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ABSTRACT: Minimum central pressure (Pmin) is an integrated measure of the tropical cyclone wind field and is known
to be a useful indicator of storm damage potential. A simple model that predicts Pmin from routinely estimated quantities,
including storm size, would be of great value. Here, we present a simple linear empirical model for predicting Pmin from
maximum wind speed, a radius of 34-kt (1 kt ’ 0.51 m s21) winds (R34kt), storm center latitude, and the environmental
pressure. An empirical model for the pressure deficit is first developed that takes as predictors specific combinations of
these quantities that are derived directly from theory based on gradient wind balance and a modified Rankine-type wind
profile known to capture storm structure inside of R34kt. Model coefficients are estimated using data from the southwestern
North Atlantic and eastern North Pacific from 2004 to 2022 using aircraft-based estimates of Pmin, extended best track
data, and estimates of environmental pressure from Global Forecast System (GFS) analyses. The model has a near-zero
conditional bias even for low Pmin, explaining 94.2% of the variance. Performance is superior to a variety of other model
formulations, including a standard wind–pressure model that does not account for storm size or latitude (89.2% variance
explained). Model performance is also strong when applied to high-latitude data and data near coastlines. Finally, the
model is shown to perform comparably well in an operation-like setting based solely on routinely estimated variables, in-
cluding the pressure of the outermost closed isobar. Case study applications to five impactful historical storms are dis-
cussed. Overall, the model offers a simple, fast, physically based prediction for Pmin for practical use in operations and
research.

SIGNIFICANCE STATEMENT: Sea level pressure is lowest at the center of a hurricane and is routinely estimated
in operational forecasting along with the maximum wind speed. While the latter is currently used to define hurricane in-
tensity, the minimum pressure is also a viable measure of storm intensity that is known to better represent damage risk.
A simple empirical model that predicts the minimum pressure from maximum wind speed and size, and based on the
physics of the hurricane wind field, does not currently exist. This work develops such a model by using wind field phys-
ics to determine the important parameters and then uses a simple statistical model to make the final prediction. This
model is quick and easy to use in weather forecasting and risk assessment applications.
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1. Introduction

At 2100 UTC 22 September 2005, the National Hurricane
Center forecast discussion for Hurricane Rita stated “The
minimum central pressure has remained around 913 mb…
which is a very low pressure to have only 125 knots.” This
statement reflects a relatively infrequent but important issue
when the minimum central pressure in a tropical cyclone dif-
fers strongly from what would be “expected” from its maxi-
mum wind speed alone based on historical experience. This

example emphasizes the confusion that arises when our two
common measures of tropical cyclone intensity}the point
maximum wind speed Vmax, which is the official measure of
the Saffir–Simpson hurricane wind scale, and the minimum
central pressure Pmin}depart from one another. This confu-
sion begins with the attempt to characterize a storm’s
strength scientifically but then extends to the translation of
this characterization into potential implications for the gen-
eral public.

Indeed, it has long been standard to convert between the
tropical cyclone maximum wind speed and Pmin using a simple
empirical wind–pressure relation (Dvorak 1975, 1984; Atkinson
and Holliday 1977; Koba et al. 1990; Knaff and Zehr 2007, here-
after KZ07; Courtney and Knaff 2009). This one-to-one relation
assumes that Pmin depends predominantly on Vmax. KZ07 dem-
onstrated that minimum pressure also depends secondarily on
storm size and latitude, motivated by gradient wind balance.
This latter result was explained physically by Chavas et al.
(2017) by combining gradient wind balance with a theoretical
wind structure model. Chavas et al. (2017) demonstrated that a
simple linear model that depends on Vmax and the product of
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outer size and the Coriolis parameter successfully predicted the
central pressure deficit in simulations and observations. How-
ever, that work employed as its size metric a radius of 8 m s21,
which is not routinely estimated operationally nor reanalyzed
for retention in a long-term archive. As a result, the utility of
this model has been limited. A predictive1 model aligned with
Chavas et al. (2017) that takes as input parameters that are rou-
tinely estimated in operations would be much more useful.

The potential utility of a precise and easy-to-use model for
Pmin has grown as recent work has directly connected Pmin to
risk. The variable Pmin is a remarkably good predictor of the
normalized economic damage that has been wrought by land-
falling hurricanes in the continental United States (Bakkensen
and Mendelsohn 2016; Klotzbach et al. 2020, 2022). Klotzbach
et al. (2020) demonstrated that Pmin is a substantially better
predictor than Vmax, particularly for hurricanes making land-
fall from Georgia to Maine where weaker but larger storms
are more common. Klotzbach et al. (2022) demonstrated that
Pmin is also at least as good of a predictor as integrated meas-
ures of the near-surface wind field, including both integrated
kinetic energy and integrated power dissipation, that inher-
ently require data from the entire wind field to estimate. The
explanation lies in the fact that Pmin is itself an integrated mea-
sure of the wind field that accounts for both maximum wind
speed and storm size (Chavas et al. 2017). The total wind field
drives the wind, storm surge, and rainfall hazards that ulti-
mately cause damage and loss of life (Irish and Resio 2010;
Zhai and Jiang 2014). Hence, Pmin appears to be an especially
well-suited measure of the damage potential of a storm, and it
carries ancillary practical benefits.

First, Pmin is relatively easy to estimate, as it requires a rela-
tively few observations within a small area near the storm cen-
ter and, moreover, it varies relatively smoothly in space and
time since it is by definition an integrated quantity (either in
radius via gradient wind balance or in height via hydrostatic
balance). In contrast, Vmax is a local estimate at a single point
of a quantity that is inherently noisy and hence is notoriously
difficult to estimate from sparse observations (Uhlhorn and
Nolan 2012). Second, Pmin is already routinely estimated op-
erationally; indeed, it was used in conjunction with the maxi-
mum wind speed as part of the Saffir–Simpson Scale prior to
2009 (Schott et al. 2012).

The practical benefits of a model for Pmin extend beyond
operations to climate and risk modeling. Climate models are
better able to reproduce the historical distribution of mini-
mum pressure than maximum wind speed (Knutson et al.
2015), suggesting that the former is a more stable and suitable
metric for model evaluation and intercomparison (Zarzycki
et al. 2021). For risk modeling, the pressure field is included
as input in storm surge models (Gori et al. 2023). More gener-
ally, a model that can relate Pmin, Vmax, and size to one an-
other should enable the use of all available data to more
precisely constrain the properties of historical tropical

cyclones and their relationships to hazards and potential
impacts.

Here, our objective is to create a simple model to predict
Pmin that can be easily used in operations and practical appli-
cations. The spirit of this effort to make theory directly useful
for the community follows from a similar effort for predicting
Rmax presented in Chavas and Knaff (2022) and Avenas et al.
(2023). Section 2 describes the datasets used in our analysis.
Section 3 develops the empirical model and its physical basis.
Section 4 estimates model parameters from data and applies
the model in a few notable contexts, including an operational
setting using only routinely estimated parameters. Section 5
provides a brief summary and discussion.

2. Data and methods

Our dataset combines flight-based data for Pmin, final best
track data for storm central latitude, maximum wind speed
Vmax, a quadrant-maximum radius of 34-kt wind (R34kt;
1 kt’ 0.51 m s–1), storm translation speed Vtrans, and estimates
of environmental pressure Penv from analysis and best track
data. We use R34kt because it is the outermost radius routinely
estimated operationally. We analyze storms in both the North
Atlantic and eastern North Pacific basins for the period 2004–22,
where 2004 is the first year in which postseason best tracking of
R34kt was performed. All information is contained in the data-
bases of the Automated Tropical Cyclone Forecast (ATCF) sys-
tem (Sampson and Schrader 2000). These data are identical to
that available in the extended best track (EBTRK, Demuth et al.
2006).

Direct observational estimates of Pmin are critical to ensure
that these data are true independent observations and are not
inferred from Vmax via an existing wind–pressure relationship
(which is difficult to determine in retrospect), as this would
undercut the purpose of our work. Hence, we take Pmin esti-
mates based on aircraft and recorded in the ATCF databases.
We then linearly interpolate best track data to the times of
flight-based estimates of Pmin. Following DeMaria et al.
(2009) and Chavas and Knaff (2022), we calculate the mean
radius of 34-kt wind at a given time, hereafter R34kt, by aver-
aging all nonzero quadrant values and then multiplying the re-
sult by 0.85 to account for the fact that the quadrant values
are defined as the maximum extent in that quadrant and are
not the mean:

R34kt 5 0:85
1
n
∑
n

i51
Ri

34kt

( )
, (1)

where n is the number of nonzero quadrant values. Finally, to
estimate the azimuthal-mean maximum wind speed Vmax, we
follow the simple method of Lin and Chavas (2012) and sub-
tract 55% of the translation speed from the best track Vmax:

Vmax 5 Vmax 2 0:55Vtrans: (2)

The variable Vtrans is calculated from the mean displacement
between the TC location at the given time and 12 h prior (so
as to be operationally predictive), with best track latitude and

1 Note: we use “predictive” here in the statistical sense (model-
ing one parameter from other concurrent parameters) rather than
the forecasting sense (modeling the future).
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longitude, each linearly interpolated to the relevant times. In
our results below, we test the effect of including this transla-
tion modification and also compare with the nonlinear trans-
lation speed reduction of KZ07.

A combination of the NCEP Climate Forecast System
(CFS; Saha et al. 2014) and Global Forecast System (GFS)
analyses (GFS 2021) were used to estimate Penv. CFS analyses
were used in 2004 and 2005, and GFS analyses were used
thereafter. We use the profile of tangential wind in the analy-
sis, specifically a radius of 8 m s21 (R8ms), to inform us
what radius represents the outer edge of the storm and to cal-
culate Penv. The variable Penv was calculated at 900 km for
R8ms 5 0–600 km, 1200 km for R8ms 5 600–900 km, 1500 km
for R8ms 5 900–1200 km, 1800 km for R8ms 5 900–1200 km,
and 2100 km for R8ms 5 1200–1500 km. In the final section,
we also estimate the environmental pressure for operational
relevance using the pressure of the outermost closed isobar
(Poci) extracted from the ATCF databases or EBTRK dataset.

Following Chavas and Knaff (2022), to develop our model,
we filter our data to focus on a subset of high-quality cases
over the open ocean within the tropical western Atlantic basin
where aircraft reconnaissance is routine. Hence, we restrict
our data to cases west of 508W and south of 308N and with
R34kt smaller than the distance from the storm center to the
coastline. We only include cases with at least three nonzero
quadrant values of R34kt to ensure a reasonable estimate of the
azimuthal-mean value, and where Vmax is at least 20 m s21 to
avoid weak tropical storms and tropical depressions. A map of
the final training dataset is displayed in Fig. 1a. As described
below, we will also apply our model to additional subsets of
data to explore its broader utility.

3. Model for pressure deficit DP

The minimum pressure is given by

Pmin 5 Penv 1 DP, (3)

where Pmin is the minimum central pressure, Penv is the envi-
ronmental pressure, and DP is the pressure deficit at the storm
center (defined as negative for low pressure). Here, we de-
velop a model specifically for DP, as this is what is tied physi-
cally to the wind field. We also test Pmin alone below and
demonstrate that the knowledge of Penv does add additional
value. The practical use of the model is tackled in section 4c,
where we combine our model prediction for DP with an esti-
mate for Penv to predict Pmin itself.

We develop a model for DP that is derived from gradient
wind balance applied to a two-region, modified Rankine vor-
tex model of the axisymmetric tropical cyclone wind field.
The full derivation is presented in the appendix. Here, we fo-
cus on the core outcome from the theory. The term DPhPa

(hPa) depends linearly on three physical predictors: V
2
max,

(1/2)fR34kt, and (1/2)fR34kt/Vmax. The variable Vmax is the
azimuthal-mean maximum wind speed in units of meters per
second; R34kt is the radius of 34-kt winds in units meters
(1 n mi 5 1852 m); and f is the Coriolis parameter at the

storm-center latitude (f) in units of per second [ f5 2V sin(f),
V 5 7.2923 1025 s21].

Because the theory has various approximations built into it,
we do not use the final theoretical result [Eq. (A11)] directly
but rather use theory simply to identify the predictors. We
then model DP using a simple multiple linear regression
(MLR) model using those predictors:

DPhPa 5 b0 1 bVmax2 (V
2
max) 1 bfR

1
2
fR34kt

( )

1 bfRdV

1
2
fR34kt

Vmax

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠: (4)

This approach produces an optimal model that exploits the
benefits of both theory and observational data. A similar ap-
proach was taken to predict the radius of maximum wind in
Chavas and Knaff (2022) and Avenas et al. (2023). The first
predictor (V2

max) captures the maximum wind speed depen-
dence of the pressure drop; it arises from the cyclostrophic

FIG. 1. (a) Map of the aircraft-based historical Pmin dataset used
in this study; the color denotes the magnitude of Pmin (hPa).
(b) Model prediction for DP [Eq. (5); y axis] vs observed DP (x axis)
for all data shown in (a), with conditional median (red solid), inter-
quartile range (red dashed), and 5%–95% range (red dotted).
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component of gradient wind balance. The second predictor
[(1/2)fR34kt] captures the combined size and Coriolis depen-
dence of the pressure drop; it arises from the size-dependent
Coriolis component of gradient wind balance. The final pre-
dictor [(1/2)fR34kt/Vmax] enhances the pressure drop from
V

2
max (its term is less positive at larger Vmax), and it opposes

the pressure drop from (1/2)fR34kt (its term is more positive at
larger R34kt or f); its interpretation is more complex but is as-
sociated with the contraction of Rmax as Vmax increases. For a
more detailed physical interpretation, see the appendix.

Briefly, we note the contrast with Chavas et al. (2017),
which found a simpler multiple linear regression relationship
for DP on Vmax and (1/2)fR, where R was taken as the radius
of 8 m s21. These two parameters were taken directly from
the wind structure theory of Chavas and Lin (2016) applied to
gradient wind balance, and indeed, they show up here too.
However, since the theory of Chavas and Lin (2016) has no
analytic solution, Chavas et al. (2017) could not derive an ana-
lytic solution for Pmin and hence could not define exactly how
Pmin should depend on those parameters [their Eq. (12)]. In-
stead, they merely found that a pure linear dependence
worked well. The new model presented here [Eq. (4)] now
gives that analytic dependence. This dependence corroborates
the results of Chavas et al. (2017) as both parameters appear
in our first two terms, too, but with a slight deviation associ-
ated with the third term in Eq. (4) that depends on the ratio
of the two parameters. Note that while it might seem desir-
able to take the reciprocal of the third term, this will make
the dependence on the term nonlinear, and indeed doing so
results in a significantly degraded performance.

To estimate model coefficients [Eq. (4)], we first bin the da-
taset into increments of 10 m s21 for Vmax, 50 km for R34kt,
and 1025 s21 for f (i.e., approximately 48 latitude) and calcu-
late the median value of each of the three quantities within the
bin, resulting in a single data point per joint (Vmax, R34kt, f )
bin. Binning minimizes the effects of variations in sample size
across the phase space of these variables when estimating
model parameters, and it also helps reduce noise within a
given bin. No minimum sample size is imposed within each
bin, so all bins with at least one valid data point are retained to
ensure more extreme cases are included in the fitting. Multiple
linear regression coefficients are calculated using the fitlm
function in MATLAB. We use the entire dataset in order to
produce the best estimate of the model coefficients from all
available data. We estimate the 95% confidence interval of each
model coefficient as the 2.5th and 97.5th percentiles from a 1000-
member bootstrap with resampling of the raw dataset, each fit
following the same procedure as above. We explicitly account for
the number of degrees of freedom in model performance metrics
by calculating the adjusted r-squared value reduced from the
nominal value based on the number of degrees of freedom rela-
tive to the sample size, r2adj 5 12 [(n2 1)/(n2 p)](SSE/SST),
where n is the sample size, p is the number of coefficients, SSE is
the sum of squared error, and SST is the sum of squared total.
The adjustment factor (n 2 1)/(n 2 p) is very small (’1.0017,
i.e., a 0.17% reduction from nominal) since the number of coeffi-
cients p 5 4 is much smaller than our sample size of approxi-
mately 1700, indicating that model overfitting is not a concern.

This approach is analogous to removing an arbitrary subset of
years for out-of-sample validation, and it carries the added bene-
fit of allowing us to use the entire dataset to yield the best possi-
ble coefficient estimates. Nonetheless, we also test our model
against multiple out-of-sample subsets described below that fur-
ther demonstrate the generality of the model. To evaluate model
performance, we apply the model described above to the full,
raw dataset and quantify the statistics of the observed versus pre-
dicted DP or Pmin.

We first present the final model and its performance. We
then demonstrate the utility of each term in the model, includ-
ing a comparison with a standard “wind–pressure” model in
which Vmax is the only predictor. We then apply the model to
a few specific out-of-sample applications that are of practical
interest. Finally, we show how to use the model in an opera-
tional setting using only routinely estimated data and examine
model performance for a few case studies of impactful storms
in the recent historical record.

4. Results

a. Model results

Our final model is

DPhPa 526:60 2 0:0127(V2
max) 2 5:506

1
2
fR34kt

( )

1 109:013

1
2
fR34kt

Vmax

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (5)

with DPhPa in units of hectopascals, Vmax in units of meters
per second, R34kt in units of meters, and f in units of per
second. As described in section 2, the coefficient values are
estimated by fitting the model to the dataset binned in fixed
increments of Vmax, R34kt, and f to minimize the effect of
sample size variability. The bootstrapped 95% confidence
interval range on each coefficient is (27.51, 25.02) for b0,
(20.0134, 20.0123) for bVmax2 , (25.961, 25.122) for bfR, and
(96.439, 127.265) for bfRdV.

Model performance is shown in Fig. 1b, which displays pre-
dicted [Eq. (5)] versus observed DP for the raw dataset shown
in Fig. 1a. Equation (5) explains 94.2% of the variance in
DPhPa, with an RMS error of 5.24 hPa (Table 1). The model is
nearly unbiased across the full range of DPhPa, as evident by the
solid red line (binned median) in Fig. 1b closely following
the black one-to-one line. This unbiased behavior extends to
the most extreme data points with the largest pressure deficits
(lower-left region of the figure).

The sign of the dependence on each parameter matches the
theory. First and foremost, the model predicts larger pressure
deficit (DPhPa) at higher intensity (V

2
max; positive depen-

dence) and at larger size or higher latitude [(1/2)fR34kt; posi-
tive dependence], as has been shown in past work (KZ07;
Chavas et al. 2017). The third term is more complex and is
new. Given the positive coefficient, it yields a more intense
storm (more negative pressure deficit) at higher Vmax or at
smaller size or higher latitude (these both would make the
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term less positive). Hence, this term slightly enhances the de-
pendence on Vmax (first term) but slightly reduces the depen-
dence on (1/2)fR34kt (second term). We show below that this
new predictor has the smallest effect of the three predictors
but still adds value to the model’s predictive power.

b. Tests of model formulation

We next evaluate the effect of each predictor as well as a
few choices made in the formulation of our final model.
Changes in model performance for modifications to our
model are shown in Table 1. In each case, the alternative
model was fit and tested in an identical fashion as was done
for our full model above.

First, we remove the least valuable predictor one at a time
and present the model results for direct comparison to the full
model. Removing the third predictor (ratio) increases the un-
explained variance from 5.8% to 7.7%. Further removing the
second predictor (size and latitude), i.e., a linear regression on
V

2
max alone, further increases the unexplained variance to

15.4%. Finally, replacing V
2
max with Vmax partially reduces the

unexplained variance back to 11.7%; hence, if using the maxi-
mum wind speed alone, Vmax is preferable to V

2
max.

We also tested the same model but using Pmin rather than
DP as the predictand (i.e., ignoring variations in Penv), which
results in a slight reduction of performance with an increase
in unexplained variance from 5.8% to 6.7%. This effect is rel-
atively small but does indicate that the knowledge of varia-
tions in the environmental pressure can help modestly
improve the prediction of Pmin for a given storm.

Last, we combine the above two tests to examine a standard
wind–pressure relationship, i.e., predicting Pmin from Vmax
alone. This leaves 10.8% of the variance unexplained. This
model actually performs better than the two models that pre-
dict DP from Vmax or V

2
max. This result gives insight into why

the standard wind–pressure relationship has been so success-
ful, as apparently Vmax may coincidentally capture a bit of the
residual variance associated with the other two terms and var-
iations in environmental pressure. Overall, our full model
offers a significant improvement in performance over a

standard wind–pressure relationship by capturing nearly half
of the residual variance in the latter (94.2% vs 89.2% variance
explained).

Note that we also tried a range of other model fits with
Vmax, R34kt, and f arbitrarily employed in a variety of ways
both linearly and nonlinearly. However, none outperformed
our theory-driven version presented above. In particular, a
straightforward empirical model that takes our input parame-
ters Vmax, R34kt, and f as direct predictors [similar to Courtney
and Knaff (2009)] performs slightly worse than our model,
adding an additional 1.0% unexplained variance; replacing
Vmax with V

2
max further reduces performance. This does not

outright prove that the theory-derived set of parameters
found here are the “optimal” parameters, but it does lend
confidence that theory really can provide useful guidance on
how the observed parameters are best combined for the pur-
poses of predicting the pressure deficit. Clearly, a more stan-
dard empirical model is also viable, but our model has the
added benefit of being grounded in physics.

Finally, we test two other choices in our model formulation.
First, the above outcomes hold true for the model fit to the
same dataset but including all cases up to 508N. Its perfor-
mance (93.5% variance explained) is slightly degraded rela-
tive to our model up to 308N, which is unsurprising given the
greater complexity of cases at higher latitudes. We return to
this topic below.

Second, we chose to reduce the best track Vmax to account
for translation speed effects as has been done in the past. The
result is very similar when using Vmax without this translation
reduction, with a slight increase of 0.2% in explained vari-
ance. However, without a translation speed modification,
there exists a strong systematic dependence of model error on
Vtrans that is found in both our primary developmental dataset
and when the model is applied to our high-latitude subset [dis-
cussed in section 4c(1) below]. Both of these systematic de-
pendencies are eliminated by applying the translation speed
modification (see Fig. S02 in the online supplemental
material). Moreover, while the inclusion of the translation
modification does not improve model performance for our

TABLE 1. Model performance for our final MLR model (top line in bold) and alternative versions to test the effect of modifications to
the model formulation. See the text for details. Model performance plots analogous to Fig. 1 for each entry are provided in Fig. S01.

Model

Explained
variance

(1003 r2adj)
Error

[eRMS (hPa)] MLR model coefficients

Final model [Eq. (5)] 94.2 5.24 (b0, bVmax2 , bfR, bfRdV)5 (26:60, 20:0127, 25:506, 1109:013)
V

2
max and (1/2)fR34kt only 92.3 6.03 (b0, bVmax2 , bfR)5 (22:00, 20:0154, 22:469)

V
2
max only 84.6 8.55 (b0, bVmax2 )5 (213:37, 20:0157)

Vmax only 88.3 7.43 (b0, bVmax2 )5 (20:23, 21:54)
Predict Pmin instead of DP 93.3 5.62 (b0, bVmax2 , bfR, bfRdV)5 (1005:92, 20:0130, 25:022, 1 107:719)
Predict Pmin 5F (Vmax)

(classic wind–pressure)
89.2 7.13 (b0, bVmax)5 (1035:08, 21:56)

Include 308–508N data 93.5 5.40 (b0, bVmax2 , bfR, bfRdV)5 (26:67, 20:0126, 25:462, 1105:138)
No translation modification 94.4 5.21 (b0, bVmax2 , bfR, bfRdV)5 (23:37, 20:0128, 24:837, 192:689)
Nonlinear translation (KZ07) 94.1 5.26 (b0, bVmax2 , bfR, bfRdV)5 (26:52, 20:0128, 25:457, 1104:956)
Vmax, R34kt, and f 93.2 5.69 (b0, bVmax2 , bR, bf )5 (36:28, 21:48, 27:103 1025, 21:213 105)
V

2
max, R34kt, and f 92.0 6.17 (b0, bVmax2 , bR, bf )5 (6:05, 20:0151, 28:023 1025, 21:253 105)
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data below 308N, it does modestly improve model perfor-
mance when applied to the high-latitude subset (0.8% in-
crease in explained variance; 0.3-hPa reduction in RMS
error). The interpretation of this outcome is that, because
Vtrans tends to vary much more strongly in the subtropics than
in the tropics, the translation signal only emerges from the
noise of adding an additional input parameter when applied
to these higher-latitude cases in isolation. Given that this
translation effect on the wind field is widely known to be real
(e.g., KZ07) and indeed is apparent in our dataset, it is impor-
tant to include in our model. We further test a second method
from KZ07, originating from Schwerdt et al. (1979), which ap-
plies a slightly nonlinear translation modification given by
Vmax 5 Vmax 2 1:5V0:63

trans. This method yields a very similar re-
sult to our linear modification, except that it does not fully
eliminate the dependence of model error on Vtrans for the
high-latitude cases (Fig. S02). For the above reasons, we
elected to use the simple linear translation modification to
Vmax given by Eq. (2) in our model.

c. Applications to special subsets

1) HIGH-LATITUDE STORMS

We next apply our model to the data for high-latitude
storms spanning 308–508N in our database (Fig. 2). At these
higher latitudes, jet stream interactions and the onset of extra-
tropical transition are much more likely, storms tend to ex-
pand, and North Atlantic storms often have significant
interactions with land to the west. Hence, data in this region
are associated with much larger uncertainty in both input pa-
rameter estimates Vmax and R34kt and structural relationships
among parameters. Nonetheless, the model performs reason-
ably well for this generally more complex subset of cases, ex-
plaining 87.8% of the variance with an RMS error of 6.0 hPa.
The model provides a nearly unbiased estimate of DP for val-
ues down to 260 hPa. For the deepest storms, though, there
is evidence of a systematic overestimation of DP. Overall,
while the performance is clearly worse than when applied to
lower latitude storms as expected, the model appears to ex-
trapolate well to higher latitudes. For further context, the
high-latitude case of Hurricane Sandy is explored in the case
studies section of this paper.

2) LAND PROXIMITY STORMS

Finally, we apply our model specifically to tropical cyclones
that are relatively close to land and hence potentially of
greater risk for coastal populations. Land introduces signifi-
cant asymmetry in the surface wind field that would be ex-
pected to increase uncertainty, particularly in the estimation
of R34kt. Results for our model application to all data within
200 km of a coastline up to 508N are shown in Fig. 3. Model
performance is again quite strong, explaining 93.3% of the
variance with an RMS error of 6.10 hPa and is nearly unbi-
ased over the full range of pressure deficits. The error spread
increases for stronger storms with pressure deficits ,260 hPa
relative to weaker storms in this subset as well as comparable
storms in our full dataset. Overall, though, the model also ap-
plies well for storms that are close to land.

d. Practical application: extended best track and historical
case studies

We next demonstrate how the model can be put into direct
practical use to predict Pmin using only operationally available
data. We use data exclusively from the EBTRK database
(2004–22), which provides all parameters that are estimated
in near–real time and are later refined in postseason best
tracking. Translation speed is again defined from the change
in storm center latitude and longitude during the preceding
12 h. We apply the model to the North Atlantic only to give a
more apples-to-apples comparison to our observation-based
dataset that is weighted heavily toward the North Atlantic.

The lone parameter from our original analysis that was not
already routinely estimated is the environmental pressure
Penv, which is needed to translate the model’s prediction for
DP back into Pmin. In our prior analyses, we had estimated
Penv from the pressure field in global model reanalysis, which
is more precise but not operationally available. Here, we uti-
lize the pressure of the outermost closed isobar (Poci) and ap-
ply a simple constant offset

Penv 5 Poci 1 2 hPa: (6)

FIG. 2. As in Fig. 1, but for DP predicted by our final model [Eq. (5)]
for data between 308 and 508N.
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The value of 2 hPa was estimated directly from our model by
finding the value that eliminates the mean bias in our predic-
tion (an increase/decrease in Penv simply acts to increase/de-
crease Pmin by the same amount). As shown below, this offset
results in a near-zero conditional bias across all values of
Pmin, which indicates that using a simple constant for an offset
is reasonable. Notably, this estimate of Penv agrees with rec-
ommendations in Courtney and Knaff (2009).

We predict Pmin by calculating DP using Eq. (5) and Penv

using Eq. (6). The results are shown in Fig. 4. The prediction
compares quite well with the EBTRK data, explaining 94.7%
of the variance with an RMS error of 5.18 hPa. The perfor-
mance is very similar to that found above using the observa-
tion-based database. This is to be expected, as EBTRK
should mostly be very similar to our database, with the excep-
tion of EBTRK being at a 6-hourly temporal resolution and
for occasional times when aircraft reconnaissance was not
available, which should be relatively infrequent by design
given our focus on the western Atlantic.

These results indicate that one can make a good prediction
for Pmin if given high-quality operational estimates of Vmax,
R34kt, storm-center latitude, and pressure of the outermost

closed isobar. This may be of direct value when remote
sensing–based wind speed measurements are available but
measurements of Pmin are not.

HISTORICAL CASE STUDIES

Last, we illustrate our model applied to case studies of five
impactful historical hurricanes: Patricia (2015), Ike (2008),
Rita (2005), Michael (2018), and Sandy (2012) in Fig. 5. The
cases are presented roughly in order from least complex to
most complex in terms of life cycle evolution. We again com-
pare our model by calculating DP using Eq. (5) and Penv using
Eq. (6) using extended best track data. Overall, our model
does reasonably well to predict Pmin across all five cases, but
it is insightful to discuss both successes and notable biases
across the cases.

Patricia (2015; Figs. 5a–c) was a category 5 storm in the
eastern North Pacific that made landfall in Jalisco in western
Mexico as a category 4 hurricane (Fig. 5a). Patricia was the
most intense hurricane on record based on Vmax and exhib-
ited the fastest rate of 24-h intensification on record

FIG. 4. As in Fig. 1, but for the “operational” model prediction,
with DP predicted by our final model [Eq. (5)] using only the
EBTRK database for the period 2004–22 in the North Atlantic for
all data and Penv estimated from Poci using Eq. (6).

FIG. 3. As in Fig. 1, but for DP predicted by our final model
[Eq. (5)] for data close to land, defined as within 200 km of a
coastline.
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(Kimberlain et al. 2016). Hence, it represents an excellent test
case for extreme maximum wind speeds for our model. Our
model does a remarkably good job of predicting the minimum
pressure throughout its entire life cycle (Fig. 5b). The model ex-
hibits a near-zero error during its initial period of intensification

through 1200 UTC 22 October as well as at its peak intensity
(lowest pressure) at 1200 UTC 23 October, with a modest high
bias of approximately 15 hPa during the intervening 18 h of
very rapid intensification. In this case, the evolution of Pmin is
driven almost entirely by Vmax, as size (R34kt) increases only

FIG. 5. Model prediction for five case studies of recent impactful storms. Patricia (2015, EP): (a) map of track and Pmin (color); (b) time
series of best track Pmin vs model prediction from best track operational inputs only; (c) maximum wind speed (Vmax) and mean radius of
34-kt wind (R34kt). Identical analyses for (d)–(f) Ike (2008, AL); (g)–(i) Rita (2005, AL); (j)–(l) Michael (2018, AL); and (m)–(o) Sandy
(2012, AL). Note the change in scale for R34kt for Sandy in (o). The vertical gray line in each time series denotes the time of CONUS land-
fall. The gray band represents an error of 65.18 hPa, which is the model RMSE error of Fig. 4. Date labels on the map correspond to
0000 UTC.
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very gradually with time (Fig. 5c). Additionally, Patricia re-
mained at a relatively constant latitude, moving poleward by
only 58 prior to landfall.

Ike (2008; Figs. 5d–f) was a category 4 storm in the North
Atlantic that made multiple landfalls along the coasts of the
Turks and Caicos Islands, Cuba, and finally Texas (Fig. 5d).
Ike grew substantially in size throughout its life cycle while its
intensity fluctuated (Fig. 5f) and hence is a good test case of a
storm that exhibited significant variations in both intensity
and size. Our model does an excellent job of predicting
the evolution of Pmin (Fig. 5e). The model had a high bias
(too weak) of approximately 110 hPa from 1800 UTC
8 September to 0600 UTC 11 September, a period during
which Ike was passing along the long axis of Cuba. Note that
many of those data occurred when the storm center was just
offshore but close enough that the inner core of the storm al-
most certainly was partially onshore resulting in strong interac-
tion with land (Berg 2009); the complexity of this interaction
likely explains the discrepancy during that period. Thereafter,
an eyewall replacement cycle occurred on 10 September that
corresponded with a period of significant expansion through
1200 UTC 11 September while the maximum wind speed re-
mained steady. At 0000 UTC 11 September, the minimum
pressure dropped and then increased very slowly to 950 hPa
through 1200 UTC, whereas our model predicted a more grad-
ual decrease in pressure during this period. Finally, through
landfall at 0600 UTC 13 September, the observed minimum
pressure remained relatively constant, hovering within 5 hPa
of its final landfall pressure along Galveston Island, Texas, of
950 hPa. Our model, on the other hand, predicted a continued
decrease in minimum pressure due to the slight intensification
during 0000–0600 UTC 12 September combined with its grad-
ual poleward movement. Given the storm’s very large size as it
approached land, there is likely greater uncertainty in the esti-
mate of R34kt in the model, which may explain the discrepancy
during this period.

Rita (2005; Figs. 5g–i) was a category 5 storm in the North
Atlantic that followed a very similar track as Ike through the
northern Caribbean and Gulf of Mexico, except shifted
slightly northward such that it passed through the Straits of
Florida to the north of Cuba rather than directly over Cuba
(Fig. 5g). Rita also expanded steadily after interacting with
Cuba. In contrast to Ike, during this expansion period, Rita
intensified rapidly, from 0000 UTC 21 September through
0000 UTC 22 September (Fig. 5i). The final combination of
extreme intensity and large size yielded the lowest Atlantic
Pmin on record for the Gulf of Mexico (895 hPa). Our model
performed very well over most of Rita’s life cycle (Fig. 5h), in-
cluding a near-zero bias through the period of intensification
and expansion and at peak intensity from 0000 to 0600 UTC
22 September. Thereafter, our model briefly exhibited a
moderate high bias from 1800 UTC 22 September through
0000 UTC 23 September and then performed well with a
smaller bias of 5–10 hPa leading up to landfall. The landfall
pressure of 937 hPa was the lowest on record in the Atlantic
basin for an intensity of 100 kt (Knabb et al. 2006), owing to
its large size. Note that Rita’s landfall intensity was slightly
higher than Ike (100 vs 95 kt), but Rita was also slightly

smaller than Ike. Rita’s landfall pressure was lower than Ike’s
landfall pressure, whereas our model predicted the opposite.
Hence, the model had a low bias for Ike and a high bias for
Rita at landfall. Similar to Ike, Rita’s large size as it ap-
proached land likely created larger uncertainty in the value of
R34kt. Overall, Rita and Ike demonstrate how, for larger
storms, size contributes significantly to reducing the minimum
pressure relative to what would be expected from the maxi-
mum wind speed alone. Rita and Ike made landfall at very
similar latitudes (29.78N for Rita and 29.38N for Ike), so Cori-
olis played effectively no role in the differences between these
two storms at landfall. As noted at the start of the introduc-
tion, these large hurricanes with low Pmin relative to best
track Vmax can cause confusion when considering how to com-
municate the severity of a storm, which is especially problem-
atic when approaching land.

Michael (2018; Figs. 5j–l) was a category 5 storm in the
North Atlantic that made landfall in the Florida Panhandle at
its peak intensity of 140 kt. The system moved north through-
out its life cycle prior to landfall from its genesis location in
the far western Caribbean (Fig. 5j). Michael was similar to
Patricia in that it reached extreme intensities while its size re-
mained relatively constant, but it did so by intensifying more
gradually and uniformly over a 4-day period leading up to
landfall (Fig. 5l). Our model did very well in predicting the
continuous decrease in Pmin with time, particularly over its
first few days prior to 0000 UTC 9 October during which the
model had a near-zero error (Fig. 5k). Our model then exhib-
ited a moderate low bias (too intense) from 210 to 15 hPa
during the final 2 days leading up to landfall, with the error re-
turning to near zero just prior to landfall. At 1800 UTC
8 October, Michael passed very close to the western tip of
Cuba and thereafter experienced a decay in its eyewall struc-
ture (Beven et al. 2019). This interaction with land may have
induced uncertainties in wind radii estimates and changes in
Michael’s structure that were not captured by our model.

Finally, Sandy (2012; Figs. 5m–o) was a highly destructive
storm in the North Atlantic that became the largest storm
ever recorded in the basin as measured by R34kt. Sandy made
multiple landfalls in Jamaica, Cuba, and finally New Jersey as
a posttropical cyclone 2.5 h after completing extratropical
transition (Fig. 5m). Sandy represents perhaps the most com-
plex of test cases, with dramatic changes in intensity, size, and
latitude throughout its life cycle (Fig. 5o), multiple sustained
interactions with land, and substantial extratropical interac-
tions. Our model does well in predicting Pmin during its early
stages in the southern Caribbean prior to crossing Cuba at
0600 UTC 25 October (Fig. 5n). From 1200 UTC 25 October
through 1800 UTC 26 October, our model exhibited a moder-
ate low bias (too intense) from 210 to 220 hPa, particularly
as the storm center crossed Cuba and then subsequently
moved along the axis of the Turks and Caicos and the Baha-
mas. This period of time was associated with a sharp leveling
off and then a decrease in Vmax concurrent with a very rapid
expansion in storm size. This expansion was driven by the
strong interaction with an upper-level trough and later a
warm frontal boundary, which resulted in the development of
an unusual structure with an exceptionally large Rmax, and the
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strongest winds found on the western semicircle (Blake et al.
2013). The model performed better from 0000 to 1200 UTC
27 October before the bias increased again to 215 hPa as
Sandy moved back out over the open water while rapidly un-
dergoing extratropical transition. Sandy was formally desig-
nated as an extratropical system on 2100 UTC 29 October as
the storm approached the New Jersey coastline, and indeed
our model exhibited a very large low bias (far too intense)
during 29 October, predicting a minimum pressure below
900 hPa when the actual value was 940 hPa prior to landfall.
Hence, Sandy demonstrates how our model may not be well
suited for storms that have undergone substantial extratropi-
cal transition, for which the assumptions regarding the radial
structure of the winds may break down. However, it is also
worth noting that the estimation of the input parameter val-
ues (Vmax and R34kt) is likely highly uncertain during this lat-
ter period given that Sandy was a large and highly asymmetric
storm whose wind field significantly overlapped with the adja-
cent land.

Note that the biases in the above cases, particularly Ike and
Michael, tend to be persistent for periods of 1–2 days when
they occur. Such biases may be driven by a variety of factors.
Estimating R34kt for larger storms may be more uncertain
given that aircraft observations extend only 200 km from the
center, so estimates depend more strongly on scatterometry
data and can only be updated when new data become avail-
able. Land interaction may induce low biases in size as noted
above. Additionally, there is uncertainty in estimating the en-
vironmental pressure Penv from Poci, as the closure of isobars
depends on the synoptic-scale atmospheric flow on the pe-
riphery of the storm that tends to vary more slowly in time.
Evaluating the relative role of uncertainties lies beyond the
scope of this work. Future work might seek to develop more
precise estimates of the environmental pressure, such as our
method used above based on global analyses, that can be used
both in an operational setting and in the best track archive.

5. Conclusions

A simple model to predict Pmin in a tropical cyclone from
routinely estimated data would be useful for operations and
practical applications. This work has developed an empirical
linear model for the pressure deficit that takes as input the
maximum wind speed, the mean radius of 34-kt wind, and
storm central latitude, as well as the environmental pressure.
The specific model predictors, given by V

2
max, (1/2)fR34kt, and

the ratio of the latter to the former, are derived from gradient
wind balance applied to a modified Rankine vortex. Rather
than using the full analytic solution itself, which will bake in
the approximating assumptions of the theory, we instead use
a simple linear regression model on those three parameters
and estimate the coefficients from historical data: aircraft-
estimated central pressure, historical best track data for storm
wind field parameters, and global analyses for environmental
pressure. This choice enables us to exploit the unique benefits
of both physical theory (predictors) and data (dependence on
predictors). The model shows excellent skill, capturing 94.4%
of the variance in the historical dataset and outperforming

various other versions of the model. It is superior to a stan-
dard wind–pressure relationship (89.4% variance explained),
which indicates that the inclusion of size and latitude informa-
tion captures approximately half of the residual variance that
is unexplained by this simpler model. Though the model was
fit to data over the open ocean in the tropics in order to mini-
mize the effects of observational uncertainties, it also appears
to perform well at high latitudes and near coastlines. Finally,
it performs very well when applied solely using data from the
extended best track database (94.9% variance explained),
which indicates it is viable in an operational setting using only
routinely estimated data.

The final model for the pressure deficit is given by Eq. (5).
The pressure deficit prediction is then translated to a predic-
tion for Pmin via Eq. (3) by adding an estimate of the environ-
mental pressure, which may be estimated operationally using
the pressure of the outermost closed isobar via Eq. (6).

Overall, this simple and fast model can predict Pmin from
maximum wind speed, storm size, storm central latitude, and
environmental pressure in practical applications. In opera-
tions, the model could give a preliminary estimate of Pmin if
other input predictors are available. Perhaps more impor-
tantly, Pmin can potentially be forecast up to 5 days from the
operational forecast time in the North Atlantic and eastern
North Pacific given that the National Hurricane Center fore-
casts Vmax and storm central position operationally out to
120 h and in 2024 will begin doing so for 34-kt wind radii as
well. Currently, the National Hurricane Center does not oper-
ationally forecast Pmin, but this simple tool would allow for a
simple estimate of Pmin, which would not entail additional
work for the forecaster on duty. This information combined
with a radius of maximum wind estimates using similar meth-
ods (Chavas and Knaff 2022; Avenas et al. 2023) could partic-
ularly be useful for storm surge model initial conditions.

In risk analysis, the model can help provide mutually con-
sistent estimates of these three parameters that extend to
other/future climate states where no observational data exist.
In weather and climate modeling, the model could provide a
new tool to evaluate the representation of TC intensity, size,
and Pmin jointly, as well as to understand how future changes
in Pmin reflect changes in intensity versus size. More broadly,
given the strong correlation between Pmin and historical eco-
nomic damage, the model offers a full quantitative bridge
from the wind field to hazards to damage that may be of use
in the study of damage risk in both real-time forecasting and
under climate change. Moreover, this model can help explain
why larger storms can make it difficult to communicate the
potential severity of a storm when Pmin is substantially lower
than expected for a given maximum wind speed (and the
Saffir–Simpson hurricane wind scale category) based on a
standard wind–pressure relationship.

We note that improved parameter estimation, particularly
of R34kt and of the environmental pressure, may both help im-
prove model performance for individual cases. As this method
relies on operational estimates of Vmax, R34kt, and Penv, any
improvements in those estimates will help in predicting Pmin.
Our estimates of Penv can certainly be improved by more di-
rect methods using global model analyses. Uncertainties
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associated with Vmax and R34kt are on the order of 5 m s21

and 26 km, respectively (Torn and Snyder 2012; Sampson et al.
2017; Combot et al. 2020), which will likely persist as a few ob-
servational platforms exist that accurately estimate R34kt and
Vmax (Knaff et al. 2021). Additionally, recent work has shown
that satellite-based Dvorak current intensity estimates could
be used in lieu of maximum wind speed to predict the mini-
mum pressure (Aizawa et al. 2024), which is a viable alterna-
tive in the absence of direct observations of the maximum
wind speed.

Finally, we note that this model provides a physical expla-
nation for how the TC minimum pressure is expected to
change with global warming. On average, we expect tropical
cyclones in a warmer world to become more intense (higher
maximum wind speed; Knutson et al. 2020; Emanuel 1987,
2021) at a relatively constant outer size (Knutson et al. 2015;
Schenkel et al. 2023; Stansfield and Reed 2021; Lu and Chavas
2022) and a relatively constant latitude with the exception of
a slow expansion of the poleward edge of TC activity (Kossin
et al. 2014). Environmental pressures would not be expected
to change significantly. Taken together, our model would then
predict lower central pressures, driven by the increase in max-
imum wind speed, consistent with modeling studies (Knutson
et al. 1998; Kanada et al. 2013; Tran et al. 2022). Additionally,
based on the simple modified Rankine vortex that underlies
our model, the radial structure of the wind field would be ex-
pected to remain constant with the exception of a slight con-
traction of the radius of maximum wind at higher intensities,
as is found in observations and modeling studies (Chavas and
Lin 2016; Kanada et al. 2013; Tran et al. 2022; Chen et al.
2022). Hence, the physical basis of the model provides a path-
way to link changes in different aspects of tropical cyclone
structure and to more confidently extrapolate to other climate
states for which we do not have direct observations.
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APPENDIX

Derivation of Theoretical Pressure Deficit Model

Here, we derive the analytic solution for the pressure
deficit DP at the center of the storm that yields the three
physical parameters used in the model presented in the
main text. Klotzbach et al. (2022) showed that a modified

Rankine model well reproduces the relationship between
Rmax and R64kt, R50kt, and particularly R34kt in the EBTRK
database over the tropical western Atlantic. This empirical
outcome combined with the analytic simplicity of a modi-
fied Rankine wind profile motivates its use below.

The pressure deficit relative to a fixed radius can be ex-
pressed using gradient wind balance (KZ07; Chavas et al.
2017), given by

DP 52

�Ro

0
r
y2

r
1 fy

( )
dr, (A1)

where r is the air density, y is the rotating wind speed, f is
the Coriolis parameter at the storm center and f is the lati-
tude of the storm center, r is radius (r 5 0 is the storm cen-
ter), and Ro is some larger radius. The term DP is defined
as negative when the pressure decreases moving inwards,
such that a stronger storm will have a more negative pres-
sure deficit.

If given a profile of y as a function of radius, Eq. (A1)
can predict how pressure decreases moving inwards toward
the center, including the total pressure deficit. A simple
model for the wind profile inside of R34kt makes use of the
modified Rankine equation:

y

Vmax

5
r

Rmax

( )a
, (A2)

where Vmax is the azimuthal-mean maximum wind speed
and Rmax is the radius of maximum wind. In the eye region
(r # Rmax), we take ae 5 2, i.e., a parabola. Outside of the
eye region (r $ Rmax), we take ao 5 20.5, which is close to
the best-fit value of 20.55 estimated from extended best
track data in the southwest Atlantic Ocean shown in Fig. 8a
of Klotzbach et al. (2022). An example of the pressure deficit
profile calculated numerically from this wind profile using
Eq. (A1) at f 5 208N is shown in Fig. A1.

The simplicity of the wind model allows one to directly
derive an analytic solution for DP by combining Eqs. (A1)
and (A2). To do so, it is helpful to first write Eq. (A1) in
terms of ỹ 5 y /Vmax and r̃ 5 r/Rmax, since the wind model
[Eq. (A2)] is also written in this form, i.e.,

ỹ 5 r̃a: (A3)

We further take r to be constant. Doing so yields

DP 5 rV
2
max

� R̃o

0

ỹ 2

r̃
dr̃ 1 f

� R̃o

0
ỹdr̃

( )
, (A4)

where R̃o 5 Ro/Rmax. Using Eqs. (A3) and (A4), DP can be
calculated analytically both within the eye region (DPe;
r̃ , 1) and outside the eye region (DPo; r̃ . 1), with the to-
tal pressure deficit equal to the sum of the two:

DP 5 DPe 1 DPo: (A5)

The general solution for any a is given by
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within the eye and

DPo 52
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11(1/ao)
max ] (A7)

within the outer region. We plug in ae 5 2 and take
ao 5 20.5, which is close to the best estimate of 20.55
and makes the math for the final solution much simpler.
Doing so yields

DPe 52
1
4
rV

2
max 2

2
3
rV2

o

1
2
fRo

Vmax

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (A8)

within the eye and

DPo 52rV
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (A9)

within the outer region. Adding the two together and com-
bining like terms yields a final equation for the total pres-
sure deficit:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦:

(A10)

This equation is a linear function of three predictors: V
2
max,

(1/2)fRo, and (1/2)fRo/Vmax. Physically, the first two terms
on the right-hand side represent the cyclostrophic pressure
drop from Ro to the storm center, and the third and fourth
terms represent the size-dependent Coriolis pressure drop
from Ro to the storm center. The fourth term has a positive
sign, and as a result, it enhances the pressure drop from
V

2
max (the term is less positive at larger Vmax), and it op-

poses the pressure drop from (1/2)fRo (the term is more
positive at larger Ro or f ). Its physical interpretation is
more complicated, as it combines the Coriolis pressure drop
within the eye [final term of Eq. (A8), which is negative]
with the Coriolis pressure drop inside of Rmax that is implic-
itly excluded via the inner limit of integration of the outer
model [final term of Eq. (A9), which is positive]. The pre-
dictor (1/2)fRo/Vmax represents an inverse vortex Rossby
number, where Ro5 Vmax/(fRmax) is the Rossby number at
Rmax but where the modified Rankine vortex effectively al-
lows for Rmax to be substituted with Ro. In the wind model
presented above, for a given Ro, Rmax contracts inwards as
Vmax increases, as is commonly seen in observations (Chavas
and Lin 2016). As a result, the eye model is compressed in-
wards, while the outer region model is extended farther in-
wards to smaller radii. In doing so, there is a reduction in the
Coriolis pressure drop within the eye [final term in Eq. (A8)
becomes less negative] and an increase in the Coriolis pres-
sure drop outside of the eye [final term in Eq. (A9) becomes
less positive]; the latter is larger in magnitude, yielding a posi-
tive combined final term in Eq. (A10). Thus, for higher Vmax
at fixed Ro, this final term becomes less positive, thereby en-
hancing the pressure drop.

Practically, the first term (rV2
0) and the coefficients of the

three predictor terms in Eq. (A10) are constants. The three
predictors are composed of parameters that are routinely
estimated operationally. Note that the model predicts spe-
cifically that DP is larger in magnitude (more negative) for
larger V

2
max and (1/2)fRo, but it is smaller in magnitude for

larger (1/2)fRo/Vmax. Taking Vo 5 17.5 m s21 (i.e., 34 kt),
corresponding to Ro 5 R34kt, setting r 5 1 kg m23, and di-
viding through by 100 to convert to hectopascal yields

DPhPa,theo 5 3:0625 2 0:0125(V2
max) 2 0:70

1
2
fR34kt

( )

1 10:208

1
2
fR34kt

Vmax

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠: (A11)

Why use the empirical model of Eq. (4) rather than directly
using Eq. (A11)? Three reasons are as follows:

1) The value ao 5 20.5 approximates the best-fit value of
20.55 to simplify the math.

FIG. A1. Example calculation of the pressure deficit DP inside of
R34kt for the wind profile used in this study based on a modified
Rankine structure, y /Vmax 5 (r/Rmax)a. (a) Wind profile, with
ae 5 2 in the eye (r # Rmax) and ao 5 20.5 outside of the eye
(r $ Rmax); (b) pressure deficit profile calculated from gradient
wind balance and prediction from Eq. (A11) (red x), with density
assumed constant at r 5 1 kg m23.
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2) The derivation neglects the small pressure drop outside of
R34kt.

3) The derivation assumed constant density in order to be
analytically tractable. That is not true though since P de-
creases with radius while temperature remains relatively
constant (Emanuel 1986), and hence density decreases
moving radially inwards following the ideal gas law.

4) The model assumes winds are taken at the boundary layer
top, which is very difficult to estimate or even agree on a
definition in practice. Real data for intensity and size are
estimates near the surface. A wind speed reduction due to
friction within the boundary layer will reduce wind speeds
and hence will low-bias the pressure deficit, but account-
ing for this is very complex.

Given these assumptions, it is preferable to use the the-
ory solely to identify the most important physical parame-
ters while allowing the empirical model to determine the
dependencies (i.e., regression coefficients) found in nature,
similar to the approach of Chavas and Knaff (2022) and
Avenas et al. (2023) for the radius of maximum wind. The
coefficient value for the intensity term is very similar to
that found empirically. The coefficient values for the final
two terms are both quite a bit smaller in magnitude than
what is found empirically (the effects of which would tend
to offset one another owing to their opposite signs), indicat-
ing that theory would be biased in capturing the precise
nature of each of those dependencies. The value of the
constant term is slightly positive in the theoretical model
but slightly negative in the empirical model, which suggests
a deeper pressure drop than predicted by theory. One sim-
ple possible explanation is that this difference represents
the small pressure drop between R34kt and the outer edge
of the storm that is neglected in the theory above.
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