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ABSTRACT

Estuarine plumes on the continental shelf of northeastern North America
emanating from bays and river mouths were studied in 335 Landsat MSS and 68
HCMM thermal infrared images. Plume boundaries were interpreted from
surface turbidity and temperature discontinuities as revealed from image
analysis. Techniques involved color additive enhancement, video density
slicing, and visual analysis. The shelf region of study extended from
southern Virginia to Boston, Massachusetts. For the Chesapeake, Delaware,
and New York Bay entrances, plume thermal boundaries were detected in nearly
all HCMM images, and turbidity boundaries were detected often in Landsat
images. Plume waters at these bay entrances, as inferred from turbid and
thermal boundaries on sets of sequenced images, generally move southward
along coastlines, due to net non-tidal coastal current, tidal current
subject to the Coriolis force, fresh-water discharge, and predominant local
wind. Wind has a large influence on locations of boundaries: Under strong
southwest to west winds, plumes move eastward from bay mouths, spreading
laterally, and sometimes entering or passing through waste disposal areas.
Northern winds drive plumes southward along coastlines. Plume boundaries
are more dispersed during ebb tide. Seasonal effects are mixed. In the
region of Long Island to Boston, tidal ranges and currents are greater,
there are fewer bays and rivers discharging turbid plumes onto the shelf,
the plumes are less turbid, and there are more instances of turbidity
derived locally via tidal resuspension. Consequently, turbidity-tracing of
water movement is less useful. Available evidence in the images suggests
oscillatory movements in Long Island Sound, and south of Cape Cod. Tidally-
induced resuspension reveals the bathymetry in the shallows of Boston and
Plymouth Bays, off Nantucket, and at the eastern tip of Long Island.
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OBJECTIVES

The objectives of this research were to use Landsat images to:

1. Find the directional patterns of the movement of turbid plumes
emanating from bays and estuaries of the mid-Atlantic coast from
Massachusetts to North Carolina.

2. Determine the effects of meteorological, seasonal, and oceanographic
influences on the direction and distance of plume movement.

3. Find the seaward extent of turbid plume boundaries.

4. Determine the frequencies with which turbid plumes reach waste
disposal sites located on the continental shelf.

xii
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INTRODUCTION

A significant question for management of coastal marine fisheries is
the distribution of nutrients and pollutants outwelled from coastal bays and
estuaries. Investigations of the seaward flux of materials, both spatially
and temporally, should be fruitful toward understanding fishery productivity
and its fluctuations. From such understanding the fishery management
questions can be addressed.

The National Marine Fisheries Service has undertaken and supported
studies of estuarine flux for some time, and in the late 1970s initiated a
cooperative program with NASA and university research groups to utilize
remote sensing in these flux studies. The first large program was called
LAMPEX (Large Area Marine Productivity Experiment), followed by Superflux,
which investigated the effects of the Chesapeake Bay plume on continental
shelf waters (see Campbell and Thomas, 1981).

The present research program was begun under Superflux as a Landsat
study of the Chesapeake Bay turbidity plume (Munday and Fedosh, 1981a,b).
This Landsat study was subsequently expanded to include the entire region
from North Carolina to Massachusetts (Fedosh and Munday, 1982). The Landsat
coverage of this region is shown in Figure 1.

SETTING

The waters of the continental shelf from Virginia to Massachussetts are
significantly impacted by human activity. The waters are used for fishing,
transportation, recreation, and direct disposal of waste materials. Three-
quarters of the nation's offshore dumping occurs here (Gross, 1976). This
Middle Atlantic Bight also receives estuarine discharges from fluvial
systems whose shores are among the world's most urbanized areas. Municipal
and industrial wastes entering these fluvial systems eventually reach
Atlantic shelf waters, there impairing water quality and settling onto
benthic substrates.

The estuaries of this region also produce nutrients for the marine food
web which are outwelled into the nearshore Atlantic waters to be utilized by
the marine community. Any change in the concentration and dispersal of
these nutrients can impact marine fisheries. Fish populations feeding in
plumes of estuarine water can be impacted when these plumes pass through
offshore waste disposal sites.

Thus, estuarine flushing of pollutants from human activity is in direct
competition with estuarine supply of nutrients for the marine food web, and
provision of nursery habitats. Depending on the levels and locations of
waste releases, the outwelling of estuarine water onto the Middle Atlantic
continental shelf waters can be either beneficial or detrimental to the
marine community. Because of the dynamics of estuarine flux and shelf
circulation, as a function of seasonal discharge, winds, and coastal
currents, it is obvious that the timing of waste releases, and not only the
locations, may be significant.



Boston Harbor

Chesapeake Bay

Figure 1. Landsat Scene Coverage from North Carolina to Massachusetts.



It is therefore important to investigate the seaward flux of estuarine
waters, and the spatial and temporal distribution of pollutants and
nutrients. Results can help in the location of fish populations which are
congregating in feeding zones, aid in the siting of waste disposal areas
away from plumes, and help in tracking the movement and dispersal of
contaminants and nutrients.

Ship-based studies have been carried out for some time on estuarine
plumes in nearshore waters, but vessel costs and the large areas to be
covered limit these studies and the number of plumes which can be
investigated. It is advantageous to use remote sensing to reduce the effort
and provide repetitive synoptic views over large areas (see Campbell and
Thomas, 1981).

REMOTE SENSING OF COASTAL WATERS ALONG NORTHEASTERN NORTH AMERICA

In the Chesapeake Bay region, the principal remote sensing studies
which have focused on flux and dynamics have been conducted as part of the
Superflux program (Campbell and Thomas, 1981). Also, Bowker et al. (1975),
Munday and Fedosh (1980), and Fedosh (1984) have used Landsat imagery in
study of the Chesapeake Bay. Many other sensor studies using Bay and shelf
waters as test sites have been conducted by NASA Langley personnel in
support of sensor development programs.

In the Delaware Bay region, most remote sensing studies involved the
use of Landsat for discriminating Bay circulation (Klemas and Polis, 1977),
and for discriminating waste plumes on the adjacent continental shelf
(Klemas and Philpot, 1981).

Remote sensing studies in the New York Bight off Lower New York Bay
have involved mainly airborne sensors. These studies concerned waste
disposal, turbidity plumes, and concentrations of chlorophyll and suspended
sediment, as summarized by Polcyn and Sattinger (1979) and Johnson and
Harriss (1980). Charnell and Maul (1973) examined the first Landsat image
of the New York Bight, noting estuarine and waste disposal plumes. Polcyn
and Sattinger (1979) examined additional Landsat images of this region. The
general purpose of these various studies was to test sensing systems, and
determine their capability for acquiring useful oceanographic data.

Northward, from Long Island to Boston harbor, there have been no
extensive Landsat studies focused on flux and dynamics.

Over the whole region, from Virginia to Massachussetts, there have been
remote sensing studies involving the Seasat Synthetic Aperture Radar. These
studies are published in Beal et al. (1981).

LANDSAT STUDY OF COASTAL PLUMES

When the first Landsat satellite was launched in 1972, there were numerous
publications describing analyses of turbid plumes on continental shelf
regions (see, e.g., NASA Goddard, 1973). The new perspective from space
gave oceanographers for the first time a truly wholistic picture of the
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surface waters in these regions (see Figure 2), which contrasted
dramatically with earlier efforts to see the whole by assembling a mosaic of
ship data or aerial photographs. The oceanographic community, however, was
not able to extract a large amount of useful information from the images.
This disappointment had its roots in several technical considerations:

1) Atmospheric variability --- Cloud cover and hazy atmospheres reduced
the efficiency of data collection by Landsat. Of twenty orbital passes per
year, one-third to two-thirds were rendered useless. Unlike the case with
studies of land cover, marine water bodies are highly dynamic, requiring
data collection throughout tidal cycles as well as during extreme events and
over seasonal variations. Landsat data available from a small number of
years are insufficient to provide oceanographers with a comprehensive
picture of the dynamics of marine waters.

2) Algorithms --- In the early 1970s, algorithms were not available to
permit analysis of the image data for variables of interest. The initial
effort was on data reduction procedures for extraction of chlorophyll
concentrations and suspended sediment concentrations from Landsat data.

Much progress has been made in the intervening decade on the best algorithms
for these two variables (Munday et al., 1979; Johnson and Munday, 1983).
Algorithms for atmospheric correction are well-developed, but there is a
variety of them in use (see Johnson and Munday, 1983; Munday, 1983), and
their comparative accuracies are not well-determined.

3) Lack of specificity for oceanographic variables --- Temperature,
salinity, and current are critical variables in circulation study, but
Landsats 1, 2, and 3 did not provide for their measurement (the thermal
sensing system on the Landsat 3 multispectral scanner proved too noisy for
sea surface temperature measurement). The Landsat MSS bands are less than
optimum for chlorophyll and suspended sediment.

4) Inadequate repetition rate --- The Landsat orbital repeat cycle of 18
days eliminated the possibility of multiple views of the same oceanographic
conditions. Even a reduction to 9 (and sometimes 6) days via dual Landsats
could not satisfy the needs for a short viewing cycle.

These limitations led to the development and launch of the Coastal Zone
Color Scanner on board Nimbus 7 (Hovis et al., 1980). The CZCS was designed
specifically as an oceanographic color and temperature sensor.
Unfortunately, its spatial resolution is coarse (800 m) and data reduction
procedures have taken many years to be established. For coastal
environments, the procedures are still considered inadequate, because they
were designed for clear water while coastal water is relatively turbid.
Although it is true that with appropriate surface information, the
limitations in atmospheric correction procedures and procedures for
calibration to aquatic variables may be overcome, the large area covered in
each CZCS image necessitates extensive surface data collection, as
oceanographic variation upsets calibrations extrapolated across entire
images.

The finer spatial resolution afforded by the Landsat series is its

principal advantage over the CZCS. Also, understanding of the capabilities
and limitations of the Landsat MSS has accumulated to the point that useful
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Figure 2. Landsat Image of Chesapeake Bay.




information may be obtained about the marine environment if large numbers of
scenes are analyzed. After a decade, the usable scenes of a single region
usually number between 70 and 120, permitting appropriate sorting for the
variety of oceanographic conditions of importance, including tidal phase,
wind vector, fresh water runoff, and seasonal variations in coastal
currents.

On such a basis, this study of coastal plumes using Landsat data was
initiated for the region along the mid-Atlantic coast of North America, from
southern Virginia to Boston, Massachusetts. Low funding necessitated
reliance entirely on the use of photographic images, as opposed to computer
compatible tapes (CCTs). The study has been carried out mainly with Landsat
images; however, some Heat Capacity Mapping Mission (HCMM) images were also
obtained and analyzed.

METHODS
General Approach

The Landsat multispectral scanner records scene radiances in image
format (see Figure 2), and the data can be reduced to suspended sediment
concentrations and/or turbidity in the upper few metres of the water column.
Some images from the Heat Capacity Mapping Mission (HCMM) thermal infrared
radiometer were used here (see Figure 3). HCMM data can be reduced to
surface temperatures (Wiesnet et al., 1980). In this study, none of the
satellite data were reduced to quantitative measurements of turbidity or
temperature; instead, photographic images of Landsat and HCMM scenes were
analyzed visually and by machine-enhancement for plumes and boundaries
formed by turbidity and temperature.

Although satellite images are only snapshots, that is, pictures at a
single point in time, of continuous dynamic processes, they can be
interpreted for the movement of water masses, especially when a large number
of images is available. The information on turbidity and water temperature
is useful because these variables act as Lagrangian tracers of water motion.

Turbid plumes outwelled from Massachusetts Bay, Long Island Sound, and
Lower New York Bay, and Delaware Bay and Chesapeake Bay along the Middle
Atlantic Bight, have been studied using Landsat and HCMM images. Waste
disposal sites off each estuary were noted in reference to plume front
locations. Images were sorted according to tidal phase, wind vector, and
season to determine the influence of these factors on plume movement. Shelf
and nearshore circulation patterns described in the literature were also
used in analyzing plume behavior seen in the images.

Data Acquisition

For the Chesapeake Bay entrance, 94 dates of Landsat images were used
(path 15, row 34). The Delaware Bay entrance was examined in 128 Landsat
images (path-rows 14-33 and 15-33) and 39 HCMM images. The New York Bay
entrance was examined in 58 Landsat images (path-row 14-32) and 28 HCMM
images. The Long Island area was examined in 66 Landsat images (path-row
13-32), and Massachusetts Bay in 51 images (path-rows 12-31 and 13-31). The
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Figure 3. Heat Capacity Mapping Mission (HCMM) Image of the Middle Atlantic Bight.




The Narragansett Bay was examined in 100 Landsat images (path-rows 12-31 and
13-31). Figure 1 shows the scene coverage of the study area.

The Landsat images, from 1972 to 1982, were obtained from the USGS EROS
Data Center, Sioux Falls, South Dakota, and the HCMM images, from 1978 to
1979, were obtained from the National Space Science Data Center, NASA
Goddard Space Flight Center, Greenbelt, Maryland. The formats are 18.5 cm
and 24.1 cm positive transparencies, for Landsat (scale 1: 1M) and HCMM
(1:3.85M) images respectively. The Landsat and HCMM images are tabulated in
Appendices 1 and 2. The overpass dates are distributed throughout all
months of the year at no more than 15 day intervals, for each region of
study (see Figure 4). The HCMM passes are concentrated in the summer and
fall months.

Wind data for Norfolk, Virginia, for Cape May and Sandy Hook, New
Jersey, for Montauk Point, New York, and for Boston, Massachusetts,
appropriate to the Chesapeake, Delaware, and New York Bay entrances, eastern
Long Island, and Boston Harbor, respectively, were obtained from the
National Climatic Center in Asheville, North Carolina. The Cape May and
Sandy Hook wind data were reduced to vector averages for the 24-hour period
preceding each Landsat overpass, while the Norfolk wind data were reduced to
vector averages for the preceding 12-hour period. Acquired wind data for
Montauk Point and Boston, Massachusetts consist of hourly records for the 24
hours preceding the overpass, but the lack of significant plumes for the
associated waters did not justify the effort of vector-averaging. The wind
data are tabulated in Appendix 1. No wind data were obtained for the HCMM
images. The composite wind regimes for all passes in the Chesapeake,
Delaware, and New York Bay regions are shown in Figure 5, alongside a long-
term record for comparison in the case of Chesapeake Bay.

For use in image analysis, the wind data were divided into quadrants
deemed appropriate for each region. The quadrants selected were 1-90
degrees, 91-180, 181-270, and 271-360, labeled as (1, 2, 3, and 4), and
representing northeast, southeast, southwest, and northwest winds.

Actual tidal data for Sewells Point in Virginia, for the Breakwater on
Cape Henlopen, Delaware, for Sandy Hook, New Jersey, for Narragansett, Rhode
Island, and for Boston, Massachusetts, were obtained from the National Ocean
Survey in Rockville, Maryland. When no actual data were available,
predicted times of high tide were used as obtained from NOAA tide tables, an
event which occurred for less than 10% of the images.

The satellite images for each region were classified by comparing the
overpass time to the nearest time of high tide at the reference tidal
station. Each image was assigned a time in hours and minutes according to
whether the overpass occurred before (-) or after (+) the reference high
tide. The images for each region of study were evenly distributed over a
representative diurnal tidal cycle. The tide data are tabulated in
Appendices 1 and 2. Distributions over the tidal cycle are shown in Figure
6. A summary of the data is provided in Table 1.
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Chesapeake Bay
path-row 15-34

Delaware Bay
path-row 15-33
path-row 14-33

New York Bay
path-row 14-32

Long Island Sound
path-row 13-32

Narragansett Bay
path-row 13-31
path-row 12-31

Cape Cod & Boston Harbor

.path-row 12-31

TABLE 1
DATA SUMMARY FOR
LANDSAT TURBIDITY STUDY
Landsat Images
(No.)

94

82
48

58

66

49
51

5)dl

HCMM Images
(No. )

40

28



Image Analysis

The methods of image analysis included visual interpretation coupled
with machine-assisted enhancement (Munday and Fedosh, 1981b). The Landsat
and HCMM images were visually analyzed on a light table with turbid plumes
and thermal boundaries traced onto overlays. In many cases, especially the
HCMM images, the visual analysis was accomplished with the aid of a Bausch
and Lomb ZT4H Zoom Transfer Scope, which permitted variable magnification
for easy viewing and tracing.

The small set of 70 mm images for Chesapeake Bay was enhanced with an
International Imaging Systems (I2S) color additive viewer, courtesy of NASA
Langley, and these color enhancements were photographed on color slide (35
mm) film for projection during later analysis. The 18.5 cm Landsat images
were enhanced with 32-channel video optical density analyzers with color-
coded television display. The video systems were I2S and Spatial Data
Systems (SDS) analyzers at VIMS and USGS (Reston, Virginia) respectively.
Most of the video enhancements were also photographed on color slide (35 mm)
film for projection during later analysis. A black mask covering land areas
was used during enhancement to focus attention on water patterns. That the
mask had negligible effect on the density analysis was evidenced by the
constancy of patterns when the image was rotated through 90 degrees (the
danger is that electronic band width limitations during scanning across
sharp brightness gradients will cause smearing in the color-coded output).

Also, for many enhancements, a contour map of optical density was
prepared from the television monitor display by placing an acetate sheet
over the image on the I2S light table and manually drawing contours while
viewing the display monitor; this procedure produced contour maps at the
original image scale.

The above procedures produced two types of maps. The one consists of
visually-discriminated turbidity boundaries extending sometimes over long
distances, possibly through background turbidity gradients not noticeable
visually. Missed background gradients would be weak, because the eye during
the mapping process ignores weak gradients, but enhances sharp gradients and
emphasizes the continuity of turbidity-marked hydrodynamic features over
long distances.

The second type of map is of photographic density contours which
quantitatively represent the absolute turbidity levels. With appropriate
calibration, this type of map could become a map of absolute concentrations
of suspended particulate material.

Combinations of visual tracings and video contour maps were used to
find turbid boundaries. The video maps are needed because the eye sees only
relatively sharp density gradients in the images. The I2S is more sensitive
than the eye to weak density changes, revealing turbidity boundaries which
would not be detected by visual analysis alone, thus improving the detection
of weak gradients, and permitting extension of plume fronts beyond the
visual range.
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However, video enhancements cannot be used solely, because there are
many parallel density isopleths on a video enhancement, and the wrong
contour may be chosen as a plume boundary. Often, the plume boundary itself
is a turbidity gradient, hence image density isopleths will dissect the
boundary and obscure it. The result may be a displaced plume boundary, or a
failure in detection.

It is emphasized that visual maps and video density maps enhance
different aspects of an image, and should not be expected to be similar.
Examples of the maps are shown in Figure 7.

The distance and direction of turbidity boundaries were measured from
origins at the bay mouths. Measurements were based on a 1 mm grid overlay
(ordinary graph paper) facilitating use of the image scale of 1 mm to 1 km.
The centers of the bay mouths were taken as the mid-points between the capes
for both Chesapeake and Delaware Bays, and 40 degrees 30 minutes North
Latitude, 74 degrees West Longitude for New York Bay. Patterns on the
original 18.5 cm images and on the several data reduction products were
simultaneously compared during extraction of measurements.

The distribution of turbidity boundaries was also analyzed by a
counting procedure based on especially-prepared grid overlays. The special
grid overlays were maps having segments formed by 10 degree azimuthal
sectors and 10 km radial zones as shown in Figure 8. These overlays were
used for making records of segments "visited" by plume boundaries. When a
turbid boundary was noticed at some radial distance and direction from the
origin, sector/zone segments radially outward to this position were recorded
(as having been "visited"), if they contained pronounced turbidity. In some
cases, where boundary segments were isolated from any large pattern, and
relatively non-turbid water was noticed bayward of such segments, only the
sector/zone containing the boundary segment was recorded.

The counting results for each sector-zone segment on the overlay were
sorted according to the following numeric frequency code: 1-5 counts = 1,
6-10 counts = 2, 11-20 counts = 3, 21-30 counts = 4, 31-40 counts = 5, and
41-50 counts = 6. Choropleth maps were then prepared using the frequency
code.

Analyses of the Long Island, Cape Cod, and Massachusetts Bay areas were
limited to visual study of non-enhanced images. Turbid and thermal plumes
were generally absent in these regions.

Definition of "Plumes"

The counting of areas as "visited" by turbidity was based on the
presence of turbidity zones and discontinuities which appeared to be
significant with respect to dynamics under study. This counting policy was
deliberately made somewhat vague, because of the lack of historical data on
plume dynamics. It gave the interpreters much freedom of choice. In
subsequent studies of each of the regions, a more restrictive policy could
be used based on the results reported here.
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A. Visually discriminated turbidity boundaries. B. Photographic density contours from density
analyzer enhancement.

Figure 7. Samples of Turbidity Boundary Maps Obtained from Chesapeake Bay
Landsat Images of 8 July 1978.
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There are several consequences of the above policy. First, some of the
turbidity zones and discontinuities are directly the result of bay plumes,
while others may be associated, not with plumes, but with along-shore
currents. According to Bumpus (1973), there is generally a net non-tidal
southerly current along Virginia's Eastern Shore and the Virginia-North
Carolina border toward Cape Hatteras. This current could involve shear and
turbidity gradients (some images of the Chesapeake Bay region gave the
impression of turbidity discontinuities parallel to shore at the 30 m
isobath).

Second, studies by Harrison et al. (1967), Johnson (1976), and Ruzecki
et al. (1976) show that flow adjacent to Cape Henry at the mouth of the
Chesapeake Bay is sporadic rather than continuous, and that flow is wind-
influenced in the along-shore direction. Such findings should be considered
in the interpretation of any observed features of the data reported here,
because they indicate that unraveling of bay plumes from coastal-current
induced turbidity using imagery alone will be difficult.

Third, it is probable that the collection of plume features on any one
image is derived from several tidal cycles. In this regard, the distance of
features from bay mouths should be helpful in discriminating the different
tidal cycles. Drogue data published by Johnson (1976) and Ruzecki et al.
(1976) suggest that the tidal excursion at the Chesapeake Bay mouth is only
about 8 km, whereas at the Chesapeake Light Station (23 km eastward) the
tidal excursion is negligible. Thus, features beyond 15-20 km almost
certainly result from non-tidal flow and the net movement from several
cycles of tidal flow.

However, apart from the distance factor, the turbid and thermal
features themselves do not suggest a distinction between features for the
cycle in progress from those for preceding cycles. Distinguishing
sequential plumes using multispectral satellite images was first described
by Mairs and Clark (1973); their approach was not possible here because
plumes were too faint for cases in which multispectral imagery was
available, and for most dates and regions only one spectral band image was
on hand. Defining plumes more clearly using digital processing of Landsat
CCT data might prove useful. In contrast, for small plumes from inlets
along the coast, the distinction of sequential tidal cycles is possible on
single band images: The plumes are more distinct, and each tidal pulse is
small in size.

Fourth, it must be remembered that Landsat records upwelling radiance
from only the surface layers. The depth of the observed turbidity varies
inversely with its opacity, with the depth of observation for prevailing
turbidities being perhaps 5 m (Whitlock, 1976). Thus, plume features at
greater depth are not recorded.

Fifth, surface turbidities are influenced by scour and resuspension
when the depths are less than 15 m (Fedosh, 1984). Images of the Nantucket
region showed the bathymetry clearly, despite the fact that the depth was
too great for direct bottom reflection. In regions of resuspension,
turbidity patterns are produced by a mixture of plumes and resuspended
material, and turbidity discontinuity dynamics may not be used to infer
water motion.
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Generally, it should be remembered that Landsat is not always recording
plume water boundaries as defined by vertical profiles of temperature,
salinity, nutrients, and biological variables.

Waste Disposal Sites

For each bay mouth, an overlay was prepared with the Environmental
Protection Agency (EPA) waste disposal site boundaries for sewage sludge,
dredge spoil, and acid. These overlays were used to determine plume front
distances from the disposal sites.

Acid waste plumes were visible in Landsat images of the Delaware Bay
and the New York Bight, with sludge plumes also visible in the New York
Bight images. For the Delaware Bay images, the starting point of each acid
plume was marked and its distance from the western boundary of the disposal
area was recorded. Waste plumes in the New York Bight region were sorted
into the three classes "sharp", "fuzzy", and "diffuse". The sharp plumes
showed a J-shape, the fuzzy plumes retained a J-shape but were fuzzy, and
the diffuse plumes were elongated.

Data Reduction and Analysis

Data extracted from the images using the above methods were sorted
according to tidal phase, season, and wind direction by quadrants. Simple
relationships were sought between plume front locations and these variables
using counting and graphing methods explained above and in earlier
publications (Munday and Fedosh, 1981a,b). Sector-count maps described
earlier were produced for sorted subsets of images. Results of counting
were enhanced by forming ratios of sector counts for different conditionms,
and tabulating and/or graphing these ratios.

Analysis has also included consideration of bathymetry, passage of
weather fronts, fresh water discharge, and data from the literature
concerning circulation in the respective regions of study.

RESULTS
CHESAPEAKE BAY

The Turbid Plume-- Detailed results for the Chesapeake Bay plume have
been presented previously (Munday and Fedosh, 1981a,b), and are included
here for completeness. The map in Figure 9 shows the distribution of counts
for all images, regardless of wind, tidal, and seasonal classes. It is seen
that zones A through E (0-50 km outward) for sectors near 150 degrees are
the most frequently visited. Similar results were obtained by other
investigators during the Superflux program (Campbell and Thomas, 1981),
indicating that plume behavior during the program was typical of general
plume behavior, despite low discharge conditions during the program.

Tides-- During ebb tide, plumes are usually seen close to the Virginia
coast south of Cape Henry. Figure 10B shows a composite of ebb tide
turbidity boundaries, which in the mouth of the Bay itself are aligned
toward 120 degrees. Distant from the mouth, the boundaries are oriented in
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Figure 9. Areas Visited by Turbidity Boundaries, Chesapeake Bay, All Landsat Images.
The numerals are frequency codes representing sector/zone counts as follows: 1:1-5 counts; 2:6—10;
3:11-20; 4:21-30; 5:31-40; 6:41-50; 7:»50.
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A. Flood Tide B. Ebb Tide

Figure 10. Composite of Turbidity Boundaries Extracted from All Landsat Images of
Chesapeake Bay.
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many directions and are widely dispersed, but are more common in the region
southward from the Bay mouth. The eastward boundaries are situated up to 40
km beyond the Bay mouth, and dispersed widely, while the southward
boundaries equally distant from the mouth are found within 15 km of shore.
Figure 11B, the sector-count map for ebb tide, shows the high concentration
of boundaries along the shore south of the mouth. The concentration of
plumes along the southern shoreline was explained by Ludwick and Melchor
(1972) as due to the Coriolis effect and the net non-tidal southerly flow
along the adjacent shelf. Turbidity patterns suggest that flood tide is
stronger on the north side of the mouth, while ebb is stronger on the south.

The turbidity in the plumes often appears to extend from sites in the
western Chesapeake Bay below the Rappahannock River (Munday and Fedosh,
1980; Fedosh, 1984), and from the James River, identified by Ludwick (1973)
as a bay plume sediment source. Some images in times of high discharge show
river plumes entering the Bay from the Potomac River. It does not appear
that much of this fluvial suspended sediment reaches the Bay mouth before
settling.

Extended turbidity patterns probably involve considerable resuspension,
for the following reasons: First, studies of sediment transport in general
suggest that over long distances, large patterns of surface turbidity
involve continuous cycles of settling and resuspension. In deep water, of
course, resuspension is not effective, and turbidity decreases quickly with
time and distance. Second, high fresh water flow at Washington, D.C.
lowers salinity off the Bay mouth two months later (Howe, 1962), which
suggests a very long persistence to different water masses despite tidal
action, and therefore plenty of time for turbid Potomac waters to lose
suspended sediment via settling before they reach the Bay mouth. For the
James River, Hurricane Camille water required three days to reach Hampton
Roads from Richmond (Elder, 1971), and slightly above-average fresh water
flow at Richmond takes about six days to affect water heights at Hampton
Roads. These delays indicate that turbid James River water would lose most
suspended sediment to settling before reaching the Bay mouth under most
conditions. Thus, the Bay plume turbidity results primarily from
resuspension in the lower Bay. Only a few images showing a very strong
turbidity extending all the way from the Hampton Roads area to the Bay mouth
would indicate otherwise.

For ebb tide, the plume for northerly winds is tongue-shaped, but the
shape is difficult to characterize further. Little was observed which would
suggest rotary motion off Cape Henry as observed by Harrison et al. (1967).

For flood tide, turbidity boundaries are found closer to the bay mouth
than ebb tide boundaries. Plumes close to the mouth and shore are smaller
and lobate, while plumes away from the mouth have larger, more linear
boundaries. Figure 10A is a composite of the boundaries during flood tide
images, and Figure 11A is the corresponding sector-zone count map.

A striking feature of many flood-tide images is a strong turbidity
pattern on the shallow northern side of the Bay mouth adjacent to
Fisherman's Island. The pattern suggests higher current speeds on the
northern side during flood tide, due to the Coriolis force. Analysis shows
that the turbidity is relatively greater during flood tide and northeastern
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Figure 11. Areas Visited by Turbidity Boundaries, Chesapeake Bay, According to
Tidal Phase.
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winds. No such patterns are observed for flood tide in the southern portion
of the Bay mouth; in addition to the northward Coriolis deflection of
flooding waters, the water in the southern portion is much deeper, reducing
surface turbidities which originate in tidal scour.

Seasons-- Seasonal results are analyzed because of obvious interest, but
it should be noted that it is the physical factors varying with the seasons,
not the seasons per se, which influence plume behavior.

The Bay mouth waters are turbid (except over deeper channels) during
winter (Dec-Feb) and spring (Mar-May). During these seasons the winds are
mainly from the north, with higher than average wind speeds. The Bay axis,
parallel to these winds, provides a long fetch allowing development of large
waves which can mix the water column and stir up bottom sediment. The
deeper water is not disturbed, hence less turbidity is found over the
shipping channels (Fedosh, 1984). Doebler (1966) also found higher tides at
the Bay mouth with northerly winds, which would be accompanied by greater
tidal currents and hence more resuspension.

In the summer (Jun-Aug) and fall (Sep-Nov), the Bay mouth waters appear
less turbid. During these seasons the winds are southerly and westerly at
lower speeds. Winds from these directions apparently do not have a large
enough fetch to create waves of sufficient amplitude to cause much
resuspension. The seasonal variation of wind speed was noted by Ludwick and
Melchor (1972) who found that 45 days during the winter had winds greater
than 15 mph, compared to 10 days during the summer.

The maps in Figure 12 show sector-zone counting results for the four
seasons. Winter and summer plumes were the more widely dispersed; spring
and fall plumes were concentrated south of the Bay mouth.

Winds-- There was little evidence of the Ekman transport effect, the
plumes usually being oriented downwind. Doebler (1966) found a surface
drift angle range of 4.8 to 13.2 degrees to the right of the wind direction.
He found that summer and offshore currents were farther to the right of the
wind. This was due to a decrease of dynamic viscosity in strongly
stratified summer waters, causing less downward transfer of momentum.
Moderate winds had drift currents to the right of strong winds presumably
because, in shallow waters, strong winds mix the water vertically and permit
currents to "feel" the bottom.

Sorting the pass dates by wind quadrants, Qi, yields Q1=20 images,
Q2=3, Q3=41, and Q4=17. Maps for wind quadrants 1, 3, and 4 are shown in
Figure 13 (a map is omitted for quadrant 2 because of its low number of
images). Quadrant 4 produced the tightest pattern along the Virginia-North
Carolina coastline. Quadrant 3 (southwest winds) produced the most
dispersed pattern (notice especially the visits to zones D-F (30-60 km
outward) for sectors at 90 degrees).

To enhance the differences between results from different wind
quadrants, ratios were formed of sector-zone counts using the data from
quadrants 3 and 1, and then from 4 and 1. Each sector-zone's total count
from a quadrant data set was adjusted upward by 1 count for each pass where
no plume was discriminated, in order to avoid bias from neglect of images
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Figure 12. Areas Visited by Turbidity Boundaries, Chesapeake Bay, According to Season.
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Figure 13. Areas Visited by Turbidity Boundaries, Chesapeake Bay, According to
Wind Quadrant.
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with uniform distributions of turbidity. The adjustment frequencies for
each quadrant were small, being 1, 1, 6, and 0 respectively. The ratios of
counts were formed, and then normalized for differences among the Qi values.
The resulting ratios R are shown in Tables 2 and 3. Numerical values of R
near 1.0 indicate no difference in effects of wind direction for the two
quadrants under consideration. Table 2 (quadrant 3 over 1) shows R>1 for
directions less than 140 degrees (zones B-E, 10-50 km), a clear
demonstration that southwest (compared to northeast) winds disperse the
plume over a larger area and swing its dominant direction away from the
southeast toward the east. Table 3 (quadrant 4 over 1) demonstrates that
northwest (compared to northeast) winds constrain the plume to the coastline
toward the southeast.

A comparison of the sector-zone count maps for ebb versus flood tide in
Figure 11 shows somewhat more dispersion of plume features for ebb tide, as
noted previously. A subset of the ebb tide data for southwest winds higher
than 8 knots included only five images, and in these images a plume could
not be discriminated. These results are further evidence that southwest
winds disperse the plume on ebb tide, and weaken suspended sediment
gradients.

These effects of winds have been shown using vector-averaged Norfolk
wind data from the 12 hours preceding the Landsat overpass. Because the
shelf water relaxation time from wind effects is probably greater than 12
hours, longer wind records should probably be used. Also, Chesapeake Light
Tower winds would perhaps be more appropriate than Norfolk winds for
examining the effect of shelf water currents on the plume dynamics.

The Thermal Plume-- The small scale HCMM images reveal only large
features of the thermal plume (see Figure 3). Cooler water is usually
evident at Cape Charles; warmer water is usually contiguous with a coastal
boundary layer extending southward nearly to Cape Hatteras.

Disposal Site-- About 30 km from the Chesapeake Bay mouth is the
location of a proposed dredge spoil disposal site. Of the 60 detected
plumes emanating from the bay, 16 (27%) are within or beyond the disposal
area, especially when winds blow from the southwest quadrant.

Eastern Shore of Virginia-- The imagery suggests no dominant direction
of longshore transport along the ocean-side of the Eastern Shore. Some
images suggest a gyre system off Chincoteague Inlet. Suspended sediment
from the southerly inlets, in flood tide images, is connected with extensive
turbidity on the north side of the Bay mouth. The patterns suggest that
early flood waters moving into the northern side of the Bay mouth carry
residual suspended sediment from waters originating northward along the
Eastern Shore, and additional material resuspended in the shallow areas
adjacent to Fisherman's Island. If true, turbidity on the western side of
the mouth (compared to the eastern side) should be relatively more frequent
during flood, as flooding waters traverse the shallows of the mouth itself.

To test this hypothesis quantitatively using Landsat images, a counting
procedure was employed based on the square grid shown in Figure 8. A cell
was counted when turbidity in the cell was higher than background as judged
visually. Counts were made for ebb and flood tide passes, and subset into

- 27 -



TABLE 2
NORMALIZED RATIOS OF TURBID BOUNDARY FREQUENCIES AT

CHESAPEAKE BAY ENTRANCE FOR WIND QUADRANT 3 OVER 1

Sector 6* 7 8 9 10 153 12 13 14 15 16
Zone
Bay
A Entrance 1.46 1.46 1.46 1.27;0.91 0.98] 1.12 | 0.92 0.77 0.84
B IR 93N g5 WAL 1837 L. 83" 1,95 .1.66 0.88
© 3.41 4.39 4.88 2.68 1.79 1.34 2.11 1.71 0.98
D 3.90 3.90 4.39 4.39 3.90 4.39 4.39 2.44 1. 0.98
E Away From 2.93 3.41 3.41 3.41 3.41 3.41 3.41 2.93 1.46 1.30 S1.2t2h
ou

Entrance Northeast East

* 10° interval from 60° to 69°; similarly for all sectors.



TABLE 3
NORMALIZED RATIOS OF TURBID BOUNDARY FREQUENCIES AT

CHESAFEAKE BAY ENTRANCE FOR WIND QUADRANT 4 OVER 1

Sector 6 7 8 9 10 ol 12 13 14 15 16
Zone
Bay
A Entrance 0 0 0
B 0 0
(0
D
E Away From 0 0.39 0.29
Entrance Northeast East South




the four wind quadrants. Ratios of flood to ebb counts were formed and
normalized for flood and ebb pass frequencies; the normalized ratios
truncated to integers are shown in Figure 14A. Western cells are, as
expected, relatively more frequented by turbidity than eastern cells during
flood tide.

Truncated normalized ratios for the wind quadrants are shown in Figure
14B for Q1 over Q3, and in Figure 14C for Q1 over Q4 (Figure 14C numbers
were multiplied by 2 before plotting). The figures demonstrate that
northeastern winds are more effective than western winds in increasing
eastern turbidities.

Patterns of turbidity in shallow water are strongly and immediately
influenced by changes in wind direction and speed, because of resuspension
and the coupling of surface currents to wind (see Doebler, 1966). On the
ocean-side of the Eastern Shore, turbid water is found often in areas less
than 10 m deep, the amount of turbidity varying with wind speed. Off Ocean
City, Maryland, inlet plumes are oriented in the wind direction.

DELAWARE BAY

The Bay-- The mouth of the Delaware Bay is similar to the mouth of the
Chesapeake Bay in shape and depth. However, in the Delaware Bay there is no
fluvial source close to the mouth (see Oostdam, 1971), as in the Chesapeake
Bay with the nearby James River and other bay tributaries. Also, the
Delaware Bay proper has a different shape and compass orientation, with more
sensitivity to the prevailing northwest winds. Finally, the Delaware has a
large shallow embayment in its northeast segment, characterised by a bottom
clay outcrop of the Cape May formation (Kelly, 1983), which produces
considerable suspended sediment. The corresponding region of the Chesapeake
Bay consists of a deep channel aligned with the bay axis. These differences
in the Delaware Bay produce different circulation and turbidity patterns, as
evidenced in Landsat images previously studied by Klemas and Polis (1977).

The Turbid Plume-- Outside the bay mouth, the plumes differ from
Chesapeake Bay plumes, turbidity often being found in two prominent bands,
one off each cape, separated by relatively clear water (Figure 15).

The Cape May turbid zone, on the north side of the mouth, is usually
very large, extending almost 70% of the distance across the bay mouth. This
zone varies considerably in size, sometimes extending to the northeast
embayment, often extending southeasterly onto the shelf, and sometimes
extending northeasterly to the second or third tidal inlet along the New
Jersey ocean coast. In late ebb and early flood, this turbidity is found
more seaward.

The Cape Henlopen turbid zone on the south is an order of magnitude
smaller in area, and more linear, oriented southeast from the cape. This
turbid plume veers south, affected by the Coriolis force (Ketchum, 1953) and
net non-tidal southerly flow along the coast. The southerly direction of
flow at the shoreline is indicated by the shape of small plumes from tidal
inlets clearly visible on the images. Plume fronts are noticed further
south during flood tide.
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A. Flood/abb ratios. B. Wind quadrants 1 - 3

C. Wind quadrants 1 - 4,
(ratios x 2)

Figure 14. Relative Turbidity Near Cape Charles.
Frequency ratio for each grid cell normalized and truncated.
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Figure 15. Landsat Image of Delaware Bay.



A composite diagram for all Delaware Bay plumes detected in Landsat
imagery is shown in Figure 16. There is a nearly equal distribution of
boundaries off Cape May and Cape Henlopen. Turbid boundaries extend further
seaward and are more dispersed than thermal boundaries.

The Thermal Plume-- Thermal details in some HCMM images show three bands
across the mouth, which correspond to the turbid zones; the central band is
warmer and contiguous with warm waters along the entire axis of the bay
(Figure 17). In other HCMM images, cooler ocean water is seen in the
northern portion of the mouth on flood tide, while on ebb tide, warmer bay
water is seen in the south around Cape Henlopen. Ebb tide plumes cover a
larger area than flood tide plumes. The distributions of thermal boundaries
for ebb and flood tide cases are similar, as shown in Figure 18.

Tides-- The large amount of Delaware Bay imagery permitted a sorting of
results not only into flood and ebb tidal phases (Figure 19), but also into
early ebb, late ebb, early flood, and late flood tidal phases (Figure 20).
The numbers of images for the flood and ebb cases are 54 and 57
respectively. The distributions for flood and ebb shown in Figures 19A and
19B are apparently similar.

To enhance differences, a ratio was formed of ebb to flood counts
(normalized to discount the effect of the differing number of images for ebb
and flood conditions). The resulting distribution is shown in Table 4, and
the ratio data are mapped as a binary display in Figure 19C. The
distribution is patchy. Although the ebb-related boundaries close to the
bay mouth are more numerous on the southern side, they are not uniformly
more numerous further south as might be expected. Instead, ebb boundaries
are relatively numerous at moderate distances eastward. This irregularity
is not explained at present.

The same data sorted into four tidal phases are shown in Figure 20. In
the interpretation of these maps remember that the tidal phases were
determined according to actual tides at Cape Henlopen. The offshore change
of tide precedes the change at the Cape. Therefore, relaxation of current
near the end of ebb tide has already occurred offshore for Figure 20A.

It is interesting that for this case, early ebb, the pattern of
boundaries is the smallest. In the progression from early ebb to late ebb,
Figures 20A to 20B, the pattern enlarges, while the incidence of boundaries
in the bay mouth itself decreases. Speculating, one can envision that
during this time, boundaries may be developing at the greater distances
offshore, where currents have turned to flood. At the mouth, where ebb
currents are diminishing, turbidity boundaries may be weakening due to
settling of particulates. More information is needed on tide-current
relationships seaward of the bay mouth, and in particular, whether rotary
current fields are present, plus the relative strengths of tidal currents
versus net non-tidal currents.

The early flood pattern in Figure 20C is very similar to that for late
ebb in Figure 20B. But in later flood, Figure 20D, the pattern has shrunk
considerably, and the incidence of boundaries within 15 km of the mouth has
substantially increased. Again, one may speculate that the higher current
speeds of late flood near the mouth have produced or strengthened turbid
boundaries.
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Figure 16. Composite of Turbidity and Thermal Boundaries from all Landsat and HCMM
Images of Delaware Bay.
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Figure 17. HCMM Image of Delaware Bay and New York Bight.
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Figure 18. Areas Visited by Thermal Boundaries According to Tidal Phase
from HCMM Images of Delaware Bay.

_36_



DOHWN=

nnnwna

A. Flood Tide B. Ebb Tide
n=53 n=59

LEGEND

1-5 Counts
6-10 ”
11-20
21-30 ”
31-40 ~
41-50 ~
C. Normalized ratio of ebb to flood tide visits;
filled spaces = ratio exceeding unity

Figure 19. Areas Visited by Turbidity Boundaries, Delaware Bay, Sorted
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Figure 20. Areas Visited by Turbidity Boundaries, Delaware Bay, Sorted
According to Quadrature Tidal Phase.
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TABLE 4
NORMALIZED RATIOS OF TURBID BOUNDARY FREQUENCIES AT

DELAWARE BAY ENTRANCE FOR EBB OVER FLOOD CONDITIONS
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The turbid boundaries reach maximum extension beyond the bay mouth in
late ebb to early flood, and these maximum extensions are confined to within
20 km of the New Jersey and Delaware coasts. During the other tidal phases,
late flood and early ebb, when boundaries are closer to the mouth, the
southern region slightly off the Delaware coast is favored.

Winds-- Seaward extension of turbidity plumes does not vary as much with
different wind directions as in the case of Chesapeake Bay; however, the
distributions for wind directions are otherwise similar for the two Bays.
Figure 21 shows the Delaware Bay patterns for the four wind quadrants. The
majority of plumes remain parallel to and within 20 km of the Delaware
coast. With westerly and northwesterly winds, the plumes extend further
south, although not as far seaward as in the case of Chesapeake Bay. The
Cape May plumes often extend north along the New Jersey coast. In a few
cases under strong northwesterly winds there is negligible turbidity along
the New Jersey coast, and a large turbid plume the width of the mouth
extends 40 km southward along the Delaware coast. The eastern extent of
this type of plume does not vary regularly with respect to the tidal phase.

The large number of images permitted sorting of the images for
different wind quadrants into flood and ebb tidal phases. The results are
shown in Figure 21 (2 Pages). For wind quadrant 4, the number of images for
each tidal phase is large. Turbid boundaries are seen very far south along
the coast of Delaware in the case of flood tide.

To compare the impact of northeastern (quadrant 1) winds with western
winds (quadrants 3 and 4), ratios of counts for Q1/Q3 and Ql1/Q4 were
prepared as explained earlier. Tables of the ratio data are presented in
Tables 5 and 6, and the distributions are shown in Figures 22A and 22B. The
three-part division of the bay discharge is strikingly shown in both
figures, particularly in Figure 22A. Here it is seen that northeastern
winds are more effective than southwestern winds (180 degrees opposite) in
producing coastal turbidity. Figure 22B shows that northeastern winds are
more effective than northwestern winds in producing turbidity at the Bay
entrance, the Cape May shore, and far south but set off the Delaware coast.

Seasons-- Seasonal effects are even weaker for the Delaware plume than
for the Chesapeake plume. The data suggest that turbidity zones are larger
in area, and extended farther eastward, in the winter when north and
northwest winds predominate. The seasonal distributions of turbidity
boundaries are shown in Figure 23; those for thermal boundaries are shown in
Figure 24. Plume fronts on HCMM images are closer to shore during summer,
when winds are weak (but from the southwest), and fresh water discharge is
low.

Disposal Site-- Sixty kilometres southeast of Delaware Bay is an acid
waste disposal site. Of the 139 plume boundaries, none reach the area, the
closest being 30 km away.

NEW YORK BAY
The Turbid Plume-- In the Landsat images of Lower New York Bay and the

adjacent New York Bight there were 38 turbid plumes detected visually, and
an additional 16 (30% of the total) discovered in the enhancements. The
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Figure 21. Areas Visited by Turbidity Boundaries, Delaware Bay, According to
Wind Quadrant and Binary Tidal Phase.
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Figure 21 (Cont.). Areas Visited by Turbidity Boundaries, Delaware Bay, According to
Wind Quadrant and Binary Tidal Phase.
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TABLE 6

NORMALIZED RATIOS OF TURBID BOUNDARY FREQUENCIES AT
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A: Quadrant 1 to Quadrant 3. B: Quadrant 1 to Quadrant 4.

Figure 22. Ratios of Wind Quadrant Results for Delaware Bay Landsat Images.
Black areas indicate a higher occurrence of plume fronts during Quadrant 1 winds.
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Figure 23. Areas Visited by Turbidity Boundaries, Delaware Bay,
According to Season.
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Figure 24. Areas Visited by Thermal Boundaries (HCMM), Delaware Bay,
According to Season.
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distribution of turbidity boundaries from all the images is shown in Figure
25. The pattern is dispersed, but the greater concentration of boundaries
is along the New Jersey coast. Close to Sandy Hook, plumes are lobate in
shape, but further seaward, plumes are more linear and extensive. Their
curvature indicates southward movement close to shore, under influence of
the Coriolis force (Redfield and Walford, 1951) and southerly near-shore
currents.

The Thermal Plume-- Thermal plumes show longer frontal regions than the
turbidity plumes, and extend across the entire bay mouth. A composite of
the thermal plumes discriminated on HCMM images is shown in Figure 26.
Plumes were visually detected in all 28 HCMM images, but the low HCMM
spatial resolution hindered detection of plume extensions in any
enhancements. The images show cooler water near the northern portion of the
mouth. Thermal plumes are found seaward as far as 27 km but do not extend
as far seaward as turbidity plumes. Three images show arcs or spiral
features suggesting a rotary gyre offshore.

Tides-- The Landsat data on turbidity boundaries were divided into flood
and ebb tide classes as shown in Figure 27. It can be seen that turbidity
plumes during ebb tide visit a larger area of the New York Bight and are
found farther seaward. The shapes are generally linear. During ebb tide,
shapes are lobate near Sandy Hook but more linear at seaward locations. The
distribution of detected boundaries is seasonally smooth.

The HCMM data divided into flood and ebb classes are shown in Figure
28. The seasonal distribution is again smooth.

Winds-- The Landsat data have been divided into wind classes (Figure
29), but the numbers of images for quadrants 1 and 2 (northeast and
southeast) are small, being 3 and 2 respectively. Under these eastern
winds, plumes are small. For winds from quadrant 3 (southwest), lobate
plumes are found off Sandy Hook, while linear fronts are found further
seaward (Figure 29C). Northwest quadrant winds produce lobate plumes off
Sandy Hook (Figure 29D), and produce the most seaward plume fronts (unless
the large number of images in this case has created an artifact).

Seasons-- Seasonal maps of the counts of turbidity boundaries (Figure
30) suggest that winter and summer plumes frequent a large area, while fall
plumes hug the New Jersey coast. During summer, ebb tide plumes are close
to Sandy Hook.

The thermal data sorted according to season are shown in Figure 31.
Most of the thermal plumes were detected in summer and fall seasons. The
summer cases extend further seaward.

The frequency distribution of plumes during the months of the year is
smooth, as seen in Figures 32 and 33 for turbidity and thermal plumes
respectively.

Disposal Sites-- Disposal sites for dredge spoil, sewage sludge, and
acid waste are located roughly 25, 35, and 45 km southeast, respectively,
from the New York Bay mouth, as shown in Figure 34. The sites and their
exact locations are discussed by Gunnerson and Swanson (1975) and EPA
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Figure 25. Composite of Turbidity Boundaries Extracted from All Landsat Images
of New York Bight.
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Figure 26. Composite of Thermal Boundaries Extracted from All HCMM Images
of New York Bight.
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Figure 27. Areas Visited by Turbidity Boundaries, New York Bight,
According to Tidal Phase.
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Figure 28. Areas Visited by Thermal Boundaries (HCMM), New York Bight,
According to Tidal Phase.
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Figure 29. Areas Visited by Turbidity Boundaries, New York Bight, According to
Wind Quadrant.
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Figure 30. Areas Visited by Turbidity Boundaries, New York Bight, According to Season.
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Figure 32. Seasonal Scatter of Detected Turbidity Plumes, New York Bight.
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Figure 33. Seasonal Scatter of Detected Thermal Plumes (HCMM), New York Bight.
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Figure 34. Waste Disposal Site Locations for the New York Bight.



(1982). Of the 82 naturally occurring turbidity boundaries detected in the
New York Bight, 42 (51%) were in or beyond the dredge spoil area, 10 (12%)

were in or beyond the sewage sludge area, while none reached the acid area.
The totals can be seen in Table 7.

There were 57 waste disposal plumes detected on the Landsat images.
According to their shapes and locations, and the known dumping protocols,
the detected wastes were mainly of acid, the bright yellow-green color
easily detected with the spectral band of Landsat MSS band 5 (Charnell and
Maul, 1973).

Few of the dull plumes produced by brown sludge were seen. Unless
their disposal occurs within one hour of the Landsat overpass, the sludge
has time to settle beyond the penetration depth for the Landsat MSS spectral
bands, and nothing is detected (EPA, 1978).

Acid wastes, which consist of 10% ferrous sulfate and 8.5% sulfuric
acid (Redfield and Walford, 1951), react with ocean water to form a ferric
hydroxide suspension. This suspension can be detected by Landsat from
twelve hours (Charnell et al., 1974) to as many as five days (Vaccaro et
al., 1972) after disposal.

Thus, the acid plumes would function as good circulation tracers
(Freeland et al., 1976), except that disposal firms are not required to
record actual coordinates of the dumping location. It would have to be
assumed that all waste was disposed within the designated dumping area.

The feasibility of measuring disposed waste concentrations using
Landsat may be judged from the extensive laboratory and field investigations
of waste spectral properties performed by NASA Langely personnel in the
early 1970s (see the review in Johnson and Munday, 1983); it may be
concluded that Landsat measurement of concentrations would be moderately
successful under restricted conditions.

Locations of waste plumes detected by Landsat are plotted in Figure 35,
which shows many plumes far outside the designated dumping site. Under the
presumption that with time a plume spreads and takes on an indistinct
elliptical shape due to drifting, diffusion, and chemical reaction, the age
of a waste plume may be inferred by its appearance. Data in Figure 35
reveal that the older plumes are more distant from the designated dumping
sites. Analysis shows that the plume locations are not related to wind
quadrants or seasons (Figures 36 and 37).

When the net circulation pattern sketched by Drake (1974) is overlain
on the plume locations (Figure 38), the plume locations are found to be
generally aligned with the western edge of the clockwise gyre which
encompasses the acid disposal site. Diffuse (older) plumes were located in
the gyre, but furthest from the disposal site. Those plumes northwest of
the site might be explained on the basis that the currents of the gyre
carried those plumes from the site. However, plumes seen southwest of the
site, also seen by Polcyn and Sattinger (1979), cannot be so explained.



TABLE 7

NATURAL PLUME FREQUENCIES 1IN
NEW YORK BIGHT WASTE DISPOSAL AREAS

No. of In Dredge In Sewage In Acid
Plumes Spoil Area Sludge Area Area
No. % No. % No.
Landsat
Visual 38 22 56 3 10 0
Visual+Enhanced 54 33 61 10 19 0
HCMM 28 IE_ 32 0 0 0
TOTAL 82 428 151 10 12 0
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Figure 37. Waste Plume Locations, New York Bight, Sorted According to Season.
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LONG ISLAND SOUND AND SOUTH SHORE

In the Long Island Sound, the only major turbidity and thermal point
source was the Connecticut River on the north shore. Plumes extend a few
kilometres from the river mouth, directed westward during flood tide (as
defined for Narragansett, Rhode Island located to the northeast), and
eastward during ebb tide (Figure 39). Eastward-oriented plumes display
distal trails of turbidity toward the west. Wind has no noticeable effect
on plume orientation.

A small amount of fresh water discharge data were examined; the fresh
water discharge does not appear to affect plume orientation, but high
discharge is associated with higher plume visibility.

For the south shore of Long Island, there are no major turbidity
sources. The south shore exhibits small plumes from inlets, plus the usual
nearshore turbidity. Turbidity was constrained to within 10 km of shore
except during strong winds.

NARRAGANSETT BAY

Very few plumes are visible at the mouth of Narragansett Bay. Those
seen are associated with ebb tide. The more prominent ones exit the eastern
channel. Some turbidity is seen extending seaward from the coast on each
side of the bay, from Point Judith and from Horseneck Beach.

CAPE COD AND MASSACHUSETTS BAYS

There are no point sources of turbid plumes, nor any sharp turbidity
boundaries, in the waters surrounding Cape Cod. Turbidity is present in
Muskeget Channel between Martha's Vineyard and Nantucket Island, with
turbidity boundaries oriented along presumed tidal current lines. Turbidity
is also seen in Vineyard Sound between the Elizabeth Islands and Martha's
Vineyard mainly during flood tide (as defined for Narragansett).

Turbid plumes up to 5 km in length are seen exiting the northern mouth
of the Cape Cod Canal, into Cape Cod Bay, during the approach of flood tide
from the south. In one case there was a plume 4 km in length emanating from
the southern end of the canal into Buzzards Bay on ebb tide. Buzzards Bay
is generally more turbid than Cape Cod Bay.

Along the western coast of Massachusetts Bay, no sources of turbidity
are seen, either in Plymouth Bay or in Boston Bay. Near low water, the
shallower portions of these harbors exhibit higher reflected radiance
levels. The tidal range of 3 m may be allowing the Landsat MSS to sense
bottom sediment.

In the shallows east of Nantucket Island, the reflected radiance
patterns (when present) are constant from image to image, and match the
patterns seen in Seasat SAR imagery of the same region. It is clear that
both Landsat and Seasat SAR images recorded patterns related to the
bathymetry. An example of the Cape Cod imagery is shown in Figure 40.
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Figure 39. Connecticut River Turbid Plumes over a Tidal Cycle.
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Figure 40. Landsat Image of Cape Cod and Massachusetts Bay.



DISCUSSION
Factors of Interest

Knowledge of general circulation in the Middle Atlantic Bight is
important for understanding plume behavior. Obviously, the primary
mechanisms affecting general circulation are net non-tidal flow, tidal
currents, the Coriolis force, bay mouth morphology with resulting nearshore
currents, density stratification, fresh water discharge, and winds.
Complicating any interpretation of the Landsat imagery in terms of the above
factors is the fact that plume features on any one image were generated
during several tidal cycles; it was not unusual to see several plume
boundaries in both ebb and flood tide images.

Net Non-Tidal Flow

The net non-tidal direction of water movement in the Middle Atlantic
Bight is southerly (Bumpus, 1973; Boicourt, 1973; Beardsley et al., 1976).
This southerly flow along the coast generally drives bay plumes southward.
Southerly movement of the Chesapeake Bay plume was observed in the Superflux
experiments (Campbell and Thomas, 1981). In the case of the New York Bay
plume, southerly movement has been observed by various investigators
(Ketchum et al., 1951; Costin et al., 1963; Charnell and Maul, 1973; Drake,
1974; Polcyn and Sattinger, 1979; Johnson et al., 1981).

The southerly flow of bay plumes is confirmed in the large number of
images studied here, in that bands of uniform turbidity and temperature were
frequently seen along the coasts south of all the bay mouths. Also, small
plumes emanating from tidal inlets from Long Island south to North Carolina
were seen to generally veer southward. The southerly flow according to
Bumpus (1969) is not continuous, but experiences reversals, due to seasonal
variations in fresh water discharge. Another cause of reversals is strong
southern winds, which produce northward flow on the inner shelf (Boicourt,
1981). In the images, when small plumes from tidal inlets veered east or
northeast, bay plumes also appeared to be oriented east or slightly
northeast. Thus, the image analysis has provided direct confirmation of the
prevailing southerly flow and its occasional reversals. Thus, the bay
plumes in the overall sense passively follow the coastal flow.

Coriolis Effect

Estuarine water is assisted into the southerly flow through the
Coriolis effect during ebb tide, when currents may typically exceed 2.3
knots (Brower et al., 1972). For all three bay mouths, plume features were
prominent in the southern portion of the mouths during ebb tide, and
features were prominent in the northern portion during flood, which
implicates the Coriolis force as a large influence on water movement
(Redfield and Walford, 1951; Ketchum et al., 1951; Ludwick and Melchor,
1972).
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Rotary Flows and Gyres

The Coriolis force is joined by bay mouth morphology and resulting
nearshore current patterns in affecting patterns of plume movement. The
relatively linear ocean shorelines at the mouths of Chesapeake and Delaware
Bays produce rotary flows and shear currents just beyond the Capes.
Evidence for rotary flow adjacent to Cape Henry off Chesapeake Bay has been
reported by Harrison et al. (1964), Johnson (1976), and Ruzecki et
al. (1976). However, the images did not reveal any arcs or spiral features
directly suggesting rotary flows adjacent to the Capes. The images revealed
that plumes spread laterally, and turbidity boundaries were more linear,
with increasing distance seaward. These features may be indirect evidence
of rotary flow at the Capes.

Rotary flow north of Delaware Bay discussed by Ketchum (1953) may be
responsible for the northward plume movement around Cape May seen in the
images portraying ebb tide conditions. Drift bottles released in this area
exhibited northward and southward motions (Ketchum, 1953), which were
confirmed in current vector observations by DeAlteris and Keegan (1977).
Kelly (1983) discussed evidence from sediment analysis that suspended
material from inside the bay at Cape May eventually reaches the tidal inlets
on the ocean side. These findings indicate that turbid plumes which on the
images extend from Cape May to the inlets may be interpreted as showing
bay-to-inlet transport of suspended material.

For the New York Bay, a more complicated situation has been observed.
First, the apparent plume of Hudson River water did not always extend
seaward from the river mouth. In some Landsat images, turbid water extended
from the Hudson River to the southern Raritan Bay shore. Possibly these
southward flows in the Bay were caused by high discharge from the Hudson
River. The relationship of these flows to the Bay's general
counterclockwise circulation pattern (Ayers et al., 1949; Jeffries, 1982) is
unknown.

.  Second, flow through the mouth involves upwellings of shelf water.
Studies by Kao (1975), Parker et al. (1976), and Hansen (1977) across the
transect from Sandy Hook northward to Rockaway Point have revealed that
Rockaway Channel exhibits a net flow into the Bay for the entire water
column, while the net flow is inward only for bottom water in the Sandy Hook
and Ambrose Channels. Those channels show a net outflow at the surface.

In the HCMM images, cold water plumes appeared to be coming from
Rockaway Inlet. According to Stewart (1955) and Lavelle (1975), the cold
water does not come from the inlet, but is incoming bottom water from the
Hudson Canyon Valley. The cold water is upwelled in the Rockaway Channel
area off Rockaway Inlet and becomes entrained by the Bay plume, producing
the separate cold water plume which reaches the New York Bight. One HCMM
image even showed entrained cold water reaching the lower Bight gyre and
from there extending northward.

Third, the 90 degree change in shoreline orientation across the New
York Bay mouth produces more complex local currents in the New York Bight
than in the case of the Delaware and Chesapeake Bays. Shear currents and
eddies 10-15 km offshore (Costin et al., 1963; Drake, 1974) disperse plume
waters at the plume boundary toward the east and northeast. For locations
further seaward, Drake (1974) postulated a large clockwise gyre, driven by
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the offshore net non-tidal southerly flow situated far beyond reach of the
plume fronts (Bumpus, 1973; Beardsley et al., 1976). The nearshore edge of
the postulated gyre is located 20 km east of Sandy Hook (see Figure 38).
The gyre should laterally spread abutting plume fronts due to entrainment.
The images suggest that such spreading occurs: The turbidity boundaries in
the New York Bight are more dispersed than for the other bays, and consist
of linear segments as would be expected.

Direct evidence of the clockwise gyre was reported by Gunnerson and
Swanson (1975) from studies using current meters. Some of the results are
shown in Figures 41-43. Near-bottom flow shown in Figure 41 and flow in
non-stratified conditions shown in Figure 42 together indicate that water
leaving Raritan Bay will generally flow eastward. Southeast from Sandy
Hook, flow of shelf water is northward. Thus, plume water (mixed to mid
depth) generally cannot flow toward the southeast, as in the case of
Chesapeake and Delaware Bays. Only in regions nearer shore is flow
permitted toward the south, along the Sandy Hook coastline.

The generalized flow diagram for fine sediment transport shown by
Gunnerson and Swanson is shown in Figure 43. In other investigations of New
York Bight circulation patterns, an overall pattern did not emerge due to
the variability of inner Bight currents (Gunnerson and Swanson, 1975;
Hansen, 1977). This variability is affected by the angular coastline, the
Lower New York Bay estuary, winds, tidal and river flow, and the Hudson
Canyon and other bathymetric features. The relative importance of each
variable is difficult to assess, having led Redfield and Walford (1951) to
state that they could not quantitatively determine wind effects on
circulation.

In other studies, it was concluded that net circulation was strongly
affected by tides and winds (Gunnerson and Swanson, 1975), with plume
movement sensitive to wind stress and reversals in net non-tidal shelf flow
(Bowman and Wunderlich, 1976). Hansen (1977) cautioned that the currents
were so random that statistical patterns only, not individual data sets, are
useful for elucidating features of circulation.

Tidal Currents

Tidal currents are the primary determinants of plume movements near bay
mouths, but this influence diminishes with distance offshore, and the
influence of shelf non-tidal currents increases. For Chesapeake Bay, the
tidal excursion is negligible at the Chesapeake Light Station 23 km
offshore. Farther north, the tidal currents are stronger, as indicated in
NOAA tidal current tables, due to a greater tidal range. Therefore, tidal
current-related effects might be expected at greater distances offshore at
the more northerly locations. The Cape Cod images, as noted earlier, did
exhibit current-related effects between Nantucket Sound islands.

According to NOAA tide and tidal current tables, the tidal wave has
nearly perfect progressive wave characteristics at the Chesapeake Bay
entrance, where maximum currents occur near high and low water. Farther
north in Long Island Sound and off Cape Cod, the tidal wave changes to near-
standing wave characteristics, with maximum currents occurring nearly three
hours after high and low water. The tidal range also increases with
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GENERALIZED FINE SEDIMENT TRANSPORTY: FALL 1973
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Figure 43. Fine Sediment Transport System as Inferred from the Distribution of
Suspended Sediments During Fall 1973 (Gunnerson and Swanson, 1975).

The dashed line is the mean position of the boundary between more turbid coastal water and less
turbid off-shore water. Turbid, brackish, surface effluent from the harbor flows down the New Jersey
shore. The clockwise gyre is driven by southwesterly drift of off-shore shelf water, and, on bottom,
by the influx of saline water into the harbor. Regional currents which appear to be persistent
are indicated by solid arrows.
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distance northward from about 0.5 m at Chesapeake Bay to almost 3.0 m at
Boston Bay, with correspondingly stronger tidal currents. The stronger
currents tend to produce greater bottom resuspension, which is seen at low
tide in images of Boston and Plymouth Bays. The greater bottom resuspension
in the northern nearshore waters tends to balance the fact that such waters
have fewer point sources of suspended sediment.

In the middle and southern portions of the Middle Atlantic Bight,
nevertheless, the turbidity levels are somewhat higher, due to the strength
of turbidity in plume waters. Therefore, water mass movement is more easily
tracked by visible spectrum sensors in the southern half of the study area.

The HCMM imagery revealed thermal contrasts in the northern waters, and
showed thermal plumes at river and harbor mouths, but thermally distinct
water could not be traced very far seaward. The well-known upwelling east-
of Cape Cod and Nantuckett Shoals was recognizable.

Seasonal Variations

It is again noted that seasonal physical factors, not seasons per Se,
influence plume behaviors.

Image analysis indicates that turbidity features vary seasonally;
however, the seasonal distinctions are generally not strong. In winter and
summer, waters are more turbid than in other seasons, and turbidity is noted
over a larger area. In fall and spring, turbidity is found closer to coasts
south of bay entrances.

Two physical factors which have definite seasonal variation are winds
and water column stratification. The effect of winds is very noticeable in
the winter when winds are strong and from the north. Wind effects are
further discussed below.

The variation in water column stability is a function of fresh water
discharge and seasonal temperature variation in surface waters. Temperature
is affected by discharge and by direct solar warming. Water column
stability varies therefore with the season, being well-mixed in winter and
spring, and highly stratified in summer due to solar warming. These
influences are discussed below.

Fresh Water Discharge and Water Column Stability

Fresh water discharge affects plume behavior, as high spring discharge
can cause plumes to spread further seaward. Fresh water discharge by the
Raritan and Hudson Rivers reaches a peak in April, the large fresh water
volume causing the New York Bay plume to spread and extend farther seaward
than under low discharge (Redfield and Walford, 1951; Jeffries, 1962;
Duedall et al., 1979). There has been disagreement over whether increased
volumes cause faster plume velocities (Jeffries, 1962; Redfield and Walford,
1951). As previously mentioned, low discharge can reverse the southerly
non-tidal flow (Bumpus, 1969).
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The fresh water flow from the Lower New York Bay estuary (primarily
from the Hudson River) was anomalously high in the October- April period
during 1977-1978, and higher than for any other year since 1946-1947.
Conversely, the fresh water flow for October to April in 1980-1981 was
anomalously low, lower than for any other year since 1946-1947 (Stanford,
1981). Unfortunately, image analysis has not yet revealed any plume
responses specifically related to discharge variations. In this regard, one
can examine Figures 12, 23, 24, 30, and 31.

Further analysis involving careful examination of daily discharge data
for periods preceding each Landsat pass might prove worthwhile, as it has
not been possible to carry out an extensive analysis of discharge effects in
this study.

It is noted, however, that time-consuming analysis of the discharge-
turbidity relationship for Chesapeake Bay waters (waters in the Bay itself,
not in the mouth nor in the plume) disclosed little of high significance.

An examination of upriver discharges for the Potomac and James Rivers
relative to positions of the corresponding turbidity maxima produced very
low coefficients of determination, with only slight indication that the
maxima responded at 12 and 20 day lags after high discharges (Fedosh, 1984).

A higher spring discharge by the Connecticut River into Long Island
Sound increased reflected radiance levels, but it did not appear to affect
plume orientation. Density stratification is prominent in summer when solar
warming of surface water reduces surface densities (Myers, 1974). 1In the
New York Bight, water is therefore stratified in summer, and well mixed in
winter and early spring (Redfield and Walford, 1951; Gunnerson and Swanson,
1975; Lavelle et al., 1975; Bowman and Wunderlich, 1976).

Opinions have differed as to the consequences for plume behavior,
Gunnerson and Swanson (1975) stating that as thermal stratification
increased, plume boundaries would be found nearer to shore, while a well-
mixed water column would permit a plume to progress further south along the
New Jersey coast. Redfield and Walford (1951) believed that stratification,
in contrast, would confine fresher estuarine water to the surface and
facilitate plume spreading.

In the HCMM images for the New York Bight studied here, summer thermal
plumes were found farther seaward, compared to fall plumes when the water

column was in transition toward a mixed state, in agreement with Redfield
and Walford (1951) (see Figure 31).

Winds

Local winds are important forces which may temporarily overpower other
plume-driving mechanisms. Along the Mid-Atlantic coast, third and fourth
quadrant winds are dominant in summer and winter respectively. Westerly
winds drive the plumes seaward away from bay mouths. In the New York Bight,
such winds appear to drive the plume fronts into the offshore gyre.

First and fourth quadrant winds, that is, generally northern winds,
confine the plumes to nearshore regions, and accentuate the effects of the
Coriolis force and net non-tidal southerly flow in causing plume movements
toward the south, parallel to the coast.
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Second quadrant winds occur too seldom for the images examined to make
any conclusions.

The less than distinct seasonal results noted earlier may have resulted
from the seasonal distribution of winds. For example, in the New York Bay,
winds are northwest in the winter, and change during the spring to south
winds for the summer (Brower et al., 1972). However, the wind distribution
of the Landsat images did not match the seasonal trend as can be seen in
Table 8.

Because third and fourth quadrant winds drove plumes seaward, and for
the images studied were evenly distributed across the seasons, the seasonal
differences were minimized. Perhaps the majority of Landsat images had
third and fourth quadrant winds because such winds are related to dry
Canadian air which produces few clouds and therefore more usable images.

The Delaware Bay plume is less affected by winds than the other bay
plumes. The only easily-discerned effects are during strong north winds,
which produce a large turbid plume as wide as the mouth which extends 60 km
toward the south. Northwesterly winds in general tend to orient turbidity
streamlines along the wind direction.

Wind-driven currents become significant on open water when winds
greater than 6 knots blow for more than 36 hours (Lavelle et al., 1975).
The majority of Landsat images for the New York Bight had wind speeds above
this minimum for at least 24 hours. For third and fourth quadrant winds,
the number of turbid boundaries seaward of New York Bay was large. These
results of image analysis are compatible with the conclusions by Redfield
and Ketchum (1951) and Ketchum et al. (1951) that third quadrant winds
spread plumes eastward.

These investigators also stated that northern winds confined plumes
along the New Jersey coast. Concerning this conclusion, there was too small
a number of images with first quadrant winds to permit comment. Northwest
winds produced the most seaward plume fronts.

Unlike water masses on the shelf which manifest an Ekman transport
effect (Doebler, 1966), the plumes in the images are usually oriented
downwind. It would, however, be difficult to see Ekman effects in the
images because of the lack of specificity in determining the direction of
plume movement. One exception might be eastward moving plumes under
southwest winds, suggested by Ruzecki (1981).

Sources of Suspended Sediment

In waters surrounding Cape Cod, tidal resuspension of bottom sediment
is the primary source of surficial suspended sediment. In Long Island
Sound, sediment sources are river discharge and local resuspension.

Sediment sources for the New York Bay plume include the Hudson River and
bottom resuspension. Kelly (1983) summarizes earlier studies of the
Delaware Bay, and identifies its suspended sediment sources as primarily
bottom resuspension, with a minor contribution from the Delaware River (see
Oostdam, 1971). In the Chesapeake Bay, the sources include resuspension and
James River sediment (Ludwick and Melchor, 1972; Nichols, 1972).
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TABLE 8

SEASONAL DISTRIBUTION OF WIND QUADRANTS
FOR AVAILABLE LANDSAT IMAGES OF NEW YORK BIGHT

Season Quadrant
First Second Third Fourth

Winter g 9
Spring i 2 5 5
Summer 2 2 9
Fall 7 5
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For each bay, the exact origin of sediment varies with geomorphology.
The mouths of the Delaware and Chesapeake Bays are similar, but for Delaware
Bay there is no fluvial source close to the mouth, such as the James River
in Chesapeake Bay. The sediment source is instead a shallow embayment in
the northern region of the bay.

The Chesapeake Bay orientation makes it sensitive to northern winds,
but the axis of the mouth is nearly eastward. In contrast, both the
Delaware Bay mouth and Bay orientation are aligned northwest and the system
is therefore very sensitive to northwest winds. The Lower New York Bay has
minimal fetch in comparison, and an angular configuration at its mouth.

Because resuspension is identified as the dominant source of plume
sediment in all bays, it is expected that the stronger northwesterly winds
in winter would produce greater turbidities, due to appropriate orientation
of the wind vector along bay axes, producing a greater likelihood of bottom
resuspension. As expected, the images show greater turbidities under these
conditions.

Ludwick and Melchor (1972) have previously stated that Chesapeake Bay
turbidity increases during winter because of the greater frequency of strong
northerly winds. However, less turbid water is still found over channels
(Munday and Fedosh, 1981b) where wind waves cannot resuspend sediment due to
the greater depths.

Cooler winter water has a greater viscosity, which slows settling
velocities (Oostdam, 1971); consequently, particles remain in suspension
longer. There may be some evidence of this effect in winter Landsat images
of the New York Bight and Delaware Bay, which show plumes farther southward.
The greater size of winter plumes could also be attributed to the stronger
northerly winds in winter.

Waste Disposal

The dredge spoil and sewage sludge disposal sites off Chesapeake Bay
and in the New York Bight are frequently visited by turbidity boundaries
when winds blow from the southwest quadrant. In contrast, the acid disposal
sites off Delaware Bay and in the New York Bight are situated far enough
seaward not to be reached under conditions prevailing with the images
studied.

Drift directions for 7 acid plumes off Delaware Bay (Klemas and
Philpot, 1981) are an average of 60 degrees to the right of the wind
direction (water depth 38-48 m; Ekman theory for infinite depth predicts
deviations of 45 degrees). The discrepancy from Ekman theory may indicate
that 1-day wind vector averages have low correlations with shelf surface
currents, or that shore-derived wind data are inappropriate for amalysis of
shelf water movement.

The locations of acid plumes in the New York Bight roughly follow a
northwest-to-southeast line from the acid disposal site. The lack of
information on the exact location and time of dumping precludes calculation
of drift rates, but a rough age could be inferred if desired by study of the
dump-time and image data of Klemas and Philpot (1981), which reveal in
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general the spreading of waste plumes with time since release. Also, the
more dispersed acid plumes are farther west from the disposal site. The
result moderately confirms expectations: An overlay of the clockwise gyre
(Drake, 1974) on the acid plume locations shows that the current in the
disposal site should be toward the northwest.

REGIONAL OVERVIEW

The collection of cloud-free Landsat imagery for the Middle Atlantic
Bight between 1972 and 1981 provides for a quasi-synoptic view of the entire
Bight. Seven scenes, acquired in four orbital paths over four successive
days, provide the coverage shown in Figure 1. The chart in Figure 44
portrays the calendar distribution of all images acquired for this study,
and can be used to determine the combinations of scenes which produce a 4--
day quasi-synoptic view. Over such 4-day periods, meteorological and
oceanographic conditions change, but examination of the appropriate data may
reveal some 4-day sets of scenes in which such conditions vary only
slightly. An examination of the data in this regard has not been performed
here.

Truly synoptic coverage can be obtained from orbiting sensors with
greater areal coverage, such as HCMM, but at a loss of spatial resolution.
A study of all available satellite data sets will provide the most
comprehensive view with regard to both spatial and temporal resolution.

CONCLUSIONS

In the southern and central portions of the Middle Atlantic Bight, the
Chesapeake, Delaware, and New York Bays are the principal sources for
turbidity and thermal plumes. The dynamic behavior of these plumes has been
examined, with respect to tidal currents, the Coriolis force, shelf and
nearshore circulation, fresh water discharge, and local winds as the plume
driving mechanisms. The usual effect of the forces apart from winds is to
drive plumes southeasterly along the coasts from the bay mouths.

During northern winds, this southeastern movement is enhanced. During
strong southwest and westerly winds, plumes move more seaward and spread
laterally, sometimes entering or going beyond waste disposal areas.

In the northern portion of the Middle Atlantic Bight, from Long Island
to Cape Cod, a lack of distinct sediment and thermal sources makes it
difficult to discern turbid plumes or other water masses significant in
exchange processes between near-shore and off-shore waters.
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