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Abstract

The Geophysical Fluid Dynamics Laboratory (GFDL)’s System for High-
resolution prediction on Earth-to-Local Domains (SHiELD) model typically uses
the National Centers for Environmental Prediction (NCEP) Global Forecast Sys-
tem (GFS) analysis to initialize its medium-range forecasts. A data assimilation
(DA) system has been implemented for the global SHiELD to demonstrate the
prediction skills of the model initialized from its own analysis. The DA sys-
tem leverages the advanced DA techniques used in GFS and assimilates all the
observations assimilated in GFS. Compared to the forecasts initialized from GFS
analysis, SHiELD forecast skills are significantly improved by using its own
analysis. Remarkable improvement is found in the southern hemisphere with
positive impact lasting up to 10 days. The DA system is useful in identifying
and understanding model errors. The most noticeable model error detected by
the DA system originates from the turbulent kinetic energy (TKE)-based moist
eddy-diffusivity mass-flux vertical turbulent mixing (TKE-EDMF) scheme. The
model error leads to insufficient ensemble spread. Including two versions of the
TKE-EDMF scheme in the ensemble helps increase ensemble spread, further
improves forecast skills and alleviate the systematic errors in marine stratocu-
mulus regions. Applying interchannel correlated observation errors for Infrared
Atmospheric Sounding Interferometer (IASI) and Cross-track Infrared Sounder
(CrIS) also reduces the systematic errors and improves the forecast skill up to day
5. Further investigation of the forecast errors reveals that the ensemble spread
is largely affected by the parameterization of eddy diffusivity through its impact
on the gradient of the model state. The systematic forecast errors in marine stra-
tocumulus regions are associated with the vertical location of the stratocumulus
cloud, which is sensitive to model vertical resolution within the cloud layer.
Enhancing eddy diffusion within the cloud or near cloud top elevates cloud top
but reduces cloud amount.
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1 | INTRODUCTION

The improvement of numerical weather prediction (NWP)
relies on the advances of the forecast models and the
improvement in the accuracy of initial conditions facili-
tated by the increasing computing power. The initial con-
dition (also known as analysis) is created by statistically
combining short-range forecasts (also known as first guess
or background) with observations via data assimilation
(DA) techniques. The quality of the initial condition is
therefore determined by the forecast model, observations
assimilated and DA methods, which include DA schemes,
cycling strategies, pre-processing and quality control of
observations, representing background and observation
errors, mapping background to observations via observa-
tion operators, accounting for model errors, and enhanc-
ing balance in analysis.

System for High-resolution prediction on Earth-to-
Local Domains (SHIiELD) is an experimental global
atmospheric model developed by the Geophysical Fluid
Dynamics Laboratory (GFDL). It was originally developed
as a prototype of the Next-Generation Global Prediction
System for the National Weather Service (NWS) by cou-
pling the non-hydrostatic Finite-Volume Cubed-Sphere
Dynamical Core (FV3; Lin & Rood, 1996; Lin, 1997;
Lin, 2004; Putman & Lin, 2007; Harris, Chen, et al., 2020)
with the Global Forecast System (GFS) physics suite
(Harris, Zhou, et al., 2020). The SHiELD model is contin-
uously upgraded with advances in dynamics and physics
and with new capabilities developed (Gao et al., 2021;
Harris, Zhou, et al., 2020; Mouallem et al., 2023; Zhou
et al., 2022; Zhou & Harris, 2022). The model can be
initialized from a variety of external analyses, including
National Centers for Environmental Prediction (NCEP)
GFS analysis and European Centre for Medium-Range
Weather Forecasts (ECMWF) Integrated Forecasting Sys-
tem (IFS) analysis, through a well-designed initialization
procedure that accurately preserves the initial condi-
tions while ensuring consistency with the FV3 dynamics
(Harris et al., 2021). GFS analysis is typically used to initial-
ize SHIiELD forecasts, including its real-time forecast run
at GFDL (available at https://www.gfdl.noaa.gov/shield/).

SHiELD (formerly known as fvGFS) has participated
in model intercomparison studies aiming to understand
the role and relative importance of model formulation and
initial condition on medium-range forecast errors in mid-
latitudes (Magnusson et al., 2019) and tropical cyclone
(TC) prediction (Chen et al., 2019). Magnusson et al. (2019)
found that the initial condition plays a major role in
forecast root-mean-squared error (RMSE) differences for
the evaluated configurations, while the model formula-
tion is the main factor impacting forecast biases for the
investigated parameters. Chen et al. (2019) show that both
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forecast model and initial condition play important roles
in TC prediction. They found that the large-scale flow and
TC track forecasts are significantly improved using the
IFS initial condition compared to the forecasts using GFS
initial condition. For the 2017 Atlantic hurricane season,
SHIiELD track forecasts using IFS analyses are even better
than IFS, which in most years has lower Atlantic TC track
errors than all other operational models.

In a forecast system run with DA, the forecast model,
DA and observational data usage are interdependent
(Bauer et al., 2015). A more accurate forecast model pro-
duces a more accurate first guess that matches obser-
vations better. It allows more observations to be assimi-
lated' and improves the accuracy of the analysis, which in
turn further improves short-range forecasts (first guesses)
within DA cycles. In this study, we implemented a global
DA cycling system for SHiELD based on the existing DA
capabilities available from GFS (Kleist et al., 2023). This
allows us to take advantage of our model advances, which
potentially help create a better initial condition and fur-
ther improve the model’s prediction skill upon using GFS
initial condition. On the other hand, the cumulative effect
of DA cycling and the diagnostic statistics from the DA
system facilitate our understanding of the model charac-
teristics and the source of forecast errors, which provides
us clues to improve the model.

The evaluation of the SHiELD DA cycling system is
based on the comparison with the GFS DA cycling system.
In Section 2, we first compare the SHiELD and GFS fore-
cast models and provide some details on our implementa-
tion of the SHiELD DA system. Section 3 focuses on the
evaluation and improvement for the SHIELD DA system.
We explored upgrading observation errors of two infrared
instruments, the Infrared Atmospheric Sounding Inter-
ferometer (IASI) and the Cross-track Infrared Sounder
(CrIS), to interchannel correlated observation errors, and
the results will be presented in Section 4. The acronyms
of the satellite instruments used in this study are listed in
Table 1. Section 5 focuses on investigating the root cause
of the analysis and forecast errors identified from the DA
experiments. Section 6 summaries the results of this study.

2 | MODEL AND DATA
ASSIMILATION SYSTEMS
2.1 | SHIiELD and GFS configurations

The FV3 dynamic core was transitioned into the opera-
tional GFS in its version 15 (GFSv15) in June 2019. Since
then, the operational GFS has shared several common

model components with SHiELD, while each model has
its own upgrade focus and pace. The SHiELD model
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TABLE 1  Acronyms of satellite instruments and observations.
Acronym Expansion
ABI Advanced Baseline Imager
AHI Advanced Himawari Imager
AMV Atmospheric Motion Vector
AMSU-A  Advanced Microwave Sounding Unit-A
ATMS Advanced Technology Microwave Sounder
AVHRR Advanced Very High Resolution Radiometer
CrIS Cross-track Infrared Sounder
GPSRO GPS Radio Occultation
GOES Geostationary Operational Environmental Satellite
IASI Infrared Atmospheric Sounding Interferometer
MHS Microwave Humidity Sounder
SEVIRI Spinning Enhanced Visible and Infrared Imager
SSMIS Special Sensor Microwave Imager/Sounder

has been upgraded almost every year (Harris, Zhou,
et al., 2020). The experiments conducted in this study
are based on the 2022 version of SHiELD (SHiELD 2022
hereafter). We constructed the SHiELD DA system based
on and compared it with the current operational GFS,
which is its version 16 (GFSv16). The cumulus convection
schemes (Han et al., 2017), the vertical turbulent mixing
scheme (Han & Bretherton, 2019), and the Noah land
surface model (Ek et al., 2003) are synchronized with
GFSv16 in SHIiELD 2022 (Zhou et al., 2022). Although the
source codes of the physics packages are synchronized
with GFSv16, the actual versions of the physics packages
used in SHiELD 2022 could be different, and parameter
tuning may be different.

Table 2 lists the major model configuration differences
between SHIiELD 2022 and GFSv16. Some of these dif-
ferences impact our development and customization of
the DA system, for example, the vertical levels and the
scheme used to handle air-sea interaction. A mixed-layer
ocean (MLO) based on Polland et al. (1973) was imple-
mented in SHIiELD to account for the interactions between
atmosphere and ocean. The MLO predicts mixed-layer
depth and temperature within the mixed layer with ten-
dencies computed from the net surface heat flux and sur-
face wind stress. The sea surface temperature (SST) is
nudged toward observational climatology' plus a slowly
decaying initial anomaly (Harris, Chen, et al., 2020; Har-
ris, Zhou, et al., 2020). In GFS, a near-sea surface tem-
perature (NSST) scheme is used to predict the near-sea
surface temperature profile between the surface and a
reference level at about 5m through a diurnal warming
model and a skin-layer cooling parameterization based on
Fairall et al. (1996). The NSST scheme is coupled with an

NSST analysis (Li & Derber, 2008) to provide better SST for
the calculation of air-sea heat and moisture fluxes, and to
be used by the radiative transfer model for satellite radi-
ance assimilation. A major upgrade of SHiELD 2022 is the
upgrade of the GFDL microphysics scheme to version 3
(GFDL MP v3; Zhou et al., 2022). This GFDL MP upgrade
consists of three aspects: code reorganization, optimiza-
tion and modularization; using more realistic particle size
distributions for cloud water and cloud ice; and the use
of climatological aerosol data to calculate cloud droplet
number concentration. This GFDL MP upgrade signifi-
cantly improves global medium-range weather prediction
skills as documented in Zhou et al. (2022). Beside the listed
major configuration differences, many model parameters
are also tuned differently for these two models.

2.2 | SHIELD data assimilation system

A pragmatic way of developing a DA cycling system for
SHIiELD to be able to compare with the operational GFS
is leveraging all advanced DA techniques from GFS. The
building blocks for the system are available from the
GitHub repositories of GFS. We started from developing a
DA interface for the SHiELD model. A significant amount
of effort was made on code integration and validation in
order to enable capabilities such as incremental analysis
update (IAU; Bloom et al., 1996) and stochastic param-
eterization schemes (e.g. Leutbecher et al., 2017; Palmer
et al., 2009), including the stochastically perturbed param-
eterization tendency scheme (SPPT; Buizza et al., 1999,
Palmer et al., 2009; Shutts et al., 2011), the stochasti-
cally perturbed boundary layer humidity scheme (SHUM;
Tompkins & Berner, 2008), and the Stochastic Kinetic
Energy Backscatter scheme (SKEB; Berner et al., 2009).
Our workflow was built based on the GFS workflow with
many changes made to customize the DA system for
SHiELD. Beside DA cycling and forecast-only workflows,
we also developed other options such as replay (Orbe
et al., 2017; Takacs et al., 2018), ensemble replay (Zhu
etal., 2022), ensemble post-processing, forecast departures
evaluation for various DA development and assessment
purposes.

The SHIiELD DA cycling run for this study closely
matches GFSv16.2. It is a hybrid 4D ensemble-variational
DA with 80 ensemble members (4DEnVar; Kleist &
Ide, 2015) based on the Gridpoint Statistical Interpolation
(GSI, Kleistetal., 2009) with 4DIAU (Lei & Whitaker, 2016;
Lorenc et al., 2015). The static background covariance
was estimated using the National Meteorological Center
(NMC) method (Parrish & Derber, 1992) by running pairs
of 24 and 48 hours SHIiELD forecast initialized from oper-
ational GFS analyses at C192 (~50km) resolution every
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TABLE 2 Major configuration differences between SHiELD 2022 and GFSv16.

Configuration SHIiELD 2022 GFSv16

Vertical levels/model top 91/0.66 hPa (~ 51 km) 127/0.01 hPa (~ 80 km)

Tracer advection scheme Positive-definite Monotonic

Microphysics Inline GFDL MP v3 Split GFDL MP v1

Vertical turbulent mixing ~ TKE-EDMF initial version (EDMFO0)

Ocean surface MLO

Gravity Wave Physics
tion (used in GFSv15)

GFS orographic gravity wave drag parameteriza-

TKE-EDMF newer version (EDMF1)
NSST
CIRES Unified Gravity Wave Physics Scheme

Note: The description of the split and inline microphysics can be found in Appendix B of Harris, Zhou, Lin et al. (2020) and more details can be found in Zhou
et al. (2022). The initial and the newer versions of the TKE-based eddy-diffusivity mass-flux (TKE-EDMF) scheme are implemented as two separate options that
can be chosen through a namelist parameter. CIRES stands for University of Colorado Cooperative Institute for Research in the Environmental Sciences. More
technical details about the GFS physics suite can be found at https://dtcenter.ucar.edu/GMTB/v4.1.0/sci&uscore;doc/index.html.

Abbreviations: EDMF, eddy-diffusivity mass-flux; GFDL, Geophysical Fluid Dynamics Laboratory; GFS, Global Forecast System; SHiELD, System for
High-resolution prediction on Earth-to-Local Domains; TKE, turbulent kinetic energy.

five days for a whole year. The ensemble members are
updated with a modulated space form of the local
ensemble Kalman filter (LETKF; Hunt et al., 2007, Lei
et al., 2018). Multiplicative inflation through relaxation to
the prior spread (RTPS; Whitaker & Hamill, 2012) is used
to increase ensemble spread. The SPPT, SHUM and SKEB
schemes are also used to represent model uncertainties in
the ensemble. More DA upgrades adopted from GFSv16
can be found at https://www.emc.ncep.noaa.gov/emc
/pages/numerical_forecast_systems/gfs/implementations
.php.

All observations assimilated in GFSv16.2 are assimi-
lated in SHIiELD except a few channels from microwave
(MV) and infrared (IR) instruments due to the lower
model top of SHIiELD. In particular, AMSU-A chan-
nel 14 and ATMS channel 15 are not assimilated in
SHIiELD. IASI channel 16 (648.75cm™"), 72 (662.75cm™"),
303 (720.5cm™!) and CrIS channel 28 (666.875cm™), 32
(669.375cm™!), 115 (721.25cm™?) are also excluded from
assimilation, because very large observation innovation
biases were found in those channels during our initial eval-
uation of the IR radiance assimilation. The interchannel
correlated observation errors for IASI and CrIS, which are
used in GFSv16, are not applied in most of our SHiELD
DA experiments. The estimation of the interchannel corre-
lated observation errors for IASI and CrIS and their impact
will be discussed in Section 4. Te GPS RO bending angles
up to 45km are assimilated in SHiELD instead of up to
55km in GFSv16.

We adopted the GFS surface cycle to update numer-
ous surface fields such as SST, snow cover, sea ice, soil
moisture and temperature etc. from real-time analyses or
climatological datasets. When the NSST analysis is not per-
formed, which is the case for SHiELD, the surface cycle
updates SST from the NCEP Real-Time Global Sea Surface

Temperature (RTG SST) analysis product. The RTG SST
analysis product created through a 2DVar technique was
discontinued on February 11, 2020. While NCEP still gen-
erates the RTG SST analysis data based on the NSST foun-
dation temperature (personal communication with Xu Li
at NCEP/EMC) every six hours at the main synoptic times,
the RTG SST analysis data are identical in 24 hours and
change once at 1800 UTC each day. Our initial use of the
RTG SST analysis data in the surface cycle led to distinct
negative near-surface temperature and moisture biases
over northern-hemispheric oceans compared with surface
observations. It largely degraded the prediction skill. We
modified the surface cycle to update SST from the GFS
surface analysis data, which are also available at the begin-
ning of the IAU window (0300, 0900, 1500, and 2100 UTC).
Changes were also made to the MLO to incorporate the
IAU capability.

3 | SYSTEM EVALUATION AND
IMPROVEMENT
3.1 | Experiments

This study aims to demonstrate the medium-range forecast
performance of SHiELD initialized from its native analy-
sis obtained through running DA cycling. The reference is
SHiELD free forecast initialized from GFS analysis, which
is how the model is utilized in our research and real-time
forecast. Before running the medium-range forecast, we
need to make sure that SHIELD DA cycling works properly
through comparison with GFS DA cycling. The opera-
tional GFSv16 and SHiELD 2022 real-time forecast are
both run at horizontal resolution of C768 (~13 km). Due
to limited computing resources, SHiELD DA experiments
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SHIiELD replay to GFS_DA IC with the EDMFO version of the TKE-EDMF scheme (default 2022

TABLE 3 Names and descriptions of data assimilation, replay and free forecast experiments.
Experiment Description
GFS_DA Experimental GFSv16.2 DA cycling
SHiELD_GFSIC_REPLAY
SHIiELD configuration)
DA_CNTL SHIiELD control DA cycling with the EDMFO version of the TKE-EDMF scheme
DA_EDMF1

DA_CNTL_DEDMFENS
the ensemble

DA_EDMF1_DEDMFENS
in the ensemble

DA_EDMF1_DEDMFENS_RCOV
IASI and CrIS

SHIiELD_GFSIC_EDMF1
scheme

SHIiELD DA cycling with the EDMF]1 version of the TKE-EDMF scheme
Same as DA_CNTL, but use both versions (EDMF0 and EDMF1) of the TKE-EDMF scheme in

Same as DA_EDMF]1, but using both versions (EDMFO0 and EDMF1) of the TKE-EDMF scheme

Same as DA_EDMF1_DEDMFENS, but apply interchannel correlated observation errors for

SHIiELD free forecast initialized from GFS_DA IC using the EDMF1 version of the TKE-EDMF

Abbreviations: DA, data assimilation; EDMF, eddy-diffusivity mass-flux; GFS, Global Forecast System; SHiELD, System for High-resolution prediction on

Earth-to-Local Domains; TKE, turbulent kinetic energy.

(Table 3) were run at a reduced horizontal resolution of
C192 (~50 km). The horizontal resolution of the ensemble
in the DA experiments is C96 (~100 km). For fair compari-
son, we also ran a GFS DA experiment at the same reduced
horizontal resolution (GFS_DA in Table 3). The evalua-
tion of the system at C768 resolution will be conducted in
the near future, as we are porting the system to a newly
available High Performance Computing system.

Our evaluation of the DA system is based on short-
range forecasts within DA cycles. Both initial condition
and model formulation play a role in forecast perfor-
mance. The relative impact of initial condition and model
formulation on short-range forecast can be deduced from
comparing SHIiELD and GFS DA experiments with a
SHIiELD replay forecast experiment. The replay technique
was first developed at the NASA Global Modeling Assimi-
lation Office (GMAO) based on the IAU capability (Orbe
et al., 2017). The IAU is an initialization method applying
analysis increments gradually into model integration to
reduce the imbalance and model shocks resulting from
running the model directly from the analysis (Bloom
et al., 1996). The replay forecast is similar to the TAU
enabled forecast step in DA cycling, except that the IAU
tendencies are computed from a pre-existing analysis
(Orbe et al., 2017; Takacs et al., 2018). The SHiELD replay
experiment (SHiELD_GFSIC_REPLAY in Table 3) uses
the GFS_DA analysis to compute the analysis incre-
ments relative to the SHIiELD forecast. It is equivalent to
re-running the GFS_DA forecast step but replacing the
GFS model with the SHIELD model. It is also equivalent
to re-running the SHIiELD DA forecast step but replacing
the SHIiELD analysis with the GFS_DA analysis.
The intercomparison between the DA and replay

experiments helped us identify defects in the SHIELD DA
system.

The first cycle of all DA and replay experiments was
initialized from the operational GFS analysis at 1800
UTC on 9 June 2022. The DA and replay experiments
were run until 0000 UTC on 24 August 2022. The first
10days’ spin-up cycles were discarded from evaluation.
The SHIiELD_GFSIC_REPLAY and the SHiELD control
DA experiment (DA_CNTL) use the default SHIiELD
2022 model configuration. A couple of more SHiELD DA
experiments (DA_EDMF1, DA_CNTL_DEDMFENS and
DA_EDMF1_DEDMFENS in Table 3) were run to under-
stand and mitigate model errors associated with the tur-
bulent kinetic energy (TKE)-based moist eddy-diffusivity
mass-flux (TKE-EDMF) vertical turbulent mixing scheme
(Han & Bretherton, 2019). Another SHiELD DA experi-
ment (DA_EDMF1_DEDMFENS_RCOV) was conducted
to demonstrate the impact of using interchannel corre-
lated observation errors for IASI and CrIS, which will be
discussed in Section 4. The medium-range forecasts ini-
tialized from the DA_EDMF1, DA_EDMF1_DEDMFENS
and DA_EDMF1_DEDMFENS_RCOV analyses are com-
pared with SHiELD free forecast initialized from GFS_DA
analysis (SHiELD_GFSIC_EDMF1 in Table 3) to demon-
strate the impact of using SHiELD native analysis and the
improvement in SHiELD DA system.

3.2 | Short-range forecast verified
against observations

The short-range forecast of SHiELD DA cycling is eval-
uated from the background departure (also known as
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observation innovation, observation minus background =~ AMVs above 600 hPa (Figure le), and GPS RO bending

or OmB) standard deviations of all assimilated observa- angles almost through the whole atmosphere, except the
tions. The SHIiELD forecast fits observations better than  upper stratosphere near SHiELD model top (Figure 1d).
GFS forecast in terms of random errors, if the normal-  SHIiELD short-range forecasts are not as good as GFS

ized OmB standard deviations are smaller than 100% in terms of the fits to wind observations below 900 hPa
in Figures 1 and 2. Both initial condition and forecast  (Figure la), temperature observations between 250 hPa
model contribute to the OmB differences between the  and 50 hPa (Figure 1b), humidity observations between
SHIiELD DA and GFS DA experiments. To separate the 900 and 800hPa (Figure 1c), and AMVs below 600 hPa
impact of initial condition and forecast model, the OmB  (Figure 1e).

standard deviations of SHIELD_GFSIC_REPLAY are also The impact of initial condition on SHIiELD short-
included for non-radiance observations in Figure 1. The = range forecast can be revealed by comparing SHiELD_
OmB standard deviations for radiance observations are not GFSIC_REPLAY with SHiELD DA_CNTL experiments.
shown for SHIELD_GFSIC_REPLAY, because it is simply =~ SHIiELD forecast shows significant improvement in the

are-forecast experiment and does not generate bias correc-  fits to conventional wind observations below 150hPa
tion coefficients necessary for computing bias-corrected = and AMVs, when initialized from its own analysis
radiance OmBs. (Figure 1la,e). This indicates that the wind field in

First, we would like to compare SHiELD and GFS  SHiELD analysis is better than that in GFS analysis
short-range forecasts with the same GFS_DA initial con-  in those observed areas. The quality of the initial con-

dition via the SHiELD_GFSIC_REPLAY and GFS_DA dition is partially determined by the forecast model.
experiments. SHiELD forecasts fit better to conventional =~ Where the model forecast is better as shown by the
wind observations in the middle to upper troposphere = SHIiELD_GFSIC_REPLAY vs the GFS_DA in Figure 1, the
(Figure 1a), conventional temperature observations in  analysis can also be improved, and the short-range fore-
the lower troposphere (Figure 1b), humidity observations  cast initialized from better analysis is further improved
near the surface and above 800 hPa (Figure 1c), satellite  through DA cycles. However, there are situations where
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FIGURE 1 Normalized standard deviation of background departures (observation minus background, OmBs) w.r.t the GFS_DA
experiment for (a) conventional vector wind; (b) conventional temperature; (c) conventional specific humidity; (d) GPS RO bending angle;
and (e) AMV. The standard deviations are computed from 20 June to 24 August 2022, four cycles per day. The error bars indicate the 95%
confidence intervals.
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FIGURE 2  AsFigure 1, but for satellite radiances after bias correction: (a) AMSU-A; (b) ATMS; (c) MHS; (d) IASI; (e) ABI; (f) SSMIS;

(g) CrIS; (h) AHI; and (i) SEVIRI.

SHIiELD forecast clearly shows better performance than
GFS, but SHIiELD forecast initialized from its own anal-
ysis is largely degraded. For example, with the same
GFS_DA initial condition, the SHIELD_ GFSIC_REPLAY
forecast shows better fit to GPS RO bending angles than
the GFS_DA forecast in almost all vertical levels, but the
forecast initialized from the SHiELD DA_CNTL analysis
shows much increased OmB standard deviations of GPS
RO bending angles (Figure 1d). Similar degradations can
also be found in the OmBs of wind and temperature obser-
vations in the upper troposphere and lower stratosphere
(Figure 1a,b). This indicates that something else in the
DA system affected the analysis. The analysis seems not

well constrained by those observations. More understand-
ing and mitigation of the degradations will be discussed in
the next section.

For the verification against satellite radiance obser-
vations, we directly compare SHiELD DA_CNTL with
the GFS_DA experiment. Figure 2 shows that SHIiELD
short-range forecast fits better to all MV radiances
(Figure 2a—c, f). The percentages of improvement are quite
significant. AMSU-A channels 1-5 and 15, ATMS channels
1-6 and 16-22 are assimilated in all-sky conditions (Zhu
et al., 2016; Zhu et al., 2019; Tong et al., 2020). For all the
assimilated IR humidity channels of geostationary satel-
lite instruments, the OmB standard deviations of SHIiELD
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FIGURE 3 Global mean vertical profile of ensemble spread of (a) zonal wind (m-s7!); (b) temperature (K); and (c) specific humidity

(g'kg™!) for GFS_DA, DA_CNTL, DA_EDMF1 and DA_CNTL_l0z experiments. The spreads are computed from the four DA cycles of 11
June 2022. DA_CNTL_10z: Same as DA_CNTL, except that the background characteristic mixing length (10) in the turbulent kinetic energy
eddy-diffusivity mass-flux (TKE-EDMF) scheme is not a constant, but exponentially decreases with height as Equation (4) in Table 4.

are also smaller than GFS (Figure 2e, h, i). Smaller OmB
standard deviations of SHiELD are also found in all MV
humidity channels (Figure 2b, c). All these suggest a bet-
ter temperature, humidity and cloud forecast of SHiELD
in the regions observed by those IR and MV instruments.
The OmB standard deviations of IASI and CrIS radiances
are very different from those of other radiances. The
assimilated observation counts of IASI/CrIS troposphere
channels can be up to 50% more/less than those assimi-
lated in GFS_DA. This is largely associated with the cloud
detection scheme, which depends on the assigned obser-
vation errors (Bathmann & Collard, 2020). In the SHiELD
experiments shown in Figure 2, the operational GFSv15
observation errors for IASI and CrIS are used, while new
interchannel correlated observation errors estimated for
GFSv16 are used in GFS_DA. This motivated us to explore
the use of interchannel correlated observation errors for
IASI and CrIS in the SHiELD DA system, which will be
presented in Section 4.

3.3 | Improve SHiELD analysis through
identifying and mitigating model errors

In this section, we mainly focus on improving SHiELD
analysis by finding the source of the errors that lead to the
degradations in the analysis manifested as the large OmBs
of GPS RO bending angles, wind and temperature in the
upper troposphere and stratosphere (Figure 1a,b,d). In an
ensemble-based DA system, when the analysis is not well
constrained by the observations, a possible reason is that
the ensemble spread is not sufficient. Figure 3 shows the
ensemble spread of zonal wind, temperature and specific

humidity of SHiELD and GFS DA experiments. Although
the same ensemble inflation methods are used in both
models, their ensemble spread shows different character-
istics, which reflects the differences in the model config-
urations. SHIELD DA_CNTL has a smaller zonal wind
and temperature ensemble spread and a larger specific
humidity ensemble spread than GFS_DA. The relatively
larger gaps of zonal wind and temperature spread in the
upper troposphere and stratosphere between DA_CNTL
and GFS_DA made us suspect the lack of ensemble spread
in DA_CNTL in those regions. Whether the ensemble
spread is sufficient or not in a DA system is not simply
concluded from comparing the spread between different
models. To better quantify the error-spread consistency in
the assimilation system, we computed ensemble reliabil-
ity budget with the extended error-spread equation using
either observation (Rodwell et al., 2015) or an analysis
(Rodwell & Wernli, 2023) as the estimation of the truth.
The extended error-spread equation can be simplified as:

verified against observation: Depar?

S S (12)
= Bias” + EnsVar + ObsUnc” + Residual,

verified against analysis: Error?

(1b)

= Bias? + EnsVar + AnUnc? + Residual.

The left-hand side of the equation stands for mean-
squared ensemble mean forecast errors verified against
observation (Depar?) or analysis (Error?). The terms on
the right-hand side of the equation are squared bias of
the ensemble mean forecast relative to the observation
or analysis (Bias?), mean ensemble variance (EnsVar),
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(a) GFS_DA Depar= mean: 25.8 ms: 28.5 sig: 93% (b) DA_CNTL Depar* mean: 26.6 rms: 29.6 sig: 93% (c) DA_EDMF1 Depar® mean: 25.2 rms: 2795|g 92%

2 40 203

(e) DA_CNTL Bias* mean: 0.8 rms: 2.3 sig: 15%  (f) DA_EDMF1 Bias® mean: 0.9 rms: 2.3 sig: 18%

(g) GFS_DA EnsVar mean: 5.8 rms: 7.4 sig: 97%  (h) DA_CNTL EnsVar mean: 2.9 rms: 3.7 sug 97% (i) DA_EDMF1 EnsVar  mean: 4.4 rms: 5.8 sig: 97%

(j) GFS_DA ObsUnc?*  mean: 14.3 rms: 14.4 sig: 99%

(m) GFS_DA Residual mean: 4.8 rms: 9.5 s5ig: 25%  (n) DA_CNTL Residual mean: 8.6 rms: 13.6 sig: 48%

FIGURE 4 Ensemble reliability budget for GPS RO bending angle (10710 radians?) between 100 and 150 hPa computed from three to
nine hours (assimilation window) ensemble forecast of the 0000 UTC and 1200 UTC cycles from 20 June to 24 August 2022 for GFS_DA (left
column); DA_CNTL (middle column); and DA_EDMF1 (right column) experiments. (a—c) Mean-squared departure of the ensemble mean
relative to the observation (Depar?). (d-f) Squared bias of the ensemble mean forecast relative to the observation (Bias?). (g-i) Mean
ensemble variance (EnsVar). (j-1) Mean squared observation error (ObsUnc?). (m-o0) The residual term. The data were aggregated to 2° X 2°
grid boxes before they are used to compute the budget. The grid boxes with more saturated color indicate that budget terms are different from
0 at 5% significance level. The mean and root-mean-square of the budget terms over the global domain, as well as the percentage of the area
exceeding the 5% significance level are shown at the top of each panel.
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TABLE 4  Selected differences between EDMFO0 and EDMF1 versions of the TKE-EDMF scheme, and the selected difference between
the scheme used in SHiELD and the scheme used in GFS.
SHiELD SHiELD GFS
initial version newer version newer version
Parameterization EDMFO0 EDMF1 EDMF1
Background characteristic mixing length I, (m) I, =30.0(3) Iy = 30.Oe[_2‘5(1_P/ P) ] 4
2
Minimum TKE e (m?-s~2) threshold used in TKE inte- emin = 1.07° (5) Crmin = (CK—‘;) (6)
m'k

gration

Eddy diffusivity K, (m?-s7!) at stratocumulus cloud
top

Non-local mixing for hydrometeors

Note: Equations are based on Han and Bretherton (2019) and Han et al. (2021).

K¢ = c¢lk\/§+ KAR (7)

Ky = anlk\/5 ®

Off On

Symbols: K, eddy diffusivity (m?-s7'); c,, a proportionality coefficient; I, turbulent mixing length (m); e, TKE (m?-s~2); I, background characteristic mixing
length (m); P, level pressure (Pa); Py, surface pressure (Pa); 6,, virtual potential temperature (K); Kxr, eddy diffusivity proportional to radiative flux jump at
cloud top (4R); Ky, background diffusivity (m?-s71); ¢,,, coefficient for momentum.

Abbreviations: EDMF, eddy-diffusivity mass-flux; GFS, Global Forecast System; SHiELD, System for High-resolution prediction on Earth-to-Local Domains;

TKE, turbulent kinetic energy.

mean squared uncertainty of observation (ObsUnc?) or
analysis (AnUnc?) and a residual. The exact equations
and their derivations can be found in Rodwell et al. (2015)
and Rodwell and Wernli (2023). Statistically signifi-
cant non-zero residual would indicate deficiency in the
ensemble spread and in some cases deficiency in the esti-
mation of observation errors (see discussion in Rodwell
etal., 2015).

Figure 4 shows the reliability budget for GPS RO bend-
ing angles between 100 and 150 hPa. SHIELD DA_CNTL
has larger ensemble mean departures than GFS_DA in
the tropical region, where about 50% of the GPS RO obser-
vations are assimilated. This explains what we found in
Figure 1d. The Bias? are small and generally not signif-
icant. The ObsUnc? term is a main contributor to the
budget. Since we adopted the GPS RO observation errors
from GFS, the ObsUnc? are basically identical in all the
experiments. The SHiELD DA_CNTL has large and signif-
icant positive residuals in the tropics (Figure 4n), which
is the result of the ensemble spread (EnsVar) deficit as
shown in Figure 4h.

The insufficient ensemble spread of the SHIiELD
DA_CNTL in the upper troposphere explains the larger
background departures shown in Figure 1d. The question
is what caused the deficiency in the ensemble spread and
how it can be resolved. In order to boost the ensemble
spread, we tested increasing the inflation factor of the
RTPS scheme and moderately increasing the amplitude
of the random perturbations applied to the net physics
tendencies in the SPPT scheme from 0.5 to 0.6. This can
increase the spread but is still far from closing the gap and
producing desired results. We then turned our attention to
the model itself. After several sensitivity tests, the problem
was identified to be associated with the TKE-EDMF
scheme. The initial version (EDMFO) of the TKE-EDMF

scheme, as documented in Han and Bretherton (2019),
is used in SHiELD 2022, while an updated TKE-EDMF
scheme (EDMF1) is used in GFSv16. The differences
between the two versions are summarized in Table 4
and will be discussed in Section 5. When we switched to
the updated TKE-EDMF scheme and ran the DA cycling
experiment (DA_EDMF1), the ensemble spreads above
500 hPa were significantly increased (Figures 3a,b and
4i). The positive GPS RO residual is significantly reduced
(Figure 40). Accompanied with that is the improved back-
ground departures of GPS RO, wind and temperature
observations in the upper troposphere and stratosphere
(DA_EDMF1 vs DA_CNTL in Figure 1a,b,d).

Switching to the upgraded TKE-EDMF scheme
improves the ensemble spread in the upper troposphere
and stratosphere, but decreases the ensemble spread in the
middle to the lower troposphere (DA_EDMF1 in Figure 3).
To see if the reduced ensemble spread is a potential source
of analysis and forecast errors, we examined the ensem-
ble reliability budget in the lower troposphere. Figure 5
shows the reliability verified against ERAS5 reanalysis
(Hersbach et al., 2020) for temperature at 850 hPa. We are
not showing the reliability budget in observation space,
because observations have limited coverage. For example,
the GPS RO bending angles at and below the top of the
planetary boundary layer (PBL) in stratocumulus regions
are largely rejected due to super-refraction. Also, some
observation errors are largely inflated to account for rep-
resentation errors and observation error correlations, such
as satellite radiance observation errors. This leads to large
negative residuals that obscure the judgment of ensem-
ble reliability. To be able to see the signs of the biases,
the square roots of the budget terms in Equation (1b)
are computed following the description in Rodwell and
Wernli (2023).
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(a) GFS_DA Error mean: 1.19 rms: 1.27 sig: 99%  (b) DA_CNTL Error mean: 1.15 rms: 1.23 sig: 99%  (c) DA_EDMF1 Error mean: 1.18 rms: 1.26 sig: 99%
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(d) GFS_DA Spread mean: 0.52 rms: 0.51 sig: 100% (e) DA_CNTL Spread mean: 0.46 rms: 0.45 sig: 100%  (f) DA_EDMF1 Spread mean: 0.44 rms: 0.43 sig: 100%
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(g) GFS_DA Bias mean: -0.46 rms: 0.77 sig: 82%  (h) DA_CNTL Bias mean: -0.31 rms: 0.72 sig: 68% (i) DA_EDMF1 Bias mean: -0.19 rms: 0.7 sig: 63%
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(j) GFS_DA Residual mean: 0.63 rms: 0.75 sig: 31% (k) DA_CNTL Residual mean: 0.67 rms: 0.78 sig: 48%
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FIGURE 5 Square root of the extended error-spread equation verified against ERAS5 reanalysis for temperature (K) at 850 hPa. The
budget terms were computed from the six-hour ensemble forecast valid at 0000 UTC from 20 June to 23 August 2022 for GFS_DA (left
column); SHiELD DA_CNTL (middle column); and SHiELD DA_EDMF1 (right column). (a-c) Mean of ensemble mean forecast error. (d-f)
Mean ensemble spread. (g-i) Ensemble mean forecast bias. (j-1) Square root of the residual term. (m) Uncertainty of ERAS reanalysis. The
residual term is computed as the square root of its absolute value preserving its sign in squared form. Statistical significance is determined
from the original squared form. Similar to Figure 4, the saturated colors indicate that the budget terms are different from 0 at 5% significance
level. The uncertainty estimation of ERAS5 comes from the 10-member ensemble of data assimilation (Isaksen et al., 2010) and it only
accounts for random errors not for systematic errors.
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FIGURE 6

Reference = DA_EDMF1
Case = DA_EDMF1_DEDMFENS

W better (95%)
W worse (95%)

System for High-resolution prediction on Earth-to-Local Domains (SHiELD) 10-day forecast scorecards comparing

DA_EDMF1 to SHiELD_GFSIC_EDMF1 (left); and comparing DA_EDMF1_DEDMFENS to DA_EDMF]1 (right). The scores are the
root-mean-squared errors (RMSE) verified against ERAS5 reanalysis. The labels on the left side of the scorecards are the verified variables at

different pressure levels indicated by the numbers. The variables verified are h (geopotential height), ¢ (temperature), vw (vector wind), q

(specific humidity), TMP2m (2-m temperature), vw10 (10-m vector wind), plt (total precipitation), flut (outgoing longwave radiation).

Red/blue color means the evaluated experiment (Case) is better/worse than the reference experiment (Reference). Darker color means the

difference exceeds 95% confidence interval.

Switching to the EDMF1 version of the TKE-EDMF
scheme (DA_EDMF1) increases the ensemble mean fore-
cast error of temperature at 850hPa (Figure 5c vs b).
The degradation is in the marine stratocumulus regions.
Figure 5i shows that the positive temperature biases in
those regions are a significant contributor to the elevated
forecast error. The caveat of the verification in model space
is that the forecast error and bias are sensitive to the ver-
ifying analysis. When the results were verified against
IFS analysis (not shown), we found even larger positive
biases and errors in DA_EDMF1 in the marine stratocu-
mulus regions, and the biases in DA_CNTL became pos-
itive and only slightly negative in GFS_DA. Nevertheless,
this does not change our conclusion for the ensemble reli-
ability. As we can see from Figure 5f,], the positive residual
in DA_EDMF1 largely comes from the lack of ensemble
spread. The ensemble spread is more reliable in DA_CNTL
at this level, as the positive residual is much smaller and
less significant (Figure 5k). In Section 5, we will discuss
how the differences in the two versions of the TKE-EDMF
scheme affect the ensemble spread.

The ensemble reliability budget clearly shows that both
versions of the TKE-EDMF scheme introduce deficiencies
in ensemble spread, one in the upper troposphere and
one in the lower troposphere. Before we invest in more
complicated ways to address the ensemble spread defi-
ciency, we first make use of the complementary errors of
the two versions of the TKE-EDMF scheme to enhance
the ensemble. Inspired by the multiparameterization
scheme of representing model uncertainty, we use both
versions of the TKE-EDMF scheme in the ensemble, that
is each version of the scheme is used by half of the ensem-
ble members. We tested this idea in two experiments:
DA_CNTL_DEDMFENS and DA_EDMF1_DEDMFENS.
The difference between the two experiments is the version
of the TKE-EDMF scheme used in the deterministic
forecast. By doing so, we found significant improvement
in short-range forecasts verified against observations
(DA_CNTL_DEDMFENS/DA_EDMF1_DEDMFENS vs
DA_CNTL/DA_EDMF1 in Figures 1 and 2). For exam-
ple, the background departures of GPS RO bend-
ing angle above 800hPa are greatly improved when
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the deterministic forecast uses the EDMFO version
of the TKE-EDMF scheme (DA_CNTL_DEDMFENS
vs DA_CNTL in Figure 1d). The departures of
DA_CNTL_DEDMFENS are even smaller than
DA_EDMF1 above 600 hPa, where the DA system suffers
much less from the ensemble deficiency there. Similarly,
the modified ensemble substantially reduced the back-
ground departures of GPS RO bending angles below
400 hPa, where the use of the EDMF1 version TKE-EDMF
scheme leads to underdispersed ensemble in the lower
troposphere (DA_EDMF1_DEDMFENS vs DA_EDMF1
in Figure 1d).

3.4 | Medium-range forecast impact

The medium-range forecast impact of SHIiELD DA is
evaluated by comparing SHiELD 10-day forecast initial-
ized from its own analysis to SHiELD forecast initialized
from GFS_DA analysis. The 10-day forecasts were run
once every day initialized at 0000 UTC from 20 June to 24
August 2022. Here we demonstrate the set of SHIELD DA
experiments using the EDMF1 version of the TKE-EDMF
scheme in the deterministic forecast. Similar conclusions
can be obtained for the set of experiments using the
EDMFO version of the TKE-EDMF scheme.

The scorecard on the left side of Figure 6 shows that
SHIELD forecast skills are significantly improved by using
its own analysis. There are more improvements in the
southern hemisphere than in the tropics and the northern
hemisphere. The positive impact can last up to 10 days.
Figure 7a shows profound improvement in the forecast of
500 hPa geopotential height in the southern hemisphere.
The reduction of the forecast error is more than 15% for
the short-range forecast as a result of improved analysis
and more than 5% out to day 6. Similar improvement is
also found in many other variables evaluated here in the
southern hemisphere (not shown). The large degradation

Forecast Day

in 850 hPa temperature and humidity forecast particularly
in the tropics (Figure 8b,e) has been shown in Figure 5c¢
to be largely within the marine stratocumulus regions.
The scorecard on the right side of Figure 6 shows the
impact of including two versions of the TKE-EDMF
scheme in the ensemble. The enhanced ensemble can
further improve forecast skills and the positive impact
can last more than five days. For example, the positive
impact on the 500 hPa geopotential height forecast can
extend one more day in the southern hemisphere and
extend to day 8 in the northern hemisphere (Figure 7).
It is noteworthy that the enhanced ensemble works on
the degraded (worse) areas in the DA_EDMF1 experi-
ment as shown on the left scorecard. Particularly, the
large short-range forecast errors of 850hPa tempera-
ture and humidity in the tropics are vastly reduced
(Figure 8).

4 | IMPACT OFINTERCHANNEL
CORRELATED OBSERVATION
ERRORS FOR ITASI AND CRIS

In this section, we continue enhancing the SHiELD DA
system through upgrading the observation errors for IASI
and CrIS by accounting for interchannel error correlations.
This work focuses on interchannel correlated errors in
the context of clear-sky radiance assimilation of IASI and
CrIS. Directly using the observation error covariances from
GFS did not produce desired results. This indicates that
the optimal observation errors can be different for differ-
ent modeling systems due to representation errors, which
motivated us to estimate the observation error covariances
for our own system. A notable finding from this effort
is that the significant errors in the marine stratocumu-
lus regions, caused by modifications to the vertical mixing
scheme, are further diminished with the optimized obser-
vations errors (Figures 5, 8 and 15).
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FIGURE 8 AsFigure 7, but for the normalized root-mean-squared error (RMSE) of 850 hPa temperature (upper panels) and specific

humidity (lower panels) in the southern hemisphere (a,d), the tropics (b,e) and the northern hemisphere (c,f).

41 | Method

The use of interchannel correlated observation errors for
IASI and CrIS has been investigated and implemented in
operational centers (Bathmann & Collard, 2020; Bormann
etal., 2016; Eresmaa et al., 2017; Weston et al., 2014). There
are some differences in the way to derive and recondition
the observation error covariance matrix in those earlier
studies. We generally follow the methods used in GFS to
compute the error covariance matrices as documented in
Bathmann and Collard (2020), that is using the Desroziers
et al. (2005) diagnostic to compute the covariance matri-
ces; deriving the covariances over sea and land separately;
and using the first method described in Weston et al. (2014)
to recondition the covariance matrices. We also tried
to use the Hollingsworth and Lonnberg (1986) method
for the initial estimation of the covariances (Bormann
etal., 2011; Bormann et al., 2016; Bormann & Bauer, 2010).
However, with the same error inflation, using the covari-
ances derived from the Desroziers et al. (2005) method
leads to smaller OmB standard deviations of other inde-
pendent observations in our system. So we lean toward
using the covariance matrices derived from the Desroziers

et al. (2005) method. With the Desroziers et al. (2005)
approach, the observation error covariance matrix (R) is
computed as R = E [dg (dg)T], where E is the statistical
expectation operator, dJ is observation minus analysis vec-
tor (OmA) and dy is the observation minus background
vector (OmB). The covariance matrix is reconditioned by

A )
rall
where Anax is the existing maximum eigenvalue and K is
a required condition number. Eigenvalues smaller than
the threshold are set to the threshold and the matrix is
reconstructed using the new eigenvalues and the original
eigenvectors (Weston et al., 2014).

The main difference between our estimation and the
GFS estimation for the error covariances lies in the way
to inflate the diagnosed error covariances. Error inflation
is commonly used to compensate for the neglected error
correlations. Previous studies show that error inflation is
also beneficial to possibly counteract inaccuracies of the
diagnosed matrices and suboptimality in the assimilation
of the instrument data, when error correlations are taken
into account (Bormann et al., 2016). In Bathmann and Col-
lard (2020), only the diagonal values of R are multiplied

setting a minimum eigenvalue threshold (Athresh =
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by an inflation factor. While this can further reduce the
condition number of R, the error correlations are largely
diluted as shown in their figures 1 and 3. When we first
attempted to inflate the diagonal values of R, we barely
found an inflation factor that could broadly improve the
background fit to other observations. Applying different
inflation factors to different spectral regions may help
achieve better results as how it is done for GFS, but this
requires more careful tuning. From a performance per-
spective, we chose to apply the inflation factor to the whole
covariance matrix.

One-month (July 2022) departure data from the
DA_EDMF1_DEDMFENS experiment (Table 3) were used
to compute the observation error covariances. Following
GFS, the IASI matrices were reconditioned to K =200
and the CrIS matrices were reconditioned to K =125.
Several ensemble replay experiments, where the back-
ground error is fixed by reusing the ensemble from the
DA_EDMF1_DEDMFENS experiment and the DA cycling
is only run for the deterministic component of 4DEnVar,
were conducted for IASI and CrIS separately to deter-
mine the optimal inflation factors based on the OmBs of
other independent observations. The short-range forecast
compared to IFS analysis was also used as a reference.
In GSI, the observation error is used in the cloud detec-
tion scheme to remove IR radiances affected by clouds

(equation 1 in Bathmann & Collard, 2020). We also ran
experiments to evaluate the impact of using the old and
new diagnosed observation errors in the cloud detection
scheme. The optimal inflation factors determined from the
experiments are 1.5 for TASI and 2.0 for CrIS. We found
that using the old observation errors in the cloud detection
scheme can produce better short-range forecasts, espe-
cially in the tropics. Finally, we conducted a full 4DEnVar
experiment (DA_EDMF1_DEDMFENS_RCOV) using the
new observation error covariances for IASI and CrIS alto-
gether with the optimal inflation factors applied and the
old observation errors used in the cloud detection scheme.

4.2 | Forecastimpact

The impact of using the new observation error covari-
ances for IASI and CrIS are evaluated by comparing
the DA_EDMF1_DEDMFENS_RCOV experiment to the
DA_EDMF1_DEDMFENS experiment. The short-range
forecast impact evaluated by the OmB standard devia-
tions of all other assimilated observations are presented
in Figures 9 and 10. The short-range forecast is generally
improved as indicated by the smaller OmB standard devi-
ations of the majority of the observations. The background
fit to GPS RO observations is improved in all vertical lev-
els (Figure 9d). The improvement in the wind field is
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FIGURE 9  AsFigure 1, but for DA_EDMF1_DEDMFENS_RCOV normalized by the observation minus background (OmB) standard

deviations of DA_EDMF1_DEDMFENS.
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FIGURE 10 AsFigure 9, but for satellite radiances: (a) AMSU-A; (b) ATMS; (c) MHS; (d) SSMIS; (e) ABI; (f) AHI; (g) SEVIRI; and (h)
AVHRR.

mainly in the lower and middle troposphere (Figure 9a,e),
while there is some degradation in the fit to AMVs in the
upper troposphere. There is clear improvement in humid-
ity, as the standard deviations of background departures
of all MV and IR water vapor channels (Figure 10b,c,e-g)
are smaller. There is also significant improvement in the
background fit to the AMSU-A and ATMS stratosphere
temperature-sounding channels. The improvements for
the AMSU-A and ATMS are even better in the tropics,
especially for the temperature-sounding channels assimi-
lated in all-sky conditions (not shown).

The forecast of DA_EDMF1_DEDMFENS verified
against ERA5 reanalysis shows significant improvement
upon the forecast using GFS analysis for almost all vari-
ables in all three geographical regions (Figure 11 left
panel). The addition of the new interchannel correlated
observation errors for IASI and CrIS shows robust
improvement up to day 5. More improvement is found in
the southern hemisphere, and there is noticeable reduc-
tion of the 500hPa geopotential height forecast error
(Figure 7a) that is significant up to day 4 (Figure 11).
Most interestingly, the new observation error covariances
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As Figure 6, but comparing DA_EDMF1_DEDMFENS_RCOV to DA_EDMF1_DEDMFENS to show the impact of using

interchannel correlated observation error covariances for IASI and CrIS.

can further improve 850 hPa temperature and humidity
forecast in the tropics, where the system struggles with
the EDMF1 version of the TKE-EDMF scheme (also see
Figure 8b,e).

5 | UNDERSTAND MODEL ERROR
ASSOCIATED WITH THE TKE-EDMF
SCHEME

Based on the experiments discussed in Section 3.3, the
main source of analysis and forecast errors was identified
to be within the TKE-EDMF scheme. In this section, we
aim to gain a deeper understanding of the root causes of
these errors. In order to do that, we first compared the
differences between the two versions of the scheme and
differences between the scheme implemented in SHIELD
and that implemented in GFS. Sensitivity experiments
(Tables 3 and 5) were conducted to understand the out-
come of the differences. We would like to answer the
following two questions through the investigation:

1. What changes in the TKE-EDMF scheme are respon-
sible for the deficiencies in ensemble spread observed
in both versions of the scheme but at different levels
(Figures 3-5)?

2. What causes the large systematic temperature and
humidity errors in the marine stratocumulus regions?

In the TKE-EDMF scheme (Han & Bretherton, 2019),
the vertical turbulent flux of a field ¢ is written as:

wig! = —Kd,% +Mu(¢u —$> —Md<¢d —$> (2)

where the terms on the right side of the equation are
eddy diffusion, surface-driven updraft mass-flux mixing
and stratocumulus-top-driven downdraft mass-flux mix-
ing. The overbars denote horizontal averages across a grid
cell and primes represent turbulent fluctuations. There are
many subtle differences between the two versions of the
TKE-EDMF scheme in the parameterization of eddy dif-
fusivity K, mass-flux for the updrafts M, and mass-flux
for the downdrafts M,. The differences that can be used to
explain the results and help answer the two questions are
listed in Table 4.

5.1 | Impact of the parameterization
on ensemble spread

We found that the ensemble spread is influenced by the
strength of eddy diffusion in the TKE-EDMF scheme.
The eddy diffusivity K; is a function of turbulent
mixing length [y and TKE (Equations 7 and 8 in
Table 4). In the TKE-EDMF scheme, both turbulent



TONG ET AL.

Quarterly Journal of the 18 of 28

NRMets

TABLE 5
sensitivity experiments run at C196 horizontal resolution with its

Names and descriptions of SHiELD forecast

original 91 vertical level configuration. All forecast experiments are
initialized from operational GFS analysis at 0000 UTC on 1 July
2022.

Experiment Description

EDMFO0 SHIiELD forecast with the EDMFO version of
the TKE-EDMF scheme

EDMFO0_l0z As EDMFO, but the background character-
istic mixing length I, is computed using
Equation (4) in Table 4

EDMF1 SHiELD forecast with the EDMF1 version of

the TKE-EDMF scheme

EDMF1_tkemin As EDMF]1, but the minimum TKE thresh-

old is set to be 1.07° as Equation (5) in
Table 4.

EDMF1_radj As EDMF1, but the eddy diffusivity at stra-

tocumulus cloud top is computed with the
additional K,y as Equation (7) in Table 4

EDMF1_nonlocal AsEDMF]I, but turn on non-local mixing for

hydrometeors.

Abbreviations: EDMF, eddy-diffusivity mass-flux; GFS, Global Forecast
System; SHIiELD, System for High-resolution prediction on Earth-to-Local
Domains; TKE, turbulent kinetic energy.

mixing length and TKE are bounded by a minimum
threshold. We will demonstrate how the parameteriza-
tion of the background (or minimum) characteristic mix-
ing length and the minimum TKE threshold affect the
strength of eddy diffusion and, consequently, the ensemble
spread.

The background characteristic mixing length [, is a
constant in EDMFO (Equation 3 in Table 4) while it expo-
nentially decreases with height in EDMF1 (Equation 4
in Table 4). When we change I, to Equation 4 in ver-
sion EDMFO in SHiELD forecast experiment EDMFO0_10z
(Table 5), the resulting mixing length [, eddy diffusiv-
ity Ky and eddy diffusion component of the turbulent

flux —K¢‘;—¢ (using turbulent heat flux as an example)
become smaller than those in the EDMFO forecast, and
the reductions increase with height (Figure 12a,b,d).
The lack of ensemble spread in the upper troposphere
and stratosphere in DA_CNTL (Figures 3a,b and 4h)
is the result of using a vertically constant I, in the
EDMFO version of the scheme, which produces too
much local turbulent mixing. When using a verti-
cally decreasing [y in DA cycling with version EDMFO0
(DA_CNTL_10z), the ensemble spread is largely increased
and the gain in ensemble spread also increases with height
(Figure 3a,b). Above 350hPa, there is little difference

Royal Meteorological Society

between DA_CNTL_I0z and DA_EDMF1 in zonal wind
and temperature ensemble spread.

The minimum TKE threshold is applied during the
integration of the TKE equation based on equations (37)
and (38) in Han and Bretherton (2019). The minimum
TKE (emin) is deduced from background diffusivity for
momentum (Equation 6 in Table 4) in version EDMF1,
while ey, is set to be 1.0~ in version EDMFO. Figure 12¢
shows that the predicted TKE in the EDMF1 forecast
experiment is much greater than that predicted in the
EDMF1_tkemin forecast experiment (Table 5), where epin
is changed to be 1.0~° in EDMF1, particularly in the lower
to middle troposphere. Therefore, EDMF1 produces more
eddy diffusion, which is even larger than EDMFO below
400 hPa (Figure 12d). When we change ep;, to 1.0~ with
version EDMF1 in the DA cycling, the ensemble spread
increases in the lower to middle troposphere due to the
reduced eddy diffusion there (not shown, but almost over-
laps with DA_CNTL_10z in Figure 3). We need to point
out that changing the parameters of the vertical mixing
scheme can help increase ensemble spread, but it does not
necessarily lead to better forecast skills. The vertical mix-
ing scheme has to be tuned together with other physics
schemes to achieve desired forecast performance.

The sensitivity experiments show that weaker eddy dif-
fusion tends to produce larger ensemble spread, and vice
versa. The eddy diffusion component of the vertical tur-
bulent mixing scheme represents down-gradient transport
by small eddies (Kohler et al., 2011). It tends to reduce the
gradient of momentum, heat and tracers. Larger ensem-
ble spread is often found in areas where strong gradients
exist. Our hypothesis is that the change of eddy diffusion
affects the ensemble spread through the change of the gra-
dient of the model state. To testify the hypothesis, we ran
two ensemble forecasts with the EDMFO version of the
TKE-EDMF scheme but use different background charac-
teristic mixing length ly. Figure 13 shows the change of
the temperature gradient norm averaged over the ensem-
ble members and the change of the ensemble spread due to
the change of [y from a constant (Equation 3) to exponen-
tially decreasing with height (Equation 4), which leads to
weaker eddy diffusion. As eddy diffusion becomes weaker,
the temperature gradient increases. The increment of the
gradient norm that includes both horizontal and verti-
cal components (Figure 13b) highly matches the incre-
ment in ensemble spread (Figure 13c) in terms of the
patterns. Although eddy diffusion represents local verti-
cal mixing, the change in the vertical component of the
gradient (Figure 13a) only partially explains the change in
ensemble spread. The local vertical mixing also modifies
the horizontal gradient of the model state. The experi-
ments confirm that the change in model state gradient
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FIGURE 12 EDMFO-normalizegl global mean (a) eddy diffusivity for heat Ky; (b) turbulent mixing length Ii; (c) TKE; and (d) eddy

diffusion component of heat flux —Kj, %. The mean profiles are from System for High-resolution prediction on Earth-to-Local Domains
(SHIiELD) six-hour forecasts initialized from operational Global Forecast System (GFS) analysis at 0000 UTC on 1 July 2022. The descriptions

of SHiELD forecast experiments are listed in Table 5.

largely explains the impact of changing eddy diffusion on
ensemble spread.

5.2 | Systematic error in marine
stratocumulus regions

The deficiency in predicting marine stratocumulus clouds
is not unique to our model. The lack of representation
of those low-level clouds is also found in the IFS and
other model forecasts (e.g., Lopez et al., 2022; Nuijens
et al., 2015). Our verification has been based on ERA5
reanalysis. Comparing the forecast against observations
collected by NASA’s Clouds and the Earth’s Radiant
Energy System (CERES) provides another independent
validation. Figure 14 shows averaged 0-6-hour forecast
top-of-atmosphere (TOA) net shortwave flux (incom-
ing minus reflected shortwave radiation) biases verified
against the CERES SYN1deg product (Doelling et al., 2013)
for DA_CNTL and DA_EDMF1. We also include the
validation for ERAS5 reanalysis. Positive biases can be
found near the western coastlines of the continents in

both DA_CNTL and DA_EDMF1 forecasts, which indi-
cate underestimation of shortwave radiation reflected by
the low clouds and, therefore, underprediction of cloud
amount or cloud cover in those areas. The problem also
appears in ERA5 and is worse in DA_CNTL than in
DA_EDMF1. Further away from the coastline over the
tropical oceans, there are negative biases in DA_EDMF1,
which suggests overprediction of cloud cover there. Lopez
et al. (2022) noted that the area is dominated by open-cell
convection with typical cloud sizes ranging from 2 to
20 km as revealed by NOAA’s GOES image (their figures 9
and 11). This imposes challenges to properly represent
those clouds even running IFS at a much higher resolution
as mentioned in Lopez et al. (2022).

Now, we would like to understand how the changes
in the vertical mixing scheme modify marine stratocu-
mulus clouds or broadly speaking the structures of the
stratocumulus-topped boundary layer (STBL). In order to
understand the root cause of the large systematic tem-
perature and humidity forecast errors of DA_EDMF1 in
marine stratocumulus regions (Figures 5 and 8), we exam-
ined the vertical profiles of temperature, water vapor and
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six-hour ensemble forecasts initialized from operational Global Forecast System (GFS) ensemble analysis at 1800 UTC on 9 June 2022.
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FIGURE 15 Vertical mean profiles of (a) temperature; (b) cloud liquid water specific mixing ratio; and (c) specific humidity within a

10° x 10° marine stratocumulus region centered at (15° S, 90° W). The profiles are from 6-hour forecasts initialized at 0000 UTC on 1 July

2022 of all the DA experiments listed in Table 2.

cloud liquid water mixing ratios averaged within a 10°
x 10° marine stratocumulus region centered at (15° S,
90° W) off the west coast of the South American conti-
nent for the DA experiments (Figure 15). After 20 days of
DA cycling, the stratocumulus cloud and inversion layer
in the DA_EDMF1 forecast locate at a level much lower
than DA_CNTL and GFS_DA (Figure 15b), which leads
to much warmer and drier conditions around 850 hPa
(Figure 15a,c). While the representation of the STBL with
a number of pressure levels of the ERA5 data is rather
poor, the temperature and humidity at 850hPa show
warm and dry biases in DA_EDMF1 compared with the
ERAS profile, and the biases in DA_CNTL are much
smaller (not shown). The vertical position of the stra-
tocumulus in DA_CNTL is roughly the same as that in
GFS_DA, but the cloud amount is much less than GFS_DA
and DA_EDMF]1. The smaller cloud amount explains the
much-reduced negative net TOA shortwave flux biases
west of 90° W and 0° longitude over the tropical oceans
in the DA_CNTL forecast but produces larger positive
biases near the coastlines compared with DA_EDMF1
(Figure 14b).

Figure 15 also shows that using both versions
of the TKE-EDMF scheme in the ensemble (DA_
EDMF1_DEDMFENS) helps offset the systematic errors
with the cloud layer moved upward. Applying inter-
channel correlated observation errors for IASI and CrIS
(DA_EDMF1_DEDMFENS_RCOV) pushes the cloud
layer further upward and reduces temperature and
humidity errors furthermore around 850hPa. To see
the effect of observation error, Figure 16 presents the
temperature and specific humidity analysis increment
profiles obtained from DA_EDMF1_DEDMFENS_RCOV
single-cycle analyses run from the background forecasts

of four DA_EDMF1_DEDMFENS cycles. Cloud water
increments are also produced by the DA system, but they
are zeroed out before IAU is run to initialize the forecast
(Kleist et al., 2023). The upgraded observation errors pro-
duce less warming and humidifying increments below
900 hPa and create more cooling and moisturizing incre-
ments above 900 hPa. Those increments are more in favor
of allocating the cloud layer at higher levels during the
forecast.

We ran forecast sensitivity experiments to help us
understand how the changes in the vertical mixing scheme
modify the vertical structures of the STBL. We were
also curious whether the STBL differences found in the
reduced resolution experiments could potentially appear
in the DA cycling run at the model’s original horizontal
resolution of C768, which we plan to do in the future.
Therefore, we ran forecast sensitivity experiments at both
C192 and C768 resolutions. Most of the findings with the
two horizontal resolutions are consistent, except that the
non-local mixing component of the scheme possesses hori-
zontal resolution dependency. All the forecast experiments
were initialized from the operational GFS analysis.

The same vertical profiles shown in Figure 15 are plot-
ted for the six-hour forecast sensitivity experiments in
Figure 17. As expected, the profile differences shown in the
DA experiments (GFS_DA, DA_CNTL and DA_EDMF1)
are also shown in the free forecast experiments (GFS,
EDMFO0 and EDMF1), but at a much-reduced magnitude
in terms of the vertical location of the cloud layer, because
the systematic model error got reinforced through DA
cycles. When the background characteristic mixing length
lo in EDMFO is computed using Equation (4) (EDMFO0_l0z)
and the scheme becomes less diffusive, the amount of
cloud liquid water is increased. However, cloud liquid
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Vertical mean analysis increment profiles of (a) temperature and (b) specific humidity within the same 10° X 10° marine

stratocumulus region as in Figure 15. The profiles are the mean of four random cycles from DA_EDMF1_DEDMFENS and four
DA_EDMF1_DEDMFENS_RCOV single-cycle analyses run from the background forecasts of the four DA_EDMV1_DEDMFENS cycles.
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FIGURE 17  AsFigure 15, but for Global Forecast System (GFS) and System for High-resolution prediction on Earth-to-Local

Domains (SHIiELD) free forecast experiments all initialized from operational GFS analysis at 0000 UTC on 1 July 2022. The descriptions of

the SHIiELD forecast experiments are listed in Table 5.

water in EDMFO_10z is still less than that in EDMF1
and GFS. The reason is because the eddy diffusivity is
enhanced based on radiative flux jump at stratocumulus
cloud top in EDMFO (Equation 7 in Table 4). When the
same eddy diffusivity enhancement is applied in EDMF1
(EDMF1_radj), the cloud liquid water profile looks simi-
lar to that of EDMFO_l0z, and the temperature and water
vapor profiles are much closer to EDMFO and GFS. The
total water tendency profile from a higher horizontal
resolution (C768) simulation equivalent to EDMF1_radj
(C768_191_radj) in Figure 20d shows that enhancing eddy
diffusivity at cloud top (Figure 20a) helps transport more
water to higher levels at the cost of reducing water within
the cloud layer as a result of down-gradient transport by
local turbulent mixing. The mass-flux components in the
TKE-EDMF scheme represent non-local transport by large

eddies in the PBL (Ko&hler et al., 2011). When non-local
mixing is turned on for hydrometeors in SHiELD fore-
cast (EDMF1_nonlocal) as in GFS, it helps transport more
cloud water from cloud base to upper levels. However, it
produces a significant amount of negative cloud water mix-
ing ratios and it has very minor impact on the cloud top
and the inversion layer.

Besides the differences in the implementation of the
TKE-EDMF scheme, the vertical structure of the STBL
in the forecast was also found to be sensitive to model
vertical resolution. To demonstrate the sensitivity, we ran
SHIiELD forecast experiments with four different vertical
level configurations, shown in Figure 18, where L91 is the
SHIiELD configuration and L127 is the GFS configuration.
Figure 19 shows vertical profiles of the SHiELD six-hour
forecasts run at C768. As model vertical resolution
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increases, the stratocumulus cloud and its inversion layer
move upward. The dependency of the TKE-EDMF scheme
on vertical resolution is illustrated in Figure 20. Between
900 and 825 hPa, where stratocumulus clouds are located,
the upper bound of the downdraft mass-flux contribution
to the total water flux reaches to a higher level with higher
vertical resolution (Figure 20c). The peak of the eddy dif-
fusion within the cloud layer also shifts upward as vertical
resolution increases (Figure 20a). As a result, more water
vapor and cloud water are transported to higher levels with
higher vertical resolution as indicated by the total water
tendency in Figure 20d. Bechtold et al. (1996) tested the
sensitivity of a 1D turbulence model to vertical resolution

800
—o—191
—e—1125
825 A e 175
—e—127
850 A
g
< 875 A
<
3 900 A
@
<
o 925
950 A
975 4
A
1000 ~ T T T T T
0 25 50 75 100 125 150 175 200
dz (m)
FIGURE 18  Vertical grid sizes below 800 hPa of four vertical

level configurations available in System for High-resolution
prediction on Earth-to-Local Domains (SHiELD).

in the simulation of the STBL. They suggested that a
minimum of typically three vertical levels inside the stra-
tocumulus layer, which is about 300 m thick, is required
to crudely simulate the cloud-layer dynamics. The verti-
cal grid sizes of the L91 configuration above 925hPa are
greater than 100 m, while the number of vertical levels
of the L127 configuration almost double that of the L91
within the cloud layer. The non-local mixing for hydrome-
teors is sensitive to both vertical and horizontal resolution.
The experiments with ‘nonlocal’ labels in Figures 17b and
19b show that as both horizontal and vertical resolution
increase, the non-local mixing produces much less neg-
ative cloud water mixing ratios. The non-local mixing is
turned off for hydrometeors in SHiELD, because it pro-
duces negative values of the hydrometeors, which is worse
in SHiELD than in GFS due to lower vertical resolution of
SHiELD.

6 | SUMMARY

A global DA system has been implemented for the GFDL
SHiELD model by leveraging the GSI based GFS DA
capabilities. This allows us to demonstrate the prediction
skill of the model run with DA, wherein the SHiELD
short-range forecast partially determines the quality of the
analysis. The evaluation and the enhancement of the DA
system in terms of background error (ensemble) and obser-
vation error suggests the need to adjust the DA system for
different modeling systems to achieve optimal results and
the advantage of developing SHiELD’s own DA system.
As illustrated by this study, the DA system also serves as
a great tool to help us understand the model and model
errors. It also provides us with research opportunities to
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FIGURE 19 AsFigure 17, but for System for High-resolution prediction on Earth-to-Local Domains (SHiELD) free forecast with the

EDMF1 version of the turbulent kinetic energy eddy-diffusivity mass-flux (TKE-EDMF) scheme at C768 horizontal resolution with different
vertical level configurations shown in Figure 18. Non-local mixing for hydrometeors is turned on in C768_L91_nonlocal and
C768_L127_nonlocal.
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FIGURE 20 Six-hour averaged vertical mean profiles of (a) eddy diffusion; (b) updraft mass-flux; (c) downdraft mass-flux

contributions to the total water flux w’q(; and (d) total water tendency due to the turbulent kinetic energy eddy-diffusivity mass-flux
(TKE-EDMF) scheme over the same 10° x 10° region as described in Figure 15. The profiles are computed from six-hour EDMF1 forecast
experiments at C768 horizontal resolution with different vertical level configurations shown in Figure 18. C768_1.91_radj: Same as

C768_L91, but the eddy diffusivity at stratocumulus cloud top is computed with the additional K,z as in Equation (7).

explore new DA methods and assimilation of new obser-
vations for new applications.

The performance of the SHiELD DA cycling system
is evaluated by comparing it with the GFS DA cycling
system run at a reduced horizontal resolution. A SHiELD
replay forecast using the experimental GFS analysis was
also run to understand the relative impact of model for-
mulation and initial condition on short-range forecast.
The comparison of the OmB statistics from the DA and
replay experiments shows that the short-range forecasts
within DA cycles are further improved where the fore-
cast model shows better performance. However, there
are exceptions, for example, in some regions covered

by GPS RO bending angles. Further investigation based
on ensemble reliability budget analysis reveals that
the issue is attributed to the ensemble deficiencies in
those problematic regions, especially in the upper tro-
posphere and stratosphere. The problem was found to
have arisen from the TKE-EDMF vertical turbulent mix-
ing scheme. Switching to a newer version of the scheme
improves the ensemble spread above 500 hPa but intro-
duces ensemble deficiency in the lower troposphere
and large systematic forecast errors in marine stratocu-
mulus regions. To boost ensemble spread in order to
make the analysis better constrained by the observations,
we include both the initial and the newer versions of
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the TKE-EDMF in the ensemble, which significantly
improves the background departure statistics.

We explored introducing interchannel error correla-
tions for IASI and CrIS to enhance the assimilation of
the radiances from the two hyperspectral IR sounders.
The error covariance matrices were derived using the
Desroziers et al. (2005) method. Instead of inflating the
diagonal values of the diagnosed error covariance matrices
as how it is done in GFS, we inflate the whole covariance
matrices with the optimal inflation factors determined
from ensemble replay experiments, where the pre-existing
ensemble is used to run the deterministic component of
the 4DEnVar system. Applying the upgraded error covari-
ances in the full ADEnVar system improves the short-range
forecast fit to most other independent observations.

The SHiELD medium-range weather forecasts initial-
ized from its self-cycled analysis outperform the fore-
cast initialized from the experimental GFS analysis in
most of the evaluated parameters verified against the
ERAS reanalysis. The improvement is especially remark-
able in the southern hemisphere with the prediction skill
of large-scale flow represented by the 500 hPa geopoten-
tial height RMSE improved more than 5% out to day 6.
Enhancing the ensemble by using two versions of the
TKE-EDMF scheme further improves the forecast, espe-
cially in the very few areas that are degraded with the origi-
nal DA setup. The systematic forecast errors in marine stra-
tocumulus regions are largely reduced. Upgrading obser-
vation errors to interchannel correlated error covariances
for IASI and CrIS significantly improves forecast up to
day 5. It further reduces the systematic forecast errors in
marine stratocumulus regions.

The DA system provides a more comprehensive pic-
ture of the SHiELD model in terms of both its strengths
and weaknesses. We took this opportunity to dive deeper to
understand the analysis and forecast errors and their root
causes. Our investigation focused on the implementation
details of the TKE-EDMF scheme accompanied with sen-
sitivity forecast and DA experiments. Our findings can be
summarized as follows:

« The ensemble spread is largely affected by the strength
of eddy diffusion in the TKE-EDMF scheme. Stronger
local turbulent mixing, as a result of using a constant
minimum turbulent mixing length throughout the ver-
tical column in the EDMFO version or a larger mini-
mum TKE deduced from background diffusivity in the
EDMF1 version, leads to an under-dispersive ensemble
affecting analysis at different vertical levels.

« The impact of eddy diffusion on ensemble spread can
be explained by its impact on the gradient of the model
state.

« The systematic temperature and humidity forecast
errors in marine stratocumulus regions are associated
with a much lower stratocumulus cloud layer and inver-
sion layer near the cloud top.

+ Increasing eddy diffusivity within the stratocumulus
cloud layer as a result of using a constant minimum tur-
bulent mixing length or near the cloud top based on
radiative flux jump tends to decrease cloud amount/-
cover but helps maintain the cloud layer or cloud top
at a higher level due to the down-gradient transport of
local turbulent mixing.

» The vertical location of the stratocumulus cloud layer is
sensitive to model vertical resolution. Water vapor and
cloud water can be transported to higher levels with
higher vertical resolution within the STBL.

« Turning on non-local mixing for hydrometeors helps
transport more cloud water to higher levels and
increases cloud cover. However, it produces negative
hydrometeor mixing ratios, and the problem is more
severe for lower horizontal and vertical resolutions. The
negative tracer issue has been addressed in a recent
upgrade of the TKE-EDMF scheme (Han et al., 2022). It
would be interesting to test this upgrade in SHiELD in
the future.

This study lays the foundation for future improvement
of the SHIiELD prediction system in terms of both model
physics and the DA system. The insight gained from our
system may have practical applications for GFS, as many
of the software and scientific components utilized by both
modeling systems are the same. The representation of
model uncertainties and the handling of systematic model
errors are topics that deserve further research. Stochastic
process-level representation of model uncertainties such
as the Stochastically Perturbed Parametrizations (SPP)
scheme (e.g. Ollinaho et al., 2017) can be explored and
combined with currently existing schemes in the future.
Developing a bias-aware assimilation and forecast system
with model error estimation and correction via methods
such as machine learning are also of interest to us.
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ENDNOTES

'A quality control method called gross error check is normally used
in data assimilation systems. Gross error check screens out observa-
tions when the difference between the observations and their back-
ground counterparts (OmB) are greater than a predefined threshold
times the estimated observation error. A more accurate forecast pro-
duces smaller OmBs, which permits more observations to pass the
gross error check.

"The observational climatology data are 1982 to 2012 monthly mean
SST data provided by NCEP.
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