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Abstract 

Tropical cyclones (TCs) are a global extreme weather hazard well known for their occasional 
devastating impacts on life and property, as well as ecological systems. As human populations and 
infrastructure built along coastlines grow, they are increasingly prone to threats from landfalling 
TCs. These storms spend most of their lifecycle over oceanic basins, thus satellite-based 
reconnaissance is crucial for monitoring and analyzing key TC behavioral attributes critical to the 
forecast process. This article presents an overview of some of the recent advances in 
meteorological satellite capabilities to observe TCs, along with emerging techniques to analyze 
the data into TC-focused diagnostic products. We also devote a section on satellite applications to 
TC-like storms in the Mediterranean Sea, coined ‘Medicanes’. Finally, we present a peek at 
emerging geosynchronous equatorial orbit and low Earth orbiting satellites and sensors that have 
recently been deployed or will be in the near future by multiple nations and commercial entities 
that should further benefit TC (and Medicane) analysis and forecasting.  

Keywords 
Satellite applications 
Tropical Cyclones 
Medicanes 

1. Introduction

Tropical cyclones (also known regionally as hurricanes, typhoons, and cyclones; we refer to
them as TCs in this paper) represent simultaneously one of nature’s most wondrous creations and 
formidable threats. While mainly developing in the tropics, these tempests can result in significant 
losses of life and property even as they sometimes traverse into the higher latitudes such as Western 
Europe, Northeast Asia and eastern North America. Medicanes (Mediterranean tropical-like 
hurricanes) are sometimes destructive Mediterranean Sea area cyclones with thermal and wind 
structural characteristics that resemble those of TCs. Early and continuous monitoring of these 
extreme weather events can lead to crucial warnings in advance of their potentially disruptive and 
deadly consequences and help to reduce societal impacts.  
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The detection of these storms has been greatly improved by the advent and surveillance 
capabilities of meteorological satellites. Regarding TCs, a constellation of geostationary (GEO) 
and low Earth-orbiting (LEO) platforms routinely scans the global tropics with increasing 
frequency and ever-improving sensors. A myriad of multispectral imagery qualitatively tracks and 
catalogs the genesis, evolution, and dissipation of these cyclones. In the absence of TC-penetrating 
reconnaissance aircraft surveillance and other in-situ observations, global TC forecast centers 
primarily rely on satellite-based remote sensing methods to determine TC position, intensity and 
size (radii of gale, storm and hurricane force surface winds). More recently, the TC research and 
development community has taken advantage of space-borne sensors with improved spatial, 
spectral and temporal sampling along with increasing computer capacity and sophisticated analysis 
techniques to create automated TC-focused products and displays that can provide near-real-time 
data and guidance that supplements standard human imagery interpretation. We have come a long 
way from the early days of satellites and the primitive ways in which their data were used for TC 
analysis (Fig. 1). 
     Recognition of this progress amongst the global TC community led to the establishment of the 
World Meteorological Organization (WMO) International Workshops on the Satellite Analysis of 
Tropical Cyclones (IWSATC), held every 3-5 years. The main purpose of the IWSATC is to share 
the latest knowledge and techniques developed by the research community with operational 
forecasters of the international TC warning centers. For more details on the material highlighted 
in this paper and additional satellite-based TC applications, see the WMO IWSATC website at  
https://community.wmo.int/en/international-workshop-satellite-analysis-tropical-cyclones-iwsatc      

 

 
Fig. 1: With the arrival of TIROS, NIMBUS and GOES satellites in the 1960s and 70s, forecasters 
at the U.S. National Hurricane Center acquired important new analysis tools. Satellite images were 
initially transmitted via phone lines and received on a special image processor (left) and later via 
facsimile for use in daily tropical discussions (right). [Images courtesy NOAA/NHC] 
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Medicanes are cyclones that occasionally occur over the Mediterranean Sea exhibiting 
phenomenological features typical of tropical (or sub-tropical) cyclones, such as a warm thermal 
core profile, a cloud free eye surrounded by spiraling rain bands around the center, strong surface 
winds near the center, and heavy precipitation (Lagouvardos et al., 1999; Reale and Atlas, 2001). 
They usually originate from extra-tropical cyclones, when baroclinic processes are driving the 
development and intensification (e.g., Miglietta et al., 2017; Flaounas et al., 2021). During their 
evolution, they undergo a so-called tropical transition (Davis and Bosart, 2003; Miglietta and 
Rotunno, 2019), and often cause floods, storm surges and fierce winds leading to social disruption 
and sometimes casualties. For example, the most intense Medicane on record is Ianos that swept 
across the Ionian Sea (a sub-basin of the Mediterranean Sea) in 2020 (Lagouvardos et al., 2022). 
During its peak intensity (equivalent to a category 1 hurricane), torrential rainfall and severe wind 
gusts affected southern Italy, the western coast of Greece and the Ionian Islands. Since Medicanes 
spend most of their lifecycle over a marine environment and away from conventional land-based 
observations, satellite remote sensing is crucial to their analysis and forecast. 
     The first sections of this article highlight recent ways in which various satellite platforms and 
sensors are providing novel information to the TC and Medicane operational and research 
communities, and their impacts on the analysis and forecast process. The article then offers a 
glimpse to the future, as technological advancements are enabling much smaller and more cost-
effective satellite-based alternatives to observing the troposphere that likely will result in 
constellations that provide unprecedented sampling of these extreme weather events. Note: Given 
the large volume of acronyms in this review paper, readers can refer to the list in Appendix B. 

 
2.  TC applications from new-generation geostationary satellites 

 

     Over the past five decades, geostationary meteorological satellites have formed the basis for 
global monitoring of TC development, location, motion and cloud structure with their predictable 
low-latency and rapid sampling interval visible (VIS) and infrared (IR) imagery. As digitized data 
and animation capabilities became available (e.g., McIDAS (Lazzara et al., 1990); AWIPS (Tuell 
et al., 2008)), the value of the imagery took on an even greater importance. As quoted by the 
Director of the U.S. National Hurricane Center (NHC) Dr. Robert Sheets (Sheets, 1990): 

“The greatest single advancement in observing tools for tropical meteorology was 
unquestionably the advent of the geosynchronous meteorological satellite. If there was 
a choice of only one observing tool for use in meeting the responsibilities of the NHC, 
the author would clearly choose the geosynchronous satellite with its present day 
associated accessing, processing and displaying systems available at NHC.” 

     Geostationary satellites continue to evolve, as the second and today’s third-generation imagers 
provide higher spatiotemporal resolution, increased spectral resolution, and more precise pixel 
geolocation. The results are stunning presentations of storm tracks, circulating eye features, and 
even lightning activity. Figures 2 and 3 show examples of Hurricane Milton (2024) as it threatened 
Florida as viewed from the U.S. GOES-EAST Advanced Baseline Imager (ABI) meso-sector scans 
at 1-min. intervals. Similar rapid-scanning capabilities (1 to 5 min. imaging intervals) are now 
available from the 2nd and 3rd generation European Meteosat series (MSG/MTG), Japan’s recent 
Himawari series, Korea’s GEO-KOMPSAT-2 series, India’s INSAT series, and China’s FengYun-
4 (FY-4) series. Figure 2 also shows lightning activity from the GOES Geostationary Lightning 
Mapper, which has been correlated with TC intensity behavior (Stephenson et al., 2018; Slocum 
et al., 2023). This capability also now exists on the FY-4 and MTG satellite instrument payloads. 
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Fig 2. Hurricane Milton approaches Florida, U.S. on October 9, 2024, as viewed from GOES-East 
1-minute interval Advanced Baseline Imager visible channel imagery. Also shown are lightning 
flashes (group energy density) via the GOES Lightning Mapper instrument. [Image/animation 
courtesy NOAA/CIRA] 

Animated sequence: 
https://satlib.cira.colostate.edu/wp-content/uploads/sites/23/2024/10/20241009150028-
20241009201155_g16_meso_band2glm_milton-hits-florida_labels.mp4 
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Fig 3. A close-up view of Hurricane Milton’s eye on October 8, 2024, as viewed from GOES-
EAST 1-minute meso-sector scan visible imagery. [Image/animation courtesy NOAA/CIRA] 

Animated sequence: 
https://satlib.cira.colostate.edu/wp-content/uploads/sites/23/2024/10/20241008183055-
20241008211455_g16_meso_band2_milton-clear-cat-5-eye-ZOOM_labels.mp4 

2.1. Derived GEO imager products 
      
    In recent years, the data from the advanced imagers in tandem with rapidly growing computing 
capacity have led to many novel applications that provide tailored imagery products and derived 
quantities designed to assist the analysis of TCs even further. Today’s multispectral imagers with 
water vapor channels and the emissivity and reflectivity of the visible and near-IR channels can 
provide novel derived imagery products. These include, but are not limited to, the documentation 
of a TC diurnal convective signal that can be related to TC size and intensity changes (Dunion et 
al., 2014; Ditchek et al., 2019; Knaff et al., 2019); split-window imagery that identifies and tracks 
dry and dusty Saharan air layers as they traverse the Atlantic Ocean which can act to suppress TC 
activity (Dunion and Velden, 2004); depiction of airmass differences that can inform TC 
forecasters about impending extratropical transition (Goodman et al., 2012); tropical overshooting 
tops which are a proxy for TC convective vigor and intensity (Olander and Velden, 2009; Griffin, 
2017); proxy nighttime visible imagery that can better detect the low-level circulation in sheared 
TCs for improved center-fixing applications (Chirokova et al., 2023); and most recently, synthetic 
microwave imagery from GEO that can simulate the TC convective structure and evolution 
(Haynes et al., 2022). Figure 4 illustrates some examples. Each product better informs forecasters 
and researchers about TC structure and/or near-environmental conditions that could impact the 
storm behavior.   
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Fig. 4. Examples of derived GEO imagery tailored to TC environments. A) Meteosat-9 split-
window depiction of a dusty and dry Saharan air layer surge (orange and yellows) over the Atlantic 
Ocean on 01 August 2013 (credit: Jason Dunion, CIMAS & CIMSS). B) Proxy-VIS nighttime 
image showing the low-level circulation center (LLCC) of TC Otis on 22 Aug. 2023 (credit: 
CIRA). C) Eyewall overshooting convective cloud tops (colors) obtained by differencing the 
Himawari-9 IR-window and 6.2-μm water vapor channel Tb (deg. C) during Typhoon Kong-rey 
on 29 Oct. 2024 (credit: CIMSS). D) Synthetic 89-GHz image from Himawari-9 AHI overlaid 
upon IR during Typhoon Yinxing (upper left) and Tropical Storm Toraji (center) on 10 Nov. 2024 
(credit: Kathy Haynes, CIRA).   
      
2.2. TC intensity estimation from GEO 
      
     Global operational forecast offices and WMO mandated Regional Specialized Meteorological 
Centers (RSMCs) heavily rely on satellite-based estimates of TC intensity for real-time monitoring 
and when conducting post-analyses of “final best tracks” (historical records of TC track and 
intensity). The empirical Dvorak technique (Dvorak, 1975, 1984) relies mainly on analysis of 
cloud patterns in IR and VIS imagery to infer TC intensity and is utilized globally as the 
predominant satellite-based procedure. The practical appeal and demonstrated skill in the face of 
tremendous dynamic complexity place the Dvorak technique for estimating TC intensity from 
satellites amongst the greatest meteorological innovations of our time (Velden et al., 2006). It has 
also been an important input tool for our highly valuable TC archives. The method does a 
reasonable job in most cases, however it is not without limitations and can depend somewhat on 
analyst judgement. When developing his technique, Dvorak did not have the full complement of 
satellite capabilities nor ground truth data that exist today, leading to inherent biases in the 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



7 
 

empirically driven method’s estimates, particularly notable at the very strong end of the TC 
intensity spectrum (Knaff et al., 2010).  
     The emergence of digital data and computer algorithms prompted efforts to automate and 
advance the Dvorak technique. Early efforts were somewhat crude (Zehr, 1989; Velden et al. 
1998), but eventually culminated in the fully automated Advanced Dvorak Technique (ADT; 
Olander and Velden, 2007, 2019). The ADT is an objective approach that builds on the principles 
of the Dvorak technique, enhanced by rigorous statistical analysis and additional capabilities that 
exploit the improved qualities of satellite data available today. The ADT now runs operationally 
at the NOAA/NESDIS Satellite Analysis Branch. Other IR-based automated methods have been 
developed (Ritchie et al., 2012; Kishimoto et al., 2013; Zhao et al., 2016), and most recently 
artificial intelligence-based Machine Learning (ML) approaches are emerging. For example, early 
studies by Chen et al., (2019), Lee et al., (2020), Zhuo and Tan, (2021) and Higa et al., (2021) 
demonstrated the promise of applying Machine Learning (ML) to train on large IR datasets and 
skillfully estimate TC intensity. Olander et al., (2021) examined the potential to employ ML 
enhancements to the ADT. It was found that ML could augment the ADT by interrogating features 
that are output from the ADT image processing, resulting in significant improvements in the 
accuracy of TC intensity estimates over the ADT itself. This algorithm (AiDT) is now operational 
at NOAA/NESDIS. More recently, a Convolutional Neural Network model coined D-PRINT 
(DeeP learning IR INtensity of TCs) was developed to operate and train on a large sample of TC-
centered IR images. As reported in Griffin et al., (2024), this method shows comparative skill to 
the ADT/AiDT in some TC basins and improvement in others. Real-time D-PRINT estimates for 
global TCs can be found on the CIMSS TC web site listed in Appendix A. 
   

2.3. Atmospheric motion vectors 
 
     Geostationary satellites also provide multispectral imagery for tracking clouds and water vapor 
motions over the global tropics. Quantifying these motions into atmospheric motion vectors 
(AMVs) provides crucial information on near-environment flow regimes that dictate TC steering. 
Multiple satellite agencies are now deriving these AMVs over tropical regions using fully 
automated algorithms with greater spatiotemporal coverage and height assignment precision than 
ever before. Operational GOES AMVs produced by NOAA/NESDIS have been shown to 
positively impact hurricane model forecasts (Lim et al., 2022). Nonaka et al., (2016) developed a 
sea-surface wind product from adjusted low-level Himawari AMVs, coined ASWind, by training 
with coincident sea-surface winds retrieved by ASCAT. The product can be useful for estimating 
TC outer surface wind radii. 
     Recent research efforts have focused on novel methods to extract high spatiotemporal vortex-
scale AMV fields from rapid-scan sectors that follow targeted TCs.  For example, Stettner et al., 
(2019) employs traditional and optical flow cloud tracking methodologies along with TC-focused 
processing strategies to derive ultra-high density AMV fields using GOES 1-min. interval meso-
sector scans. This product focuses on the storm-top central dense overcast (CDO). Figure 5 shows 
an example of datasets processed in real time by CIMSS during Hurricane Beryl (2024). The 
assimilation of these specially processed AMV datasets into high-resolution TC models has 
produced positive impacts on forecast track and intensity (Velden et al., 2017; Li et al., 2020). The 
resulting cloud-top motion fields can also be used to assess outflow configurations/changes, 
vertical wind shear, divergence, and radial imbalances that can signify short-term intensity changes 
(Velden and Stettner, 2018; Ryglicki et al., 2019, 2021; Knaff, 2024). The TC-focused GOES 
AMV product is in operational transition at NOAA/NESDIS. 
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Fig. 5. GOES-East meso-sector scan ultra-high-density AMVs derived from 1-min. interval meso-
sector scans during Hurricane Beryl (2024). Plotted vectors are thinned for presentation and color-
coded by assigned heights (hPa) shown in the upper-right (hPa). [Source: CIMSS] 

Animated sequence: 
https://tropic.ssec.wisc.edu/real-time/mesoamv/2024/02L/plots/temp/Beryl.gif  (animation of Fig. 
5 for the period 29 June – 5 July 2024 shown at 15-min. intervals) 

     Tsukada and Horinouchi, (2020), Tsujino et al., (2021), Horinouchi et al., (2023) and Tsukada 
et al., (2024) demonstrate that special Himawari-8 rapid-scan operations observing TCs at 2.5-
min. or even 30-sec. imaging intervals can effectively reveal transient asymmetric disturbances 
within the TC inner-core region and allow for estimates of low-level tangential winds inside clear 
TC eyes. Figure 6 illustrates an example of this capability using the approach from Tsukada et al., 
(2024). The AMVs quantify the asymmetric motions seen moving around the eye due to transient 
wavenumber-1 features (mesoscale vortices, Nolan and Montgomery, 2000) which can contribute 
to the inward transport of angular momentum and acceleration of eye rotation. Although relatively 
few TCs have large clear eyes, the capability to estimate wind speeds in the inner-core region of 
intense TCs suggests the potential for improved vortex initialization and/or data assimilation in 
TC forecast models. Automation of the method application and research on data assimilation 
impact is underway.    
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Fig. 6. An example of AMVs in the eye of Typhoon Lan (2017) obtained from a Himawari satellite 
2.5‐min interval VIS image sequence. The AMVs (black vectors) overlay the storm-centered VIS 
image at 0032 UTC on 21 October 2017, with the vector length corresponding to cloud motion 
speed. The contours represent cloud‐top heights (km) obtained from 10.4‐μm IR Tb and ERA5 re-
analyses. [From Tsukada et al., 2024] 

Animated sequence: 
https://drive.google.com/file/d/1c_BWu-ejEn2Ia8K3MEZz6vQjvJuWCfNI/view?usp=sharing 
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3.   TC applications from LEO passive microwave sensors  

 

     Satellite-based passive microwave (PMW) radiometers are “keystone” sensors for monitoring 
TCs due to their ability to view critical structural features that otherwise can hide under the central 
dense overcast as viewed by VIS/IR sensors. PMW imagers carry a suite of channels that enable 
the retrieval of surface wind speeds over oceans, rainfall rate, total precipitable water (TPW) and 
cloud liquid water among other parameters. PMW sounders are capable of sensing tropospheric 
temperature profiles in the TC core for intensity estimation and phase analysis. Presented below 
are some examples of applications to TCs.  

3.1. Novel uses of PMW imagers    

     Operational TC warning centers around the globe have increasingly utilized PMW imager 
information since they first became available with the U.S. Defense Meteorological Satellite 
Program (DMSP) Special Sensor Microwave Imager (SSM/I) in 1987. This sequence of sensors 
was then followed by a combination of operational and research mission instruments (TMI, 
WindSat, SSMIS, MWRI, AMSR2, GMI). The longevity of these sensors has significantly 
improved TC temporal sampling (Hawkins, et. al., 2025). While the SSMIS sensors are ageing off, 
the next generation of PMW imagers are emerging as part of the U.S. DoD Weather System 
Follow-on – Microwave (WSF-M) satellite program (WMO, 2024a), the JAXA GOSAT-GW 
(AMSR-3), and the Chinese FY-3 series. The first of two scheduled rainfall missions, FY-3G, 
successfully launched in 2023, carries both a passive microwave radiometer and an active 
precipitation measuring radar (Zhang et al., 2023).  
     For TC analysis, the PMW imagers with Ku-band (30-49 GHz) and W-band (85-92 GHz) 
channels have performed well for surveilling TC rainbands and eyewalls (Hawkins and Velden, 
2011). Rain and frozen hydrometeors have an impact on brightness temperatures (Tb) in these 
bands, thus making them valuable contributors for monitoring TC convective structural changes. 
As illustrated in Fig. 7, visible and IR imagers often can’t observe key TC features hidden under 
the central dense cloud overcast such as low-level circulation centers (Fig. 7a), organization of 
convective structure related to TC intensity (Fig. 7b), and eyewall events (concentric eyewalls, 
eyewall replacement cycles, Fig. 7c). The corresponding PMW products in these examples are 
color-enhanced with channel compositing and breakpoints specifically designed for TC 
applications (Hawkins et al., 2004). 
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Fig. 7: Examples of PMW imagery aiding the analysis of TCs. a) Tropical Storm Kirk at 2045 
UTC on 6 Oct. 2024: enhanced GOES-16 IR (top) and the coincident SSMIS 92 GHz color product 
below. b) Typhoon Damrey at 18 UTC on 7 May 2000: color-enhanced GMS-5 IR (top) and the 
coincident TRMM 37 GHz color product below. c) Hurricane Maria at 18 UTC 19 Sept. 2017: 
GOES-13 enhanced IR (top) and the coincident SSMIS 92 GHz H-pol image below. [Images 
courtesy NRL-MRY web site] 
 
3.2. PMW ocean surface wind speeds from L-band radiometers 
 
      Two research satellites house L-band radiometers (sensing between 1 and 2 GHz) and provide 
ocean surface wind speed estimates; the NASA Soil Moisture Active Passive (SMAP; Entekhabi 
et al., 2010, 2014) and the ESA Soil Moisture Ocean Salinity (SMOS; Kerr et al., 2010; 
Mecklenburg et al., 2016). The passive SMAP radiometer uses a 6-m physical dish, whereas 
SMOS uses a synthetic aperture resulting in modest spatial resolutions of ~ 40 km. However, with 
diminished precipitation attenuation effects, these instruments can effectively sense strong to 
extreme TC wind speeds from 15 to 75 ms-1 (Meissner et al. 2017; Reul et al. 2017) but require 
ancillary SST and ocean salinity estimates to do so. They are among the few instruments that can 
provide reasonable estimates of 34-kt wind radii in the majority of TCs and even 50- and 64-kt 
wind radii for most average and large-sized TCs (Knaff et al., 2021). Remote Sensing Systems 
(REMSS) provides SMAP and ESA SMOS wind speed images in near real-time for use by TC 
forecast centers.  
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     Sensors with C and X bands (WindSat, AMSR-E, AMSR2) have also provided ocean surface 
winds for TC applications. The AMSR2 algorithms were updated using the full suite of channels 
(6-89 GHz) trained with coincident SMAP values to remove spurious artifacts due to high rain 
attenuation, and then validated (Meissner, et. al., 2021; Manaster et al., 2021). The AMSR2 TC 
wind speed product can be considered on par with SMAP, although some residual attenuation 
artifacts are possible with intense rain rates and winds below hurricane-force (Ricciardulli et al., 
2023). This advancement provides optimism for accurate retrievals from AMSR3 which is 
scheduled to launch in 2025. Gridded AMSR2 maps and fixes are available in near real-time on 
the REMSS web site (example shown in Fig. 8), and global all-weather AMSR2 winds are 
produced by NOAA (Alsweiss et al., 2021) and by JAXA (Shibata, 2006).  

 
Fig. 8.  AMSR-2 surface wind speeds (ms-1 via the color table) for Typhoon Man-Yi at 1711 UTC 
on 15 Nov. 2024. Plotted diamonds represent extent of critical wind radii from Man-Yi’s center, 
color coded by storm-relative quadrant. [Credit: REMSS]  
 
3.3. PMW sounder-based TC intensity estimates 
      
     A signature characteristic of TCs is the development of a mid-to-upper tropospheric warm core 
as the cyclone organizes and intensifies. LEO PMW sounders are capable of sensing tropospheric 
temperature structures at altitudes determined by the weighting function for each channel using 
the oxygen band in the ~55 GHz range. Several TC intensity estimation algorithms have been 
developed based on the strength of the warm core and hydrostatic principles, leveraging either 
PMW sounder Tb or temperature retrievals (Brueske and Velden, 2003; Demuth et al., 2006; 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13 
 

Bessho et al., 2010; Oyama, 2014). Zhang et al., (2019) extended the concept to the 118 GHz 
channels of the Microwave Humidity and Temperature Sounder (MWHTS) onboard the Chinese 
FY-3C satellite and achieved similar good estimates of TC surface pressure anomalies. While 
initial intensity estimation methods focused on estimating the TC MSLP due to the more direct 
relationship between the observed thermal anomaly and the surface pressure perturbation, most 
algorithms now also estimate the maximum sustained surface winds.  
     Special Sensor Microwave/Sounder (SSMIS) instruments became available in late 2005 aboard 
the U.S. DoD DMSP satellites (Hawkins et al., 2025). Since then, the NASA Advanced 
Temperature Microwave Sounder (ATMS) launched in 2012 aboard Suomi-NPP and the follow-
on NOAA Joint Polar Satellite System (JPSS) missions with their improved spatial resolution have 
resulted in better views of the TC warm core (Fig. 9) and improved TC intensity estimation skill. 
Unfortunately, the DMSP sounders are well past their expected lifetime and now provide very 
limited data. However very recently, innovations in satellite design and launch capabilities have 
permitted much smaller microwave sounders in the form of LEO Smallsats and CubeSats. One 
such example is the NASA TROPICS mission (Blackwell et al., 2018), starting with the Pathfinder 
satellite in 2021 and the constellation completed in 2023 with four additional CubeSats sensing 
the 92, 118, 183 and 205 GHz frequencies. This proof-of-concept mission has been successful in 
demonstrating lower-cost alternatives for frequent LEO PMW sampling of TCs. 

 
 
Fig. 9.  View of Super Typhoon Mawar from a NOAA-20 ATMS overpass at 0436 UTC on 27 
May 2023. Planar Tb views from the sounder thermal channels 6-10 shown on the left coincide 
with their approximate altitudes shown in the longitudinal cross-section of Tb thermal anomaly 
(deg. C) through the center of Mawar. The TC warm core is evident as red. Eyewall clouds (white) 
drawn on the cross-section are for effect. [Fig. prepared by CIMSS] 
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     Recent advancements in ML techniques such as Convolutional Neural Networks (CNNs) have 
also allowed for the estimation of TC intensity from the sounder moisture channels in the 183 GHz 
range (which is available on many LEO satellite radiometers). These ML techniques rely on TC 
precipitation structure and organization, and in many cases show superior skill to the temperature-
based methods (Griffin et al., 2024). Future work to exploit both the temperature and moisture 
channels together using these methods may advance the skill further. 

3.4. Other TC-focused PMW-based products     

     An eyewall replacement cycle (ERC) process is known to have a disruptive impact on the TC 
inner core that often results in a period of weakening. However, the TC central dense overcast 
often masks ERC events in IR imagery, resulting in intensity forecast errors. PMW imagery is 
particularly useful for identifying ERCs. Sitkowski et al., (2011) looked at the evolution of the TC 
inner wind field reorganization during ERC events using aircraft data and documented the changes 
with respect to the presentation in PMW 85-92 GHz imagery. Kossin et al., (2023) expanded upon 
these findings to develop an algorithm called the Microwave Probability of Eyewall Replacement 
Cycle (M-PERC) to predict the onset of ERCs. The technique relies on "Ring Scores" from the 
ARCHER algorithm (Section 5) that measures the fit of the gradients of Tb in the PMW imagery 
to a circular shape. Figure 10 is an example output from M-PERC for TC Darian (2022) showing 
a Hovmöller plot of PMW ring scores and the development of an outer ring (secondary eyewall 
formation, or SEF, which is often the start of an ERC). Note the corresponding increase in model 
ERC probabilities rising to near 70% for the full model that uses the PMW score predictors. Shortly 
thereafter, the analyzed TC intensity shows a subsequent leveling off and decline.  
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Fig. 10. M-PERC algorithm display for TC Darian 17-22 Dec. 2022. Left: Hovmöller plot of PMW 
ring scores vs. radius from TC center (warmer colors > stronger eyewall signature). Middle: the 
probability output from two logistic regression models (simple V-based, and Full with PMW info). 
Right: JTWC working Best Track intensities (Vmax). Full model peak in probability of Secondary 
Eyewall Formation (SEF) signals the start of an ERC process and period of arrested intensity of 
Darian.  [Credit: CIMSS] 

    Additional tools utilizing multiple PMW satellites that can be applied to TC analysis include the 
Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm (Huffman et al., 2015) and the 
Climate Prediction Center MORPHing technique (CMORPH, Joyce et al., 2004). Wu et al., (2024) 
presents a recent assessment of these products for TC cases off the east coast of China. Two other 
integrated PMW products for monitoring TC evolution are based on the Morphed Integrated 
Microwave Imagery at CIMSS (MIMIC) methodology: For TC structural evolution, MIMIC-TC 
(Wimmers and Velden, 2007), and for monitoring TC moisture environments such as Total 
Precipitable Water, MIMIC-TPW (Wimmers and Velden, 2011). These products merge PMW data 
into seamless animations that display a continuous real-time hourly-interpolated evolution of the 
TC and its environment (both products available on the CIMSS TC site, see Appendix A for link). 
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4.   TC applications from active transmission systems  

4.1. Scatterometers   
 
     Scatterometers are LEO-based active remote sensing instruments that transmit microwave 
pulses towards the Earth's ocean surface and measure the backscattered signal to gather 
information. They are typically used to determine ocean surface vector winds (OSVW) by 
analyzing the scattering from small-scale waves on the surface. Scatterometers have a three-decade 
legacy for providing extremely valuable data for TC applications, and more missions are becoming 
available. Specifically for TC surveillance, the data are critical for determining if a disturbance has 
a closed surface circulation, the areal extent of that TC circulation (i.e. TC size), and for estimating 
outer vortex critical wind radii (commonly used wind thresholds by many operational TC forecast 
centers to communicate the extent of potentially impactful TC winds, and for vortex initialization 
input to TC models).  
      

     Currently, C-band (e.g., European MetOp ASCAT) and Ku-band (e.g., Indian OceanSat-3 
OSCAT; Chinese HY2 HSCAT) scatterometers are operational (about a half-dozen total) and 
provide OSVW swaths of ∼1100-1800 km in width with ~12.5 to 50 km spatial sampling. While 
the past legacy of scatterometers monitoring TCs was often ‘hit or miss’, the current era of multiple 
satellite agencies operating scatterometers is providing unprecedented temporal sampling of TCs 
(e.g., EUMETSAT, 2021). In the near future, a concerted effort by EUMETSAT, CMA, NSOAS, 
and ISRO will typically provide a scatterometer hit of a TC every few hours (WMO, 2025). This 
aspect is particularly important for real-time TC analysis, especially TCs undergoing rapid surface 
wind field evolution. The higher sampling should also benefit TC research studies. For example, 
Fig. 11 illustrates OSVW fields from two ASCAT overpasses just 50 minutes apart during the 
formative stage of Typhoon Nyatoh in 2021. The zoomed-in boxes over the same area show 
changing surface convergence and divergence likely due to moist convective processes (King et 
al., 2022). No other observing system can detect such changes at these spatiotemporal scales. Since 
moist convection processes drive TCs, such information could contribute to further understanding 
and modeling of the relationship between dynamical moist convection processes and TC evolution.  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



17 
 

 
Fig. 11. ASCAT-C overpass of TC Nyatoh on 29 Nov. 2021 at 23:30 UTC (left) and 60 minutes 
later by ASCAT-B (right) depicting OSVW plotted over concurrent Himawari IR images. The 
zoomed images of the same area show the short-term changes in the surface wind field. Black and 
orange vectors are QC-flagged data. [Credit: EUMETSAT OSI SAF/KNMI] 

     The moderate spatial resolution of the scatterometer OSVW products has traditionally resulted 
in relatively low estimates of higher TC wind speeds (above 20 ms-1), whereas recent studies show 
that adjusted scatterometer winds are capable of estimating these stronger winds (Polverari et al., 
2022; Ni et al., 2022). However, it should be noted that it is difficult to directly compare various 
operationally available TC wind speed products as they have not been consistently calibrated 
(Stoffelen et al., 2021). KNMI, NOAA/NESDIS and REMSS process all ASCAT data into OSVW 
with slightly different algorithms and calibrations (Stoffelen et al., 2020; Soisuvarn et al., 2013: 
Ricciardulli and Manaster, 2021). KNMI also operationally processes other scatterometer data 
from NSOAS/CMA (China) and ISRO (India). NSOAS currently processes data from the FY-2A 
scatterometers (HSCAT-B, -C and-D) (Wang et al., 2020; 2021; Yang et al., 2023). The CMA also 
launched a novel dual-frequency (C- and Ku-bands) rotating fan-beam scatterometer (Li et al., 
2018) called WindRad in 2021 on FY-3E. Finally, the recently launched ISRO OceanSat-3 
OSCAT is now producing operational products available through ISRO, KNMI and NESDIS. See 
Appendix A for some of the links to current scatterometer products and distribution. In the coming 
years, Europe, China and India will launch further scatterometers for operational use. For example, 
in 2026 EUMETSAT will launch the first MetOp-SG-B series scatterometer (SCA), a next 
generation of C-band ASCAT with VH/HV cross polarization and improved spatial resolution 
(Rostan et al., 2016) that will further aid the detection of higher TC wind speeds, with plans to 
launch two more SCAs through 2045.  
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     In summary, there are many current and planned scatterometers designed to supply high-quality 
OSVW that can capture TC surface wind field evolution. Recent innovations in wind speed 
calibration and adjustment methods employed for scatterometers can be extended to SARs and 
other microwave sensing of TC wind speeds (Portabella et al., 2022). Progress in OSVW retrieval 
accuracy at higher wind speeds owing to e.g., SAR comparisons (thanks in large part to ESA’s 
Satellite Hurricane Observation Campaign (SHOC)) has improved both scatterometers and SARs 
as complementary satellite-based tools for TC monitoring. Moreover, image resolution 
enhancement and SAR-trained structure function methods (Alsweiss et al., 2024; Ni et al., 2024) 
show promise in augmenting the observations by scatterometers to better capture higher-resolution 
TC wind field features. Future scatterometer missions will explore enhanced wind speed sensitivity 
in TCs by using cross-polarized microwave backscatter techniques.  
 
4.2. Synthetic Aperture Radar (SAR)  

     The utilization of SAR data for TC analysis began in earnest with ESA’s Sentinel-1 satellite in 
2014, prompted by three factors: 1) Sentinel-1 data was freely available, 2) the establishment of a 
dedicated field experiment (SHOC) to collect data over TCs with the support of ESA, and 3) 
methods were developed to combine the co- and cross-polarized signals to estimate extreme wind 
speeds (Mouche et al., 2017, 2019). Since that time, and with appreciation to the Canadian Space 
Agency (CSA), three additional satellites from the RadarSat Constellation Mission (RCM) are now 
routinely scheduled to target TCs. Figure 12 illustrates the coverage achieved by the constellation 
of C-band SAR passes during Tropical Cyclone Anggrek (2024). Other existing SAR missions 
such as ALOS-2 L-band SAR from JAXA or EOS-4 C-band SAR from ISRO could join this 
constellation. The ALOS-2/ Phased Array L-band Synthetic Aperture Radar-2 (PALSAR-2) has 
already observed TCs, demonstrating encouraging results (Isoguhi et al., 2021). Emergent SAR 
satellite capabilities include JAXA’s ALOS-4/PALSAR-3 mission (launched in 2024), the NASA-
ISRO SAR (NISAR) mission (expected launch in 2025), and the Sentinel-1C and -1D (launches 
in 2024/2025) with identical capabilities as Sentinel-1A and -1B. These new additions hold 
promise for improving TC extreme surface wind speed estimates if and when targeted TC 
acquisitions can be scheduled (current SAR instruments cannot provide orbit-wide coverage due 
to power constraints). 
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Fig. 12.  Coverage achieved by the constellation of C-band SAR passes during Tropical Cyclone 
Anggrek passage over the south Indian Ocean in Jan. 2024. [Fig. prepared by CIRA] 

     The SAR and TC communities (IFREMER, NOAA/STAR, and NRL-MRY) work together to 
make near real-time TC surface wind fields from Sentinel-1A/B, RadarSat-2, and RCM available 
to both TC research and operational communities worldwide. Estimates of maximum sustained 1-
min. surface winds, radius of maximum wind, and critical wind radii in storm-relative quadrants 
are now available and consolidated based on inputs from both communities (Jackson et al., 2021; 
Howell et al., 2022). Efforts continue to address improvements to the wind retrieval algorithm, 
quality control, and dynamic averaging strategies addressing the known shortcomings associated 
with cloud ice scattering (e.g. Alpers et al., 2021; Subrahmanyam et al., 2023) and rain attenuation 
(e.g. Mouche et al., 2019). The high spatial resolution of the observations make SAR an ideal 
platform for examining TC inner-core surface wind structure, especially for estimating the storm 
center and the radius of maximum winds (Combot et al., 2020a; Tsukada & Horinouchi, 2023). 
Furthermore, many research topics rely on SAR observations including TC dynamics (e.g., Avenas 
et al., 2023, 2024; Huang et al., 2018; Vinour et al., 2021), ocean response to TCs (Combot et al., 
2020b), TC surface structure analyses (Shimada et al., 2024; Moore Torres et al., 2023), effects of 
rainfall on wind speed estimates (Guo et al., 2022) and TC data assimilation (Ikuta and Shimada, 
2024).  
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4.3. Doppler Wind Lidar 

     The Aeolus satellite carries a Doppler Wind Lidar (DWL) instrument launched by ESA in 2018 
that can provide global tropospheric wind profiles with high vertical resolution in clear air and also 
winds at cloud tops. The primary instrument, called ALADIN, actively transmits laser pulses and 
measures the backscattered light to determine wind speeds at different atmospheric levels (Straume 
et al., 2020). Assimilating the horizontal line‐of‐sight wind data along the satellite’s path (mainly 
the zonal component in tropical latitudes) has generally had positive impacts on NWP. While the 
DWL cannot provide vertical wind profiles under the dense TC overcast, vertical wind profiles in 
the adjacent cloud-free environment can help define steering flows and TC-environment 
interactions. Impacts of the assimilated data on TC track and intensity forecasts in TC models have 
been modestly positive (Garrett et al., 2022; Marinescu et al., 2022; Okabe and Okamoto, 2024). 

4.4. Radar altimetry   

     Satellites have long contributed to sea surface temperature (SST) analyses. To first order, the 
SSTs beneath the eyewall of TCs determine the maximum potential intensity (Emanuel, 1988; 
Miller 1958). However, the integrated energy of the ocean determined from the depth of the 26oC 
isotherm, or Ocean Heat Content (OHC), can perhaps be a better determinant of the energy 
reservoir available to the TC, and an important influence on TC intensity. Knowledge of the OHC 
and SST in the path of an approaching TC can improve the short-term forecast of its intensity 
(Goni et al., 2009, and references within). Satellite altimetry was first demonstrated by the U.S 
Navy GEOSAT missions in the 1980s, followed by the joint NASA and French TOPEX/Poseidon 
which provided the basis for the first methods to estimate OHC (Goni et al., 1996; Shay et al., 
2000).  While these methods still exist making use of TOPEX and JASON-1,-2,-3 satellites, today 
OHC typically relies on global ocean model analyses (e.g., Sampson et al., 2022) where synthetic 
soundings based on satellite altimetry are assimilated along with other in situ ocean soundings. 
The current primary source for altimetry data is the Sentinel-6 Michael Freilich satellite, often 
referred to as marking a "golden age" of satellite altimetry due to its high precision measurements. 

4.5. GNSS radio occultation 

     Atmospheric soundings are now possible using a technique called Global Navigation Satellite 
System Radio Occultation (GNSS-RO) which measures the bending of L-Band radio waves as 
they pass through the atmosphere. GNSS-RO leverages signals from GPS satellites to measure 
atmospheric conditions, providing high vertical resolution data without relying directly on 
microwave radiation like traditional PMW sensors do. The unique properties of GNSS-RO include 
global 3-D coverage (40 km to the surface), good vertical resolution with all-weather precise 
temperature sounding accuracy, and assured long-term stability of observations. Currently, the 
Constellation Observing System for Meteorology Ionosphere and Climate-2 (COSMIC-2) RO 
satellite constellation is providing data that has shown promise to improve TC intensity forecasts 
when assimilated into a hurricane model (Miller et al., 2023). 

4.6. GNSS reflectometry 

     A LEO satellite constellation launched in 2016 to demonstrate a novel approach for retrieving 
surface winds in TCs is the NASA CYclone Global Navigation Satellite System (CYGNSS) 
mission (Ruf et al., 2018). With inclined orbits to focus coverage over the tropics, CYGNSS 
employs the GNSS and L-band reflectometry to measure oceanic surface winds. Ruf et al., (2019) 
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provides an initial assessment of retrieved wind speed quality, with the algorithms since corrected 
for various biases. Ricciardulli et al., (2021) provides an assessment of different CYGNSS wind 
products in TCs. Research-quality datasets are being produced by the University of Michigan (Ruf 
et al., 2019) and NOAA/NESDIS/STAR (Said et al., 2021), and these are available on the NASA 
JPL Distributed Active Archive Center. Another GNSS venture recently launched by China 
provides two different GNSS reflectivity wind products from the GNOS-II payload on the 
FengYun-3E (FY-3E) satellite: A global wind product optimized for low-to-medium ocean surface 
wind speeds, and a cyclone wind product optimized for high wind speeds in tropical and 
extratropical cyclones (Huang et al., 2022). Sun et al., (2023) evaluated the cyclone product in TC 
conditions and found an accuracy of 3-3.5 ms-1 however with few validation cases above 45 ms-1. 
 
5.  TC applications from blended satellite products  

     In addition to ‘stand-alone’ products or algorithms, novel ways of integrating satellite-derived 
data by blending attributes from multiple sources can aid in TC analysis and forecasting. For 
example, NOAA/NESDIS maintains many operational satellite products that include blended 
global SSTs (Maturi et al., 2017), the Multi-platform Tropical Cyclone Surface Wind Analysis 
(MTCSWA; Knaff et al., 2011), the Tropical Cyclone Formation Product (TCFP; 
NOAA/NESDIS, 2024), blended Total Precipitable Water (bTPW; Kidder and Jones, 2007), the 
Advective Layered Precipitable Water (ALPW; Forsythe et al., 2015), the ensemble Tropical 
Rainfall Potential (eTRAP; Ebert et al., 2011) and the Hurricane Intensity and Structure Algorithm 
(HISA; NOAA/NESDIS, 2024). Data from multiple LEO microwave sounders provide important 
inputs to eTRAP, MTCSWA, bTPW, ALPW and HISA, the latter four via the Microwave 
Integrated Retrieval System (MIRS, Liu et al., 2020). MTCSWA and TCFP make use of global 
GEO data. The operational version of MTCSWA uses ASCAT and low-level AMVs, while the 
developmental version also makes use of SMAP, SMOS, and AMSR2 wind speeds (RAMMB, 
Appendix A). Figure 13 presents an example of the MTCSWA product for Typhoon Usagi (2024).  
 

 
 
Fig. 13. Experimental version of the MTCSWA product for Typhoon Usagi valid 00 UTC 14 Nov. 
2024. The product inputs are an IR-based 700 hPa wind field proxy, OSVW estimates from 
ASCAT, SMAP, SMOS, and AMSR2, low-level AMVs from Himawari-9, and nonlinear balanced 
winds based on AMSU core retrievals. Wind speed barbs and contours are in kts. [Credit: CIRA] 
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     NOAA’s university-based Cooperative Institutes produce several other integrated products in 
real-time demonstration mode. At CIRA for example, a compilation of several TC RMW estimates 
is provided for active TCs including experimental and documented methods discussed in Knaff et 
al., (2011), Chavas and Knaff, (2022), Avenas et al., (2024), and Tsukada and Horinouchi, (2023). 
Another example is a blended product developed by CIMSS is the Automated Rotational Center 
Hurricane Eye Retrieval (ARCHER, Wimmers and Velden, 2010), an objective algorithm that 
provides TC center fixes from multiple satellite platforms. In addition to center fixes, ARCHER 
also includes a retrieval of eye and core structure characteristics from LEO 85-91 GHz microwave 
observations (e.g., useful as input to M-PERC discussed in Section 3.4).  
     Another product developed at CIMSS and now used operationally at many global TC forecast 
centers is the satellite consensus (SATCON) TC intensity estimation algorithm (Velden and 
Herndon, 2020). The method objectively combines intensity estimates from several coincident 
automated IR and MW-based techniques to produce a consensus estimate that is more skillful than 
the individual estimates (example in Fig. 14). SATCON employs a weighting strategy that relies 
on the situational precision of each member and can provide valuable objective intensity estimates 
for post-storm assessments, especially in the absence of other data such as provided by 
reconnaissance aircraft. It can also serve as a near-real-time estimator of TC intensity for 
forecasters who can more quickly reconcile differences in various objective intensity methods and 
thus decrease the uncertainty and time spent on the intensity analysis. CIMSS produces publicly 
available near-real-time SATCON estimates for all global TCs (see Appendix A for the link).  

 

Fig. 14. SATCON product display for TC Kong-Rey (2024). Plotted are estimates of intensity 
(maximum 1-min. sustained wind, in kts) from various satellite-based sources along with the Best 
Track analysis from the Joint Typhoon Warning Center (black line). The bold red contour with 
attendant +/- 2-sigma confidence intervals (light red contours) is the SATCON weighted consensus 
of the estimates obtained from the methods/instruments shown in the upper right corner legend 
(except for Dvorak, SMAP and SAR that are currently not SATCON members). [Credit: CIMSS] 
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6.   Satellite applications to ‘Medicanes’  

     Early studies identified and characterized Medicanes based mostly on GEO VIS/IR imagery, 
as they bore a resemblance in appearance to hurricanes with an eye-like center and spiral cloud 
bands (Ernst and Matson, 1983; Reale and Atlas, 2001). Claud et al., (2010) first employed AMSU-
A and -B to identify upper-level precursors, precipitation areas and deep convection associated 
with Medicanes. Since then, satellite-based diagnostic tools, combined with model-based studies 
and field experiments, have provided useful insights into the atmospheric processes associated 
with Medicanes’ formation, evolution, and intensification (Miglietta et al., 2013; Dafis et al., 2018, 
2020; Comellas et al., 2021). Active and PMW measurements from the NASA/JAXA GPM Core 
Observatory have enabled the analysis of Medicane precipitation structure evolution, also in 
relation to lightning activity (Marra et al., 2019; D’Adderio et al., 2022).  
     Other recent studies have focused on the Medicanes’ TC-like warm core (WC) structure 
(Section 3.3), and the well-established methodology used for WC detection in TCs (Kidder et al., 
2000; Brueske and Velden, 2003; Demuth et al., 2006; Herndon and Velden, 2012). It is the 
presence of this warm core thermal structure that places Medicanes close to TCs within the cyclone 
spectrum, similar to subtropical cyclones in other basins, permitting tools applied to TC analysis 
to be used to diagnose these systems. These tools have been applied to Medicanes’ WC diagnostics 
for the first time by Panegrossi et al., (2023). The study analyses six Medicanes that occurred 
between 2014 and 2020, exploring the relationships between WC characteristics, deep convection 
(following Hong et al., 2005 and Funatsu et al., 2007), and cloud properties (cloud top height and 
ice water path estimates based on Rysman et al., 2021). Results suggest that such relationships link 
to not only the WC structure and strength, but also to the driving WC formation mechanism (e.g., 
diabatic vs. baroclinic processes). D’Adderio et al. (2024) further investigated this by analyzing 
two Medicanes that occurred in 2023, Helios and Juliette, using AMSU-A and ATMS-derived 
WCs evidencing very similar formation mechanisms for the two storms. The diagnostics of the 
WC and deep convection properties reveal differences in the two cyclones during their mature 
phase; a tropical transition (Juliette) vs. a warm seclusion (Helios). Expanding on this, Di 
Francesca et al. (2025) used satellite passive microwave data to analyze WC structure, deep 
convection, and an eye-like feature near the storm core for 23 candidate medicanes that occurred 
between 2000 and 2021. The study stratifies the cases into those that underwent a tropical transition 
and those that did not. As a result, while 13 cases exhibit a clear WC structure and closed eye 
feature, a true TC-like status is identified for 6 of them including Medicane Ianos in 2020 
(Lagouvardos et al., 2022; Zimbo et al., 2022; Ferrarin et al., 2023; D’Adderio et al., 2022). These 
studies have been useful in providing the necessary diagnostic tools to discriminate between true 
Medicanes and storm systems that remain purely baroclinic or cold core. This is an important 
distinction that plays a role in the hazard communication messaging within the Mediterranean 
basin, as many systems called “Medicanes” in the past do not meet these newly identified thermal 
and structure definitions. 
     Medicane Ianos is used to illustrate how some of the satellite-based diagnostics tools can be 
employed for Medicane analysis. Around 12 UTC on 17 Sept. 2020, Figure 15 illustrates Tb 
imagery from the ATMS 54-55 GHz temperature sounding channels for WC identification and 
characterization, while Tb imagery from the 183 GHz channel shows the presence of spiraling rain 
band structure near an eye-like center. A cross-section through Medicane Ianos derived from 
ATMS thermal channel Tbs provides clear evidence of the presence of a WC anomaly. As Ianos 
approached the southwest coast of Greece, it reached peak intensity of 984 hPa and maximum 
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sustained 1-min. surface winds of near 44 ms-1 near landfall around 05 UTC on 18 Sept. 
(Lagouvardos et al., 2022). The intensity estimation algorithm developed at CIMSS based on WC 
Tb anomaly strength (developed for TCs) applied to Ianos yielded 980 hPa, and 32.4 ms-1 around 
00:00 UTC on 18 Sept. The reasonable intensity estimates based on the Tb anomaly suggests that 
much like TCs, the WC is driving the low pressure. While storms that attain the intensity of Ianos 
are somewhat rare, this case shows that some storms in the basin acquire true TC status.  
     

 

Fig. 15. View of Medicane Ianos from a NOAA-20 ATMS overpass at 11:39 UTC 17 Sept. 2020. 
Planar Tb views from the sounder thermal channels 7-9 on the left coincide with their approximate 
altitudes shown in Fig. 9. A longitudinal cross-section of Tb anomaly (deg. C) through the center 
of Ianos shows the warm-core structure similar to, but weaker than, its Super Typhoon Mawar 
counterpart shown in Fig. 9. The 183 GHz (channel 18) shows a ring of deep convection around 
the center of Ianos similar to an eyewall. [Credit: CIMSS] 

     Many of the other TC-focused, satellite-based tools discussed in this article could also be 
applied to the monitoring of Medicanes. From enhanced imagery (e.g., airmass, ProxyVis) to 
diagnostic products and algorithms (TPW for moisture analysis, OSVW for surface wind 
structure), satellite information can be crucial to augmenting the existing conventional observation 
network around the Mediterranean Sea for the analysis and forecasting of Medicanes. 
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7.   Impacts of satellite data on model TC forecasts 

7.1. Statistical-dynamical models 

     Statistical-dynamical TC intensity and rapid intensification (RI) forecast models input satellite 
information as predictors (e.g., DeMaria et al., 2005; Kaplan et al., 2010; Yamaguchi et al., 2018; 
Knaff et al., 2021). The revolution of more sophisticated analysis methods, i.e., most recently the 
surge in AI/ML techniques, has led to new models for RI prediction (Mercer et al., 2017; Xu et 
al., 2021; Slocum et al., 2023; 2024). Most of these efforts utilize GEO IR data due to timeliness 
and availability (Lagerquist et al., 2024). However, inspired by Cecil and Zipser, (1999), 
information based upon PMW (e.g., Jones et al., 2006; Su et al., 2020; Griffin et al., 2022) and 
satellite-based lightning (Slocum et al., 2023) show additional promise for improving intensity and 
RI forecasting. As skillful RI forecast methods become more numerous, partly due to increased 
use of new satellite data as predictors, objective consensus methods are also possible and showing 
skill (Sampson et al., 2023). These statistical-dynamical intensity and RI model forecasts remain 
competitive with hurricane-specific NWP model predictions and provide a stable baseline for TC 
forecasters.  
   
7.2. Numerical weather prediction models 

     The significant impact of satellite data on modern global assimilation and NWP systems is well 
known. Over the last couple of decades, advances in data assimilation methods along with satellite 
remote sensing capabilities have led to notable increases in model forecast skill. For example, 
ECMWF first demonstrated significant forecast skill improvements resulting from cloudy-
radiance assimilation (Geer et al., 2018). The introduction of new microwave sounder’s (e.g., 
ATMS) information into operational systems has consistently led to an improvement in short and 
medium range forecast accuracy, including the effective assimilation of radiances (e.g., Bormann 
et al., 2013, 2019). Regarding TC forecasts, McNally et al., (2014) demonstrated the significant 
impact of polar-orbiting data on ECMWF model forecasts of Hurricane Sandy in 2012. In a very 
recent study, Magnusson et al. (2024) examined the impacts of various observation types on TC 
forecasts in the ECMWF system conducting observing system experiments (OSEs). The strongest 
impact came from withholding of all-sky microwave radiance observations, followed by 
scatterometer data. The impact for other satellite data such as GNSS-RO, AMVs and Aeolus were 
mixed/neutral, but they noted the AMV results were somewhat at odds with the more positive 
impacts found by Bormann et al. (2019).  

Concerning regional TC models, Zhang et al., (2016, 2019), Honda et al., (2018), Minamide 
and Zhang, (2018) among others have shown the potential for further improving TC analysis and 
prediction through advanced ensemble assimilation of high-spatiotemporal all-sky infrared 
radiances from GEO. Furthermore, as shown and discussed in Section 2, high spatiotemporal 
AMV datasets produced from advanced GEO imagers with novel processing methodologies 
directed at capturing TC vortex-scale flows can benefit hurricane model analyses and forecasts 
(Wu et al., 2014; Velden et al., 2017; Sawada et al., 2019, 2020; Lewis et al., 2020; Li et al., 2020). 
These AMV datasets have also contributed to a myriad of diagnostic studies related to 
understanding TC behavior (Elsberry et al., 2018, 2020, 2023; Ryglicki et al., 2019, 2021; Tsujino 
et al., 2021). 
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8.   The ‘end user’: Global TC analysis and forecast centers  

Many national operational forecast centers and WMO mandated Regional Specialized 
Meteorological Centers (RSMCs) perform routine TC surveillance and analysis. A typical analysis 
(and sometimes forecast) cycle is performed every 6 hours but can be more frequent if conditions 
warrant (e.g. a major landfalling TC). Real-time operational TC monitoring leans heavily on 
satellite observations, especially in regions void of aerial reconnaissance. In fact, some agencies 
have trained satellite analysts who directly aid the TC specialists during the analysis cycle. The 
TC analysis steps can be loosely broken down as follows (along with key satellite-based imagery 
and products): 

Step 1:     Pre-formation 

 Identify areas of potential TC development over region of responsibility 
(multispectral GEO animations, MIMIC-TPW, scatterometry, Saharan Air Layer 
products in the Atlantic basin) 

 Continuously monitor suspect areas using above tools and LEO PMW imagery to 
look for circulation and sustained convective organization, which if found then 
triggers a transition to Step 2 

Step 2:    TC analysis (in addition to all available non-satellite inputs i.e., marine/coastal  
                                      observations, radar, aircraft and NWP) 

 For each identified area of sustained convective organization associated with low 
level circulation and continuing throughout TC lifecycle, generate regular position, 
intensity, structure and phase analyses  

 Position fixes (storm-centered and zoomed GEO IR/MSI, ProxyVis, LEO PMW, 
High-Res scatterometry/NRCS/ambiguities, SAR, ARCHER) 

 Intensity estimates (manual Dvorak technique based on GEO IR and VIS, 
objective intensity estimates based on IR, PMW and SATCON (mainly CIMSS), 
scatterometry, SAR/SMAP/AMSR2 wind speeds) 

 Structure/size analyses (2-D and quadrant surface wind radii including RMW)  
(scatterometry, SAR, SMAP, SMOS, MTCSWA, PMW imagery/MPERC)   

 Phase analysis (TC, ST, ET) (multispectral GEO, PMW sounder vertical x-sects) 

 Combine satellite fix information with all available conventional data, NWP data 
and continuity to determine an operational Best Track (position, intensity and 
structure) 

 Generate and transmit TC bulletins and essential data about the TC that can be 
used to initialize NWP models, including location, MSW, MSLP, and additional 
parameters like current storm speed/direction 

     A key analysis challenge for the operational TC center is synthesizing the range of inputs at 
standard times; many satellites and products provide irregular coverage. Data latency can be 
another issue. Despite these concerns, operational TC analysts are usually open to new and reliable 
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data sources as they become available, even if they are experimental. As the range of inputs to the 
analysis process increase, forecasters who are under time constraints appreciate collated 
information such as the regularly-updated CIMSS real-time product summary page (see Appendix 
A for link) which can save having to search for multiple sources of information. 

9.   Satellite applications to TC climate analyses and trends   

     In addition to real-time forecasting applications, satellite data is greatly aiding TC research. For 
example, nearly a half-century of satellite-based observations is allowing for climate applications. 
Current trends and projections of increased TC activity (based on theory and numerical climate 
models, most notably, stronger intensities) are often attributed to climate change (e.g. Sobel et al., 
2016; Knutson et al., 2019, 2020). However, the confidence in this attribution can be jeopardized 
by temporal heterogeneities in the past observational records of TCs, i.e. the global “best track” 
records (Knapp and Kruk, 2010; Schreck et al., 2014). Even in the satellite era, gradual sensor 
improvements can lead to difficulties in identifying significant global trends in TC intensity over 
the past four decades. Kossin et al., (2013, 2020) attempt to address this by applying an objective 
TC intensity estimation algorithm (ADT) to a globally homogenized satellite data record 
(HURSAT, Knapp et al., 2011) to create a more temporally consistent record of TC intensity within 
the period 1982–2017. The HURSAT dataset provides 3-hourly GEO IR window channel 
(approximately 11 μm) images at the same spatial scale through time; all images being subsampled 
to ~8 km. While there have been improvements in GEO IR spatial resolutions (e.g., 8km down to 
2 km), the resampling provides an attempt to homogenize the imagery for TC climate/trend 
purposes. The use of the objective ADT algorithm allows for consistency in the TC intensity 
analyses over time. The resulting trend analyses should serve to gain confidence in the projections 
of increased TC intensity under continued global warming. 
     The HURSAT dataset has also been used in other studies of TC size and TC eye climatologies 
(Knaff et al. 2014; Knapp et al., 2018), evaluation of model re-analyses (Kossin, 2015), and studies 
of cloud clusters (Zawislak and Zipser, 2010). HURSAT provides GEO imagery centered on TCs 
for the International Best Track Archive for Climate Stewardship (IBTrACS) dataset (Knapp et 
al., 2009). Other satellite-based datasets (e.g. PMW-based) have been used to create short-term 
TC climatologies (Lonfat et al., 2004; Wingo and Cecil, 2010; Qian et al., 2020; Yang et al., 2021; 
Guzman and Jiang, 2021 and many others). Most recently, the Tropical Cyclone Precipitation, 
Infrared, Microwave, and Environmental Dataset (TC PRIMED; Razin et al., 2023) provides a 
long-term (1987 – present) record of TC-centered PMW data. It is clear that satellite data, whether 
alone or integrated with other observations, has become an important climate analysis tool. 

10.   Emerging and planned satellites/sensors and data analysis techniques   

10.1. WMO Integrated Global Observing System (WIGOS) core constellation satellites and 
instruments/sensors 
 

     The backbone of the global satellite-based observing system is the core constellation satellites 
(GEO and LEO) as determined by the WMO Commission for Observation, Infrastructure and 
Information Systems, and operated by a handful of national agencies (WMO, 2024b). The WIGOS 
core satellites constitute both legacy and cutting-edge new technologies to ensure both continuity 
and to meet the growing needs of the user communities. The WMO Observing Systems Capability 
Analysis and Review Tool (OSCAR, https://space.oscar.wmo.int/satellitestatuses/status) presents 
a great summary of the currently operating agency satellites and projected near-future missions. 
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Ricciardulli et al., (2023) nicely distills this information down to TC-relevant missions and 
sensors. Despite some challenges, such as the discontinuation of relied-upon sensors (SSMIS 
sounder, ASCAT-A, Windsat to name a few), or the desire for more high-resolution PMW 
imagers, it is easy to be optimistic about the remarkable new technologies that are emerging now 
and planned for the near future. 
     
10.2. The new age of LEO smallsats/CubeSats and commercial sector ventures     
 

     Outside of the core constellation, there are a plethora of other existing and planned satellites 
and instruments of opportunity, most of which are also listed on the OSCAR website. Some of 
these are research, experimental or demonstrational missions with data latency and dissemination 
challenges. However, it has proven possible to overcome these impediments through unified 
efforts of the data providers, researchers and end user communities. A great example of this: 
NASA working with NOAA and other partners to make valuable new observation data from some 
of its Earth science missions (e.g., TRMM, GPM, TROPICS) available in near-real-time to global 
user communities. These demonstrational missions are often tomorrow’s operational sensors. 
     The confluence of advanced antenna designs, instrument/sensor miniaturization, and the 
proliferation of commercial satellite launch opportunities is revolutionizing the satellite-based 
observing network. Smaller satellites and CubeSats (e.g., TROPICS, TEMPEST, RAINCUBE, 
GEMS, Tomorrow.io and others) are demonstrating cheaper alternatives to the legacy LEO 
satellites, although the latter will remain the backbone for years to come. As the commercial sector 
takes a seat at the satellite provider table, it will be vital to the integrity of future observations that 
there is compliance with standard agency practices concerning careful calibration, shared 
validation efforts, and cost-effective data dissemination policies. These will be important attributes 
as we enter the promising new age of commercial satellite launches, operations, and data buys. 
 
10.3. Advancing satellite data processing/assimilation/analysis techniques and product displays 
 

     As the wealth of information from environmental satellites continues to skyrocket, there must 
be concurrent technologies to harbor and distill it into actionable products for user communities. 
This end-to-end process includes low-latency data ingest, computationally efficient processing, 
advanced assimilation methods and analysis tools, along with tailored product/information 
displays and dissemination for both research and operational communities.   
     Over the past decade or so, we have witnessed an explosion in AI machine learning techniques 
and applications to science problems. Implicit to these efforts is the need for high quality training 
datasets. The ability of AI methods to quickly churn on very large satellite data sets and produce 
robust analyses has led to new and improved TC applications (Pradhan et al., 2018; Wimmers et 
al., 2019; Chen et al., 2019; Lee et al., 2020; Zhuo and Tan, 2021; Higa et al., 2021; Griffin et al. 
2022, and many others). As shown in Griffin et al., (2024), deep learning techniques applied to 
both IR and PMW multichannel data can produce highly competitive TC intensity estimates that 
operational TC forecast centers are already relying on. In another recent study, Wimmers et al., 
(2024) derives a two-dimensional surface wind field product for TC inner core domains based on 
a unique multi-branched U-Net model design with a loss function that efficiently compensates for 
the relative sparsity of labeled data. Reconnaissance aircraft flight-level in situ winds from center-
crossing transects and matching PMW and IR imagery are used in training the model to reproduce 
a full two-dimensional field of flight-level wind, which can then be subject to surface-level 
reduction factors to create the surface wind field product. In a final step, the 2-D wind field profiles 
are normalized by a concurrent D-MINT model intensity (max surface wind) estimate (Griffin et 
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al., 2024). The results indicate that even challenging TC inner-core radial horizontal wind profiles 
including eyewall maxima and secondary outer maxima are reasonably captured by the product, 
and the model performs well in a variety of environments including strong vertical wind shear. 
Shown in Figure 16 is an example output display, which captures the rapidly changing inner core 
structure of Hurricane Kirk over a 12-hr period under increasing vertical wind shear.  

 
Fig. 16. Hurricane Kirk inner-core surface wind fields produced from the deep learning method of 
Wimmers et al., (2024), for A) 2133 UTC on 4 Oct., and B) 1003 UTC on 5 Oct. 2024. Input data 
(left panels) consists of SSMIS 37 and 89 GHz Tb, and 10.7 μm Tb from GOES-16, along with 
estimates of storm motion and environmental shear. The middle panels show the color-coded (by 
wind speed, in kts) 2-D surface wind field following the procedure described in Wimmers (2025). 
The right-hand panels depict the horizontal radial wind profiles along the 4 quadrant transects 
depicted in the middle panels, along with the model and NHC working best track (WBT) maximum 
surface wind estimates. [Credit: A. Wimmers, CIMSS] 
 
11.  Summary  

     Tropical cyclones and Medicanes are extreme weather hazards well known for their occasional 
devastating impacts on life and property. As populations and infrastructure built along coastlines 
grow, they are prone to an increasing threat from landfall impacts. While some prone regions are 
fortunate to benefit from reconnaissance aircraft surveillance, the majority of these storms spend 
most of their lifecycle over marine environments lacking in conventional observations. Thus, 
satellite-based remote sensing applications can play a crucial role in monitoring and analyzing key 
storm characteristics critical to the forecast process.      
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     This review represents only a sample of significant recent advances in satellite remote sensing 
capabilities and applications to the analysis and forecasting of high-impact weather events such as 
TCs and Medicanes. Readers are encouraged to peruse another excellent summary of recent remote 
sensing advances in TC analysis presented in Ricciardulli et al., (2023), with more focus on the 
polar orbiting sensors such as C-band SARs, L-band and combined C/X-band radiometers, 
scatterometers, and microwave imagers/sounders. In addition, the excellent summary reports of 
the four WMO IWSATC meetings held to date, along with the delegate presentations and 
recordings are accessible here. Finally, the internet is full of informative websites pertaining to 
satellite applications of TCs; links to some of them appear in Appendix A. 
     There are still unaddressed scientific challenges concerning TC and Medicane formation and 
intensification processes, and about forecasting capabilities to better predict their impacts at 
regional and local scales (especially in terms of substantial rainfall, winds, and storm surges). This 
requires an integrated approach between modeling and observational communities, including 
satellite-based remote sensing, and operational forecast centers supported by solid research and 
technology development. Exploitation of exciting new satellite sensors and data analysis 
approaches that are emerging now and in the near future will ensure the continued advancement 
of satellite-based applications to TCs and Medicanes.  
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Appendix A – Selection of active TC satellite applications and products web sites 
 
https://www.ospo.noaa.gov/products/ocean/tropical/   NOAA Office of Satellite and Products Operations 
(OSPO), real time operational TC products 

https://tropic.ssec.wisc.edu/tropic.php  Univ. Wisconsin-CIMSS TC Research Group real-time and 
archived TC satellite imagery and products 

https://rammb2.cira.colostate.edu/research/tropical-cyclones/ NOAA Regional and Mesoscale 
Meteorology Branch (RAMMB) at Colorado St. Univ.-CIRA satellite-based TC research products 

https://science.nrlmry.navy.mil/geoips/tcweb/active/   U.S. Naval Research Lab. at Monterey, California 
satellite imagery of TCs with a focus on microwave products 

https://www.remss.com/tropical-cyclones/tc-winds/   Remote Sensing Systems (REMSS) TC products with 
a focus on ocean surface wind vector algorithms and products 

https://www.tropicaltidbits.com/sat/   A user-supported site developed by Levi Cowan, currently a TC 
forecaster at the Joint Typhoon Warning Center. The site includes TC-focused satellite imagery. 

https://www.star.nesdis.noaa.gov/socd/mecb/sar/sarwinds_tropical.php   NOAA/NESDIS SAR near real-
time TC overpass acquisitions and derived products (OSVW) 
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https://scatterometer.knmi.nl/home/   Royal Netherlands Meteorological Institute (KNMI) near real-time 
and archived OSVW products for all C- and Ku-band scatterometers 

https://manati.star.nesdis.noaa.gov/products.php    NOAA/NESDIS site with a myriad of near real-time and 
archived OSVW products 

https://www.ospo.noaa.gov/products/atmosphere/precipitation.html   NOAA/NESDIS near real-time 
satellite-based moisture and precipitation products 

https://rammb-data.cira.colostate.edu/tcprimed/#microwave   NOAA/CSU TC PRecipitaion, Infrared, 
Microwave and Environmental Dataset (TC Primed) is a consolidated archive of TC products 

https://eo4society.esa.int/projects/medicanes/  European Space Agency Medicanes project summary 
information 

 
Appendix B – List of acronyms/abbreviations 

ABI  Advanced Baseline Imager 

ADT  Advanced Dvorak Technique  

AHI  Advanced Himawari Imager 

AI  Artificial Intelligence 

ALADIN  Atmospheric Laser Doppler INstrument 

ALOS   Advanced Land Observing Satellite 

ALPW  Advective Layered Precipitable Water 

AMSR  Advanced Microwave Scanning Radiometer 

AMSU  Advanced Microwave Sounding Unit 

AMV  Atmospheric Motion Vector 

ARCHER  Automated Rotational Center Hurricane Eye Retrieval  

ASCAT  Advanced SCATterometer 

ASWind  AMV-based Sea-surface Winds 

ATCF  Automated Tropical Cyclone Forecasting 

ATL  Atlantic (basin) 

ATMS  Advanced Technology Microwave Sounder 

AWIPS  Advanced Weather Interactive Processing System 

BT  Best Track 

CDO  Central Dense Overcast 
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CIMR  Copernicus Imaging Microwave Radiometer 

CIMSS  Cooperative Institute for Meteorological Satellite Studies 

CIRA  Cooperative Institute of Research in the Atmosphere 

CMA  Chinese Meteorological Administration 

CMORPH  Climate Prediction Center MORPHing technique  

CNN  Convolutional Neural Networks 

COSMIC  Constellation Observing System for Meteorology Ionosphere and Climate 

COWVR  Compact Ocean Wind Vector Radiometer 

CSA  Canadian Space Administration 

CYGNSS  Cyclone Global Navigation Satellite System 

DL  Deep Learning 

DMINT  Deep Microwave INtensity of Tropical cyclones 

DMSP  Defense Meteorological Satellite Program 

DPRINT  DeeP infraRed INtensity of Tropical cyclones 

DWL  Doppler Wind Lidar 

ECMWF  European Centre for Medium-Range Weather Forecasts 

EOS  Earth Observation Satellite (India) 

ERC  Eyewall Replacement Cycle 

ESA  European Space Agency 

ET  Extra-Tropical 

eTRAP  ensemble Tropical RAinfall Potential 

EUMETSAT  European Organization for the Exploitation of Meteorological Satellites 

FY  FengYun (China) 

GCOM-W  Global Change Observation Mission for Water 

GEMS  Global Environmental Monitoring System 

GEO  Geostationary Earth Orbit 

GHz  GigaHertz 

GMI  GPM Microwave Imager 
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GMS  Geostationary Meteorological Satellite (Japan) 

GNSS  Global Navigation Satellite System 

GNSS-RO  GNSS Radio Occultation 

GOES  Geostationary Operational Environmental Satellite (U.S.) 

GOSAT-GW  Global Observation SATellite for Greenhouse gases and Water cycle   

GPM  Global Precipitation Mission 

GPS  Global Positioning System 

HISA  Hurricane Intensity and Structure Algorithm 

H-pol  Horizontal polarization 

HRD  Hurricane Research Division 

HSCAT  Haiyang SCATterometer 

HURSAT  HURricane SATellite (dataset) 

HWRF  Hurricane Weather Research and Forecasting model 

HY-2A  HaiYang-2A satellite 

IBTrACS  International Best Track Archive for Climate Stewardship 

IFREMER  Institut Français de Recherche pour l'Exploitation de la Mer (French Inst. for Ocean Science) 

IMD  Indian Meteorological Department 

IMERG  Integrated Multi-satellitE Retrievals for GPM  

INSAT  Indian National SATellite system 

IR  Infrared 

ISRO  Indian Space Research Organization 

ISS  International Space Station 

IWSATC  International Workshop on Satellite Analysis of Tropical Cyclones 

JASON  Joint Altimetry Satellite Oceanography Network 

JAXA  Japanese Aerospace Exploration Agency 

JMA  Japan Meteorological Agency 

JPL  Jet Propulsion Laboratory 

JPSS  Joint Polar Satellite System 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



34 
 

JTWC  Joint Typhoon Warning Center 

KNMI  Koninklijk Nederlands Meteorologisch Instituut (Royal Dutch Meteorological Institute) 

KOMPSAT  KOrean MultiPurpose SATellite 

LEO  Low Earth Orbit 

McIDAS  Man-computer Interactive Data Access System 

Medicane  Mediterranean hurricane 

MetOp   Meteorological Operational satellite (EUMETSAT) 

MetOp-SG   MetOp-Second Generation 

MIMIC-TC  Morphed Integrated Microwave Imagery at CIMSS-TC 

MIMIC-TPW  Morphed Integrated Microwave Imagery at CIMSS-TPW 

ML  Machine Learning 

MPERC  Microwave Probability of Eye Replacement Cycle 

MSG  Meteosat Second Generation 

MSI  MultiSpectral Imagery 

MSLP  Minimum Sea Level Pressure 

MSW  Maximum Sustained Winds 

MTCSWA  Multi-platform Tropical Cyclone Surface Wind Analysis 

MTG  MeteoSat Third Generation 

MW  Microwave 

MWHTS  MicroWave Humidity and Temperature Sounder   

MWRI  MicroWave Radiometer Imager 

NASA  National Aeronautics and Space Administration  

NCEP   National Centers for Environmental Prediction  

NESDIS  National Environmental Satellite, Data, and Information Service 

NHC  National Hurricane Center 

NISAR   NASA-ISRO Synthetic Aperture Radar 

NOAA  National Oceanic and Atmospheric Administration 

NPP  National Polar-orbiting Partnership 

NRCS  Normalized Radar Cross Section 
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NRL-MRY  Naval Research Laboratory at Monterey 

NRT  Near Real-Time 

NSOAS  National Satellite Ocean Applications Service (China) 

NWP  Numerical Weather Prediction 

OHC  Ocean Heat Content 

OSCAR  Observing Systems Capability Analysis and Review tool 

OSCAT  OceanSat SCATterometer 

OSE  Observing System Experiment 

OSPO  Office of Satellite and Products Operations  (NOAA/NESDIS) 

OSVW  Ocean Surface Vector Winds 

PALSAR  Phased Array L-band Synthetic Aperture Radar 

PMW  Passive MicroWave 

RainCube   Radar in a CubeSat 

RCM  Radarsat Constellation Mission 

REMSS  Remote Sensing Systems 

RI  Rapid Intensification 

RMW  Radius of Maximum Wind 

RSMC  Regional Specialized Meteorological Center 

SAL  Saharan Air Layer 

SAR  Synthetic Aperture Radar 

SATCON  SATellite CONsensus  

SCA   SCAtterometer (MetOp) 

SEF  Secondary Eye Formation 

SFMR  Stepped Frequency Microwave Radiometer 

SHOC  Satellite Hurricane Observation Campaign 

SMAP  Soil Moisture Active and Passive  

SMOS  Soil Moisture and Ocean Salinity  

SSMIS  Special Sensor Microwave Imager/Sounder 
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SST  Sea Surface Temperature 

STAR  SaTellite Applications and Research (NOAA/NESDIS) 

Tb  brightness Temperature 

TC  Tropical Cyclone 

TCFP  Tropical Cyclone Formation Product 

TEMPEST  TEMPoral Experiment for Storm and Tropical systems 

TIROS  Television InfraRed Observation Satellites  

TMI   TRMM Microwave Imager 

TOPEX  TOPography EXperiment 

TPW  Total Precipitable Water 

TRMM  Tropical Rainfall Measurement Mission 

TROPICS  Time-Resolved Observations of Precipitation and storm Intensity with a    
                   Constellation of Smallsats  

UTC  Coordinated Universal Time 

VH/HV   Vertical transmit and Horizontal receive/Horizontal transmit and Vertical receive 

VIS  Visible 

V-pol  Vertical polarization 

WBT  Working Best Track 

WC  warm core 

WIGOS  WMO Integrated Global Observing System 

WMO  World Meteorological Society 

WSF-M  Weather System Follow-on - Microwave 
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