fig. 4. Mean state changes facilitate a transition from a multiyear La Nifia to a strong El Nifio. (a) Relationship of anomalous convection intensity with central Pacific SST
anomalies (averaged in 5°S-5°N, 180°-140°W) during FMAM] of strong and extreme El Nifio (red dots), moderate El Nifio only (yellow dots) and after multiyear La Nifia (blue
dots) over the 1900-1999 period. The convection intensity anomalies are binned in 0.1 °C central Pacific SST anomaly intervals to obtain median anomaly in each bin. Also
shown are respective slopes with 95% confidence intervals. (b) Same as (a) but for results over the 2000-2099 period. (¢) Inter-model relationship between the change (2000-
2099 minus 1900-1999) in El Nifio numbers transitioning from a multiyear La Nifia and the change in the total response (W m~2) of convection intensity to central Pacific SST
anomalies. Changes in each model are scaled by the corresponding increase in global mean SST. Linear fit is displayed together with correlation coefficient r and P value. (d)
Inter-model correlation between changes (2000-2099 minus 1900-1999) in grid-point mean SST with changes in the total response of convection intensity to central Pacific
SST anomalies, both scaled by the increase in global mean SST of each model. Stippling (hatching) indicates statistical significance above the 90% (95%) level based on a two-
tailed Student’s t-test. CESM2 is not involved here owing to data unavailability. Under greenhouse warming, the projected mean state change promotes ocean-atmosphere
coupling, facilitating the transition from a multiyear La Nifia to a strong or an extreme El Nifio.

(r = 0.55, P = 0.012) with the increased transition frequency
(Fig. S8c online), and is linked to the mean SST warming (Fig. S8d
online).

4. Discussion and conclusion

We find that a multiyear La Nifia rarely transitions to a strong or
an extreme El Nifio, despite a multiyear-long heat recharge of the
equatorial Pacific. The rarity is underpinned by the cold SST
anomalies in the central equatorial Pacific and an anomalously
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shallow thermocline in the equatorial Pacific that persist into early
boreal summer, even after the multiyear La Nifia recharge. These
cold conditions are in turn associated with the slow recharge and
nonlinear dynamics that contribute to the slow decay of La Nifia
[21,23,30-35]. The persistent anomalies anchor the atmosphere
deep convection and heavy rainfall over the western Pacific warm
pool region. Consequently, the anomalous atmosphere deep con-
vection is unable to move eastward, and the ocean and atmosphere
are decoupled over the equatorial central Pacific in the early devel-
oping stage of El Nifio, delaying and limiting the subsequent
growth of warm anomalies. Under future greenhouse warming, a
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faster warming in the equatorial eastern Pacific than the surround-
ing regions facilitates an eastward movement of atmosphere deep
convection [4,12,59,60], and an intensified upper ocean stratifica-
tion enhances ocean-atmosphere coupling [2,47]. These changes
ensure that an eastward movement of deep convection is more
sensitive to warm SST anomalies and an onset of ocean-
atmosphere coupling in the central equatorial Pacific is more read-
ily triggered, increasing the transition from a multiyear La Nifia to
a strong or an extreme El Nifio. Our result contributes to our under-
standing and prediction of ENSO transition, and suggests that
swings from a multiyear La Nifia to a strong El Nifio, though still
rare, are more likely in the twenty-first century.
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