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ABSTRACT.—Marine aquaculture, defined here as
aquaculture that takes place in coastal, nearshore, and
offshore environments, has great potential for sustainable
development in the United States. While the United
States’ exclusive economic zone supports many ocean
uses and socioecological systems, an ecosystem siting and
management approach is imperative for aquaculture to
develop sustainably. An ecosystem approach to aquaculture
(EAA) is a broadly recognized strategy for developing
aquaculture with minimal disruption to other ocean uses
and environmental attributes. An ecosystem is defined here
as the totality of environmental and human dimensions in
which an aquaculture operation can interact. The United
States can achieve an EAA by adhering to a suite of marine
spatial planning techniques that are adaptive to scale,
carrying capacity, and stakeholder preferences. In this paper,
we discuss how the United States can better utilize marine
spatial planning protocols to develop an EAA and grow the
aquaculture industry with optimal efficacy. Ultimately, this
paper is intended to serve as a blueprint for implementing an
EAA for marine aquaculture in the United States. We first
review the state of marine aquaculture within the United
States, including state and federal regulatory frameworks and
then discuss the principles of EAA and tools of marine spatial
planning, including analyses that are pertinent to the scale
of planning and for assessing carrying capacity. We conclude
with a discussion on how marine spatial planning can lead to
the successful implementation of an EAA.
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The Food and Agriculture Organization (FAO) defines an “Ecosystem Approach
to Aquaculture” (EAA) as a strategy for the integration of aquaculture within
the broader ecosystem context to promote sustainable development, equity, and
resilience of interlinked socioecological systems (Soto et al. 2008, FAO 2010).
According to Soto et al. (2008) and Aguilar-Manjarrez et al. (2017), three principles
govern the implementation of EAA, including: (1) aquaculture should be developed
in the context of ecosystem functions and services with no degradation of these
beyond resilience; (2) aquaculture should improve human well-being with equity for
all; and (3) aquaculture should be developed in the context of other sectors, policies,
and goals, as appropriate. Under these three guiding principles, the EAA acts as a
conceptual guideline for spatial planning and management based on a balance
between production, ecological, regulatory, and social carrying capacities (Byron
and Costa-Pierce 2013, Aguilar-Manjarrez et al. 2017).

An EAA requires the application of marine spatial planning (MSP) techniques
to ensure equitable shared use of natural resources (Ross et al. 2013). Planning
for sustainable aquaculture development among current ocean use sectors (e.g.,
transportation, recreation, military, fishing, mining, and energy) is challenging,
especially given the economic scale, global need, and operational space requirements
of these other industries. To meet food security and economic growth goals,
allocation of space for aquaculture, based on relative compatibility with other ocean
uses, must be analyzed to integrate this growing industry amongst competing uses.
Given that marine aquaculture is typically a fixed-location industry, it is not transient
or easily relocated. Long-term sustainability requires adequate and predictable
environmental conditions and compatible interactions with other users over both
space and time (Costa-Pierce 2010). Spatiotemporal planning for different types of
aquaculture must also balance tradeoffs among environmental, social, economic,
cultural, and management considerations—a central aim of EAA. Balancing tradeoffs
is complex, especially at the ecosystem-level where expanded datasets and broader
scale determinations are required, but are often limited. As Gifford et al. (2001)
suggested, there are no ideal sites for aquaculture, and compromise will always be
required. Thus, when and how to prioritize aquaculture in a given location is social,
economic, and ecological challenge. Comprehensive and transparent spatial conflict
assessments and advanced visualizations within an MSP framework can support
identification of compromise and best fit locations for new aquaculture operations
(Stelzenmiiller et al. 2017). In this study, we set out to review the pertinent literature
and available tools and approaches for spatial planning for sustainable aquaculture
in the United States (US). This review is intended to be a reference for how MSP
can be a key component for achieving EAA in the US. Specifically, we cover (1) the
current obstacles to sustainable aquaculture in the US, (2) principles of an EAA, (3)
MSP tools including carrying capacities, scale of planning, and hierarchical spatial
analysis protocols, and (4) how MSP techniques can lead to implementation of an
EAA.

UNITED STATES AQUACULTURE PLANNING
With one of the largest exclusive economic zones in the world, the US has

considerable opportunity for commercial aquaculture development (Kapetsky et al.
2013). To date, and in part due to the nascent scale of the US aquaculture industry,
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marine spatial planning for aquaculture development has received relatively little
effort nationally (Lester et al. 2022). One often cited reason for the lack of marine
aquaculture development in the US is the lack of a comprehensive regulatory
framework for federal waters, leading to regulatory uncertainty (Engle and Stone
2013, Anton and Hupp 2021, Otts 2021).

Regulatory uncertainty has several implications for aquaculture development
including time-consuming permitting processes, less clarity for aquaculture
businesses on how to operate (Falconer et al. 2023), and no federal agency
congressionally authorized as the lead regulator for aquaculture in US federal
waters. The mix of laws and regulations are perceived to impose a significant barrier
to industry entry by means of deterring investments for offshore aquaculture
development (Knapp and Rubino 2016, Rubino 2008, Upton 2019, Rubino 2023). In
addition, complicated regulations have resulted in uncertainty for how to obtain
exclusive use of space in federal waters (US Commission on Ocean Policy 2004).
With no agency possessing statutory authority as the regulatory lead on aquaculture
in US federal waters and no explicit direction for how agencies would coordinate,
prospective developers may be left without a clear understanding of when and where
they could even begin aquaculture operations.

The US Army Corps of Engineers (USACE), National Oceanic and Atmospheric
Administration (NOAA), Environmental Protection Agency (EPA), and Food
and Drug Administration (FDA) are each authorized to regulate certain activities
pertinent to aquaculture in federal waters of the US. NOAA asserts authority over
management of offshore aquaculture under the Magnuson-Stevens Act (MSA) and
works to avoid conflicts with protected species, sensitive habitats, and fisheries.
Meanwhile, the USACE regulates construction activities to ensure minimal impacts
tonavigation and other conflicts, the EPA regulates benthic and water quality impacts,
and the FDA regulates matters related to human health (NMFS 2022). While federal
agencies have acknowledged the role of regulatory uncertainty in constraining the
growth of sustainable aquaculture (USDA 2022), clearer definition of federal agency
roles in offshore aquaculture governance and implementation would help standardize
MSP into decision-making workflows, thus reducing time and costs and increasing
understanding of permitting processes.

In addition to enhanced coordination among federal agencies in the permitting
process for aquaculture in US federal waters, the US has taken steps to improve the
efficiency of establishing aquaculture through Presidential Executive Order 13921,
Promoting American Seafood Competitiveness and Economic Growth (7 May, 2020).
E.O. 13921 called for NOAA to designate certain US federal waters as “Aquaculture
Opportunity Areas” (AOAs), which are areas that contain suitable environmental
characteristics for sustainable aquaculture and minimize conflicts with other ocean
uses. In carrying out the Executive Order, NOAA is identifying AOA options using
multicriteria spatial analysis, best available spatial data, and robust stakeholder
engagement. In 2021, NOAA released the first two atlases to inform siting of AOAs
for the Gulf of Mexico and Southern California Bight (Morris et al. 2021, Riley et
al. 2021). At the time of release, these atlases represented the most comprehensive
regional-scale marine spatial planning studies conducted in US federal waters.

Inconsistent planning efforts among states is another obstacle to expansion
of the US aquaculture industry (Wickliffe et al. 2019). While only eight marine
coastal states have developed aquaculture use zones (e.g., Florida, New York, New
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Jersey) and four have non-aquaculture-specific marine spatial plans (Lester et al.
2022), the majority lack existing spatial analysis-based approaches to guide siting
and permitting (Wickliffe et al. 2019). Continued omission from regional planning
efforts now requires coastal managers and farmers to evaluate where the aquaculture
industry fits within the context of existing coastal uses on a case-by-case basis.
Lack of baseline suitability understanding in a given region or state likely reduces
effectiveness and efficiency, equity, and predictability of the rule of law for potential
aquaculture—all central principles of good aquaculture governance essential to
reconcile ecological and human well-being (Hishamunda et al. 2014). Without a
clear, spatially explicit plan, aquaculture faces significant challenges in navigating
this landscape of conflict. To determine where suitable space does exist, planning
at various spatial and temporal scales is necessary to minimize user conflicts and
ensure compatibility of aquaculture within the existing ecosystem.

Marine spatial planning helps stakeholders visualize and understand the
socioeconomic, environmental, and industry context of a planned farm, and can be
particularly valuable to inform the permitting process. Permitting can be different
for shellfish, finfish, and algae aquaculture in state and federal waters; thus, MSP can
provide regional context related to other ocean users and environmental sensitivities
for industry and regulators during project scoping, permitting, and permit renewal
stages. The whole ecosystem receives consideration during permitting at various
stages and levels depending on the level of environmental review. For example, habitat
and fishery managers and the Regional Fishery Management Councils will consider
aquaculture impacts to both water quality and benthic habitats as both falling under
the purview of Essential Fish Habitat provisions of the Magnuson-Stevens Fishery
Conservation and Management Act (MSA). This review occurs multiple times by the
agencies involved during each phase of the permitting process as more information
becomes available. Another example is the types of environmental reviews federal
agencies conduct under the National Environmental Policy Act (NEPA). NEPA
allows federal agencies to use a programmatic approach to reviewing and planning
future actions. A programmatic approach evaluates the effects of broad proposals
or planning-level decisions that may include a wide range of individual projects,
implementation over an extended period of time, and/or actions across a large
geographic area. The level of detail in a programmatic NEPA review is sufficient to
allow informed decisions among planning-level alternatives and to develop holistic
mitigation strategies. Collaboration among all levels of government and tribes is
especially important to have an effective process and outcome. This NEPA-based
programmatic approach does not evaluate individual project-level issues such
as precise project impacts or specific design details that are not appropriate for
decisions at the planning level. Instead, a programmatic NEPA approach is a tool
for examining the interaction among proposed projects or plan elements, and for
assessing cumulative effects. Ultimately, the goal of any marine permitting process
is to make the best decision regarding use of public trust waters through selection
of space that is the best alternative for the activity being permitted. Marine spatial
planning can provide alternative siting scenarios that integrate the often complex
socioeconomic and ecosystem spatial context of aquaculture to inform and assure
industry and regulators that the right kind of aquaculture is sited in the right place.



Morris et al.: Ecosystem approach to aquaculture in the United States 5

Marine Aquaculture Planning Scales

REGIONAL \k NATIONAL

® Within/around footprint ® Within/around foorprint ® Within region ® Within US EEZ

® High-resolution data (m) ® High-res data (m-km) ® Mod-high res data (km) ® Low-res data (km)

® Synergistic interactions @ Publicinput ® Develop planning areas @ National economics

® Conflicting Interactions @ Cumulative impacts ® Cumulative impacts @® National policies

® Economic gains/losses @ Local/State/Federal gov ® Interstate/federal gov ® Multi-state/federal gov

Exclusion Analyses
Suitability & Opportunity Analyses

® Production carrying capacity

Figure 1. Various marine aquaculture planning scales, the associated characteristics of planning
at each scale, and the types of geospatial analyses that are generally conducted at each scale.

AQUACULTURE SPATIAL PLANNING AT THE ECOSYSTEM LEVEL

Planning for aquaculture development while considering an entire ecosystem of
data and interactions can be challenging given data limitations and complexity of
interactions. However, there are benefits such as ecosystem services that may enhance
the surrounding ecosystem (Alleway et al. 2019) making trade-off assessments a likely
fruitful exercise. Further, the transparent nature of MSP approaches to aquaculture
siting can contribute to needed improvements to US public perceptions about
potential ecosystem impacts and benefits of aquaculture. While an EAA provides
useful guidance to managers and industry, it is cuambersome to implement without
clear national policy and regulatory frameworks capable of weighing allocation
based on public interest costs and benefits. Formal adoption of EAA, including in
North America, is relatively limited (Brugeére et al. 2019).

Defining the spatial extent or scale of an “ecosystem” is an important first step in
determining the appropriate MSP approach and the spatiotemporal resolution of data
required to understand aquaculture impacts and interactions at the ecosystem-level.
This decision should depend on environmental and socioeconomic components, and
it should seek both the best available science and broad stakeholder participation.
Involving stakeholders from the onset of planning is a key component of the EAA,
as the result is more effective integration of aquaculture within communities (FAO
2010). In the same way that including environmental components elucidates what is
ecologically sustainable, rigorous stakeholder involvement helps establish planning
objectives that are appropriate for a community, resulting in support for the planning
process and participatory engagement across all community sectors.

The priorities of aquaculture planning will also depend on whether planning
occurs at the farm, local, regional, or national ecosystem levels (Fig. 1). Often, many
of the concerns related to environmental or social challenges appear insignificant at
the farm or local level, but can compound and become significant at the regional or
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national ecosystem scale. For example, nutrient levels associated with one finfish farm
may not seem problematic, but if more cages or farms are added over time without
adequate spatial planning (e.g., depositional modeling), the ecological carrying
capacity of a waterbody may be exceeded (Beveridge 1984, Strain and Hargrave 2005,
Aguado-Giménez et al. 2006, Price et al. 2015). If this occurs, ecosystem trophic
structure and function can degrade and secondary impacts, such as algae blooms,
can impact other ocean-use sectors (e.g., tourism, recreational and commercial
fisheries), yielding conflicts among stakeholders (Filgueira and Grant 2009, Price
and Morris 2013). Under the EAA, MSP incorporates and thereby mitigates many
potential deleterious ecosystem-level impacts of aquaculture. For example, adjusting
the mix of aquaculture types to optimize enhancements to ecosystem function can
only be done by considering ecosystem level factors by using MSP in conjunction
with environmental models (e.g., Integrated Multitrophic Aquaculture, Granada
et al. 2018). Some evidence indicates that well-sited marine aquaculture could
contribute to coastal ecosystem conservation and restoration goals (Theuerkauf et al.
2019). Aquaculture spatial planning also improves the effectiveness of management
interventions to increase production and improve emergency preparedness and
mitigation options (e.g., planning for disease outbreaks), thereby reducing long-term
farm risks (Meaden et al. 2016, Hobday et al. 2018).

PRINCIPLES OF MARINE SPATIAL PLANNING

The term “marine spatial planning” can describe planning at small and large spatial
(meters to kilometers) and temporal (daily to multidecadal) scales across single
or multiple ocean use sectors and various aquaculture types including shellfish,
algae, and finfish aquaculture practices. For the purposes of this discussion, the
ecosystem-based MSP approach is a process which informs the spatial distribution
of activities in the ocean such that existing and emerging uses can be maintained,
use conflicts reduced, and ecosystem health and services protected and sustained
for future generations (Foley et al. 2010). MSP is often regarded as the first
reconnaissance-level step in implementing EAA (Ross et al. 2013). This guiding
framework informs science-based tools that can be used to address site-specific
aquaculture infrastructure management challenges, building and strengthening
community resiliency and promoting logical siting of a variety of aquaculture types
in the appropriate environmental conditions. Analytical approaches conducted
through MSP efforts can vary widely; from simple mapping of existing uses (e.g.,
Commonwealth of Massachusetts 2009) to sophisticated geospatial modeling
approaches that synthesize and integrate environmental, social, economic, cultural,
and management considerations (Battista and O’Brien 2015). While historical spatial
planning analytical approaches and efforts largely were terrestrially focused, there
are a few notable oceanic examples of planning efforts in US waters for multiple
infrastructure uses [e.g., military compatibility analyses, Bureau of Ocean Energy
Management (BOEM) wind energy areas] and industry/ecosystem interactions (e.g.,
shipping, cetacean density in shipping fairways) that serve as model case studies
for siting and planning commercial aquaculture (Benassai et al. 2014, Christie et al.
2014, Garavelli et al. 2022).

Regardless of the complexity or scale of the planning objective, the planning
process often follows the general workflow of (1) identifying the planning objective
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through multistakeholder engagement, (2) inventory of available, relevant data, (3)
analysis and mapping of data, (4) interpretation, and (5) delivery of map products and
reports to coastal managers and other end-users.

A lack of adequate planning for marine aquaculture can constrain industry
growth. When aquaculture is poorly sited, problems routinely arise with animal
health, environmental sustainability, production, social conflict, post-harvest
processing services and product marketing, risk financing, and a lack of adaptability
to external threats such as natural disasters and environmental change (Sanchez-
Jerez et al. 2016, Aguilar-Manjarrez et al. 2017). Aquaculture requires consideration
of unique sets of environmental and physical conditions, including factors such as
water quality, depth, temperature, salinity, current speed and direction, substrate
type, and wave energy to ensure facility security and health and quality of cultured
species. In addition, farms need access to land-based infrastructure capable of
supporting delivery of supplies and ensuring efficient processing and distribution
occur. Poor site selection can not only result in failure of farm sustainability (both
economical and ecological), but can leave a lasting social stigma against aquaculture
development across local and regional communities.

CARRYING CAPACITIES, MODELS, AND SITE SELECTION

The carrying capacity of an ecosystem is the maximum production that can be
maintained within a given space based on the environmental and social limits of
aquaculture to avoid “unacceptable change” (Ross et al. 2013, Weitzman 2019,
Weitzman and Filgueira 2020). In order to achieve site selection under the EAA,
consideration must be given to the upper bounds of aquaculture production
(production carrying capacity), ecological assimilation (ecological carrying capacity),
regulatory compliance (regulatory or governance carrying capacity), economic
capacity (ability to sell products produced and general profits), and societal acceptance
of aquaculture (social carrying capacity; Byron and Costa-Pierce 2013). Production
carrying capacity refers to the maximum sustainable aquaculture yield and is usually
considered at the farm-scale irrespective of ecosystem function (McKindsey et al.
2006). Ecological carrying capacity refers to the ability of the waterbody in which
the farm resides to provide the factors or requirements necessary for successful
production. Ecological carrying capacity takes into account how the environment
supports aquaculture production while balancing the assimilative capacity of the
waterbody (Tettetal. 2011, McKindsey 2013, Fisher etal. 2023) but should also consider
the whole ecosystem including all processes involved in aquaculture production
(Filgueira et al. 2015). Regulatory carrying capacity refers to the upper limit of
aquaculture infrastructure and production permissible under existing regulations.
Social carrying capacity of aquaculture is built through stakeholder engagement in
the planning process to avoid unacceptable change to both social functions and the
natural ecosystem (Ostrom 2009, Kluger and Filgueira 2021). Numerous limiting
environmental, ecological, social, and economic parameters must be considered
to sustainably and responsibly support new commercial-scale marine aquaculture
endeavors (Fig. 2). All four categories of carrying capacity intersect and overlap to
define the optimal ecosystem and societal context for marine aquaculture. Although
the overarching concepts of production, ecological, regulatory, and societal carrying
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A relative comparison of the four types of aquaculture carrying
capacities, tools used, and stakeholder group involvement

General public defining Tools to estimate Type of carrying
levels of acceptability carrying capacity capacity

e

ndustry, Planners, Mass Balance
and Managers and Economics

Production

Depositional and
Ecosystem Models

Ecological

#Industry, Planners,
Managers, & ENGOs

Permitting

Framework p=dtiatory

@eral public, Stakeholder
Industry, and Surveys &
Managers Economics

Adapted from Costa-Pierce (2010); Byron and Costa-Pierce (2013)

Figure 2. The highest aquaculture farm yields occur when models are utilized to predict the max-
imum production carrying capacity with ecological, regulatory, and social variables considered.

capacities are globally inclusive, tailoring of regional- or local-scale carrying capacity
concepts on a case-by-case basis may be required during the site selection process.

Regulatory carrying capacity refers to the upper limit of aquaculture infrastructure
and production permissible under existing regulations, and requires rigorous MSP,
environmental impact assessment, and environmental modeling (Fig. 2; Byron and
Costa-Pierce 2013). Social carrying capacity is the maximum level of aquaculture
infrastructure development that does not negatively impact or disenfranchise local
communities (Aguilar-Manjarrez et al. 2017). Even prior to reaching these regulatory
and social thresholds, there is potential for ecological degradation, negative
societal impacts, and general incompatibility of aquaculture with other ocean uses.
To minimize social incompatibility, it is important to engage key stakeholders
throughout the planning process through meaningful discourse and timely sharing
of information (Gopnik et al. 2012). Economic carrying capacity is determined by not
only the ability to grow aquaculture products but the ability to sell at a volume and
value for the business to be profitable.

Multiple models and analytical frameworks exist to estimate these aquaculture
carrying capacities (Table 1). Production and ecological carrying capacity models
integrate hydrodynamic, biogeochemical, and ecological factors with oxygen
consumption, sources and sinks of organic matter, and nutrients derived from,
or taken up by farm activity, to determine upper biophysical threshold limits for
aquaculture infrastructure, and examples of related modeling tools are provided in
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Table 1. Examples of modeling tools to estimate carrying capacities of aquaculture. This table is adapted from
Byron and Costa-Pierce (2013) and is used here for example purposes only. The authors do not endorse or
promote the use of one product over another.

Tool Purpose Carrying capacity ~ References
estimated
Geographic First tool to be applied in planning area  Ecological ESRI, Google,
Information site selection before the application Manifold, Geosoft,
Systems (GIS) of more specific local- and farm-scale Hexagon Geospatial,
software models which assess likely site-specific etc.
impacts from varied production levels.
Statistical models ~ Assimilation capacity of the environment Production, Beveridge 1984,
is calculated based upon farm discharges; ecological Huiwen and Yinglan
Assessments of aquaculture carrying 2007
capacities are made on levels of
unacceptable water quality and/or benthic
environmental impacts.
3D tidal model Calculates site placement, spatial Production Gecek and Legovié¢
distribution of cages, and number of 2010
cages.
AquaModel Determines fish cage biomass impacts on  Ecological, Rensel et al. 2007
pelagic and benthic ecosystems. regulatory
NewDEPOMOD  Site evaluation using current velocity Ecological, Cromey et al. 2002,
and direction, depth, feed input, and cage regulatory Fox et al. 2023
layout. Predictions of waste fecal and feed
deposition and benthic impact.
FARM Allows ecological and economic Production, Ferreira et al. 2009,
optimization of culture practice regulatory Cubillo et al. 2016,
including timing and sizes for seeding Bayer et al. 2024
and harvesting, densities, and spatial
distributions.
AkvaVis Site selection, carrying capacity, and Production, Ervik et al. 2008, 2011
management monitoring. ecological

Table 1. Regulatory carrying capacity can be estimated through the siting process
with associated risk analyses. Here, exposure to potential natural and human-caused
hazards (e.g., storms, disease, etc.) can negatively affect aquaculture infrastructure
and should be rigorously quantified. Social carrying capacity can be estimated
through stakeholder analysis, wherein attitudes of diverse stakeholders are analyzed
at the initiation of, and throughout aquaculture infrastructure expansion, to track
if and how stakeholder perceptions change (Budhathoki et al. 2024). Other methods
to estimate social carrying capacity include qualitative network modeling (Reum et
al. 2015, Ferriss et al. 2022), which can elucidate how social and ecological values are
related within an aquaculture system. Modeling efforts to calculate production and
ecological carrying capacity ideally should be combined with insights from regulatory
and social carrying capacity estimation (e.g., risk and stakeholder analyses) as the
resulting outcomes are often more powerful in aquaculture management (Byron et
al. 2011).

MARINE SPATIAL PLANNING FOR AQUACULTURE: APPROACHES AND
PossiBILITIES.—Marine spatial planning has different considerations, data needs,
and planning approaches at varying scales (i.e., farm, local, regional, and national)
and the appropriate scale and approach depends on the context of the management
issue. We define four hierarchical approaches to MSP for aquaculture that range from
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Figure 3. The relationship and interconnectivity of the various analyses from data acquisition
through the final site selection. The fish, seaweed, and shellfish panels are not in chronologi-
cal order as they are three different examples of what one may consider within an opportunity
analysis.

ecosystem-scale to site-scale, with each approach requiring varied data requirements
and spatial analysis protocols and yielding varied levels of spatial guidance for
decision making (Fig. 3). For any ecosystem boundary (hereafter referred to as Area
of Interest, or “AOI”) the hierarchical process for MSP begins with (1) data acquisition
and exclusion analysis to determine areas where aquaculture is potentially suitable,
(2) identifying Aquaculture Planning Areas within the AOI, (3) conducting spatial
suitability models within the planning areas, and (4) analysis of aquaculture
opportunities within the most suitable areas to select final areas for aquaculture.
Collectively, these MSP approaches help ensure that aquaculture development meets
EAA principles of ensuring ecological resilience, public benefit, and balance with
other industry and policy goals.

SPATIAL PLANNING APPROACHES FOR MARINE AQUACULTURE

1. DATA AcQUISITION AND EXCLUSION ANALYSES (SCOPING).—Defining the
AOQI in which planning will be conducted is a necessary first step, and this
must be completed at the desired spatial, social, and political scales (Aguilar-
Manjarrez et al. 2017). This decision (also known as scoping)—at least in the
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broader ecosystem context—is usually completed by a panel or coastal manager
review group with high-level input from industry and other stakeholder or
community groups. Spatial planning within this scoping process generally
precedes an exclusion analysis wherein geospatial data (Table 2) associated
with major constraining factors (e.g., areas important for national security,
shipping lanes, marine protected areas, physical obstructions, etc.) within
an AOI are used to exclude areas of known, more absolute conflict from
further spatial planning consideration (i.e., binary “yes” or “no” criteria).
Constraints are removed from the initial AOI by: (1) removing the occupied or
constrained area from the AOI and (2) buffering the occupied areas based on
safety considerations if required. Once all areas associated with constraints
are removed from the initial AOI, subsequent spatial planning and analyses
focus on identification of usable space for aquaculture infrastructure within
the remaining AOI The final usable area can then be assessed for Aquaculture
Planning Areas.

AQUACULTURE PLANNING AREAS.—Once the AOI is defined and exclusion
analyses are performed, Aquaculture Planning Areas can be responsibly
identified within the remaining AOI. Planning area identification requires
establishment and analysis of set criteria to define broad areas within which
different types of aquaculture may be suitable (Aguilar-Manjarrez et al. 2017).
Broadly, planning areas can identify potential areas for aquaculture expansion
in new areas and help regulate continued aquaculture development where
it already exists. A planning area also implies established legal boundaries
for aquaculture, which requires consultation with lawmakers and other
stakeholders of interest in defining the planning area. Aquaculture Planning
Areas are beneficial for aquaculture site selection to: (1) mitigate and minimize
environmental deterioration, (2) provide established areas for estimation of
carrying capacities, (3) reduce negative social and environmental interactions,
(4) provide coastal managers and regulators with areas to plan for monitoring,
(5) increase production and social development, (6) aid implementation of
disease risk management, (7) help investors identify prospective sites where
long-term investments are possible, and (8) establish clear regulations for
activities and behaviors within the zones (Aguilar-Manjarrez et al. 2017).
Aquaculture Planning Areas allow for a more efficient and targeted site
selection process for all types of aquaculture. The outcomes of identifying
planning areas inform the objectives used to shape subsequent spatial
suitability models.

SPATIAL SUITABILITY ANALYSES.—Spatial suitability modeling refers to
the spatial overlay and analysis of pertinent geospatial data layers within an
AOQI to identify and compare areas along a range of continuous suitability
(from unsuitable to optimal). This framework allows for identification of
suitable potential aquaculture sites based on ecological, administrative,
transportation, ocean industry, navigation, among other relevant factors. GIS-
based site suitability is one of the most important steps in the MSP process to
evaluate potential aquaculture sites (Stelzenmiiller et al. 2017). These analyses
provide spatially explicit estimations and visualizations of the potential for
aquaculture expansion within an AOI. Historically, this approach was used in
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Table 2. Example of a data inventory that can be used to define constraining factors within the scoping process
for aquaculture.

Constraint Category Data

Infrastructure Use Military Military danger and restricted areas
Training areas
Operating areas
Unexploded ordnance areas
Department of Defense sites

Navigation Shipping fairways
Coastal maintained channels
Anchorage areas
Lightering zones
Aids to navigation

Industrial Oil and gas platforms
Active lease blocks
Significant sediment resources
Current and planned dredging activities
Ocean disposal sites

Regulatory Protected Habitats and Species  Essential Fish Habitat
Habitat Areas of Particular Concern
National Marine Sanctuaries
Marine Protected Areas
Special designations

Boundaries and Limits State waters
Federal waters
Territorial seas
US Exclusive Economic Zone
International waters

Biogeochemical and ~ Geomorphological Substrate type
Physical Hydrocarbon seeps
Total organic carbon
Sulfides
Redox potential

Biochemical and Oceanographic Current speed and direction; Significant wave
height and wave period

Depth

Wind speed and direction
Water temperature
Salinity

Biological Distribution of corals, hardbottom, submerged
aquatic vegetation, kelp, and other habitat-forming
species
Artificial reefs
Marine mammal densities and migration areas
Proximity to seabird nesting colonies
Benthic infauna

Socioeconomic Social and Cultural Tribal practices and native fishing grounds
Perceptions of aquaculture
Viewshed impacts
Archaeologically sensitive shipwrecks
Recreational fishing/subsistence use

Accessibility Distance to port
Shore-based facilities
Skilled workforce
Access roads for operations and shipping

Economic Capital costs; Insurance cost and availability
Cost of labor
Cost of farm equipment and maintenance
Cost of security
Cost of veterinary services and therapeutics
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smaller-scale aquaculture planning efforts for in-land, data-rich areas (Nayak
etal. 2018, Bandira et al. 2021). In more recent years, as computing power, data
availability, and geospatial technologies have advanced, suitability analyses for
aquaculture have extended into the offshore environment (Stelzenmiiller et
al. 2017). High resolution spatial data with the necessary spatial and temporal
resolution for offshore planning has taken years of global scientific initiative
from many sectors and will continue to be a driver in planning as many data
gaps still exist for open ocean areas. GIS-based multicriteria evaluations
are a type of suitability analysis where relevant spatial data layers are
reclassified according to known relationships between a variable and relative
suitability (e.g., reclassification of minimum observed water temperature
spatial data based on known species tolerances) and multiple relevant layers
are subsequently integrated to generate a final suitability layer. Generally,
areas within individual spatial data layers are categorized as not suitable,
conditionally or moderately suitable, or highly suitable for aquaculture
infrastructure. Multiple layers are subsequently integrated to generate a final
suitability layer, such as within a weighted overlay wherein individual layers
receive weights based on relative importance and are subsequently summed
to generate a single, integrative suitability layer. The layer weights should be
a reflection of the objectives of each area of interest. Thus, objectives for a
given region need to be evaluated carefully to assign appropriate weights to
each layer. This modeling framework aids in identification of optimal, suitable,
and unsuitable areas for aquaculture infrastructure development based on
all factors considered within the multicriteria evaluation. It is important to
recognize some of the limitations of geospatial suitability modeling, especially
in areas with limited data and for more complex environmental processes.
For instance, rates of change and more nuanced hydrodynamic models may
be more difficult to quantify across areas of interest. Thus, comprehensive
suitability models need to acknowledge the uncertainty caused by information
that is either unavailable or not feasible to incorporate in the model.

OPPORTUNITY ANALYSIS AND FINAL SITE SELECTION.—Once suitability
analyses are performed within the Aquaculture Planning Areas, the extent of
optimal, suitable, and unsuitable areas for shellfish, finfish, or algae aquaculture
are known. Within these identified areas, subsequent opportunity analyses
can determine which species and aquaculture gear combinations are most
appropriate for a given location based on known tolerances and thresholds
for each combination. Opportunity analyses integrate requirements for
aquaculture gear (e.g., substrate, current speed, current direction, significant
wave height, depth) and species (e.g., depth, pH, salinity, temperature,
current speed, current direction, chlorophyll 4, dissolved oxygen; Wickliffe
et al. 2024). Oceanographic forces such as wave action and currents yield
structural stress on aquaculture gear, and maximum stress thresholds for
both aquaculture gear and species must be considered within opportunity
analyses. These stress thresholds must also scale based on farm size, as
hydrodynamic forces will change as the farm structure changes. Furthermore,
many species have tolerance thresholds (e.g., maximum/minimum water
temperature) above or below which growth and mortality may occur and farm
production may decline (Froehlich et al. 2016). While tolerance thresholds
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provide reasonable boundaries for a species physiological capacity, other
approaches such as dynamic energy budget models may reveal production
potential and other metrics that are more nuanced, including for areas where
multitrophic opportunities are explored (Sara et al. 2012, Lavaud et al. 2021).
In addition to opportunity analyses, the final site selection process may also
include end-user-specific considerations, such as ease of site access by growers
or proximity to existing aquaculture infrastructure. All relevant stakeholders
(e.g., aquaculture growers, coastal managers) should be engaged throughout
the final site selection process.

CONCLUSIONS AND RECOMMENDATIONS

Marine spatial planning techniques are integral to the planning, siting, and
management of sustainable aquaculture industries. Intensive competition for
limited ocean space amongst current ocean use sectors demands transparent
spatial data analysis approaches and visualizations within a MSP framework to
identify compromise, and to find the best fit locations for aquaculture development
(Stelzenmiiller et al. 2017). Here, we provide multiple MSP approaches of relevance
to EAA, ranging from carrying capacity models to hierarchical spatial analysis
protocols. Decisions regarding planning should be made at the appropriate scale and
use best available data that meet the minimum quality and relevance requirements.
Monitoring should be performed on a regular basis to ensure that ecosystem carrying
capacity has not been exceeded, and adaptive management should be continually
employed to address problems and improve production and efficiency (Froehlich et
al. 2021, Fujita et al. 2023).

A spatial plan that uses EAA is wholly robust if it is given the capacity to adapt in
light of ecosystem changes. As environmental conditions change (Best et al. 2015),
aquaculture plans should consider how all aspects of a farm may respond, including
the location, structure, and species. Long-term sustainability of aquaculture can
be achieved if planning methods that assess the production stability of a farm to
changing conditions are used (Froehlich et al. 2021). As the aquaculture industry
innovates, including the development of much larger farms and untethered designs,
new challenges with MSP will emerge. Thus, it is prudent for an EAA to include
proactive and adaptive marine spatial plans that incorporate scoping for areas where
potential emerging technologies are feasible.

It is important during the spatial modeling process to consider the spatial and
temporal dynamics of each data layer, especially in areas where there is greater
uncertainty. Suitability and opportunity analyses are able to partially account for
temporal variation of factors by exploring distributions of values during modeling
efforts. Monte Carlo simulations and Bayesian belief networks are both valid ways to
explore ranges of relevant environmental and social factors that could be applied to
aquaculture suitability (Coccoli et al. 2018). A notable limitation to these dynamic
approaches is data availability, which can inform the distribution of input values into
the models (Stephenson et al. 2018). In addition, while long-term temporal dynamics
models (10+ years) show promise, predictability remains a challenge at higher
resolutions that would be of particular interest to aquaculture developers (Chen et
al. 2024).
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Aquaculture has already become an integrated part of the ocean infrastructure
in many regions of the world (e.g. Norway, Chile, China). Currently, the US seafood
economy largely relies on imports, and over half is produced from aquaculture
(Gephart et al. 2019). As marine and coastal aquaculture operations grow in US
waters to meet domestic needs for seafood, it is recognized that more sustainable
food production systems require supplemental knowledge about how the ecosystem
is already utilized, and how conflicts among stakeholder groups are addressed (Byron
and Costa-Pierce 2013, Grebe et al. 2019). A long-term perspective that integrates
cultural and economic dimensions is critically important to support realistic growth
trajectories (Gentry et al. 2017a,b). With proper planning and resource allocation,
the US has the potential to emerge as a world leader in the production of safe and
sustainable seafood.
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