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GUIDEBOOK FOR BIOMETRIC ACTIVITIES IN OCEAN PULSE 

1. Introduction: 

Ocean Pulse is a program designed for continuous monitoring of and associated 

research necessary for forecasting the condition of coastal waters in the Northeast 

region. The goal is to determine the extent to which man's activities, particularly 

chronic and acute pollution and habitat modification, are affecting the elements 

of our living resources. The program provides an integrated marine environmental 

assessment, which an interdisciplinary base incorporating traditional and 

innovative measurements of resource status. 

The Ocean Pulse activity will most likely proceed incorporating procedures 

analagous in part to that of medical science. The first phase is that of examination. 

The field and laboratory data, including derived indices, will describe conditions 

of habitat1,ranging inshore to offshore, and under various impacts, short term 

and chronic. Chemical, physiological and population indices will be examined to 

determine symptoms associated with various impacts. At this point statistical 

.�cures will determine associative linkages and possibly define symptoms 

heretofore undescribed, (i.e. synergistic effects). The NMFS can be expected 

to perform in producing data files, analyses and reports including diagnoses and 

advise on recommendations for treatment. Treatments will come under the domain 

of government agencies responsible for pollution abatement. The prognosis will 

rest with public support. 

All disciplines in Ocean Pulse collect numeric data from controlled field 

and laboratory experiments as well as observations and surveys at sea. The data 

will be accumulated as large sets of physical, chemical and biological variables 

to include among others physiology, pathobiology, genetics, benthos, oceanography, 

fisheries. The data sets will require appropriate -sampling schemes throughout 
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the experiment or survey, a requirement particularly crucial at the planning 

and initial stages. They also demand a proper data mangement system to reach 

the objectives of monitoring and predicting. Only with an appropriate sampling 

scheme accommodating for some desired level of precision and analyzed with proper 

statistical procedures can data lead to meaningful interpretation and conclusions. 

This report concentrates on general topics of statistical procedures and 

their direct applications in the Ocean Pulse program. However, it is worthwhile 

to review first the requisites for a sound experiment. Next, the selection of 

a sampling frame and various statistical methods both parametric and non-parametric; 

analysis and interpretations for the application within tasks of individual 

disciplines follow. Integration and synthesis for an appropriate monitoring 

system in terms of an ecological and environmental assessment point of view and 

a feedback system' is described, critical for realignment of initial objectives. 

Lastly a data flow system is discussed. 

2. Prerequisites: 

In collecting basic information from samples at sea in the Ocean Pulse 

Program, an experiment may be defined as a directed course of action aimed at 

answering through scientific procedures one or more carefully framed questions. 

In a controlled laboratory experiment the experimenter manipulates at least 

some of the factors under the study and then observes the effects of his action. 

Suppose, for example, we have survey and laboratory measurements of biochemical 

enzyme responses observed under similar environmental stresses on sea scallops. 

Then, both should be related to each other after establishing monitoring and 

diagnostic criteria. We can assume the nature of the basic field and controlled 

laboratory data are linked by similar environmental stress. Without this linkage, 

there is little to say in interpreting or synthesizing results and only with it, 

can the experiment succeed in accomplishing the objectives of the proposed 

project. 



There are certain characteristics an expe.riment must have to succeed. 

These are requisites of any sound experiment and to achieve these re_quisites, 

statistical design of experiments can provide some direction and an appropriate 

tool for soundness. These are summarized in Table 1 (Natrella, 1963). Recommended 

references on the general principle of experimentation are Anderson and Bancroft 

{1952), Cochran and Cox {1957), Cox (1958), Natrella (1963), Wilson (1952) and 

Yates {1960). 

2.1 Establishing Objectives: 

The objective is a statement in the form of questions to be answered, the 

hypothesis to be tested or, of the effects to be estimated. The statement should 

be lucid and specific. Common faults are vagueness and excessive ambition, i.e., 

that the program cannot be accomplished within the limitations of time, money� 

and availability of material, personnel, or other constraints. Establishing 

an objective is more than writing down a few key words or parameters. A proper 

setting for objectives depends on purpose, tempered by the physical restrictions 

�e process of taking measurements and other constraints. An objective should 

, .�iude an account of the range over which generalizations or statistical 

inferences are to be made. The objective should be described in detail, and an 

outline of the analysis should be constructed. Then following the details of 

how the experiment is to be conducted and analyzed. 

As examples we should consider the following an initial field survey at 

sea designed to furnish answers to the questions of desired sample size and 

precision? Are the results of the controlled laboratory exposures with heavy 

metals to measure stress upon marine organisms similar to levels expected to 

be found at sea? Can results be used to explain facets of theory not adequately 

understood· before? Are we solely interested in estimates of primary productivity 

around some particular sites? If not, how will tests of significance be 

determined for links in determining trophic food chain dynamics? 
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Once we establish the objectives and decide what we are going to do in the 

experiment, then observations through some sampling system will provjde an 

estimate of the population being studied. Our ultimate goal is to have small 

variance (experimental error), bias (systematic error), with mean estimates 

about the same as the true va1ue. The extent of bias and variance in the 

experiment are to a large extent independent. We can have estimates having 

small variance, i.e. differ little among themselves, but with a large bias, so 

that all the estimates differ greatly from the true value. Bias may arise from 

a poor method of analysis, but more likely from a poor choice of samples, or 

from the method from which the measurement or counts are made from the sample. 

If the size of replicates or samples increases, then the variance will be 

reduced, but the bias will remain unchanged. This leads to the discussion below 

on replication. However, the bias can only be detected and hence eliminated by 

careful examination of the whole sample procedures from beginning to end and must 

utilize the concept of randomization. 

2.2 Replication: 

It is. seldom that only one observation in an experiment is regarded as 

sufficient. Repetitions are considered desirable to confirm results and to form 

a basis for estimating precision. The precision is concerned merely with 

repeatability of measurements. 1 ,This process of replication is especially necessary 

when the parameter under study is not precisely defined, and is subject to wide 

variations. When this applies, large numbers for testing may be required, but it 

is also desirable to make check runs to determine the experimental errors 

( random errors). 



Three main sources of experimental errors may be distinguished. The first 

is inherent or intrinsic variability in the experimental material to,which 

the treatment are applied. The second is lack of uniformity in physical conduct 

of the experiment, i.e. failure to standardize the experimental technique. Third 

is the size of the experiment, in the sense of either providing replicates or 

including additional treatments. 

Whatever the source of the experimental error, replication of an experiment 

- steadily decreases the associated error. But precautions have been taken to 

ensure that one treatment or factor is no more likely to be favored in any 

replicate than another, so that the errors affecting any treatment tend to cancel 

out as the number of replications is increased. The rate at which the experimental 

error is reduced is predictable from statistical theory. One should avoid two 

common mistakes: l) require more precision than the purpose warrants, and 2) 

obtaining insufficient precision for the purpose. In the first mistake, the 

experiment will cost more money than is necessary. In the second mistake, the 

• experiment fails to achieve s i gni fi cance. 

The basic quantity used to measure experimental errors is the error variance 

per experimental unit, which is defined as the expected value of the square of 

the error that affects the observations for a single experiment unit. The 

square root of this quantity is called the standard error per unit, i.e. 

err.or variance per unit
=standard error no:· o�•replicates 

Hence, to estimate the number of replicates, we need only the error variance 

per unit (which is usually obtained from the analysis of variance) and the desired 

or·required standard error (precision). Further readings for this are in 

Cochran and Cox (1957 and Cox (1958). 



2.3 Randomization: 

One way to eliminate bias is the use of the principle or randomization. 

The use of a strictly random choice (not some process such as guessing numbers 

which the experimenter perceives as random), has two aims. The first is the 

essential -one of ensuring that the inevitable prejudices and preferences of the 

experimenter do not bias the experiment. The second aim is to provide a 

mathematically sound bias for calculation of approximate probability of error, 

as well as a statistically meaningful inference for interpretation of the results. 

The basic operation of randomization is that of arranging in random order a 

series of numbered objects. In the more complicated designs this process must 

be applied several times. An essential feature of randomization is that it be 

an objective impersonal procedure. Arranging things in random order does not 

mean just a manipulation into some order that looks haphazard. Methods of 

randomizing include rolling dice, shuffling numbered cards or drawing numbered 

balls out of a well-shaken bag. The main method is the use of numerical random 

tables. It is used as follows: choose a starting point without looking at the 

tables. For example, write down a number for the page, a number for the row, 

and a number for the column block·. Similarly we can also choose multi-digit 

random numbers according to the experimental unit or treatment for which we want 

. to establish a random order. 

The positive advantages of randomization are assurances that a randomized 

experiment is more accurate than a corresponding nonrandomized one in which an 

unskillful assignment to treatments to units leads to systematic bias. Randomization 

can prevent human bjas from entering in the selection of the sample and in making 

the assignment of treatments or observations. It also assures that the random 

error of the estimated treatment effects can be measured and their level of 

statisti�al significance examined. The concept of randomization was introduced 

by R. A. Fisher and further readings are in Fisher (1947) and Cox (1958). 
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Table 1. Some requisites and tools for sound experimentation. 

1. 

Requisites 

The experiment should have carefully de­
fined objectives. 

1. 

Tools 

The definition of objectives requires all of 
the specialized subject-matter knowledge of 
the experimenter, and results in such thing� 
as: 

(a) Choice of factors, including their range;
(b) Choice of experimental materials, pro-

cedure, and equipment;
(c) Knowledge of what the results �re 

applicable to. 

2. As far as possible, effects of factor should· 
not be obscured by other variables .. 

2. The use of an appropriate experimental pattern 
helps to free the comparisons of i�terest from 
the effects of uncontrolled variables, and· 
simplifies the analysis of the results. 

3. 

4. 

As far as possible, the experiment should be 
free from bias (conscious or unconscious). 

Experiment should provide a measure of 
precision (experimental error). 

3. 

4. 

Some variables may be taken into account by
planned grouping. For variables not so taken 
care of use randomization. The use of 
replication aids randomization to do a better 
job. 

Replication provides the measure of prec1s1on;
randomization assures validity of the measure 
of precision. 

5. Precision of experiment should be sufficient 
to meet objectives set forth in requisite 1. 

5. Greater prec1s1on may be achieved by: Refine­
ments of technique; experimental pattern
(including planned grouping); replication . 

,· 

I 

) 
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3. Sampling 

Sampling is a method that guides quantitative studies of content, behavior, 

performance, material and causes of differences. Every sampling system is used 

to obtain estimates of certain estimates of certain measurements or properties 

of the population being studied, and the system can be judged by how good the 

estimates obtained are in the sense of minimizing errors and bias. A good 

system provides a frequency distribution with a small variance and bias with the 

.estimated mean close to the true value. The requirements for precision and 

randomization have to be fulfilled. 

To extend valid generalizations from samples about characteristics of the 

population in which we are interested, the samples must have been obt�ined by a 

suitable sampling scheme. Such a scheme ensures two basic conditions: 1) all 

possible samples associated with the sampling scheme must bear a known relation 

. to the characteristics of the population (if the population is small, it is 

sometimes convenient to obtain the information by collecting the data for the 

ale of the population); 2) generalizations may be drawn from such samples in 

accordance with the validity of the mathematical theory of probability. If a 

sampling scheme is to meet these two requirements, it is necessary that the 

selection of the individuals to be included in a sample involve some type of 

random selection, that is,each possible sample must have a fixed and determinate 

probability of selection. 

There are excellent reference books for sampling methods. Yates (1960), is 

more practical and readable than some of the popular ones, and contains a list 

of references over all disciplines. For fisheries and marine science, recent 

publications are available; for instance, Gulland (1966, fisheries biology), 

Goner and Kemp (1978, quantitative ecology), Stefan and Grant (1978, phytoplankton), 

Jacobs and Grant (1978, zooplankton), Swartz (1978, macrobenthos), Mearns and Allen 
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(1978, small otter trawls), Grosslein (1970, groundfish survey}, Saila (1900, 

sequential sampling for benthos). Excerpts from Grosslein (1970) appear in 

Appendix I. 

3.1 Simple Random Sampling: 

The most useful type of selection is simple random sampling. This type of 

sampling is defined by the requirement that each individual in the population 

has an equal chance of being the first member of the sample; after the first 

is selected, each of the remaining individuals in the population has an equal 

chance of being the second member of the sample; and so forth. For simple random 

·sampling, it is not sufficient that each individual in the population has an 

equal chance of appearing in the sample, but it is sufficient that each possible 

sample has an equal chance of being selected. 

A useful and widely applicable method of obtaining a truely random sample 

is by use of random numbers as described earlier. The individuals in the 

population from which a sample is to be drawn are allotted numbers, and those 
. .  

to be sampled are determined by reference to a table of random numbers. For 

instance, if a sample of 10 clams or fish has to be taken from a population of 

�o, and the first 10 random numbers may be, say, 57, 21, 79, 29, 45, 86, 3, 17, 

18, and 93, the individuals corresponding to those numbers will be selected. 

If the number of individuals in the population is not exactly 100, some random 

numbers occurring will not correspond to numbers to be discarded. For example, 

if we want to have a sample of 10 from 24 fish, we consider only random numbers 

ranging from 1 to 24. Two or more digits may be ascribed to each individual, 

so that the first unit has, for instance, numbers 01 to 04, the second, 05-08 

and so forth, the 24th has 93-96, and numbers 97-100 are not used. Or instead 

of selecting all the units in the sample individually from the random number 



table, units may be taken at regular intervals systematically, e.g. every 

third or seventh of which the first one is chosen by random number .. In other 

words, if the randomly chosen number is three, then we choose for the sample 

every third individual to reach the required sample size. 

If a randomization process is not employed, then it is likely that all 

individuals in the population will not have equal chances of selection in the 

• sample. If we just 11 grab a handful 11 the individuals in the handful almost always 

resemble one another on the average more than do the members of a sample chosen 

with randomiz�tion process. Cochran, Mosteller and Tukey (1954) pointed out 

that a 1
1grab 111 sample tends to underestimate the variability in the population. 

We should have to overestimate it to obtain valid estimates of variability of 
11 grab 11 sample means by substituting such an estimate into the formula for 

variability of means of simple random samples. Thus, using simple random sample 

formulae for 11gr;,� 11 sample means introduces a double bias� both parts of which 
l/ 

lead to an unwarranted appearance of higher stability. 

Now suppose that we draw a sample of n units from a population of N units 

,J these units from 1 to n in order of which they are selected. Then a sample 

of n independent random individuals is taken with values x 1 , x , 2 xn, the 

resulting estimate of the mean value per unit in the population is: 

n 

x = l (x1 + X2 + ... + Xn) 
= l E xi 

n n i=l 

and the variance of xis expressed by: 
N-n s2 

var (-X) = 

N n 
n 

2 _ E s 1 (x·-x)2

where ;= sample variance - n-l i
1 

=l 
Tb� factor of N-n is derived from the basic sampling scheme without replacement, 

n 
and for further details and proof, one should consult with Cochran (1977, p. 23). 
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The above precision of a sample estimate (variance of the mean estimate) 

or standard error is a measure of absolute error. However, if we deal with 

precision of a standard error of the estimate over the value being estimated 

(symbolically expressed by var(xl /.x1, then it is expressed in tenns of a 

relattve preci'sion of a sample estimate. It is referred to as "the coefficient 

of variation". Yates (1960) supported the fonnula for the sample size determination 

in a random sample as: 

. t var(x�/x)2n = desi're sample error 
in the sample)2 

Calculattons of biochemtcal data using this are given in Appendix II. 

3.2 Sttatffied Random Sampling: 

In stratified rand� sampling, the population is subdivided into groups or 

11 strata 11 before selection of the sample. These strata may either all contain the 

sa num6er of units or differing numbers of units. If a uniform sampling fraction 

-�c, the same fraction of the units of each stratum is included in the sample, 

the units selected being chosen at random from all the units within each stratum. 

A stratified sample is thus equivalent to a set of random samples on a number 

of subpopulations, each equivalent to one stratum. 

The increase in prectsion and bias reduction of sample estimates accomplished 

by stratification depends on the d.egree of homogeneity that is achieved within 

strata.- ln other words, the amount of the variability in the characteristic 

being estimated is reflected t:n the di.fferences among the strata. This in turn 

depends on how effectively strata have been defined, 

In estaolish.i.ng a stratum, all information could help classify members of the 

population into groups which dtffer from one another with. respect to tbe 

charactertstic being measured or with respect to the cost of collecting data. 

Eac�stratum is then sampled independently, and estimates obtained for each stratum. 

https://estaolish.i.ng


These can then be combined to give the estimate for the whole population. The 

variance of this estimate will also be obtained by combining the variances 

of the estimates within the individual strata. Since the strata are relatively 

homogeneous, the variance within strata will tend to be small, and possibly the 

variance of the combined estimate will be smaller than the variance in the 

population as a whole. This is the rationale for employing stratification 

procedures in the sampling. 

The following steps are required for the stratified random sampling scheme: 

1) defining the strata to be utilized; 2) determining the size of sample to be 

taken from each stratum; 3) selecting the sample from the strata as defined; 4) 

calculating the estimate from the sample; and 5) evaluating the reliability of 

the sample estimate with variance estimates. 

Suppose the population consists of N individuals, N· 
l

is the ;th stratum
I 

where N =I. N;, and a sample of N1, N2, ... , N1 units are taken from the I 
; =l 

• �rata respectively. Let X;j be jth values of quantity in ;th stratum to be 

estimated (e.g. length of fish, amount of enzyme, etc.) with j = l, 2, ... n;. 

The estimated mean value x; in the stratum is: 
n; 

- l I x .. x,· = lJn; j=l 

and an unbiased estimate of the mean value in whole population is given as 

the weighted mean of the means of the individual strata (the weighting factor 

being the total numbers in each stratum) 

- l I N; x;x = _
N i=l 

If the variance within the ;th strata is an extension of simple ramdom sampling 
l (  ;_var(x;) - - s;2ni N; 

N; n )



where Si2 = 
ni- 1 

the1we have an unbiased estimate of the variance of x for the overall strata 

expressed by: 

_ 1 r Ni [_1 {N;-n;) Si2 J 
- N2 i n.

1 1
=1 N. 

1 
ni 

s- 2
1 

To determine the sample size in a stratified sampling scheme, the values 

of the sample size n in the respective strata are expressed by Neyman (1934)i  

-

ni= N. var(Xi)
1n 

Ni var(Xi)
i=1 

Although the above equation give the ni in terms of n, we do not know what n has. 

� solution depends on whether the sample is chosen to meet a specific or desired 

variance of the stratified mean (v). If v is fixed, and we substitute the 

optimum n; in the formula for var(x), then we have an optimum allocation of n as 

n = i 

Suppose we minimize the variance of the estimate x, var(x), for a specified 

cost of taking the sample or to minimize the cost for a specified value of var(x). 

The simple cost function is of the form 

cost= C = C
0 

+ E c.
1 

n.
1i 

where C0 
represents an overhead or initial cost for a sampling scheme, and Ci 

is cost per unit varying from stratum to stratum so that the cost is proportional 

to the size of sample. 



Then, the optimum size of sample is: 

L 

n = (C-C ) i [Ni v a r (xi)/ ✓ CiJ 
O 

L 

i Ni var(xi) ✓Ci 

and t N· - t N· n = i N1-var(xi) ✓Ci] [i 1r 
_ 1 t N • 
V + -N l -

1 
var (-Xi )N 

Further readings in detail for the optimum allocation problems and the sample 

size determination in the stratified random sampling scheme are referred to in 

books by Cochran (1977) and Hansen, Hurwitz and Hadow (1953). The applications 

for NMFS groundfish survey and its variability estimates with the stratified 

random sampling method are referred to in Grosslein (1971) and Hennemuth (1976). 

An interesting application for the structure of New York Bight benthic data 

using post-collection stratification of samples based on the physical character­

istics of each grab sample rather than classical spatial strata classification 

is given by Walker, Saila and Anderson {1979). Excerpts of this paper are 

given in Appendix III. 



4. Statistical Methodology: 

Modern statistics provides research workers with knowledge. However, the 

extent of statistics makes it difficult to define. It was developed to deal 

with those problems where, for the individual observations, laws of causes 

and effect are not apparent to the observer and where an objective approach is 

needed. In such problems, there must always be some uncertainty about any 

inference based on a limited number of observations. Hence, statistics is the 

science, pure and applied, of creating, developing, and applying techniques 

such that the uncertainty of inductive inference may be evauated. 

4.1 Parametric Statistics 

A parameter is a measure of some characteristic of a statistical population. 

For example, the mean and the variance are two such measures which occur in a 

normal {bell-shaped) distribution. Statistical methods which rest on particular 

assumptions about the forms of distribution and their parameters are called 

parametric methods. The most frequently assumed distribution form is normal. 

For many years the normal distribution has established a pre-eminent position 

in statistical theory. It deserves its position on two grounds. First, a large 

number of variables, including sample statistics such as means, appear to be 

distributed normally or nearly so. Second, non-normal distributions often 

can be readily transformed to normal form. 

4.1.1 Linear Regression Analysis 

4.1.1.1 Simple Regression 

We consider the problem of statistical inferences which can be made 

regarding the variability of a dependent variable, y, relative to an independent 

variable, x. The y's can fluctuate from sample to sample, for example the 

measurements of fish physiological stress, y (e.g. enzyme level) are affected 

by the amount .of contaminants, x. Furthermore, the x's will also be variable 



subject to random fluctuation. As another example, we may wish to examine 

the rate of primary productivity, y for different environmental variables, x 

of nutrients observed. 

Regression has many uses. Perhaps the objective is only to learn if 

y depends on x; or prediction of y from x may be the goal. Some wish to 

determine the shape of the regression curve. Others are concerned with the 

error in yin an experiment after adjustment has been made for the effect of a 

related variable x. If you have a theory about cause and effect, employing 

regression can test this hypothesis. 

To satisfy these various needs an extensive account of regression method 

is required. If a variable y is a linear function of a variable, x, we may have 

Y = Cl + 13X + e: 

where e: represents some residual or random errors, the amount of y not accounted 

for in the regression on 1 ine of y on x. We postulate that the regression lim) I 

is selected so that residuals are of a random nature and uncorrelated with each 

�ther, with a usual added assumption that thee: are normally distributed with 

mean O and variance 2 (Figure 1). Suppose we consider both variables (x and y) 

are subject to an error measurement which has a joint probability distribution 

at (x1, Y1). It is represented by the 11mounds 11 centered over the true point 

(Figure 2). Similarly, the points (x2, y2) and x3, y3) are demonstrated. 

To estimate the relationship between the y and x variate, n simultaneous 

observations will be obtained on y and x, i.e.: 

Yl, Y2,· • ·Yn 
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Then, we can write each observed value Yi, for ith observations as 

y.
l 

= Y.
l + e,· 

where y and ei i are estimates of Yi and ei· 

y 

X 

Figure 3. True and estimated regression lines. 

For a given observation (Xi, Yi) the true error is ri, the estimated error by 

ei in the above figure. In order to obtain the 1 
1 best 11 linear fit to the data, 

it is reasonable to make the e's as small as possible (Figure 3). Some choices 

are available to make the e's small; 

1) minimize the sums of the absolute values of the e 

.. ) minimize the sum of squares of the e. Method (2) (Called the "method of 

least squares") is probably the easiest to apply and has certain optimum 

properties. 

Mathematically, we can express the minimization of sum of squares of the 

e's as Mjn.[� el= (yi-Yi)2 ] so that 
1 l i 

r [ (y . -y) - (y . -y) J2 
l l 

= r[(y.-y)2 + (y.-y)2 -2(y.-y) (y.-y)J
l l l  

= r(yi-y)2 + r(yi-y)2 -2r(yi-y) (yi·-y) 
,

, The third term can be rewritten as 

-2r(yi-y) (yi-y) = -2r (Y;-Y) [b r(xi-x)J 



I ,l 

It is because, for example, in the case of simple regression (one y and one 

x are linearly related), i.e. 

y. = a+s x. + r.
1 1 1 

Yi=a+ b xi and since a= y -bx 

= {y-bx) + b xi 
= y + b {x. -x) 

and yi-y = b(xi-x) •••••............................................* 

One step further, we know 

** 

= r(x;-x) (y;-Y)_b 
E(Xi-X)2 

b r(xi-X)2 =r(xi-X)(yi-Y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

o� the third term of the original equation is expressed by: 

-2 r (yi-Y)(yi-Y) 

= -2 r(y1-y)[br(xi-X)] ..... (by *) 

= -2b r(y;-y)(x;-x) 

= -2b2r (xi-X)-2 ............. (by**) 

= -2r(yi-YF ............... (by*) 

Thus, we have 

� r{y1-y)2 + r{yi-Y)2 -2r(yi-y)2 

,.. 

re1 
2 = r(yi-Yi )2 

= r{yi-y)2-r(yi-Y)2 

Rearrange the tenns, we have 

r{yi-y)2= r(yi-Y)2+r{yi-Y)2 

i.e. sum of squares sum of squares sum of squares ( )={ )+ ( )about the mean about regression due to regression 



We can construct an analysis of variance (ANOVA) table in Table 2, 

which indicates that the mean square error (MSE) 

MSE = ss about regression
n-2 

is an unbiased estimate of cr2 and relate how to test of regression (test of 

regression slope; H 
0

:s=O).
 

It is also possible to obtain the exact probability.distribution on the 

estimates Y , a, b, and thus, the confidence intervals for the predicted line i

and the individual parameters. However, we will skip a detailed analysis. You 

should consult one of the following: Anderson and Bancroft (1952), Draper and 

Smith (1966), Natrella (1963), Snedecor and Cochran (1967), and Steel and Torrie 

(1960). Ricker (1973) is an excellent reference for details of the functional 

relation of linear regress-ans in fisheries research problems, particularly 

in cases where x and y are both subject to random fluctuations. 

The comprehensive ANOVA table and other statistics for the simple regression 

are ob�ained by an ADP computer program (Dahlberg, 1969). The biomedical computer 

program, BMDolR (Dixon, 1974) provides similar output for analyses, but has an 

output difficult to read� Dahlberg's program provides the plots of regression 

and the analysis of the weighted regression if you have to utilize computational 

weight factors. 

To obtain a degree of confidence that the relationship is indeed linear, 

a test of deviation from linearity may be derived. We must have more than one 

value (n ) of y's for a given value of x . i j

Y11, Y12,••·,Yln
1 

one n1 repeat observation of x1 
Y21, Y22,···,Y2 

. n2 
are n2 repeat observation at x2• 

Yrl, Yr2,··•,Y2,nr are n repeat observation at xr r 

,,, 



Then we can subdivide the quantity o_f sum of squares about regress i �n ( ss error) 

to two tenns of pure error and 11 1 ack of fit" sum of squares. The mean square 

for pure error is expressed by: 
y ni 

i =
I: l I: l (Yij - Yi)2 

52 = j 
e 

I: ni-r 
=i l 

Then, the 11 lack of fit" sum of squares are obtained by subtraction of s! from 

ss about regression, i.e. 

ss about regression - s = lack of fit sum of squarese 
The test of linearity is: 

ss lack of fft/r-2 � FF* = ________.____ - {r-2, I: ni-r).
s� I; ni-r 

l 

If the test is rejected (i.e. F* statistics is greater than F table value 

with r-2 and I:n -r degree of freedom) the linear regression model appears to bei  

inadequate. If the test is not rejected, the model presents no reason to doubt 

he adequacy of linearity, and both pure error and lack of fit mean squares 

can be used as estimates of o2 
• You should consult Draper and Smith (1966) for 

·details. 

4.1.l.2 Multiple Linear Regression Analysis 

Often it is more realistic and economical to be concerned with the joint 

effects of a number of independent variables (xi,···xr) on a single dependent 

variable y rather than examining each variable separately. As in the simple 

regression, the simplest and most used functional relationship is a linear one. 

The multiple linear regression model has the form of: 



for i = 1, 2, ... n and where£· 
l 

follows normal distribution with mean 0 

and variance cr2 
, and£· 

l 
and£· 

J 
are uncorrelated each other.

The application of the least square technique is the same as described 

for simple regression. We have to minimize 

r n ,.
E E (Yij - Yij)2 

i=l j=l 

• The ANOVA table is summarized in Table 3. The formulae for estimating parameters, 

testing, and confidence limits are omitted, but one should consult Afifi and 

Azen (1972) or Draper and Smith (1968). 

In many regression situations, the experimenter does not have sufficient 

information about the order of relative importance of the independent variables 

x , x ,...  1 2 x in predicting the dependent variable y. Testing a hypothesis:r 
B; = 0 for each x , i - 1,2, ... n does not reveal this ordering. Suppose we reject i
the test on false conclusions that x was the only variable of importance in 1 
predicting y. 

Then, our question is, which x variables are most important in determining 

and predicting y. Usually no unique or fully satisfactory answer can be given, 

but a few approaches have been tried: 1) standard partial regression coefficient 

(see Snedecor and Cochran, 1967); 2) multiple correlation coefficient (see next 

section), and 3) stepwise regression procedures (see Afifi and Azen, 1972 and 

Draper and Smith, 1968). 

The solution for the stepwise regression selects a single variable 

x which best predicts y. The second step finds the variable x which best 1 j 

predicts y, with the given x , the first variable entered. In the steps that i
follow, either: 1) a variable is entered which best improves the prediction 

of y given all variables  ✓ entered from the previous steps; or 2) a variable is 



removed from the set of predictors if its predictive ability falls below 

a given level. The process is terminated when no further variable improves 

the prediction of y. 

The computation of the stepwise regression is obtained by computer 

program BMD02R (Dixon, 1974). 

4.1.2 Correlation Analysis 

4.1.2.l Simple Correlation 

In its most general sense correlation denotes the interdependence 

between quantitative of qualitative data. However, in a more restricted sense 

we will consider correlation as a measure of the degree of relationship between 

the variables, independent of the units or terms in which they are originally 

expressed. A closely related measure may permit you to state the relative 

amount of variation which is explained by the estimating regression equation. 

Recalling the expression/bf sum of squares (SS) in the previous section, the 

fraction of SS due to regression is expressed by SS about the mean. This is 

called the coefficient of determinations in the regression analysis, i.e. 

r2 
= SS due to regression

ss about mean 

= 1: (y; - ,Y)2
2 

L (Yi - Y) 

This coefficient is equal to the ratio of the reduction in the sum of squares 

of deviations obtained by using the linear regression to the total sum of 

squares of deviations about the sample mean y, which would be the predictor 

of y if x were ignored. This provides a more meaningful interpretation of the 

strength of the relation between y and x than the Pearson product moment, the 

coefficient of correlation is: 

-----------

r = 1: (Xi-X) (yi-Y) 

✓ t(xi-X)2 ✓ r(yi-YF 
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Squaring both sides, 

=r2 [r{x;-�) {y;-y)J2 
r(x1-i)1 r(yi-Y)2 

Dividing by r(x -x) 2 or r(yi i-Y)2 we have 

=r [r(xi-X) (yi-Y)]/•I(xi-x)2 

r(yi-y) 2 

. reduction in SS attributable to x 
SS y about mean = corrected total SS y 

= [r(xi-x) (Yi-y)]2/r(yi-Y)2 

r(xi-x) 2 

= reduction in SS x attributable to 
SS x about mean = corrected total SS x 

In addition, 

where b and byx xy are the regression coefficient slopes for the regression 

�f y on x and of x on y. Thus, the product of the regression coefficient is the 

square of the correlation coefficient, inversely the correlation coefficient is 

the square root of the product of the regression slopes or their geometric mean. 

Hence, if we are interested in testing whether tnere is a linear relationship 

between x and y (Ho: a = 0 where a is population correlation coefficient) a 

statistical test is available (Snedecor and Cochran, 1967 and Steel and Torrie, 

1960). In fact, this test is equivalent to testing that the hypothesis =s 0. 

While r provides a nice measure of the goodness of fit of the least squares 

line to the fitted data, its use in making inferences concerning p would seem 

to be of dubious value in many situations. This is simply because it is unlikely 

that a phenomenon y observed in natural science, especially marine environmental 

science, would be a function of a single variable x. The larger reduction in 



SS about regression (SS error) could possibly be obtained by constructing 

a predictor of y based on a set of variables x1 ,x2.... It leads to1 multiple 

and partial correlation which will be described below. 

A few reminders concerning the interpretation of r are worthwhile. 

1) if r = 0.6 as indicative of a linear relation between x and y, this 

value 0.6 would imply that use of x in predicting y reduces the sum 

of squares of deviation about the prediction line by only r2 
= 0.36 

or 36 percent; 

2) r is a measure of linear correlation and x and y could be perfectly 

related in some curvilinear function when the observed value of r 

is even very low; 

3) if the linear correlation coefficients between y and each of two 

variables x1 and x were calculated 0.6 and 0.7 respectively, it does
2 

not follow that a predictor y using both variables would account for 

a (0.6) 2 
+ (0.7) 2 

= 0.85 or an 85 percent reduction in the sum of 

squares of deviation. Actually x1 and x might be highly correlated
2 

and therefore contribute the same information for the prediction of y; 

4) detecting linear correlation visually from plotted·points can be 

difficult. An unfortunate choice of scale may hide a real correlation 

or indicate a real one when none is present. A change of scale will also 

change the slope of regression line. Further with an unfortunate choice 

of scale, visual detection is further hindered by the fact that the 

relation between r and r2 (.proportion of the total sum of squares 

expressed by regression) is not linear; 

5) the correlation coefficient is considered only when variables x and y 

are both subject to random errors. 
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4.1. 2. 2 Multiple Correlation 

The simple correlation may not be what is desired in situat,ons where 

the dependent variable is influenced by two or more independent variables. 

Multiple correlations provides an analysis of the relations among two or more 

predictor me·asures. It measures the closeness of representation by the regression 

plane and may also be regarded as the maximum of the correlation coefficient 

between the dependent variable and all linear functions of a set of two or 

more of independent variables. The coefficient is usually denoted by R but is 

2 
regarded as essentially non-negative; the quantity R being the one which occurs 

2 in practice as r in simple correlation. 

R2 
= SS due to regression

SS about mean 

= E(yi-y)2 

E(yi-y)2 

Multiple correlation coefficients are strictly applicable only when 

the total observation, that is (Yi,Xli,X2 ··•xpi) is subject to random errori  

as we have noted in the case of simple correlation. However, regardless of 

randomness of the observations, these correlation coefficients may be useful 

for computing and for other reasons. The reminders given for simple correlation 

coefficients are all valid for multiple correlation coefficients. Recommended 

readings for multiple correlation are Steel and Torrie (1960) and Kendall (1961). 

The computations of multiple correlation coefficients are obtained 

through computer program BMD02 R (Dixon, 1974), stepwise regression analysis. 



4.1.2.3 Partial Correlation 

The simple correlation and multiple correlation coefficients are 

measures of the closeness represented by the regression line or plane, i.e. 

measures between two or more variables. This consideration leads us to 

examine the correlations between variables when other variables are held as 

constant, i.e. conditionally upon those other variables taking certain fixed 

values. These are so-called partial correlations. 

Suppose there are three variables. Then we have three simple correlation 

coefficients among variables: variables 1 and 2, r, ; 1 and 3, r and 2 and 3, 2 13 

y . The partial correlation is expressed as the correlation between variables 23

l and 2 in a cross section of individuals all having the same values of variable 

3, r (3), i.e. the variable is held constant over variables l and 2 which are 12

involved in the correlation coefficient computation. 

When we come to interpret a measure of interdependence, we often 

meet difficulties, as when the first variable is correlated with second variables. 

This may be merely incidental to the fact that both are correlated with another 

variable or set of variables. This consideration leads to an examination of 

the partial correlation. If we find that holding the third variable fixed 

reduced the correlation between two variables, we make the inference that 

their interdependence arises in part through the agency of a third variable. 

If the partial correlation coefficient (r (3)) is very small, we infer their 12

interdependence is entirely attributable to that agency, and conversely if the 

partial correlation is larger than the original simple correlation coefficient 

(r ) as a measure of dependence between variables, then we make the inference 12

that the third variable was obscuring the stronger correlation or making the 

correlation. 
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A useful identity between the partial and multiple correlation 

coefficients for the set of variables (y, x , x1 2 
 ... x ) isp 

l-R2y,Xl,X = (1 2 ) (1 2 ) .. (1 2 )
-r YXl -r 

p yx2(x1) -r yxp(x1x .. x )
2 p 

where R2 is multiple correlation coefficient between variable y andy ,x 'xl  p 
x ,... ,x , r2 (x ) and r2 (x , x

2
, ... x _ ) are the partial correlation1 p yx2 1 yxp 1 p 1  

coefficients between y and x 
2 

when x is held as constant, and of y and x1  whenp 
other x , x1 2 

 ...xp- variables are held as constant. For instance, in thel 
above three variable case, we have 

where 

r = 

l2 
E(X1i-Xl) (x2i-X2) 

✓ E(x2i-x)2✓ E(x1 i-\ )
2 

rl2(3) = rl2 -rl3 r
23 

✓ {l-rl3)2 (l-r
23)2 

A test of significance of the partial correlation coefficients, e.g. 

r12(3 , is available (Snedecor and Cochran, 1967 and Afifi and Azen, 197 ).) 2  

BMD02R (Dixon, 1974) stepwise regression analysis provides computations of 

the partial correlation coefficient. Utilization of the stepwise regression 

analysis are referred to in Draper and Smith (1966) and Afifi and Azen (1972) . 

. ,, 



4.1.3 Multivariate Analysis 

As we have seen in the section of multiple regression and correlation, 

observations on more than one random variable may be made for each individual 

in the sample. The multivariate analysis is used rather loosely to denote 

the analysis of data which are multivariate in the sense that each member 

bears the values of p variables. In regression problems emphasis is placed 

upon the relationship between the dependent variable on one hand and the set 

of independent variables on the other hand. In other multivariate analyses, 

however, all of the random variables are analyzed simu]taneously as a random 

vector having a multivariate distribution. Some multivariate methods are a 

generalization of the univariate method, while others are unique to multivariate 

analysis. 

Most of the continuous multivariate analyses assume that the underlying 

distribution of the random vector is a normal multivariate. The justification 

of this assumption, similar to those in the univariate case, are: 1) many 

observable phenomena follow an approximate multivariate normal distribution; 

2) transfonnations of some or all of the components of the random vector 

sometimes induce a multivariate normal distribution; and 3) the central limit 

theorem for one random variable extends to the multivariate case, that is, 

sur11JJations of many independent and identically distributed random vectors 

approach multivariate normality. 

Anderson (1958) classifies the multivariate analysis into the following 

categories: 

1. correlation (multiple and partial correlation analysis); 

2. analogues of univariate statistical analysis (multiple regression, 
2multivariate analysis of variance, generalized T  -test for discriminant 

function analysis; 
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3. problems of coordinate systems (princi�al components analysis, 

canonical correlation analysis); 

4. more detailed problems (factor analysis); 

5. dependent observation (time series problems with serial correlation 

analysis). 

We will cover some of the selected topics including discriminant 

function analysis, principal component analysis and canonical correlation 

analysis. Correlation analysis and multiple regression analysis were discussed 

earlier. 

4.1.3.1 Discriminant Function Analysis 

Discriminant analysis _is a procedure for estimating the position of a 

measurement on a line that best separates classes or groups. The estimated 

position is obtained as a linear function of the n measurement values. Since 

one best line may not exhaust the predictive power of the test battery in 

distinguishing among the classes, additional discriminant functions, all 

mutually orthogonal (in the sense that discriminant values are uncorrelated), 

may be fitted. 

The geometric interpretation of discriminant analysis can be seen for 

the case of two groups and two variables with the assistance of Figure 4, in 

which the two sets of concentric ellipses represent the biv&!riate swarms of 

data for the two groups in idea 1 i zed form. The variable x, y are slightly 

positively correlated. Each ellipse is the focus of points of equal density 

(or frequency) for a group (category). For example, the outer ellipse for 

group A might define the region within which 90 percent of group A lies, and 

the inner ellipse concentric with it might define the region within which 75 

percent of group A lies. The two points at which corresponding ellipses 

intersect define a strajght line II. If a second line I, is constructed 

perpendicular to line II, and if the points in the two-dimensional space are 
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projected onto line I, the overlap between the two groups will be smaller 

than for any other possible line. The discriminant function therefore trans­

forms the measurement values to a single discriminant value, and that value 

fs the measurement's location along line I. The point b where II intersects 

I would divide the one-dimensional discriminant space into two regions, one 

indicating probable observation in group A and the other region for group B. 

Notice that this figure depends on the equality of the two group variances. 

If either the variance of x and y or the x,y covariance were different from 

-the two groups, the ellipses for two groups would not have the same shape 

and orientation, the boundary (line II) would not be a straight line. The 

size of the two populations do not have to be the same, only teh variance and 

covariances. 

We can consider, similar to the example above, the case of classifying 

a two�dimensional observation into a one-dimen.sional normal population, to 

classify a p-dimensional observation vector x* = (x*
1
,x*2, ... x* ) into one k

n 
multivariate nonnal populations with mean LI; and variance-covariance matric 

r, i - 1,2, ... k. Since x* is a realization of a random vector�= (x1, x2 ... x ),p 
the results presented so far used all p variables x1, x2... x to discriminatep 

between k populations. In many applications, however, it is desired to identify 

a subset of these variables which best discriminates between the k populations. 

This problem is analogous to that of stepwise regression analysis in an earlier 

section, in which it was desired to identify a subset of independent variables 

which best predicts a dependent variable. 

This stepwise discriminant procedure is as follows. We first identify 

the variable for which the mean values in the k populations are most different. 

For each variable this difference is measured by one-way analysis of variance F 

statistics and the variable with the largest Fis chosen (or entered). On 

successive steps, we consider the conditional distribution of each variable 

not entered given the variable entered. Of the variables not entered, we 
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identify the variable for which the mean values of the conditional distributions 

in the k populations are most different. T�is difference is also measured 

by one-way analysis of variance F statistics. The stepwise process is stopped 

when no additional variables significantly contribute to the discrimination 

between the k populations. The computations are obtained by BMD07M (Dixon, 

1974), and details are referred to by Afifi and Azen (1972). 

4.1.3.2 Principal Component Analysis 

The method of principal component analysis is a general technique of 

displaying interrelations ;in the data, but it is not a statistical technique 

which can lead to a decision or a· hypothesis. This interrelationship, called 

the dependence structure, may be measured by the covariances, or equivalently 

the variances and·correlations between variables x ... x . It is possible 1 p

to find a linear combination y , y , ... y ' (q<p) of x , x ... x which generates1 2 q 1 2 p 

the dependence structure between x's. Then, the new variates y's which are 

independent of each other account in tufn for as much of the variation as 

ossible in the sense that the. variance of y, is a maximum among all linearly 

transformed variates, the variance of y is a maximum among all linearly trans­2 

formed variates orthogonal to y, and so on. Then we have 

i=l 

y = E
l ali Xii=l 

p
Y = E 

q 
aqi Xi

i=l 
p 2 p

= 2 =with E • l , •.. , I: a l0lii=l qi 

= =and 
p
E 

q
E a.

l l •J 1 0 for i l , 2, ... ,p, i + i l 
i=l j=l 

j = 1 , 2' ••• 'q j + j 1 



From these equations, it is seen that new variables y's are uncorrelated 

and ordered by their variances, viz, cov (y. y.) = 0 j jfor all , +J', and
J J  

var (y ) 2:_ var (y ) 2:_ 1 2 > var (y ) where cov and var are covariance andq 
variance. Further, the total variance v 

q p 
= I var (y.) j J

=

=
I var (x.) 

1
are the

l : i=l 
same after the transformation. In this way, a subset of the first q y's may 

explain most of the total variance and is therefore a parsimonious description 

of the dependence structure among the original variable x's. The method of 

principal components is to determine the coerficients a j' which are eigenvectors.i  

Since we assume that x , x ... x have multivariate distribution (not, 2 p  

necessarily normal) with mean u and known covariance matrix I = (o j), wei  

wish to find eigenvector as 
p q 

=var (y1) I I o . .

lJ=i=l i l 

is maximized sub ect to the condition of 
q 

j=
I a2 j = l. ·Thus, the first principal 
l l

component explains 100 [var (y 
1 
)J/V percent of the total variance. Likewise

we have the first two principal components explain l00[var (y
1 
) + var (y )]/V2  

percent of total variance, and so forth. Hence Y is the qth principalq  

component, the variables y , y ... y1 2  explain 100[ i var (yj)]/V percent totalq 
variance. And we found the set of eigenvectors fJr1 each principal component. 

To compare the contribution of x ,x ... x1 2  to yj we examine the quantitiesp  
jaj/o , i=l, 2, ... p and =l, 2, ... q, and i the standard deviation of x , since1 1  

the correlation between x and Yj is given by aj [var (yj)]�/oi i . Furthermore,i  

when the correlation matrix used, then comparison of coefficient aj is alli  

that is necessary. Hence the larger the coefficient, the larger the contribution 

of the variables x ,x ... xi 2  to the principal component, y ,yp , ... y1 2  .q 

j

,, 
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A geometric interpretation of the principal component with p = 2 

is as follows. Each variable x1
, x2 is represented by a coordinate axis 

from the origin with mean u, and u2. Then, as eigenvector specifies its 

direction and eigenvalue (variance of y
1
or y2) specifies the length of an 

axis of notional ellipse. In principal component analysis, we search for a 

notation of these axes so that the variable y, represented by the first new 

principal axes has a maximum variance. The variable y2 represented by the 

second of the new axes is uncorrelated with y1
, and has a maximum variance under 

this restriction. Hence, the first principal component y
1 

= a
12 x

2 
isa

11 
x
1 

+ 

in the direction of the major axis of the ellipse, and second principal component 

= a
22 

x
2 

is in the direction of the minor axis of the ellipseY
2 

a
21 

x
1 

+ 

{Figure 5). 

The computations are obtained by BMDOlM (Dixon, 1974), and details are 

referred to by Afifi and Azen (1972). 

4.1.3.3 Canonical Correlation Analysis 

Canonical correlation analysis can be considered a generalization of 

multiple correlation. In the multiple correlation problem, we have a set of 

p.variables x
1
, x2... x and one variable y; The objective is to find a linearp 

compound of the x-variables that has the maximum correlation with y. In. canonical 

correlation analysis, there is more than one y-variable, and the objective is 

to find a linear compound of the y-variables. The most suitable class of 

examples that comes are those where the x-variables are from a different domain 

than the y-variables. For e�ample, the x-variables could be background variables 

referring to environmental data, and the y-variables descriptive variables 

such as the abnonnal stages of fish egg embryos. The problem would be to find 

out whether there is some combination of background variables, that has high 

correlation with a combination of the y-variables. 



However, after that a pair of linear functions that maximally correlates 

has been located, there may be an opportunity to locate additional ,pairs of 

functions that maximally correlate, subject to the restriction that the 

functions in each new pair must be uncorrelated with all previously located 

functions in both domains. That is, each pair of functions is so determined 

as to maximize the correlation between the new pair of canonical variables, 

subject to the restriction that they be entirely orthogonal (uncorrelated) to 

all previously derived linear combinations. The analytical trick is to display 

the structure of relationships across domains of measurement in the canonical 

analysis by reducting the dimensionality to a few linear functions of the 

measures that have maximum covariances between domains subject to restrictions 

of orthogonality. 

The computations are obtained by the BMD09M (Dixon, 1974) and further 

reading for the canonical correlation analysis see Cooley and Lohnes (1971). 
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4. 1.4 Variance Analysis 

4.1.4.l Analysis of Variance 

The analysis of variance attempts to analyze the variation of a response 

and to assign portions of this variation to each of a set of independent 

variables (factors). The reasoning is that response variables vary only because 

of variation in a set of unknown independent variables. Since the experimenter 

will rarely include all the variables affecting the response in the experiment, 

random variation in the responses is observed even though all independent 

variables considered are held constant. The objective of the analysis of variance 

is to locate important independent variables in a study and to determine how 

they interact and affect the response. 

Recall the subdivisions of the sum of squares in the regression analysis, 

or the sample variance which explains the variability of a set of n measurements 

_ as the sum of squares of deviations. The analysis of variance partitions the 

sum of squares of deviation, called the total sum of squares (corrected with 

;::ean), say, _r_(yij-y ..),:into parts, each of which is attributed to one of 
1,J

the independent variables (factors) in the experiment, plus a remainder that 

is associated with random error. 

For cases, we can consider 1) when the independent variables are unrelated 
t-., 

to the' response, it can be shown that each of the pieces of the total sum of 

squares of deviations, divided by an appropriate constant, provides an 

independent and unbiased estimator of o2 , the variance of experimental error; 

2) when a variable is highly related to the response, portion of its sum of 

squares for the variable will be calculated. This condition can be detected 

by comparing the estimate of o2 for a particular independent variable with that 

obtained from the sum of squares for error using an F-test. If the estimate 

for the independent varJable is significantly larger, the F-test will reject a 

hypothesis of "no effect for the independent variable", and produce evidence 

to indicate a relation to the response. 



The basic assumptions for the analysis of variance where tests of 

significance are attained are l) independent variable, factor, or treatment 

effects are additive; 2) experimental errors are random, independent and 

normally distributed about a zero mean and with a common variance. The 

assumption of normality is not required for estimating components of variance. 

In practice we are never certain that all these assumptions hold; often there 

is good reason to believe some are false. Excellent discussions of these 

assumptions, the consequences when they are false, and remedial steps are 

given by Eisenhart (1947), Cochran (1947), and Bartlett (1947). Steel and 

Torrie (1960), and Cox (1958) summarize this topic in a short but comprehensive 

discussion. 

There are some ways to reduce the effects of uncontrolled variations 

on the error of treatment (variable or factor) comparison. Error control can 

be accomplished by the experimental design. The general idea of choosing a 

suitable design is the common sense one of grouping the units into sets (blocks), 

all the units into a block being as alike as possible, the assigning the treatments 

so that each occurs once in each block. All comparisons are then made within 

blocks of similar units. The variation among units within a block is less than 

that among units in different blocks, the precision of the experiment is 

increased as a result of error control. Such blocks of similar outcome are 

also called replicates. This kind of design is known as a randomized complete 

block design. Sometimes two or more systems of blocking suggest themselves 

and it may be desired to use them simultaneously. When the units are simultaneously 

blocked in two ways this is called the Latin square design. If the units are 

blocked in three ways simultaneously, the desing is called a Graeco-Latin 

square design. 



As the number of treatments in an experiment increases, the number 

of experimental units required for a replicate increases. In most,cases, 

this results in an increase in the error, that is, in the variance in the 

parent population. Designs are available where the complete block is subdivided 

into a number of incomplete blocks such that each incomplete block contains 

only a portion of the treatments. The subdivision into incomplete blocks is 

done according to certain rules, so that the experimental error can be estimated 

among the units within the incomplete blocks. Precision is increased to extent 

that the units within an incomplete block are more uniform than the incomplete 

blocks within a replicate. The split-plot design, balanced incomplete block 

design, partially balanced lattices and other designs within the incomplete 

design are discussed fully in Cochran and Cox (1957), Federer (1955), and 

Kempthorne (1952). 

The second approach for an error control mechanism is the utilization 

of concomitant observation. For example, if you study weight gains, it is 

useful to consider initial weights. An essential condition has to be satisfied 

in order that after use of the concomitant observation an estimated treatment 

of effects for the desired main observation shall still be obtained. This 

condition is that the concomitant observations should be unaffected by the 

treatment. In practice concomitant observations should be taken before the 

assignment of treatments to unit is made or the concomitant observations are 

made after the assignment of treatment, but before the effect of treatment has 

had time to develop. The supplementary observation value for any unit must 

be unaffected by the particular assignment of treatments to units acutally used. 

The analysis for the concomitant observations is called the analysis of covariance 

which will be discussed in a later section. The design for the reduction of 

error is discussed in detail by Cox (1958). 



Further details of procedures for analysis of variance are omitted, 

however, excellent references include Cochran and Cox (1957), Cox ,(1958), 

Federer (1955), Kempthorne (1952), Snedecor and Cochran (1967) and Steel and 

Torrie (1960). Steel and Torrie is the best choice for developing an understanding 

the analysis of variance. 

The biomedical computer program (BMD, Dixon, 1974) package provides 

the computations of analysis of variance: BMDOlV for one way classification, 

completely randomized block design, BMD02V for factorial design, BMD05V, BMDOBV 

and BMDlOV for any hierarchical designs including partially crossed, fully 

crossed, partially nested, fully nested designs. BMD05V and BMDlOV are more 

flexible for setting up any design problem. 

4.1.4.2 Multiple Comparison 

In a completely rand.om design (one-way classification model), an analysis 

is designed to detect a difference in a set of more than two populations means 

(H :- u 
0

- u ..= u ). The hypothesis H 
 1 2 p 0 

will be rejected if 

F = ss of between treatment/p-1 
ss of within treatment/ 

= MST 
MSE Fa 

where MST= r ni(Yi-y.. )2 ;p-l
i 

MSE = r (y .. - y .. )/r n.-p
i,j 1J i 1 

y .. = 

1J 
the jth observation on the ith treatment 

y. = 

1. 
ith treatment mean 

y .. = mean of all observation 

Fa = critical value (F table value) based on (p-1) and r n -P i

degree of freedom for probability of a type I error, a. 

If the H 
0 

is not ;ejected (F statistics for treatment is not significant),

the evidence is against rejecting the H
0 

and specific treatment comparisons 



should not usually be necessary. In other words, if Fis not significant , 

the . treatment means are regarded as indistinguishable. However, if Fis 

significant (H is rejected), the ordina
0 

ry t-test for the difference between

two means is applied to every pair of means. Where the difference of any two 

means exceeds the critical value they are significantly different, i. e. 

[y. -y. ] ta, (Ini-P) ✓ MSE(l 
l • J. ni 

where ta, (Eni-P) is tabular value of t for error degrees of freedom. This is 

called the least significant difference (lsd). The lsd is basically a t-test 

using a pooled error variance. Since the lsd need be calculated only once 

and takes advantage of the pooled error variance, its use is seen to be a 

timesaver as compared with making individual t-tests. 

Since the lsd can be and is often misused, some statisticians hesitate 

to recommend it. The most common misuse is to make comparisons suggested 

by the data, comparisons not initially planned. For the tabulated confidence 

levels to be valid, the lsd should be only for independent or nonindependent 

comparisons planned before data have been examined. A valid test criterion 

for planned comparisons of paired means, a criterion in considerable vogue 

both past and present, used the lsd. 

The uncritical use of the lsd and the need for other methods of making 

multiple comparisons among treatment means, especially nonindependent comparison, 

have led to several other tests, such as Duncan's new multiple range test, 

Tukey's w-procedure (significantly different, hsd), Student-Newman-Keul 's 

test, Dunnett 's test (comparing all means with a control) and Scheffe 's 

multiple contrasts test. Scheffe's method should not be used for paired 

comparison, but it fits for tests of more complicated contrasts. The testing 

procedures of other tests are very similar to each other. The references for 

this topic are by Li (1964) and Steel and Torrie (1960). The computation for 

Duncan's multiple test is obtained by BMD07V (Dixon, 1974). 



4.1.4.3 Analysis of Covariance 

It is possible to superimpose upon the simple linear regression model 

a one-way analysis of variance model. This combination of analysis of 

variance and regression techniques is called analysis of covariance. Analysis 

of covariance arises in several situations, but mainly in two: 1) the variable 

x is introduced to inc�ease � perimental precision or is inherent in the  x
problem and must be accounted for in the analysis. One very important 

assumption in using the covariance method is that variation of the x value 

is not due to the treatment; 2) the linear relationships are themselves the 

object of study in several treatment groups. 

Let us have available pairs of observations from several samples, 

which may be arranged in an array as follows: 

Sample from 
Population l 

Sample from Sample from 
Population 2... Population y 

Totals 
X y 

xln Y1n1 1 
x2n2 Y2n2 xrnr Y rnr 

Total x,. Y1. .. . .  Xx2. Y2. r. Yr. x.. y .. 

No. of Observ. "1
-

n n2 r
- - - -

N 
-

Means xl. Y1. x2. Y2. xr. Yr. x .. y.. 

Often it is desired to test the null hypothesis of a common line of 

the form against the alternative hypothesis of the form, i.e. 

y .. = a + 

Hi 

Ho 
1J 

8 (x .. 
1J 

- x .. ) 

·J· = ci'. + f3. (x .. - xi.)Y1 1 1 lJ 



Within each sample a and 8 are estimated by a. i ; 
=

l 
y.

l
 
. 

and
n; 

bi = j�l (Yij - Yi.) (x;j x; ) 

n· 
(x .. - x. ) 2 

lJ l.j=l 

The error ss about the ith individual line is 

=(SSE);= (SS Total); - (SS Treat). z: {y .. - y. )2-b-? [z:(x .. -x. )2]
l lJ 1. l lJ 1.j 

Then, total error ss about 5 individual regression lines is 

SSE = t (SSE)i 
i=l 

I

with N-2r degree of freedom. 

Meantime, ss about the single line under the Ho, we have estimate a=y .. and 

� � {y . . - y ) (X • • - X ) "b = _l _J__,_J__ ._. __ 1-J______, j' / 
z: z: (x .. - x )2 '/ 

l J . • • i j 

and the total variability about the single line is 

- y )2 b2 [z: E ( x. . - x ) 2 ]SST = E E (y. . -
lJi j lJ i j 

With N-2 degree of freedom (d.f.). Consequently, we have the summary 

table for analysis of covariance as follows: 

Source ss d. f. F 

Excess explained 
by r lines 

About r lines 

SST-SSE 

SSE 

2(r-l) 

N-2r 

(SST-SSE)/2{r-l}
SSE/N-2r 

About single line SST N-2 



If Ho is accepted, then we may regard the populations as having the same 

linear relationship of y on x. If Ho is rejected, it may be that the slopes 

B are the same, just the intercepts a differed. In other words, the i i 
regression lines may be parallel but not coincident. Thus, in some situations, 

it is also desirable to have a test of the new hypothesis against the same 

H�, i.e. 

= y.. = a.+s(x.. - x. )H0 • lJ 1 lJ 1. 

Ha.= y. = a.+s. (x .. - x. ).J . 1 1 1J 1. 1
This is identical to the test of the hypothesis as: 

= = = =Ho : 81 82 . . . Sr B 

.

. 

B· + B· for some i + j.Ha 1 - J -

Under the Ho, all the samples have a common slope which is estimated by 

(y.J.. - y. ) (X. • - X. ) 1. 1J 1. 

r r 

i j 

,

The ss about these parallel lines is 

SSC = L L (y. . - y. ) 2 - b2 [ 1: 1: (X. . - X. ) 2]
1J 1. C 1J 1.i j i j 

The new analysis of covariance table for one common slope is as follows: 

Source (') ss d. f. F 

Excess explained
by r lines 

About r lines 

SSC-SSE 

SSE 

r-1 

N-2r 

{SSC-SSE}/r-1 
SSE/N-2r 

About single slope 
r different intercepts 

SSC N-r-1 

If Ho is accepted, the lines are parallel. If Ho is rejected, then we may 

perfonn another test which is often referred to as the test of adjusted means. 

The new Ho and Ha is the following: i.e. 

Ho : y.. - a+ B (x .. - x )
1J lJ 



This is identical to the test of the hypothesis 

= = =
CtHo al = et2 r Ct 

Ha a. + a. for some i + j.
,- J 

Under the Ho, we have a new table of analysis of covariance as: 

Source ss d. f. F 

Explained by 
r intercepts 

SST-SSC r-1 {SST-SSC}/r-1
• SSC/N-r-1 

About single slope 
r different intercept 

SSC n-r-1 

About single line SST N-2 

When covariance is used in testing adjusted treatment means, it is important 

to know whether or not the independent variable is influenced by the treatments. 

If the independent variable is so ihfluenced, the fnterpretation of the data 

is changed. This is because the adjusted treatment means estimate the values 

expected when the treatment means for the independent variable are the same. 

Adjustment removes part of the treatment effects when means of the independent 

variable are affected by treatments. This does not mean that covariance should 

not be used in such cases, but that care must be exercised in the interpretation 

of the data. 

The computations of analysis of covariance are obtained by BMD03V, 

BMD04V, and BMD09V (Dixon, 1974). General reference books for the analysis of 

covariance are Li (1964), Snedecor and Cochran (1967), and Steel and Torrie 

( 1960). 

4.1.5 Goodness of Fit 

The method of measuring the discrepancy between an observed and a 

theoretical distribution and of deciding when the discrepancy is so large that 

the theoretical distribution is not a good fit and does not adequately explain 



the observed distribution is developed in a simple procedure where all 

the parameters are known in advance. A not very obvious but perfectly valid 

relative measure of the discrepancy between an observed (0) and expected 

2
frequency (E) is expressed as (0-E) ;E. The sum of these quantities for all 

classifications (sample events or categories) is an index of discrepancy, which 

is called the chi-square (x2) goodness of fit test. The degrees of freedom 

are the number of categories (k) decreased by one and the number of parameters 

(m) estimated, i.e. 

---------

22 k ( 0 · - E1• )
X = 1: 1 with k-1-m degree of freedom. 

i - 1 
Ei 

2 
• This test statistic has approximately a x distribution provided expected 

frequencies are large (five to ten as a minimum). If the expected frequencies 

are too small in both end categories, they can be pooled into the adjacent 

categories. However, since the tails of a distribution often offer the best 

source of evidence for distinguishing among hypothesized distributions, the 
2 x approximation is improved at the expense of the power of the test (Steel 

and Torrie, 1960). Cochran (1942, 1952, and 1954) has shown that there is little 
2 disturbance to the 5% x test when a single expected frequency is as low as 0.5. 

2 However, in general, the accuracy of the x approximation improves as observed 

frequencies (0 ) increase. The classification (category) should be chosen so i

that each observed frequency is not small, that is, it suffices to insure that 

each Di > 5, but the approximation is reasonable even when a few 0i � 2 and the 

remaining 0i > 5. 



Suppose that we have a random sample of size n, and selected k class 

intervals [x1, x2), [x2, x3), [x , x4), ... [x , 3 k Xk+l), with say x1 �- -00

and Xk+l = +00
• Let fi be the observed frequency in the interval [xi, Xi+1)­

To compare an observed distribution with a normal distribution with mean 

µ and variance 2. i.e. N(µ,cr 2), then the expected frequencies are required. 

To compute expected frequencies, the probabilities associated with each interval 

are necessary. These probabilities are obtained by Zi = (xi -µ)/cr, i.e. 

Pi = P (Xi 2X<Xi+1) = P (Xi-µ .::_ Z 2 Xi+l -µ). 

cr cr 

2 So we find the sample mean x and variance s and consider them µ and cr2. 

Then each probability on a given interv�l times the total frequency n, i.e. 

E. = 

1 
nxpi, gives an expected frequency on that interval. We compute now the

value of the test statistics defined by the formula as the above 
2 k

X = E (O; - E;)
2 

i=l 
E.

1 

with k-1-2 = k-3 degrees of freedom (d.f.), since we lost 2 d.f. for estimating 
2two parameters wand cr  . We reject the null hypothesis H0 (E(x) = O(x)) if 

2 2 2x >.( a, k-3 where x a, k-3 is the critical value from chi-square table with 

k-3 d.f. and a level of significance, and E(x) in a distribution of expected 

frequencies (in the above example) (E(x) = N (µ, cr2), and O(x) is a distribution 

of given observed frequencies. This is a so-called "test for normality". 

In a similar way we could test whether a random sample has a Poisson 

or negative binomial distribution by a goodness of fit test. These are a 

so-called "test of randomness". Steel and Torrie's book (1960) is a good 

• starting point for reference on this topic. Kendall and Stuart (1961) is 

an excellent reference for the theoretical structure of a goodness of fit test. 



4.1.6 Biological Assay 

4.1.6.1 Bioassay 

Biological assays are methods for the estimation of natural constitution 

or potency of a material by means of the reaction that follows its application 

to living matter. The typical bioassay involves a stimulus (heavy metal, 

drug, vitamin, fungicide, etc.) applied to a subject (fish, animal, a piece 

of fish tissue, plant, bacterial culture, etc.). Application of the stimulus 

is followed by a change in some measurable characteristic of the subject, the 

magnitude of change being dependent upon the dose. A measurement of this 

characteristic is the response of the subject. The relationship between dose 

and response will not be exact, but will be obscured by random variations 

between replicate subjects. 

Typically two preparations are involved, one designated as 11 standard 11 

and the other as ''unknown". Any test preparation of the stimulus, having an 

unknown potency, is assayed by finding the mean response to a selected dose, 

and equating this does to that of a standard preparation shown by experiment 

J produce the same mean response; experimentation with several different 

doses of one or both preparations is almost always needed in order to accomplish 

this satisfactorily. The· ratio of the two equally effective doses is an estimate 

of the potency nf the test preparation relative to that of the standard. 

Bliss ( 1954) describes three types of bi oassay and their underlyi_ng 

assumptions as follows: 

1. Comparative assays occur most widely and are of special interest 

in research. They estimate the relative potency under specified conditions, 

of two preparations which give a similar response. To determine whether the 

estimated potency is independent of the level of response requires two or 

more dosage levels of both the standard and the.unknown. To test the assumed 



linearity of the dosage response curves requires three or more levels. 

2. Analytical assays for biological standardization depend, 

theoretically upon the following additional assumptions: 1) the standard 

and the unknown differ only in the concentration of the same active agent, 

2) the same relative potency would be obtained with all methods of assay or 

test organ�sms, 3) if the stimulus contains two or more active proportions 

in both the standard and the unknown. 

3. Pass or fail assays test whether the unknown preparation meets 

prescribed standards but do not determine its actual potency. Although 

comparative or analytical assays are often used instead, they may be relatively 

less efficient for inspection purposes. 

When the response can be plotted linearly against the logarithm of the 
,;

dose, the relative amounts of the two preparations which produce any given 

response is estimated by the horizontal distance between two parallel regression 

lines. Suppose x is a dose of a standard stimulus, S, and Y is s s the response 

measured on a subject receiving this dose under the specified experimental 

conditions. Let T be a stimulus of the unknown to be compared with assayed 

against S. We have similarly Xr and Yr for a dose and response of the unknown 

preparation. Then, we summarize as two equations: 

V as + b log xss 
= 

=YT aT +b log XT 

There are two parameters (as and ar) for each stimulus and b is identical 

for S and T. What we want to have is the estimate of potency (lnSr) which 

is the difference between equipotent values x, the horizontal distance between 

the two lines for S and T; i.e. 

=Sr exp [(as - ar)/b] 

lnSr = (as - ar)/b . 



11 

The detailed treatment of estimation of potency, test hypothesis of potency, 

test hypothesis on linearity, parallelism and analysis of variance,are 

described well by Finney (1964). 

As an example, there may be reason to believe that Sr represents a 

chemical property of T, the ratio of its content of the active constituent 

to the corresponding content for S, independent of the particulai conditions 

of experimentation. Provided that measurements of Y and YT for various dosess 
are made under the same experimental conditions, a requirement usually fulfilled 

by arranging for simultaneous experimentation with random allocation of subjects 

to preparations and doses, and an estimate of 51 will then have general validity. 

Statistical analysis cannot prove that ST exists and is independent of �xperimental 

conditions. The purpose of validity tests, such as the test of parallelism 

in a parallel line assay, is to examine whether a particular assay experiment 

shows any indications of departure from the general pattern: Accidental 

introduction of impurities or other disturbances may be detected by a typical 

behavior of responses, so enabling a faulty experiment to be discarded and 

replaced. 

Cornfield (1964) has justifiably criticized that certain statistical 

criteria of validity be met before any assay is regarded as of practical value 

for relative potency, ST. Such an idealization may be scarcely relevant to 

the reality of many assay situations; if the preparations assayed are qualitatively 

dissimilar, the strict dilution requirements can scarcely be satisfied. The 

linear regression of response on logarithm dose may not be parallel, yet results 

of such comparative assays may still seem useful in giving some indication of 

relative potency. He comments that if the slopes in such as assay do differ 



considerably, then there is no alternative other than to treat relative 

potency as a function of response level. He develops a statistical technique 

based on representation of relative potency as itself a linear function of 

the expected response to preparation. Finney (1965) examines the general 

situation in a broader framework, to see how far Cornfield's proposal conforms 

to reasonable requirements on the properties of a measure of relative potency. 

However, Finney stated that Cornfield's considerations deserve further theoretical 

study as well as experimental approaches and his paper invites discussion rather 

than acceptance. 

The complicated bioassay designs, such as regression analysis with 

factorial techniques and quantal responses, are referred to in Finney (1964), 

Bliss (1952) and Bliss (1954). 

4.1.6.2 Probit Analysis 

. In the biological assay data the percentage or proportions of the 

subject reacting to the doses of stimulus can be converted into probit (probability 

•nit). Bliss (1934) defines the probit as the normal equivalent deviate increased 

by 5 in order to make negative values very rare. Probit for specific percentage 

values were tabulated by Bliss (1935), and were reproduced by Fisher and Yates 

(1964, Table IX) and Finney (1971, Table I). A simplified table, sufficiently 

detailed for many purposes, is given as Table 4 (Finney, 1971, Table 3.2). 

The relati-0n between the probit of the expected response proportion 

l response and the dose is y = 5 + (x-µ) whereµ, a are mean and standarda 
deviation of the normal distribution estimated from data, and x is the logarithm 

value of the stimulus (dose) level. Y probit from above tables, is related· 

to p which is the probability derived from the normal distribution as follows: 

ly-5 2
✓-- e -y 

I2 dy = p 
- a, 2rr 

Then, least square procedures are used to estimate the best straight line 



passing =through the k points (x,·, Y;), i.e. Yi (5- .B.
(J 

) + l Xi =

(J 

a+e Xi· 

To test whether this probit regression line is well represented wit� the 

results of the experiment , the utilization of a chi-square goodness test 

is appropriate, i.e. 

I (r; -
X2 = I: 

niPi)2 
with I-2 degree of freedom 

i =l n;Pi(l-P;) 

w ere r; is t e observed response ou of e n samples of ;th 
h h t th i dose level 

and Pi is the probability defined as above under the normal curve with Yi, 

probit of ;th dose level. If the test is not rejected, then the probit 

regression line appears to be a satisfactory representation of the experimental 

results. Otherwise, we need to find a suitable transformation to analysis • 

and meet the requirement of the experiment. Then (5-a)/e is an estimate of 

the logarithm value of the lethal dose of 50 percent responses (log LD50). 

The real LD50 value is obtained by taking the value of anti-log LD50. The 

standard error of log LD50 is approxima ed =t by s 1/ ✓ � n1 w; where n; is 
l 

the sample size of ;th dose level and w; is the weight· coefficient for ;th dose 

level (Table 5, Finney, 1971, Table 3.5), if the log LD50 is not very different 

from the mean value of dosages (i) in the experiment. This �xpression makes 

no allowance for sampling errors in the estimation of e. If log LD50 is far 

from the mean value of dosages, the standard error is grossly underestimated. 

It requires adjustment with correction factors, i.e. the variance of log LD50 

is expressed as: 

l (log LD50 - x)2 
s2 = var (log LD50) = b2 [ 1 

r niwi + 
r n;w;( -)2 J 

x-xi i 



Thus, the confidence limits for log LOSO at the 5 percent level of 

significance is obtained by log LD50 + 1.96 s. If logarithm scale, to base 

10 is used, we have confidence limits for LD50 expressed as, i.e.: 

LD50 + 1.96 [ (loLD50) (log 10) (s) ]. - e 
For further details, Finney (1971) is appropriate. 

In practice, when experimental data on the relation between dose and 

mortality have been obtained, either a graphical or an exact probit solution 

(regression as above) can be used to estimate the parameters. The graphical 

approach is rapid and sufficiently good for many purposes, but for some more 

complex problems or when an accurate assessment of precision of estimates is 

required, the exact probit solution is necessary. Both approaches are 

described with detailed examples in Natrella (1973). The more advanced design 

problems and foundations of probit analysis are presented by Finney (1971). 

Computation of the exact probit solution is obtained by the BMD03S (Dixon, 1974) 

computer program. 
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Table 4. Converiion table for probits (Y) from response percentage (i.e. r/n where 
r is number of responses out of n sample size), e.g. Y = 5.39 if (r/n)
100 = 65. 

0 1 2 3 4 5 6 7 8 9 

0 2.67 2.95 3 .12 3.25 3.36 3.45 3.52 3.59 3.66 

10 3.72 3.77 3.82 3.87 3.92 3.96 4.01 4.05 4.08 4. 12 

20 4. 16 4. 19 4.23 4.26 4.29 4.33 4.36 4.39 4.42 4.45 

30 4.48 • 4. 50 4.53 4.56 4.59 4.61 4.64 4.67 4.69 4.72 

40 4.75 4. 77 4.80 4.82 4.85 4.87 4.90 4.92 4.95 4.97 

50 5.00 5.03 5.05 5.08 5.l 0 5. 13 5.15 5.18 5.20 5.23 

60 5.25 5.28 5.31 5.33 5.36 5.39 5.41 5.44 5.47 5.50 

70 5.52 5.55 5.58 5.61 5.64 5,67 5. 71 5.74 5. 77 5.81 

80 5.84 5.88 5.92 5.95 5.99 6.04 6.08 6. 13 6 .18 6.23 

90 6.28 6.34 6.41 6.48 6.55 6.64 6.75 6.88 7.05 7.33 

0.0 o. 1 0.2 0.3 0.4 0.5 0.6 0. 7 0.8 0.9 

99 7.33 7.37 7.41 7.46 7. 51 7.58 7.65 7.75 7.88 8.09 



- Table 5. The weighting coefficient (w) for the probits, e.g. w = 0.503 if y = 4.2. 

'j 0.0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 0.001 0.001 0.001 0.002 0.002 0.003 0.005 0.006 0.008 0.011 

2 0.015 0.019 0.025 0. 031 0.040 0.050 0.062 0.076 0.092 0.110 

3 0.131 0.154 0.180 0.208 0.238 0.269 0.302 0.336 0.370 0.405 
. .  

0.439 0.471 0.503 0.532 0.558 0.581 0.601 0.616 0.627 0.634 

5 0.637 0.634 0.627 0.616 o. 601 0.581 0.558 0.532 0.503 0.471 

6 0.439 0.405 0.370 0.336 0.302 0.269 0.238 0.208 0.180 0. 154 

7 0.131 0.110 0.092 0.076 0.062 0.050 0.040 0.031 0.025 0.019 

8 0.015 0.011 0.008 0.006 0.005 0.003 0.002 0.002 0. 001 0.001 



4.1.7 Time series analysis 

Observations on a phenomenon which is moving through time generates 

an ordered set known as a time series. The objective of time series analysis, 

as- statistical analysis as a whole, is to arrive at a deeper understanding 

of the causal mechanisms which generated it, because we wish to extrapolate 

into the future. 

The typical time series may be composed of four parts: 

1) Trend or long term movement, 

2) oscillations abou� the trend with a greater or l�sser regularity, 

3) seasonal effects, and 

4) random, unsystematic or irregular components. 

We can always represent a series as one of these constituents or sum of several 

of them. A large part of the traditional theory of time series is devoted 

to an analysis of the data into such components, so as to J�olate them for 

separate study. However, if we can represent a series as the sum of such 

experiments, they correspond to independently operating causal systems. The 

analysis of components of a series is often useful, but it may be misleading. 

In any case it is not the ultimate object of statistical analysis. The 

statistical analyses are not detailed here, however, Kendall and Stuart 

(1966), Davis (1941) and Croxton .and Cowden (1947) cover the subject. Croxton 

and Cowden is the best choice for a starting point to understand and comprehend 

time series analysis. Kendall and Stuart are theoretical, but cover the 

subject thoroughly. Davis' book is oriented toward economic time series, not 

the environmental monitoring aspect, but is still worthwhile. BMO computer 

programs are available, but these require considerable knowledge for inter­

pretating output. 
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4.1.7.1 Trend 
The concept of trend is difficult to define succinctlY,. The 

statistical problem is to decide _what type of trend fits the data closely. 

It must describe data logically. Such a trend is not only an expression of 

tendencies; but also provides a base from which to measure deviations. Thus, 

there are two reasons for attempting to describe the trend of a series by 

some kind of curve fitting. First, it may be desirable to measure the deviations 

from trend. These deviations consist of cyclical, seasonal and random movements. 

Second, it may be useful to study the trend itself, in order to note the effect 

of factors bearing on the trend, to compare one trend with another, to discover 

what effect trend movements have on cyclical fluctuations or to forecast 

future trend movements. 

The simplest method of describing a trend is a graph�cal present­

ation, drawing it free hand or by use of curve-fitting rules. Plots of the 

data on semi-logarithmic paper tend to straighten out some rate trends. The 

trend will be a straight fine on this type of scale if the series is increasing 

or decreasing at a constant rate. 

If the polynomial is fitted to the whole series by the least 

squares method, it may produce a linear or curvilinear regression line of 

Y on the time variable t, i .eu t 
= a+blt + b + ··� + b tPY

2
t2 

 t p
It is clear, however, that to obtain a satisfactory trend curve for marine 

environmental data, we should have to take a polynomial of rather high order 

or a somewhat complex general function. This may be not too easy to handle and 

in any case the coefficients of such a polynomial, being based on higher order 

term, would tend to be unstable from the sampling viewpoint. A more practical 

,,, 
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point is if we add another tenn to the series, for example if we are keeping 

an annual series current from year to year, the curve fitting has ,to be 

redone each time. Moreover, the trend line may be affected throughout its 

length. When, therefore, the series has no obvious trend to utilize the 

polynomial, it is more convenient to use the moving average method. 

The moving average method is a simple and flexible mathematical 

technique of trend fitting. The moving average is to take the first n terms 

(n being chosen at will), fit a polynomial of degree p, not greater than n-1, 

to them, and use that polynomial to determine the value in the middle of its 

range; then to repeat the procedure with next n terms from the second to the 

th(n+l)  
, from third to (n+2) th , and so on, moving on one term at each stage. 

Unless other considerations require it, we take n to be an odd number, so that 

the middle point of the range corresponds in time to a value which is actually 

observed. Otherwise, if we take n to be an even number, the middle point falls 

halfway between two observed values, or we have to use some value of fitted 

polynomial other than the middle point which results in a loss of useful 

symmetry. A simple example of a moving average is illustrated below: 

Time Period Observation 

3 year
Moving
Total 

3 year
Moving

Average 

1 22.1 
2 23.8 71.6 23.87 
3 25.7 74.4 24.80 
4 24.9 78.8 26.27 
5 28.2 

Thus, the moving average is a device for obtaining a series of figures, and 

the corresponding graph, which represents the general trend because the minor 

deviations of the series are averaged out in the process of its construction. 
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4.1.7.2 Seasonality 

Perhaps the easiest component to understand and to remove from 

the time series is the seasonal effect. This is a fluctuation imposed on the 

series by a cyclic phenomenon external to the main body of causal influences 

at work upon it. The seasonality, refers to the effects which are annual in 

period, or applies to any phenomenon generated by strictly periodic natural 

processes, such as spring and neap variation in tides or daily variation in 

temperature. We must, however, be careful about extending the notion of season­

ality to phenomena which are not demonstrated beyond reasonable doubt to depend 

on strictly periodic stimuli. For instance, to speak of sunspot variation as a 

seasonal effect, it may be too extreme to infer seasonality in the climatic 

and oceanic environment as a function of sunspots, even if the relation between � 

the two were established. 

Kendall and Stuart (1966) stated a few approaches to deal with the 

seasonality factor. A possibility is to use a moving average to eliminate 

trend before examining the residual values for seasonality. We then, of course, 

run into the danger of distorting the residuals. However, if we choose the 

moving average with care, we can minimize this effect so far as seasonal effects 

are concerned. In fact, if the simple moving average (with equal weights) is 

equal in extent to the period of a cyclical component, the trend value of the 

components is zero, so that residual is unimpaired. The effect of trend 

elimination both on seasonal components and random residuals are treated with 

spectrum analysis. Readers who are interested in pursuing spectrum analysis 

should consult the book by Kendall and Stuart (1966). 

To treat seasonal effects, we rank the quarters within any one 

year from l to 4 and consider how the ranks vary from year to year. To test 
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these seasonal indices, we use the model equation µt = y s +I for+q 
t = l, 2 ... , n, q = l, 2, 3, 4. The procedure is to assume that each 

observation is the sum of three effects: a yearly value, y, a seasonal value, 

s (constant from year to year in proportional effect), and an error term I, 

which is random. If the trend is slow, so that the seasonal effect may be 

regarded as constant from year to year in absolute (not proportional) magnitude, 

we have approximately u = Y +s  + I, which is an ordinary analysis of variancet q  

model. If the trend is not slow, we have to transform the equation as log ut = 

log Y +log s 
q 
+Jlog. Then, the analysis of variance model is also utilized.t  

4.1.7.3 Oscillation 

If we remove the attributable elements to seasonal variation and. 

trend, we shall be left with a series oscillating about some constant value. 

This movement may b� so small as to be virtually negligible. The series, then 

consists entirely o} keasona l i ty and trend. The seasonality and trend may 

themselves be non-existent, in which case the series is· entirely oscillatory. 

An oscillation in a time series (or more generally, in a series ordered in time 

and space) is a more or less regular fluctuation about the mean value of the 

series. In this sense it can be sharply distinguished from a cycle, which is 

strictly periodic; thus a cyclical series is oscillatory, but an oscillating 

series is not necessarily cyclical. To fit an oscillatory curve, we can 

utilize a sine-cosine function curve to adjust the cyclical pattern of observed 

values, y. A typical curve is expressed as: 

Ye= y+ A sin (
3
�0 X) 0+8 cos (3

�0 X) 0 

where y = mean of y 

T = the periodicity in time (say month, season, etc.) 

A= 2 I[Y sin (
3�0 X) 0 ]

T 

B = 2 I[Y cos (360 X) 0 
] 

T T 

Y = observed time series variable 

x = time period 
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However, it is found that most environmental data series in practice are not 

exactly periodic or oscillatory, and that it is difficult to describe them 

adequately by mathematical curves. 

4.1.7.4 Randomness 

We have discussed long tenn trends, seasonal effect and systematic 

oscillatory behavior. However, some of the time series which we are concerned 

with in environmental phenomena are clearly expressed by none of the above 

characteristics. An ordered series of observations could have risen by pure 

chance. There are many tests for randomness. Ke�dall and Stuart (1966) 

suggest a few such as the rank correlation test, difference-sign test, series 

correlation test and others. 



4.2 Non-Parametric Statistics 

Non-parametric statistics require no particular assumptions about the 

form of population distribution. Thereby, a non-parametric statistical test 

is one whose model does not specify conditions about the parameters of the 

population from which the sample was drawn. Certain assumptions, however, 

are associated with most non-parametric statistical tests; i.e. that the 

observations are independent and that the variable under study has an underlying 

continuity. These assumptions are much weaker than those associated with 

parametric statistical tests. Moveover, non-parametric tests do not require 

the fonns of real value that are required for the parametric tests; most 

non-parametric tests �pply to data in an ordinal scale, and some apply also 

to data in nominal. scale. 

Non-parametric statistics have a number of advantages: 1) Probability 

statements obtained from most non-parametric statistical tests are exact 

probabilities (except in the case of large samples where approximations are 

available), regardless of the shape of the population distribution from which 

the random sample was drawn; 2) there are suitable non-parametric statistical 

tests for treating samples made up of observations from several different 

populations; 3) since they may use ranks or signs of difference, they are often, 

though not always, quick and easy to apply and to learn; 4) for the same reasons, 

they may reduce the work of data collecting. 

The non-parametric statistical tests discussed in this manuscript represent 

only a few of many non-parametric statistical inference methods available. 

A much larger collection of non-parametric test procedures, along with worked 

examples, are given in Siegel (1956) and Conover (1971). The popular general 

statistic books, such as Snedecor and Cochran (1967), Steel and Torrie (1960) 

and Mendenhall (1975) are good starting points for a better understanding of 

the topics. Several popular non-parametric statistical tests are computed by 

DMDP)3S computer program (Dixon 1977). 



24. .1 Wilcoxon Two. Sample Rank Sum Test (Mann-Whitney U-Test) 

When at least ordinal measurement has been achieved, the Mann-Whitney 

U-test may be used to test whether two independent groups have been drawn from 

the same population. This test is one of the most powerful of the non-parametric 

statistical tests, and it is a most useful alternative to the parametric t-test 

when the experimenter wishes to avoid the assumptions of the t-test. 

Suppose we have samples from two populations, population A and B. The 

null hypothesis, Ho, is that A and B have the same distribution. The alternative 

hypothesis, H ' against which we test Ho, is that A is stochastically larger 
A

than B. Let n1 be the number of cases in the smaller of two independent groups, 

and n2 be the number of cases in the larger. Then, the test statistic is 

computed as follows: 

1. Rank all observations in the whole experiment disregarding that the 

samples are drawn from A and B. 

2. Compute the sum of the ranks for each group (T1 and T2), 

3. Average the ties for rank computation. Each score is given the 

mean of the ranks for which it is tied. 

4. Look at the rank sum from a group which has the smaller sample size. 

Call this rank sum T. 

5. Compute T' = n1(n1+n2+l) - T 

6. Compute the smaller rank sum with tabulated critical values (Snedecor 

and Cochran, 1967, and Steel and Torrie, 1960). 

7. Reject Ho if the smaller rank sum is less than the critical table 

value at a given significance level a. 

8. If the critical table value is inadequate, we can use the mean and 

standard deviation of T as 

,,. 
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With these and T, we may compute quantity Z = (T - µ )lor, which is approximately t

normally distributed with mean O and variance 1 as n1 and n2 become large. 

Use the critical values of normal distribution as in the usual (parametric) 

testing hypothesis procedure. 

To use Mann-Whitney U-test procedures, we follow the steps as above then, 

U = n1 n2 + n1(n1+l) - T1 

or U = n1n2 + n2(n2+l) - T2 

5* Compare the smaller U with tabulated critical values (Siegel, 1956). 

6* Reject Ho if smaller U is less than the critical table values at given 

significance level. 

7* Similar way as Wilcoxon's test, a simplified larger sample test can be 

obtained using the familiar Z statistics. When the population distributions 

are identical, it can be shown that the Mann-Whitney U-test statistics has 

the mean and standard deviation of U as 

Then Z = (U-µ )/o tends to distribute normally with mean zero variance l as s s 

n1 and n become large. This approximation will be adequate when n and n2 2 1 

are both greater than or equal to 10. 

The computations are obtained by BMD_)3S (Doxon, 1977) computer program. 



4. 2.2 Kruskal-Wallis Test 

The Kruskal-Wa11is one-way analysis of variance by ranks is a,useful 

test for deciding whether k independent samples are from different populations. 

Sample values almost invariably differ somewhat, and the question is whether 

the differences among the samples signify genuine population differences or 

whether they represent merely chance variations such as are to be expected 

among several random samples from the same population. The null hypothesis 

for the Kruska1-Wallis test is that the k samples come from the same population 

or from identical -populations with respect to average. The test assumes that 

the variable under the study has an underlying continuous distribution. I t 

requires at ·1east ordinal measurement of that variable. 

The procedures for utilizing the Kruskal-Wallis test are the following: 

1. Rank all the k sample combined observations in a single series 

disregarding the samples that are drawn from k samples. 

2. Compute the sum of the ranks in each k groups, Ri for i - 1,2, ... ,k 

3. Average the ties which occur between two or more scores, each score 

is given the mean of the ranks for which it is tied. 

4. Compute the test statistics 
· k 212 fu.-3 [N+1]k-w = N(N+l) i=l1: ni 

where N = r n;, the number of all observations in k samples combined, n1 = number 
i=l 

of observations in ; th sample, and R. th 
= 

. 
sum of ranks in ; sample. This test 

1 

statistic is distributed approximately as chi-square with degrees of freedom 

of k-1, for sample size (ni's) sufficiently large. 

5. Reject null analysis Ho if K-W x2 cr, (k-1) where x2, (k-1) is the 

critical value found in the chi-square table with degree of freedom 

k-1 and� level of significance. 



We may recall the concept of multiple comparison technique in the 

parametric statistical procedures. If the K-W statistic is not significant, 

the k samples come from the sample population. However, if K-W is significant 

(Ho is rejected), this suggests that at least two samples are drawn from 

different populations. 

Hence, we want to explore which samples do not satisfy the hypothesis. 

Where the difference of any two mean rank exceeds the critical value, they 

are drawn from significantly different populations, i.e. 

✓ N (N+ l) 
12 

- • thw eh re Ri = average rank of 1 samp l e

= 1 n 
I
.1 R 

mn1• n= l 

We can perform all possible pair-wise testing procedures for better 

interpretation. Unfortunately, even if we reject the null hypothesis of the 

th th Kruskal-Wallis procedure, we cannot detect any difference between ; and j

mean rank difference i.e., we cannot find any lR -R l is grea er han a giveni t t  j

critical value as above. The reader should consult more details of the multiple 

comparison test and approximation procedure for the Kruskal-Wallis tests in 

the books by Miller (1966) and Hollander and Wolfe (1973). 

The computations are obtained by BMDP)3S computer program (Dixon, 1977). 

4.2.3 Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov one sample test, is a test of goodness of fit. 

It is concerned with the degree of agreement between the distribution of a set 

of sample values {observed scores) and some specified theoretical distribution. 

,; 
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It determines whether the scores in the sample can reasonably be thought 

to have come from a population having the theoretical distribution, The test 

involves specifying the cumulative frequency distribution which would occur 

under the theoretical distribution and comparing that with the observed 

cumulative frequency distribution. 

Let Fo(x) be a completely specified comulative frequency distribution 

under the null hypothesis Ho. That is, for any values of x, the value of F(x) 

is the proportion of the case expected to have scores equal to or less than 

x. S(x) is the observed cumulative frequency distribution (step function) of 

a random sample of N observations. Where x is any possible score, S(x) = 

k/N where k is the number of �bservations equal to or less than x. So under 

the Ho, it is expected that for every value of x, S(x) should be close to F(x). 

The Kolmogorov-Smirnov one sample test focuses on the largest of the deviations, 

i.e. : 

D = maximum l F(x) - S(x) l 

The sampling distribution of D under the Ho is known. We can compare the 

value of D and critical table value (Siegel, 1956). If D > a given critical 

value, we reject the Ho. 

The Kolmogorov-Smirnov two sample test is a test of whether two independent 

samples have been drawn from the same population or frd'� populations with 

the same distribution. The two-tailed test is sensitive to any kind of differences 

in location (central tendency) and dispersion. The one tailed test is used 

to decide whether the population values from which one of the samples was 

drawn are stochastically larger than the values from other populations. 

,, 



Let S1(x) and S2(x) be the observed cumulative frequency distribution 

(step function) of the first and second sample, i.e S1(x) = k/n aRd1  

S2(x) = l/n2. The Kolmogorov-Smirnov two samples test focuses on 

D = maximum 1 S1(x) - S2(x) 1 

The principle of hypothesis testing is the same as the one sample test 

with different critical table values for the two sample test (Siegel, 1956 and 

Hollander and Wolfe, 1973). In the case of large sample approximation 

procedures see Hollander and Wolfe (1973). 

24. .4 Correlation 

If, with a given set of experimental data, the requirement is not met or 

the normality assumption is unrealistic, then use one of the non-parametric 

correlation coefficients, Spearman rank correlation, Kendall rank correiation, 

Kendall partial rank correlation and Kendall coefficient of concordance. Non­

parametric measures of correlation are available for both nominal and ordinal 

data. The tests make no assumption about the shape of the population from 

which the scores were drawn. Some assume that the variables have underlying 

continuity, while others do not even make this assumption. Moreover, we find 

that, especially with small samples, the computation of a non-parametric 

measure of correlation and test of significance is much easier than the 

computation of the Pearson correlation described earlier. 

The detailed procedures of computation and applications are found in 

Siegel (1956), and the computation for Spearman rank correlation is obtained 

by BMDP)3S (Dixon, 1977) computer program. 
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4.3 Measures of Association 

Originally we were to attempt summarizing a few indices of measurements 

useful for marine ecological investigations, i.e. methods to detennine measures 

of similarity, diversity, and clustering. Since there are excellent references 

for the topics, all well detailed, we did not attempt summarization. Refer 

to the following: 

Similarity - Boesch (1977) and Clifford and Stephenson (1975 

Diversity - Clifford and Stephenson (1975), Pielou (1974) and Pielow (1975) 

Clustering - Boesch (1977) and Everitt (1974). 



5. Applications 

None of the quantities involved in Ocean Pulse research can be observed 

or measured throughout the whole population. Conclusions will be based on the 

attributes of samples considered representative. If the sampling and analysis 

are good the interpretation derived may differ little from reality. In order 

to achieve this the objective will require a thorough grasp of individual 

subjects and indices developed in allied fields. Some recognition of limitations 

(probabilities) is necessary for deriving projections of events. The correlations 

of time series will likely be employed and the topic will be an important part 

in the synthesis of research findings. At the present time the array of intended 

test species and enlisted disciplines is noted in Table 4. Each of the activities 

is considered a promising arbiter of environmental quality. However, the 

efficiency, reproducibility and other attributes of the studies still remain 

to be evaluated in many cases. The selection of test species has been derived 

from the availability of species encountered in sampling gear during early 

cruises. Nevertheless, these key species must be linked as a part of the 

tangible ecosystem model which we develop and characterize in our synthesis. 

The subjects range from phytoplankton, constituent chemicals and chlorophyll 

through particulate, filter feeding invertebrates and commercially harvestable 

fish species. The suitability of various statistical tests is discussed below 

for each of the study disciplines (Table 5). However it must be remembered 

that after the basic survey series of results there will be material to begin 

determining time series trends. Only from the integration of individual study 

results, will there follow an evaluation of ecosystem impacts. 
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5.1 Community Studies 

Descriptions of population makeup by location will require anglyses 

to determine similarities of composition, by species and biomass. These 

referred to here are of general assemblages in the water column or living 

on and in the sediments.1 Special topics treated below are basically of special 

indicator groups. Succession studies simply measure population changes over 

time. Correlations and diversity indices are appropriate as are equitability 

indices. A clustering analysis is available in a computer package which 

classifies the similarity and dissimilarity hierarchy of organisms. Multiple 

regression and all multivariate analyses are most appropriate in relating 

change or differences to background variables. 

5.2 Seasonal Abundance of Organisms (Host and Parasitic) 

Contaminants, such as heavy metals can be correlated to such variables 

as substrate, water mass characteristics and climatological phenomena. This 

presentation is a natural outgrowth of a time series analysis. Regression, 

correlation, multivariate analysis and analysis of variance are all appropriate. 

Some non-parametric tests. 

5.3 Succession Studies 

To measure the natural and unnatural progress of dominant organisms, both 

water column, substrate biota and fish are considered. This can include an 

analysis of species interactions {i.e. replacement). Multivariate tests and 

variance analysis are all appropriate, obviously in a time-series mode. 

5.4 Anaerobic Analysis 

A special form of population analysis to express the dynamics of the 

bacterial population. Interest in the enumeration of anaerobic bacteria in 

sediment, water and animal tissue and the presence or absence of disease producing 



organisms. Inshore-offshore interactions will be studied as well as 

comparative anla1]'}ses of impacted and control sites. Multiple correlation, 

analysis of variance, bioassay and clustering techniques are all feasible 

tests. Changes will be observed seasonally and some non-parametric tests may 

be found appropriate. 

5.5 Calorimetry 

Technique is to measure bound carbon in the biota. This may provide an 

index of condition to measure differences or relate with impacts upon species. 

This is related to the study for trophic interactions and energy budgets. 

Regression and correlation techniques, analysis of variance and covariance are 

principal tests. Some non-parametric tests are appropriate. Correlations will 

be made to physiological and pathological survey data. 

5.6 Physiological Activities 

The objective of physiological and biochemical activities is the detection 

of abnormal variations from baseline norms in a variety of marine animals, 

including finfish, molluscs and crustaceans. The plan is to sample key species 

to compare between impacted areas and control stations. Field detected 

abnormalities will be compared with those noted in laboratory studies. As 

levels of enzymes and blood are established and compared, many tests are 

appropriate. These include regression, correlation, multivariate analyses, 

analysis of variance, bioassay techniques, and profit analysis. Some non­

parametric tests will be pertinent. These will be related to temporal and 

spatial differences. Studies will be coordinated with pollutant uptake studies 

and pathological findings. There will be an intimate association with the 

chemistry staff. Tissues used by physiology and biochemistry will be analyzed. 



5.7 Parasite Analysis 

This is a special form of population study consisting of pathobiological 

survey and the effects of transmitted parasites and pathogens and their 

routing levels of selected planktonic and benthic crustaceans. Parasites, 

gross and histological abnormalities of selected species taken from pristine 

and contaminated stations will be eva1uated. 

Blood parasites will be investigated in five finfish species - cod, 

haddock, yellowtail, herring and silver hake. The object will be to determine 

the distribution and preval�nce. Molluscan pathology will include the target 

species of sea scallop and tellinoid clams. Pathological observations will 

include gross and histological examination for abnormalities. Parasite 

burdens, regression, correlation, multivariate techniques and analysis of 

variance, are likely techniques. A time series analysis is possible as are 
\1also conmunity analyses, such/as clustering. 

5.8 Virology 

Delineation of blood virus characteristics of marine organisms. 

Five commercially important species have been selected including cod, haddock, 

yellowtail, herring, and silver hake. Clinical techniques are available for 

assaying variations from normal. In these species as well as many others, 

·nonns· have yet to be established on types and incidence. Multivariate, 

correlation analyses, and analysis of variance are possible choices for 

analyses, also bioassay and non-parametric techniques. Population measures 

(diversity, etc.) may also be adaptable as data accure. 

5 .. 9 Anomalies 

Measures of gross and histopathological effects include type, frequency 

and distribution. Correlations and both parametric and non-parametric analyses 

of variance are likely.· One target species is Ammodytes. The egg is demersal; 
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adults spawn along the inside edge of the shelf and are also demersal, 

spending considerable time burrowed in the sediments associated with 

degraded habitats. 

5. 10 Nutrient Bioassay 

Initial study is planned as a growth assay employing two phytoplankton 

species, seasonally dominant in Bight waters. Test data will consist of species 

growth rates under experimental conditions. Test variables will include 

nitrogen, phosphorus, metal, vitamins, and chelators. The objective is to 

assess the influence of key substances known to limit phytoplankton growth. 

Here all correlation and multivariate analysis techniques are useful. Non­

parametric tests are effective tools along with the obvious bioassay and 

probit analysis applications. 

5.11 Pollution Uptake Studies 

Levels of metals in sediments and tissue collected from impacted and 

normal environments will be detennined. Subsequent tests can make use of 

multivariate and correlation analyses, possibly a utilization of bioassay and 

probit analysis. One aspect will be to compare field data with laboratory 

exposure. A time series analysis to determine seasonal changes should be 

considered as well as non-parametric tests. 

5�;12 Genetic Studies 

Studies of miotic figures and embryonic anomalies can utilize both 

regression and correlation analyses. Correlations will be made with water 

chemistry.- Multivariate analysis should prove particularly useful. A larval 

development series under laboratory exposures can be analyzed using bioassay 

and probit techniques. Non-parametric tests are feasible as is the use of 

a clustering for interpreting field data. 
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5.13 Petroleum Bioassay 

A specific variation of pollution uptake studies and the same' 

statistical techniques pertain. 

5.14 Limiting Factors 

This study relates to a determination of the sources of mortality of 

surf clams and an estimate of relative impact. Analyses will include correlation 

analyses, possibly bioassays if lab exposures are conducted. Probit and non­

parametric techniques are appropriate. Clustering could provide a useful 

analyses of similarities. 

5.15 Hydrocarbon Exposure Studies 

These will make use of all the correlation analyses. This may be a 

special variant of the pollution uptake studies. Multivariate analyses and 

analysis of variance will test effects of various petrochemicals on growth 

and survival of biota. Non-parametric tests will be useful. Both bioassay 

and probit analyses are likely choices for obtaining and analyzing data. 

5.16 Benthic Respiration 

Benthic respiration (seabed oxygen consumption) rates are an indicator 

of organic loading and other impacts to the bentAos. The objective is to 

detect abnormal variations in organic loading. This requires the establishment 

of both temporal and spatial baselines of the natural system in both and 

uncontaminated areas as well as laboratory tests to illustrate the nature of 

the loading or stress versus the response of the system. Multiple regression, 

analysis of variance, multivariate analysis, time series analysis and non­

parametric methods are most appropriate for achieving the objectives. 



5.17 Total Plankton Respiration 

Total plankton respiration rates are an index of the rates of,decomposition 

of organic matter (utilization of oxygen) and the concurrent regeneration of 

nutrients required for phytoplankton growth. The objective is to detect major 

shifts in the temporal, spatial or size component distribution of plankton 

respiration. This requires the establishment of temporal, spatial and size 

component baselines of the natural system in both contaminated and uncontaminated 

areas as well as laboratory and/or shipboard experiments to illucidate the 

response of the system to contaminants and/or other stresses. Multiple 

regression, analysis of variance, multivariate analysis, time series analysis 

and non-parametric methods are most appropriate for achieving the objectives. 

5.18 Phytoplankton Biomass and Primary Productivity 

Chlorophyll A pigments are used as an index of phytoplankton biomass. 

We are particularly concerned with the relationship between eutrophication 

and shifts in abundance as well as shifts in size classes of phytoplankton 

(chlorophyll) which may alter marine food chains. Correlation and multivariate 

analyses will be applied to ascertain relationships between inorganic and 

organic nutrients, heavy metals, and phytoplankton chlorophyll. Measurements 

of primary productivity (via 14
c methods) will be correlated with phytoplankton 

biomass measurements, as well as measurements of nutrients, metals, light 

and other oceanographic data to determine principle forces affecting organic 

production. 

5.19 Nutrient Studies 

Inorganic nutrients (nitrates, phosphates, silicates, etc.) and organic 

nutrients will be related to spatial and temporal distributions of pollutants 

(metals, hydrocarbons, etc.). Nutrients will also be correlated with physiological 

assays as well as with primary productivity measurements to determine which 

nutrients are driving forces behind production. Multivariate analyses and multiple 

regression tests will be employed. 



6. Synthesis 

Synthesis of the Ocean Pulse analysis enco�passes the effects, of natural 

and man-induced stresses on marine ecosystems and living resources. The program 

should emphasize not only an integrated trend index analysis for marine 

pollution problems, but also develop an understanding of an environmental system 

and living resources as a whole. 

The integrated trend analysis is mainly rated on baseline data of the 

occurrence of marine pollutants, physical and chemical factors and their effects 

on many species from lower trophic levels to higher levels. The synthesizing 

trend interpretation also requires basic criteria for monitoring parameters 

as standard measurements from effects observed under laboratory conditions. These 

can be extended or extrapolated to the natural marine environment and living 

resources. The integrated environmental systems-oriented analysis deals with 

a total environmental system. The natural and man-induced stresses are effects 

on the food chain dynamics and energy flow system, species composition and 

community structure, biomass changes and the relationship between living 

resources and their supporting environment. 

6.1 Trend Index Interpretation 

6.1.l Determination of indicator parameters for monitoring 

The right selection of ocean monitoring parameters is essential for 

project success. The parameters are the biological, chemical, and physical 

factors necessary for a synchronized trend analysis and systems interpretation. 

They are a crucial linkage of species, nutrients, heavy metals, pollutants, 

parasites, pathogens and other selected foci. These measured and/or estimated 

parameters in the water column, sediment and/or organisms determine the trend 

indices -- their interpretation will provide appropriate monitoring schemes. 



6.1.2 Establishing criteria of the key parameters for monitoring under 
laboratory conditions. 

First, pertinent parameters are recognized and determined by their roles 

within natural and man-induced stress environmental and ecological systems. 

Then, following the establishment of criteria for describing tolerance limits 

on biological responses. Directly or indirectly, growth, survival, health, 

and other attributes of marine organisms influenced by varying environmental 

quality must be examined. In other words, we have to establish the range of 

threshold values of parameters which affect survival and influence the process 

in which key species cope with man-induced stresses (e.g. heavy metal influx) 

and natural mortality factors (parasites and pathogens). Without these criteria, 

any monitoring activities are purely exercises of data collection documentation. 

An important aspect of establishing criteria is how to consider the 

problems of multiple exposure of pollutants, heavy metals, or other contaminated 

matter. Synergistic effects behave in a compounded fashion. The�e may not 

be easily interpretable as a single exposure case, or may not be even detectable 

as the compounded responses. If the measurements of multiple exposure of 

stimulants are available, the criteria may be obtained by the method of 

bioassay with factorial designs and may be interpreted by utilization of 

canonical correlation techn�ques. 

6.1.3 Determining correlations of the criteria to survey field data 

The applications of established criteria of the key parameters for marine 

environmental conditions on various man-induced stresses should be directly 

utilized from the survey field data. Ideally, onboard inspection and analysis 

of the samples is desirable to detect abnormalities and for monitoring and 

diagnosis of marine organism health on a real-time basis. 
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6.1.4 Interpretation of natural fluctuations and man-induced stress 
processes, i.e. contrasts of contaminated against pristine areas 

. j

This is a logical proposition for monitoring marine environment. However, 

the interpretation of the results require extreme caution for practical applications 

in monitoring the marine environment. The spatial and temporal marine environ­

mental conditions from which the samples are obtained are influenced by so 

many external variables and constraints. These natural variables and constraints 

make identification of aberrant levels or oscillations extremely difficult and 

interpretation tenuous. 

6.1.5 Time series interpretation 

Once a series of observations for many desirable variables is compiled 

from the field, the examination and interpretation of time series analysis 

provides the means of monitoring schemes for the environmental fluctuation 

and changes which are closely related to the abundance of marine organisms and 

their community structures. As we have described in an earlier section, the 

analyses of trend, seasonal variation, oscillatory phenomena and random 

fluctuation processes are required the meaningful interpretation of significant 

changes in the measured or estimated environmental parameters. Utilizing this 

basic information will provide timely advice and warning to management so 

appropriate actions may be taken. 

Preferably, the interpretation of marine population cycles or successions 

and environmental parameters should require extreme caution in environmental 

assessment. This is simply because many cases of marine population successions 

and environmental parameters may be essentially natural random fluctuations with 

serial correlation between the populations and their environment in successive 

years. We should focus attention upon the processes of marine population 

dynamics as a whole; upon growth and decline processes, health problems with 

various environmental limiting factors and carrying capacity of given environments 

as well as unexplainable environmental changes and their parameters. These lead 

I: 



to a broadly scoped monitoring scheme for a total ecosystem evaluatfon for 

any environmental management. 

6.2 Systems Oriented Interpretation 

6.2.1 Ecosystem change monitoring 

6.2.1.1 Food chain and energy flow dynamics 

The study of food chain and energy budget flow dynamics in the 

marine environment describes the dietary components and interrelation between 

trophic energy transport. The study also identifies not only the process of 

competition, predation, interactions and energy flow among organisms, but also 

estimates the effects of transmitted parasites, pathogens, heavy metals, etc. and 

their routing from lower to higher trophic levels within the marine environment. 

Such a continuing monitoring effort will achieve the objectives of the Ocean 

Pulse. 

6.2.1.2 Species composition and community structure 

Similarly, analysis of food chain and energy flow dynamics, species 

composition and community structure changes within a given marine environment 

will provide a monitoring technique for natural and man-induced stress effects. 

It requires a standard mechanism or criteria for detecting and distinguishing 

differences of normal or abnormal conditions. ·�pecies composition and community 

structure changes in a given marine environment, i.e. spatial and temporal 

variations will be the input for interpretation of marine environmental assess­

ment. The main problem in attaining the stated objectives will be that of 

establishing an acceptable healthy marine environmental model. Achievement 

of this model will result from synthesizing the various inputs of individual 

disciplines. The criteria for defining aberrancy and delineation of causal 

effects will depend on a long series of insightful analysis. 
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6.2.2 Biomass change monitoring· 

The measurement of biomass changes over time is another way to attempt 

a meaningful monitoring in population changes of marine environment. The 

measurement of absolute values of total biomass in the marine environment 

is an ideal, but the actual figure is impossible to obtain. The relative 

biomass indices are computed on the basis of quantified relative contribution 

of time periods expressed in tenns of an arbitrary standard time period base. 

The index of the overall species relative biomass throughout the time periods 

relates to spawning success, survival and growth within a given marine community. 

However, as an alternative, we can select a few indicator species for monitoring 

relative biomass changes over time. The choice should be based upon forms in 

a well delineated and known, food web and community structure organization.
1 

Both major and minor elements should be included from each trophic level in 

the subset. It will then be easier to monitor any changes in biomass of the 

subset. Again, we should emphasize detecting and distinguishing natural 

fluctuations from those caused by man-induced stresses. 
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7. FEEDBACK 

For our project or analysis to succeed and to minimize the errors between 

what it is doing and what it intended to do to meet its objective, it must 

somehow monitor its own activities. It must feed back a portion of its output 

results for comparison with its input. Finding the cause of defectiveness 

and the optimum solution for a given problem is usually difficult and requires 

honest introspection. Thus, trial comparison of several alternatives can 

determine the best resolution for a given problem. The continuing verification 

of experimental alternates with realignment of the objectives under given 

constraints is the feedback process. 

The selection of alternatives for the optimum solution should be associated 

with the prechosen criteria. A criterion is a rule or standard for ranking 

the alternatives in their order of desirability and indicating the most promising 

within fixed contingences, i.e. it usually provides a means for weighing cost 

against performance within fixed contingencies, we must compute for each solution 

the expected value of effectiveness measured and choose the solution that has 

the highest expected effectiveness, assuming equal cost. We may also employ 

the maximum procedure for measure of effectiveness. 

For some of these contingencies, there may be available either sufficient 

data {the constraints imposed on Ocean Pulse are the contents of the data 

themselves) or sufficient theory so that we know the probability of occurrence 

of each contingency. At the present time, we do not know how to determine the 

probability distribution for the system which will deliver the expected measure 

of effectiveness. Furthermore, if we construct some kind of robustness test 

for the alternatives and the best solution, then such tests may be used as the 



main body of criteria. These robustness tests and expected value criteria 

should be based upon either some known probability distribution (p9rametric) 

or completely distribution-free (non-parametric) method, so that they are 

mainly dependent on the structure of the system or model, set of alternatives 

and data themselves. 



8. DATA MANAGEMENT* 

Ocean Pulse is not a limited study involving but a single qiscipline. 

If it were, data management would not need to be formally structured. The· 

testing of the Ocean Pulse project hypotheses will be attainable only through 

multidisciplinary studies. The goals and objectives are derived from all the 

disciplines and investigators in any one discipline do not necessarily provide 

the total input in the resolution of questions. Project activities are 

interdependent. 

The experimental design of each project is essentially determined within 

the project in consultation with biostatisticians. The project data bank 

will lie in the NE Regional ADP System at the Sandy Hook Laboratory and its 

data processing will function in archiving and updating files. Formats used 

will be amendable to conversion to NODC files. To attain these objectives 

the following description defines terms and a system to be used in data operations. 

It is intended to provide a backdrop to researchers in planning their activities. 

8.1 Introduction 

The goals of -Ocean Pulse include: 

a. The collection and integration of data sets which assist in understanding 

the nature and driving forces of complex marine ecosystems. 

b. The creation of a data bank for use by a variety of users including 

the public, scientists, and administrators. 

The realization of these goals requires a systematic approach in the 

organization and storage of data for maximum benefit to users in access and 

retrieval; we call this approach data administration. The development of this 

foundation for organizing information is intended to avoid costly duplication 

of effort wherever possible. 

,' 

* This material adapted from "Data Administration for Marine Ecosystems
Analysis", NOAA Tech. Memo. ERL & MESA-36 by P. A. Eisen, A. Sadler, Jr.,
and M. E. Sheffler. 
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Information is a decision-making and research tool. Efficient data 

systems can make a large amount of relevant information readily ac�essible. 

The data administrator holds responsibility for convincing scientists that 

the services provided by data systems can be used in the solution of complex 

problems. Assuming you have a rudimentary knowledge of computers, we will 

illustrate some ways to effectively use data administration in marine environ­

mental research. 

This report presents a methodology of data administration. This methodology 

has been adopted in some degree by the other NOAA Programs. We hope its 

presentation here will encourage a dialogue for scientists and decision makers 

to the data services they require. 

The central aim of our data administration is to make data obtained 

from research accessible to users. To accomplish this, the responsibility for 

data archival and retrieval has been transferred from scientists to data centers 

via the ADP staff. The reason behind this transfer of responsibility is that it 

both frees investigators from time-consuming tasks and offers several advantages 

to data users. Direct informal exchanges of data among scientists and others 

also occurs and can be efficient. The ADP can facilitate informal data 

exchanges by personal referrals to appropriate sources. 

8.1.1 The Freedom of Information Act 

In compliance with the Freedom of Infonnation Act, unclassified data and 

information, whether produced, sponsored, collected, or obtained by the Project, 

reside within the public domain. It is the policy of NOAA (NOAA Directives 

Manual: Chapter 21, Section 25) to supply these data and information by load, 

exchange, or sale (at cost of reproduction) through the ADP Office and the 

Environmental Data Service (EDS). Requests for data or information are handled 

expeditiously, usually within ten days when possible. 
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8.1.2 Data Necessary for Project Success 

Two.principal tasks of Ocean Pulse are: 

1. To identify and describe the major existing ecological systems, 

processes, stresses, and responses operating in the Middle Atlantic 

Bight, and define their relationships and rates of change. 

2. To determine the types, transport rates, fates and impacts of 

pollutants, and other people-related stresses on the ecosystem. 

The extent to which Ocean Pulse output furthers accurate assessments and 

predictions of marine cological impacts will be a criterion of its success. 

Such -success is predicted on the type of data acquired and processed, its 

statistical validity, and the quality of its technical interpretation. Evaluators 

of the data administration will require user needs to be met properly with 

sifficiently detailed data. 

8.1.3 Initial Project Plans for Data Administration 

This framework for data administration is cognizant of the unique nature 

of study and the need to outline the relationships among participants. Some 

guiaelines for data administration standards and responsibilities follow. 

8.2 Analysis of Available Systems 

It may be helpful to review the technological perspective on which data 

administration systems are based. Following that is an analysis of strategies 

for handling data that are in common use today. 

Much of today's computer information technology evolved because of a need 

for a generalized tool for handling large banks of data reposited on computer 

storage media (e.g., magnetic and paper tapes, disc packs, punch cards, magnetic 

core). Out of this need grew Data-Base Management Systems (DBMS), Information 

Retrieval Systems (IRS), and Management Systems (MIS). Though the differences 

between the above systems are, in some cases, subtle, we will not concern ourselves 
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with individual aspects or goals of these systems, but review qualities 

that are common and fundamental to all three systems. 

Data administration technology can be traced back to the late fifties 

when the success of 11 generalized 11 routines were first discussed. These 

routines can sort the components of any data set (file) regardless of its content. 

The significance of this work was the proposal that these ideas be extended 

into other areas, such as data set maintenance and report generation. This 

generalized processing entails the building of special programs which perform 

frequently used, common, and repetitive data processing tasks. The benefits 

of such a generalized approach are the elimination of program duplication, and 

the amortization of one-time development costs over many applications of the 

program. Generalized data processing techniques have evolved into a class of 

sophisticated, generalized systems (DBMS, MIS, IRS) and have helped establish 

concepts of data administration technology. 

The origin of data administration technology also stems from data definition 

languages development and report generator packages of the fifties. Data 

definition languages provide a facility for describing data-bases that are 

accessed by multiple users diverse application programs. Thus, the structure 

of data can be defined to avoid special programming effort by the user. 

The development of report generators stems from the need to produce 

good reports without large programming efforts. In most cases, report generators 

can perform complex table transformations and produce sophisticated reports 

from a data-base. Thus, these allow the user to examine, process, and summarize 

large volumes of data fairly easily. 

I 

Ji 
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The implementation of data administration tools (e.g., DBMS, IRS, MIS) 

rests on organizational schemes which have been characterized in three commonly 

used strategies: brute force, piggyback, data-base/key-task. We can also 

call these strategies: (a) traditional/inflexible, (b) traditional/flexible, 

and (c) data-base/key-task. The first word of the strategy titles (a), (b), 

(c), indicates the way data are stored, i.e. using a traditional method or a 

data-base. A slash separates the strategy titles into a second half which refers 

to ways that data can be retrieved. 

All the strateg�es use the terms, fields, records, and files. Each data 

value or piece of raw information a system stores, retrieves, and processes is 

called an elementary data item. A data item is placed into a named storage 

location called a field. A collection of data items or fields is called a record. 

Records are collected into logical units called files. Files are made up of 
\

records having an important feature in common (e.g., ift) 
,• 

from a single cruise). 

In the traditional/inflexible and traditional/flexible strategies, data 

files are the principal structures for organizing data. These data can be 

distributed into compartmentalized and clearly defined units called files which 

are loosely linked in some way for retrieval purposes. In this report, a program 

is a sequence of instructions written in some computer language. The program 

will always use data, possibly taking the data from files, to perform desired 

operations. 

8.2. l The Traditional/Inflexible Strategy 

This strategy for storing and retrieving data is one of the earliest used 

techniques and is still conman. The word 1  
1 traditional 11

, describes ways of 

storing data, means that data are collected into a file, but the data in the 

file can be read only by a specific program. Each file essentially becomes 

glued to a specific program, and is not versatile. The retrieval aspect of this 

• 



strategy is inflexible because a newly created program cannot simply use 

data that resides within a given file. If a program is written that needs 

some data in an existing file, a totally new file must be created, copying 

the pertinent data from the original file (Fig. 1). 

The duplication of effort involved in recopying data into the new file 

is inefficient and introduces error. If an update of data in one file is made, 

it must be remembered that values from data are also in other files. The result 

is that one occurrence of the data is edited, while another is not. The 

discrepancy may not be noticed until other uses of the file have been made. 

Tracking the error is time consuming and the original inefficiency is compounded. 

This approach to data storage and retrieval also does not take advantage 

of recent advances in computer hardware. It is now feasible to keep relatively 

high amounts of data alive in on-line storage systems since computer memory 

is cheaper today. The development of large capacity disc devices has also 

greatly reduced the costs of random-access storage. These are invitations 

to adjust data storage schemes to maximize potential user benefits. 

8.2.2 The Traditional/Flexible Strategy 

This is the present situation in the Sandy Hook operation. As in the 

traditional/inflexible strategy, this strategy, of data storage is traditional 
1,,

in that data files are the' structures used to organize data, but these data 

files are constructed to allow data retrieval to become flexible. Figure 2 

shows the organization of this strategy. The one-to-one correspondence between 

data files and recurring programs still holds, but the files are organized so 

that they are centrally located and available to a team of programmers. When 

data values from existing files are needed, the values can be pulled from the 

files and put into a special data pool. Data values not in the files can be 

added to the special data pool. 
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The special data pool represents a particular set of data needed to 

solve a problem. Any number of data sets can be constructed for the special 

data pool. Data sets in the special data pool can be 9enerated by a looping 

routine. First, data values are taken from a data file and augmented with 

additional raw data, thereby forming the special data pool. Then the special 

data pool is fed into an interface system for special applications (a package 

combining specialized and commercial software) which produces the desired 

output. The looping routine can return to a second data file and repeat the 

process until terminated. 

The disadvantage of this strategy lies in the necessity to construct 

a data pool from the current files. Work has already been done to put the 

data values into the system, but additional effort must be extended to write 

a software package that strips the data values from existing files and also 

inserts new ones into the special data pool. Any advantage that accrues to 

this flexible data retrieval capability depends on the development of an 

efficient data-independent interface system for special applications. 

8.2.3 The Data Base/Key Task Strategy 

This is the system to which we are developing. In the data-base/key 

task strategy, individual files become an optional means for storing data. 

Within the data-base storage system, data values are translated into computer 

readable data which are then merged into a single conceptual storage entity 

called a data-base. In a rough way, a data-base can be considered a giant file, 

because the computer readable data are not connected in an arbitrary way. This 

macrocosm called a data-base is predicated on an underlying logical system 

devised by defining key-tasks. The definition of key-tasks results from a 
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comprehensive evaluation as to the types of data that will be collected 

and the ge�eral applications required of the data. The way data are to be 

used thus plays a role in where a data value is stored within the data-base 

and how that data value is linked to the rest of the data-base for retrieval 

purposes. 

Figure 3 gives a visual breakdown of the components in the data-base/key 

task strategy. The cylinder in Figire 3 represents the storage area of data 

values, i.e., the data-base. Raw data values are coded, inserted into their 

particular place in the data-base, and exist in that place as computer readable 

- data until it is necessary to examine or update them. 

The octagon in Figure 3, the general data-base interface system, contains 

software that accesses data values and performs operations on data values. 

If updating data values is desirable for economy or efficiency, the general 

data-base interface system does to work. This system facilitates the care 

and grooming of the data-base by the programmer. Since the general data-base 

interface system accesses data values, it also extracts input data for the 

running of routine key-task programs. 

Bacause specialized sophisticated needs arise and must be accommodated, 

an additional software system is available. It is called the interface 

system for special applications and appears in Figure 3 as a six-sided polygon. 

The interface system for special applications answers ad hoc requests and 

produces solutions by skillfully utilizing data values made available via 

the general data-base interface system. 

An interface system for special applications is also a feature of the 

previous traditional/flexible strategy. The data-independent nature of this 

system is important to both strategies because the versatility of the system 



is enhanced. But th� data storage differences between the two strategies 

affect the end results of the interface system for special applications._ 

In the traditional/flexible strategy, the data storage pool must access data 

values from various files. Each file is built with its unique logical 

structure. The retrieval of data values from several files requires cognizance 

of each structure and, therefore, can become unwieldy and inefficient. Given 

the constraints on the data accessibility, the traditional/flexible strategy 

yields limited ad hoc reporting programs. 

In contrast, the data-base storage system allows the interface system 

for special applications a greater range. Data values reside in an interlocking 

structure, the data-base, whereby they can be readily successed. Data retrieval 

for any needed data values proceeds uniformly by using the general data-base 

interface system as a tool. As a result, greater responsiveness to ad hoc 

requests accrues to the interface system for special applications. 

One constraint on the use of the data-base/key task strategy for 

administrating data lies in the definition of key-tasks. If scientists and 

administrators focus on key-tasks that use much or all of the project's data 

and require extensive integration of data types, then organizing the data-base 

becomes complex. In the long run, the data-base/key-task approach is usually 

the most expedient and cost-efficient approach for data retrieval. However, 

its successful inplementation depends on the ability to identify key-tasks, 

and then insure that the data processing personnel, who are responsible for 

structuring and maintaining the data-base clearly understand them. 



8.3 The Design and Rationale Project Data System 

For Ocean Pulse, a system that integrates the traditional/flexible 

strategy and data-base/key-task strategy is planned. A strict application 

of the traditional/flexible strategy does not respond to the project's needs. 

Data requests from the public are handled routinely. It is not practical to 

constantly strip data from existing files to form the special data pool in 

response to many ad hoc demands. Tagging into files with unique logic 

structures requires regular modification of programs and subroutines to 

operate similarly in different data files. 

On the other hand, a data-base/key-task approach requires a comprehensive 

evaluation as to the types of data that will be collected and applications for 

the data. Definition of key-tasks necessitate that the comprehensive evaluation 

be an ongoing process, subject to constant revision. 

There also is a concern in the scientific community that parallels the 

invasion of privacy issue raised by the public in regard to large computer 

systems. Scientists usually have a proprietary attitude about data they have 

collected and are apprehensive about the possible premature use of the data 

by others. The-data could reside in the data-base after initial reduction but 

before the scientist has completely edited them (i.e., eliminated all erroneous 

values). Working via a data-base can raise this concern as well as a concern 

about data loss and inaccessibility in a big system environment. 

In summary, a synthesis of both the traditional/flexible strategy and 

data-base/key-task strategy can be successful. Most data collectors must 

organize and specially structure the data values of their own files. The data 

collectors do this using data fonnats that are designed by the Data Coordinator. 



The prototype of the traditional/flexible strategy has centrally located, 

individualized and logically unique files from which data values are pulled. 

The data values are then held inside a special data pool. Within the data 

system, the use of coordinated data formats, resulting in data files structured 

for interface, negates the need for the special data pool. When demands are 

made of the data values in the files, the interface system for special 

applications, consisting of a high-level programming language, works directly 

and efficiently with the specially structured data files. 

8.4 The Data Catalogue 

8.4.l Background Theory 

The data system diagram in Figure 4 shows the data catalogue branching 

from data collection. The data catal�gue is produced through the joiht actions 

of the computer technician and Data Index. The data catalogue is a resource 

devised to display the current status of data collection efforts. These 

collection efforts will generate many data files. The data catalogue defines 

the collected files, what they contain, who has them, and whether they are 

available for retrieval. The data catalogue can be compared to a card 

catalogue in a library. The data catalogue is consulted to ascertain the 

Project's holdings, just as the library card catalogue is consulted to ascertain 

the library's holdings. 

The data catalogue is organized in the following way: Each work unit 

has one or more cruises undertaken to gather necessary samples. The samples 

gathered from each cruise are used to measure pertinent parameters (e.g., incident 

radiation, carbon assimilation rate). Each parameter has common information 

reported as to its accessibility and sampling frequency (e.g., name of scientist 

responsible, number of stations). These qualitative details are entered into 



the data catalogue. Since the data catalogue is much smaller than the 

processed data file it describes, it is an efficient tool for locating 

needed data files. 

8.5 Data Archival and Retrieval 

Project data services utilize the interface system for special applications 

(Figure 4). The interface system for special applications is geared to 

operate through special data storage formats. 

8.5.1 Data Formats 

I The approach used on format development is the specification of a common

structure that can be applied to most data sets regardless of content. The 

result is a set of formats for difference types of data which are linked by a 

co1TJTion framework. The consequent degree of standardization has facilitated 

data retrieva 1. • 

:, 

)'J Project data sets are put into a structure called network. The theory

behind network is as follows. Individual records having the same format are 

grouped into a record�- A family of record types composes a data file. 

Each record type must be linked to another record type in some way in order to 

build the structure of the data file. Linkages of record types are accomplished 

by connecting each record of one record type (owner records) to any other 

records of other record types (member records}. We say the linkages of all 

owner records in record type 1 to all member records in record types 2,3 ... ,N 

define a '1-2-3 ... -N' set�- The constraints which can be put on set types 

differentiate networks (e.g., given record types 1 ,2,3,4, let a set type include 

owner records in record type 1 and member records belonging only to record type 2). 



A form of network is commonly called a tree structure. Here, an owner 

can have any number of members (a limb can have any number of branGhes), but 

the convention used is that no record can act as a member record for more 

than one set (e.g., no branch is attached to more than one limb). This 

structure allows us to identify relationships among records in the data file. 

All direct relationships are inserted onto each record as keys and usurp 

a certain amount of space in the files. 

8.6 Anticipated Requirements 

Early in 1979 a questionnaire was circulated to task leaders to determine 

what information they anticipated gathering, at least for the preliminary 

phases of OP. The list of questions included type of field and laboratory 

- data, how recorded, sets per station, statistical analyses, format status 

and objectives. 

The response was good but not unanimous. One of our objectives was to 

determine requirements for building data files, etc. A certain degree of naivete 

and resistance appeared from some quarters and some guidance is needed to 

direct investigations in adopting adequate record keeping techniques to 

inplement computer file record development. Design of formats was requested 

by investigations at Milford associated with contaminant biochemistry. The 

genetics group has a fonnat in development. Other format design is needed for 

pathology, microbiology and some chemistry (unless the present heavy metals format 

is adopted). 



Data volumes have been estimated as follows (Table 8) for the following 

investigators: 

Thomas 15,000
Robertson cards per year 
Phoel 1,000 cards 

Mahoney approx. 2,000 cards per year 
Cohn approx. 1,000 cards per year 

Reid 25,000 cards per year 
Radosh 7,500 cards per year 

O'Reilly 20,000 cards per year 
Evans 50,000 cards per year (2 cruises per year)
Waldhauer 4,000 cards per year (2 cruises per year) 

Zdanowicz 7,000 cards per year 

MacKenzie 1,000 cards per year 

Longwel 1 ? 

Murchelano 1,000 cards per year 
Zi s kowsk i 

Calabrese 
Gould 16,000 cards per year
Thurberg 7,200 cards per year (2 cruises per year)
Gra i koski 4,800 cards per year (2 cruises per year 

This results in a minimum of 187K cards per year on 2 cruises per
year. 

The index data file types, and analysis programs are summarized in 

Table 9. 

Future problems are difficult to identify but one procedure should be 

made eminently clear. The investigators making observations at a given station 

should all use the same station identification. The integration of data between 

disciplines will be effectively conducted only if key indices can be identified 

between files. Contractural arrangements with a systems analyst would be an 

effective procedure to develop a viable structure for data management. 

,' 
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NODC has developed a number of formats which are on file in the Sandy 

Hook computer offices. For general information and review the following 

are available: 

Seabed Oxygen Consumption 
Water Column Respiration
Index of Relative Importance (stomach analysis) 
Zooplankton
Intertidal/Subtidal (sediment, specie, fish, stomach)
Marine Invertebrate Pathology
Trace Elements (heavy metal) 
Mutagenesis
Photosynthetically Active Radiation 
Primary Productivity 2 
Hydrocarbon 2 (sediment, organism, water) 
Fish Resource Assessment 
Hydrocarbon l 
Primary Productivity 
Phytoplankton Specie 
Specimen Feeding Studies (food sample content) 
Fish Resource Assessment {shellfish)
Water Physic and Chemistry
Marine Fish Pathology
Bacteriology
Fin Rot 
Benthic Macrofauna File 
Metal in Organisms, Sediment and Water 
Sediment Characteristics 
Benthic Organisms 



Benthic 
Resources 

Ocean-
ography 

Prim. 
Prod. Chemistry 

Micro-
biology Surf clam 

Contam-
inants 

Patho-
biology Genetics 

Zdanowicz 
Greig
Graikoski 

Thomas Draxler Calabrese Murchelano 
Reid 
Radosh 

Robertson 
Phoel 

O'Reilly 
Evans 

Waldhauer 
Matte 

Cohn 
Mahoney MacKenzie 

Gould 
Thurberg 

Ziskowski 
Sawyer Longwell 

Cruise 
Sta. Grab 
Date 
Time (local GMT)
Latitude 
Longitude
°C temperature (Bot. 

Surf.)
Depth
Salinity 
0.0. 

Sediments 
. % s i1 t/ clay 
% organic 
Sorting index 
Macrofauna 
Metals 

X 

X 

X 

X

X 

X X 

X 

X 

X 

X

X 

Primary productivity 
Chlorophyll 
Nutrients 

X X 

X 

X X 

Hydrocarbons
Blood chem. X 

Pathology 
·Enzymes 
Oxygen consumption 
Bacteria 

X 

X 

X 

X 

X 

X 

Chemistry 
Genetics 
Phytoplankton Dist./Abund. 
Zooplankton
Applications Programs 
Diversity/equitability 
Cluster analysis 
Length frequency 

X 

X 

X 

X 

X ? 

X 

X 

X 

X 

X 

X 

X 

L 



Table 6. Ocean Pulse interaction between studies and environmental elements. 
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9. FUTURE PERSPECTIVES 

We have passed through a description of several stages in the-development 

of Ocean Pulse activities: the examination or sampling procedures required 

for collecting laboratory and field survey data, then the treatment phase 

with applications of statistical methods, next the diagnosis phase synthesizing 

the various research unit results with feedback refinement procedures. The 

final step in the series is construction of recommendations to implement 

management practices for ocean welfare. Recommendations will draw from some 

predicting capacity to anticip�te emergencies. This predictiye ability may 

evolve from the development of ecosystem models. Although odean Pulse will 

be primarily concerned with biological aspects of modeling, the economic models 

must also be considered. 

Future coastal ocean management activities could proceed along these 
\

steps: }' ! 
;' 

1. Construct a small-scale model based on well established ecological 

links. Derivations include food chain and energy budget dynamics. 

2. Expand the elementary model to a total ecosystem model. Linkages 

between the severa.l compartmental model systems. 

3. Extend implications of the biological model to economic and socio­

logical impacts. This action �ould present an integrated approach 

to a national coastal ocean management system. 

4. Utilize techniques of dynamic programming to develop such a management 

system. This process will define those conditions which must be 

satisfied by an optimal time -- staged decision process. We will 

discover what conditions will result in a best strategy for monitoring 

ocean welfare. 



The biological models are concerned with energy flow and yiel�s. The 

ultimate operating model, however, will probably be the economic involving 

maximization of benefits. Research will be supported only from the political. 

• premise that assures certain things are being done to support a "status quo" 

of the environment. 

In the absence of attitudinal studies toward the marine environment, we 

can infer public attitudes are derived from the common-property status of 

marine resources. Environment.al requirements affecting water quality, resource 

abundance, palatability, and food chain continuity are paramount. Maintenance 

of the aesthetic impressions of a shoreline or fishing experience is also 

important. We must understand these as given rights and benefits to the 

community of citizens. Considerations, such as these will ultimately govern 

management actions. 

t,,1 

• 

https://Environment.al
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APPENDIX I. 

Excerpts from a paper oi the accuracy of abundance indices from research 

vessel surveys by Grosslein (1979) are relevant where analagous sampling 

conditions in the Ocean Pulse area prevail. 

11 In order to help evaluate the cost-benefit ratio of surveys it is necessary 

to have some idea of the magnitude of change in stock size that is considered 

significant, as well as the magnitude of change we are able to detect and with 

that probability. 11 Clearly one of the most important questions is whether 

surveys can measure changes in abundance with sufficient accuracy to permit 

meaningful assessment of the short-term affects of fishing. However, it is 

important to remember that we are also concerned with long-term changes involving 

not just a few pri.ori ty species but the entire groundfi sh community. In general, 

a lower level of accuracy probably would suffice for monitoring long-term 

changes than in the case of assessment on a year-to-year basis. My principal 

aim here is to provide some information on what accuracy is possible with 

catch-per-haul statistics from research vessel surveys. 

11 When considering accuracy of estimates, we must distinguish between 

statistical precision or sampling error (variance) and bias. That is, an 

estimate may be very precise in terms of a small variance but have a large 

bias, and therefore not be very accurate. In our problem we are concerned 

not only with precision but also with the possible biases in the survey abundance 

index (catchability coefficient) between the relative abundance index and the 

true absolute abundance of the stock. The next step is to estimate this 

coefficient so that we can estimate actual total numbers in the population. 11 



•

Statistical characteristics of trawl catch data. .  "As is well known, 

trawl �atches are highly variable even within relatively restricted areas 

because fish are not uniformly distributed; and random trawl hauls result 

in a frequency distribution of catches which is highly skewness is that the 

variance is generally much larger than the mean resulting in very imprecise 

{although unbiased in the statistical sense) estimates of the mean, and even 

less reliable estimates of the variance itself, except with very large sample 

.sizes. That is, the standard error associated with the variance is particularly 

susceptible to departures from normality, and without a reliable estimate of the 

variance of course, it is not possible to calculate meaningful confidence limits 

about the mean ... 

11A standard approach to this general problem is to stratify the population 

to be sampled into high and low density units or strata, and then sample 

randomly within individual strata within each of which skewness is then reduced. 

Control of variability in this manner is one of the primary advantages to be 

gained from the technique of stratified random sampling. However, in the case 

of trawl catcher considerable skewness remains even after stratification ... 

"Another well known approach is to try to find a transformation which 

normalizes the frequency distribution of variables. We have found that on 

the average, stratum variances of trawl catches are approximately proportional 

to the square of the mean, i.e. the standard deviation is proportional to the 

mean ... 

"This relation indicates that a log transformation is appropriate and 

such a transformation tends to nonnalize the data and stabilize the variance 

{i.e. make means and variances independent). Also the log transformation converts 

multiplicative effects into linear additive effects. rn· tenns of our problem 



of estimating proportional changes in abundance, this means that linear 

changes on a log scale represent estimates of multiple or factor changes on 

the original scale. That is, the anti-log of the difference between two 

log means represents the proportionality constant relating means in the linear 

scale. The estimates unbiased in the statistical sense, but it should be 

noted that the re-transformed mean is a biased estimate of the true mean on the 

linear scale (an unbiased estimate is theoretically possible) . 

. Calculation of stratified mean and variance 

"The basic index of abundance dealt with here is the stratified mean 

catch per standard haul, calculated by weighting each stratum mean according 

to the proportional size (area) of the stratum relative to all strata in 

the set .. The variance of a stratified mean is similarly derived by weighting 

each stratum variance in proportion to the stratum area and inversely according 

to the number of hauls in the stratum. 11 

Examples .of precision on log scale 

On the log scale the variances are yearly stabilized and the CV's 

of stratified means are on the order of 10-15 percent for the same species 

and strata. However, note that now we are interested in the absolute rather 

than relative size of·the standard deviation. For haddock +2 S.D.'s (+ .40) 

corresponds to +50 percent of the linear scale. Thus there is no great 

improvement in the size of difference (proportional change on linear scale) 

we are able to detect as compared with the non-transformed scale, but we have 

more efficient estimates of those differences over the range of abundance levels, 

and the estimated confidence limits more closely approximate true 95 percent 

confidence intervals. 

,, 



The most significant feature of these data is that they indicate the 

present survey cannot detect with high probability, proportional changes 

in abundance which are less than a factor of about 2. That is, the log 

difference between the lower and upper limits of the 95 percent C.I. is 

about 0.7 corresponding to a factor difference of 2 on the linear scale; 

and to be very sure that two means are significantly different there must be 

no overlap in the 95 percent confidence intervals. 

11 The most serious biases in commercial abundance data arise from unknown 

changes in the effective unit of effort usually related to economic or 

technological factors. Even with standard gear however, bias can result simply 

from variations in availability of fish. With proper sample design the 

research changes in availability. For example the catchability coefficient 

for a given species and research trawl may change due to a change in vertical 

distribution of the species, in response to some environmental factor or even 

as a function type intuitively would seem to be much greater for a species 

for which the trawl has a very low efficiency." 
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APPENDIX III. 

An interesting approach to analyses of benthic populations in,relation 

to pollution paid in the New York Bight was presented by Walker, Saila and 

Anderson (1979). Their approach was to search for patterns among the physical 

variates and then search for related patterns among biological variates. 

Some of their rationale is relevant to Ocean Pulse research.
I 

"The correspondence of geographical space and physical space assumed on 

the classical analysis tempts one to treat the station grid of the New York Bight 

exactly as if it were a cornfield. However, we are not sampling from a 

geographical space which is uniform except for externally imposed treatments, 

as in the cornfield example. Instead, we are searching for the effect of the 

input of various types of waste being dumped in the New York Bight, where 

biological variability seen as the result of the dumping is superimposed on 

substantial microenvironmental variability ... 

"We are in the position of the agricultural experimenter who is trying 

to determine the response of corn to multiple treatment inputs, the spatial 

extent of which is not known at the time of the sampling. It is as if corn 

were not planted on a field of uniform soil, but within the field there exists 

and unknown mixture of soil types. In addition, it is not possible to return 

to the same geographical position during each sampling interval and expect 

to find the same soil characteristics of fertilizer levels. Thus, all 

semblance of treatment plots have disappeared because there is no longer any 

correspondence between geographical position and treatment ... 

"With1n the benthic sample data set, the way we have chosen to face 

these problems in analysis is to break up the continuous response variables of 

the sediments into discrete levels: Four for sediment mean grain-size and two 

each for heavy metals and percent organic matter. In this way we can test 
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for the response of the organisms sampled to 16 combinations of the three 

variables (16 strata). We have defined a new set of 16 variates, and we 

examine the response of benthic macroinvertebrates to these variates ... 

"Because the physical variates are highly correlated, it is clear that 

we are not able to test for any main effects (i.e., the response of any 

organism to one of the variables independent of the other variables}. Rather, 

we are limited to testing for the various combinations of the three variates 

which exist in the data set. Because of the high intercorrelation among the 

variables, many empty cells are to be expected within the cells of the strata 

thus defined. The geographical space of the cornfield has been replaced with 

a variable space. Given the assumption that the level of occurrence of specific 

benthic organisms is dependent upon these variates, we are in a position to 

test for the biological response of the system to physical and chemical 

surroundings ... 

"The discriminant functions are the best linear combinations for predicting 

strata from the biological information. For each species, the relative 

magnitude of the coefficients of the discriminant functions over strata 

indicates the relative importance of that species in predicting the various 

strata ... 

"There are several advantages inherent in this approach. {l) The problem 

of microhabitat variability is dealt-with by stratifying on the basis of physical 

characteristics of each grab sample. Since the microhabitat variability 

presumably influences the variability in species abundances, estimates of species 

abundance which ignore microhabitat effects are apt to be much more variable 

than estimates which take microhabitat influences into account. As a direct 

consequence of judicious stratification the estimates of species abundance 

can be much more precis�. However, the degree of information precision should 

be empirically tested. (2) It is posible to obtain estimates of known 

precision for strata of particular interest. Since the information in each 



grab can be worked up in two steps, it is possible to allocate analytical 

effort much more efficiently. Species counts may be made for a few of the 

grabs in some strata, and many more grabs for strata of particular concern. 

Fo� a particular value of variance for species abundance, increased sample 

size reduces the spread of confidence limits on a stable mean density estimate. 

(3) Even if it•is realized that the monitoring program must fall short of 

•• the desired scope and precision, it can ofcus on a few key questions. Due 

to limited financial resources, it may not be practical to monitor the 

abundances of a large number of species. Rare of highly variable species
... 1 

I 
.

may have to be ignored. Of the remaining list a few key species can be selected 

in order to monitor the influence of sludge dumping with sufficient precision 

-to say something about shifts in.species abundance over time. 

In attempting to assess the stability of benthic faunal populations, 

several populations parameters are important. True insight ,:'h)ill be possible 

when interpretation of density changes can be related to a detailed knowledge 

of life history, age or stage-specific fecundity and mortality, and survival 

strategies of species under consideration. For most benthic organisms this 

type of background information is sorely lacking, and as a result it is 

difficult to determine if density changes are due to natural variations in the 

population or the effects of a pollutant. 

From data on abundance of a few common conservative species and their 

within strata variations over time, the analysis could move into a third step; 

that of size frequency (or age frequency) estimation. It is here that a rea 1 

jump in information about the population stability of selected species might 

be expected." 

,, 



This approach to the problem differs from tradition techniques which 

either search for patterns in biological variates and attempt to interpret 

them as responses to physical varjables or search for patterns of relation­

ship in two sets of variates simultaneously. This technique could be useful 

in .present Ocean Pulse analyses. 
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Table 1. Stratum �eans (catch/haul, pounds) and viariaces for.haddock in three sampling strata on Georges
Ba�k .. A1.batross IV surveys. --

STRATUM 16 STRATUM 19 STRATUM 20 

CRUISE 
No. 

hauls Mean Variance 

Std. 
devia-
tion 

No. 
hauls Mean Variance 

Std. 
devia-
tion 

·No. 
.hauls Mean Variance 

Std. 
devia-

tion 

• 

63-05 
63-07 
64-01 
64-210 
64-13 
65-2 
65-510 
65-14 
66-601 
66-614 
67-721-
68-803 
68-817 
69-902 
69-908 
6_9�911 
70-i03 

7 
7 

10 
8 
1 

6 
8. 

. .  
7 
7-
7 
8 
9 
8 

14 
10 
12 
10 

41 
101 
41 

300 
148 
73 

405 
78 
73 
62 
14 
49 
19 
71 
7 
4 

130 

2 ,_740 
4,330 

857 
338,823 
31,926
6,309 

682,555 
3,266 

17,357
1,423 

564 
5,533
2,850 

26,570
185 
117 

120,926 

52 
66 
2?\ 

582 
179 
80 

826 
57 

132 
38 
21♦ 

74 
53 

163 
14 

. 11 
348 

4 
4 
7 
5 
6 
6 
6 
5 

6
6 
9,
8 
9 
8 
9
9 
8 

· 

126 
291 
'147 
364 
168 
392 
800 
171

49 
54 
52 
42

0
45 
6 
7 

11. 

22,442 
66,992
37,875

209,248
26,652

· 243,932 
2,019, 78'• 

14,377 
6,058 

15,495 
4,096
1,189 

1,831
124
413 
409 

150 
259 
194 
457 
163 
49/c 

1421 
120 

78 
124
64 
34 

43 
11 
20 
20 

3 
4 
5 

5 

5

5
5 

5 
5 
5 

6 
6
6 
6 

6
6 
5 

7 
115
37 

356 
335
21 

618
332 
43 

126 
37 
13
25 

3
23 
16 
s 

52 
33,379
1,322 

70,072
155,074

338
188,942
160,830 

1,243 
11,584 
4,140 

351 
3,574 

41 
2,610 
1,137

76 

1 

183.
36

264
39.4 
18 

435 
401 

35 
108
65 
19
60 
6

51

34 
·9 

'\ 

I 

; 

'i

\ . 

! 
'· 

' 
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�a�le 4. Str�tified mean catch per haul (lb, log scale) and
e 

measures of precision for selected species. Albatross IV 
fall surveys, Strata 13-25 . 

·• .. -:,.,.

YELLOw'TAIL -�11--..;...------------------------------
S.D./ Mean± Factor 

Year Mean Variance S.D. Mean 2 S.D. 2 S.D. diff.:1!...:------------------------------
1963 1.97 .026805 .1637 .08 .33 1.64-2.30 1.9 

:f! 
!/; 

��t-E 
- ., 

 . .. . 

1964 

1965 

.·1966 

.1967 

· 1968 

1.41 

1.32 

·o.96 

1.32 

1.40 

.037142 

.029119 

.025860 

.027724 

.038260 

.1927 

.1706 

.1608 

.1665 

.1956 

.14 

.13 

.17 

.13 

.14 

.38 

.34 

.32 

.33 

.39 

1.03-1. 79 

.98-1.66 

.64-1.28 

.99-1.65 

1.01-1. 79 

2.1 

2.0

1.9

1.9

2.2 
-- � 

1369 1.35 .025200 .1587 .12 .32 1.03-1.67 1.9 

1970 0.96 •. 0204 .1428 .15 .28 .68-1.24 1.8 

.� 

--;.�

·_:� 

3.34 

.57 

2.3 

2.3 

.37 

' HADDOCK 

}-&�5J;;
�\;��;� 

1963 .052176 .2284 .07 .46 2.88-3.80 2.5 

1964 3.86 .080315 .2834 .07 3.29-4.43 3.1:;.��:;]�) 

:�;�������, l.965 4.02 .042355 .2058 .05 .41 3.61-4.43 

!.966- 2.43 .044512 .2110 .09 .42 2.01-2.85 

1967 2.45 .052075 .2282. .09 .46 1.99-2.91:1
I� 

2.5 

196"8 1.15 .029587 .1720 .15 .34 0.81-1.49 2.0 

1969 1.10 .021536 .1467 .13 .29 ·o.s1-1.39 1.8 
.' ..,. -�.-

1970 1.35 .0345 .1857 .14 0.98-1. 72 2.1

.47 

-�·-�1:r COD 

. :.963 1.75 .084829 .2912 .17 .58 1.17-2.33 3.2 

1964 1.29 .056270 .2372 .18 0.82-l.76 2.6 

. ! _\r-_� 1965 1.32 .041737 .2043 .15 .41 o. 91-1.73 2.2u::::_:;·• . 
....;;�t-:,. .·-' -·· .2017 
')°:'f.�· 1966 1.20 .040673 .17 .40 0.80-1.60 2.2 
-- ,;,•.:.· 

.. \':,;�� ·: 1367 1,74· .047301 .2175 .12 .44 1.30-2.18 2.4 

:.968 1.04 .031888 .1786 .17 .36 0.68-1.40 2.1 

:'.S69 1.32 .025381 .1593 .12 . 32 1.00-1.64 1.9 

o. 99-1. 71 2.11970 1.35 .0332 .1822 .13 • 36 

�r ,----

·-···· t... ··-· ·- - ..... --- ... ·--· ---- ·--·__... 

..., . , .:. 

_:�����{

}
t

�

�Ji:: 
 

https://1.00-1.64
https://0.68-1.40
https://1.30-2.18
https://0.80-1.60
https://1.17-2.33
https://o.s1-1.39
https://0.81-1.49
https://1.99-2.91
https://2.01-2.85
https://966-2.43
https://3.61-4.43
https://3.29-4.43
https://2.88-3.80
https://1.03-1.67
https://1.64-2.30
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APPLICATIONS 

None of the quantites involved in Ocean 'Pulse research can be 1 observed 

or measured throughout the whole population. Conclusions will be based on 

the attributes of samples considered representative. If the sampling is good 

the conclusions derived will differ little from reality. One of the tasks 

expected will be that of forecasting. In order to achieve this goal will 

require a thorough grasp of individual subjects and indices developed in 

allied fields. Some recognition of limitations is necessary for deriving 

projections of events. The correlation of time series will very likely be 

employed and the topic will be a part of the synthesis of research finding. 

At the present time the array of test species and disciplines is noted in 

Table I. Each of the 15 activities considered a promising arbiter of 

environmental quality. However, the efficiency, reproductibility and other 

attributes of the studies will remain to be evaluated in many cases. The 

selection of test species has been derived from the availability encountered 
. . 

in sampling gear during early cruises. The subjects range from phytoplankton, 

constituent chemicals and chlorophyll through particulate and filter feeding 

invertebrates to species used for harvest. The suitability of various 

statistical tests are arrayed below for each of the study disciplines. However, 

it must be remembered that after a basic series of results are abailable there 

will be material for determining time series variation and analysis of 

covariance between disciplines. The most powerful test of effects will 

prevail when reinforcements are found to occur between several studies. 
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GLOSSARY OF SELECTED STATISTICAL TERMS* 

Confidence Interval 

If it is possible to define two statistics t1 and t2 (functions of 

sample values only) such that, 0 being a parameter under estimate, 

where a is some fixed probability, the interval between t 1 and t2 is called 

a confidence interval. The assertion that 0 lies in this interval will be true, 

on the average, in a proportion a of the cases when the assertion is made. 

Correlation 

In its most general sense corelation denoted the interdependence between 

quantitative or qualitative data. The concept is quite general and may be 

extended to more than two variates. 

The word is most frequently used in a somewhat narrower sense to denote 

the relationship between measurable variates or ranks. 

Correlation, Coefficient of 

A correlation coefficient is a measure of the interdependence between two 

variates. It is usually a pure number which varies between -1 and l with the 

intermediate value of zero indicating the absence of correlation, but not 

necessarily the independence of the variates. The limiting values indicate 

perfect negative or positive correlation. 

If there are two sets of observations x1...x and Yl•••Y � and a score
n n

 

is a 11 oted to each pair of i ndi vi duals, say a · . ( for the x-group) and b. . ( for
J

 
J JJ 

they-group), a generalized coefficient of correlation may be defined as 

!:a .. b .. 

r - - 1.,J 1.,J 
✓(ra .. 2 rb ..2 )

1.,J 1.,J 

where r is a summation over all values of i and j (i / j) from l to n.· 

* Adopted from Kendall, ✓ M. B. and W. R. Buckland. A Dictionary of Statistical 
Terms. Hafner Publ. Co., 575 p. 2nd ed. 
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If positive values of one variate are associated with positive values 

of the other {measured from their means) the correlation is sometimes said 

to be direct or positive; as contrasted with the contrary case, when it is 

said to be inverse or negative. 

There are numerous other correlation coefficients of a different character. 

Degrees of Freedom 

This term is used in. statistics in slightly different senses. It was 

introduced by Fisher on the analogy of the idea of degrees of freedom of a 

dynamical system, that is to say the number of independent coordinate values 

which are necessary to determine it. In this sense the degrees of freedom 

of a set of observations is the number of values which could be assigned 

arbitrarily within the specification of the system; for example, in a sample 

of constant size n grouped into k intervals there are k-1 degrees of freedom 

because, if k-1 frequencies are specified, the other is determined by the 

total size n; and in a contingency table of prows and q columns with fixed 

marginal totals there are {p�l), (q-1) degrees of freedom. 

From a different viewpoint the expression "degrees of freedom" is also 

used to denote the number of independent comparisons which can be made between 

the members of a sample. 

Eigenvalue 

The characteristic root of a square matrix A is a value A such that 

[A-Al]=), where I is the identity matrix. For a p:r:p matrix there are, 

ingeneral, p such roots. They are also known as Latent Roots and Characteristic 

Roots. 



The corresponding row-vestors u or column-vectors v for which 

= =uA AU or Av AV 

are called characteristic vectors. 

Exponential Curve 

A series of observations ordered in time which has a constant, or 

approximately constant, rate of increase can be represented over a long period 

by the curve: 

bt
y = ae 

where a and bare constants and tis time. This, or some simple transformation, 

is called the exponential curve. The fitting of an exponential trend of this 

form by the method of least squares is facilitated by transforming into the 

logarithmic form: 

. log y = log a + bt.
e o 

Goodness Fit 

In general, the goodness of agreement between an observed set of values 

and a s�cond set which are derived wholly or partly on a hypothetical basis, 

that is to say, derive from the 11fitting 11 of a model to the data. The term 

is used especially in relation to the fitting of theoretical distributions to 

observation and the fitting of regression lines. The excellence of the fit 

is often measured by some criteria depending on the squares of differences 

between observed and theoretical value, and if the criterion has a minimum 

value the corresponding fit is said to be 1
1best 11 

• 
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Graeco-Latin Square 

An extension of the Latin-square. Formally, it is an arrangement in 

a square of two sets of letters (say A, B, ... etc. and a, s, ... etc.), 

one of each in each cell of the square, such that no Roman letter occurs 

more than once in the same row or column, no Greek letter occurs more than 

once in the same row or column, and no combination of the two occurs more than 

once anywhere. �r example, a 4 X 4 square of this kind is 

k Bs Cy Do 
By Ao Da Cs 
Co � As Ba 
Ds Ca Bo Ay 

The arrangement is used in experimental designs to allocate treatment 

of three factors so that all comparisons are orthogonal. 

Latin Square 

One of the basic statistical designs for experiments which aim at removing 

from the experimental error the variation from two sources, whicy may be 

identified with the rows and columns of the square. In such a design the 

allocation of k experimental treatments in the cells of a k by k (Latin) 

square is such that each treatment occurs exactly once in each row or column. 

A specimen design for a 5 x 5 square with five treatments, A, B, C, D, and E 

is as follows: 

A B C D E 

B A E C D 
C D A E B 

D E B A C 
E C D B A 

The earliest recorded discussion of the Latin square was given by Euler (1782) 

but it occurs in puzzles at a much earlier date. Its introduction into 

experimental design is due to R. A. Fisher. 
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Level of Significance 

Many statistical tests of hypotheses depend on the use of the'proability 

distributions of a statistic t chosen for the purpose of the particular test. 

When the hypothesis is true this distribution has aknown form ( at least 

approximately) and the probability P(t>t 0 )1 J or P(t<tcan be determined for 

assigned t
0 

to t1 . The acceptability of the hypothesis is usually discussed, 

in terms of the values oft observed; if they have a small probability, in 

to t 1 J 0 )the sense of falling outside the range t0 
1 

(P(t>tand P(t<tsmall) 

the hypothesis is rejected. The probabilities P(t>t 
0 )1 ) and P(t<tare called 

levels of significance and are usually expressed as percentages, e.g. 5 per cent. 

The actual values are, of course, arbitrary, but popular values are 5, 1 and 

0�l per cent .. Thus, for example, the expression t falls above the 5 per cent11 

level of significance" means that the observed value oft is greater thant1 

where the probability of all values greater than t1 is 0.05; t1 is called the 

upper 5 per cent significance point, and similarly for the lower significance 

point t0 • 

Model 

A model is a fonnalized expression of a theory or the c_ausal situation which 

is regarded as having generated observed data. In statistical analysis the model 

is generally expressed in symbols, that is to say in a mathematical form, but 

·diagrammatic models are also found. The·word has recently become very popular 

and possibly somewhat overworked. 



I 

Nested Sampling 

A term used in two somewhat.different senses: (l) as equiva�ent to 

multi-stage sampling because the higher-stage units are "nested" in the 

lower-stage units; (2) where the sampling is such that certain units are 

imbedded in larger units which form part of the whole sample, e.g. the entry­

plots of clusters are "nested" in this sense. 

Precision 

In exact usage precision is distinguished from accuracy. The latter 

refers to closeness of an observation to the quantity intended to be observed. 

Precision is a quality associated with a class of measurements and refers to 

the way in which repeated observations conform to themselves; and in a somewhat 

narrower sense refers to the dispersion of the observations, or some measure 

of it, whether or not the mean value around which the dispersion is measured 

1approximates to the 1 true 11 value. In general the precision of an estimator 

varies with the square root of the number of observations upon which it is 

based. 

Probit 

The normal equivalent·deviate increased by 5 in order to make negative 

values very rare. The word was suggested by Bliss (1934) as a contraction 

of "probability unit". 

Random 

This work may be taken as representing an undefined idea, or, if defined, 

must be expressed in terms of the concept of probability. A process of 

selection applied to a set of objects is said to be random if it gives to each 

one an equal chance of being chosen. Generally, the use of the work "random" 

implies that the process under consideration is in some sense probabilistic. 
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Regression 

This term was originally usid by Galton to indicate certain relationships 

in the theory of heredity but it has come to mean the statistical method 

developed to investigate those relationships. 

If a variate y consists of two components, a variate and a systematic 

element J(X) depending on a variable X, 

y = J(X)+c: 

then the regression of yon X is the equation 

y = J(X) 

where it is supposed that c: has zero expectation. The definition remains valid, 

if X, instead of being a single variable, refers to a set of variables X1 , X2 , 

etc. 

In particular, X itself may be given as the values of a variate, in which 

case the regression of yon x may be regarded as expressing the dependence of 

the mean of y (for given x) on the corresponding x: 

E(ylxJ = J(x). 

The most frequently considered form of J(x) is a polynomial, particularly 

a linear function, giving the regression of yon X 

y = f3o+ f3JX 

or, for p variables 

Y = f3o+f31X1+•••+f3p� 

Such regressions are called regression equations. The X's are called 

"independent", "predicated" variables, "predictors" or "regressions". 

yis called the 1 
1 depenedent variate", 11predictand 11 or 11regressand 11 

• 



Significance 

An effect is said to be significant if the value of the statistic used 

to test it lies outside acceptable limits, that is to say, if the hypothesis 

that the effect is not present is rejected. A test of significance is one 

which, by use of a test-statistic, purports to provide a test of the hypothesis 

that the effect is absent. By extension the critical values of the statistics 

are themselves called significant. 

Standard Deviation 

The most widely used measure of dispersion of a frequency distribution. 

It is equal to the positive square root of the variance. 

Variance 

The variance is the second moment of a frequency distribution taken 

about the arithmetic mean as the origin namely 

CX) 

CX) 

where � 1 is the mean and F the distribution function� It is a quadratic 

mean in hte sense that it is the mean of the squares of variations from the 

arithmetic mean. It may also be regarded as one-half of the mean-square of 

differences of all possible pairs of variate-values. 

'Variance-Analysis 

The total variation displayed by a set of observations, as measured by the 

sums of squares of devisions from the mean, may in certain circumstances be 

separated into components associated with defined sources of variation used 

as criteria of classification for the observations. Such an analysis is called 

an analysis of variance, although in the strict sense it is an analysis of sums 

of squares. Many standard situations can be reduced to the variance-analysis form. 
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