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GUIDEBOOK FOR BIOMETRIC ACTIVITIES IN OCEAN PULSE

1. Introduction:

Ocean Pulse is a program designed for continuous monitoring of and associated
research necessary for forecasting the condition of coastal waters in the Northeast
region. The goal is to determine the extent to which man's activities, particularly
chronic and acute pollution and habitat modification, are affecting the elements
of our living resources. The program provides an integrated marine environmental
assessme?t, which an interdisciplinary base incorporating traditional and

innovative measurements of resource status.

The Ocean Pulse activity will most likely proceed incorporating procedures

analagous in part to that of medical science. The first phase is that of examination.
The field and laboratory data, including derived indices, will describe conditions
of habitatslranging inshore to offshore, and under various impacts, short term
and chronic. Chemical, physiological and population indices will be examined to
determine symptoms associated with various impacts. At this point statistical
2cdures will determine associative linkages and possibly define symptoms
heretofore undescribed, (i.e. synergistic effects). The NMFS can be expected
to perform in producing data files, analyses and reports including diagnoses and
advise on recommendations for treatment. Treatments will come under the domain
of government agencies responsible for pollution abatement. The prognosis will
rest with public support.
A1l disciplines in Ocean Pulse collect numeric data from controlled field
and laboratory experiments as well as observations and surveys at sea. The data
will be accumulated as large sets of physical, chemical and biological variables
to include among others physiology, pathobiology, genetics, benthos, oceanography,

fisheries. The data sets will require appropriate -sampling schemes throughout



the experiment or survey, a requirement particularly crucial at the p]anning

and initial stages. They also demand a proper data mangement system to reach

the objectives of monitoring and predicting. Only with an appropriate sampling

scheme accommodating for some desired level of precision and analyzed with proper

statistical procedures can data lead to meaningful interpretation and conclusions.
This report concentrates on general topics of statistical procedures and

their direct applications in the Ocean Pulse program. However, it is worthwhile

to review first the requisites for a sound experiment. Next, the selection of

a sampling frame and various statistical methods both parametric and non-parametric;

analysis and interpretations for the application within tasks of individual

disciplines follow. Integration and synthesis for an appropriate monitoring

system in terms of an ecological and environmental assessment point of view and

a feedback system is described, critical for realignment of initial objectives.

Lastly a data flow system is discussed.

2. Prerequisites:

In collecting basic information from samples at sea in the Ocean Pulse
Program, an experiment may be defined as a directed course of action aimed at
answering through scientific procedures one or more carefully framed questions.
In a controlled laboratory experiment the experimenter manipulates at least
some of the factors under the study and then observes the effects of his action.
Suppose, for example, we have survey and laboratory measurements of biochemical
enzyme responses observed under similar environmental stresses on sea scallops.
Then, both should be related to each other after establishing monitoring and
diagnostic criteria. We can assume the nature of the basic field and controlled
laboratory data are linked by similar environmental stress. Without this linkage,
there is little to say in interpreting or synthesizing results and only with it,
can the experiment succeed in accomplishing the objectives of the proposed

project.



There are certain characteristics an experiment must have to succeed.
These are requisites of any sound experiment and to achieve these reduisites,
statistical design of experiments can provide some direction and an appropriate
tool for soundness. These are summarized in Table 1 (Natrella, 1963). Recommended
references on the general principle of experimentation are Anderson and Bancroft
(1952), Cochran and Cox (1957), Cox (1958), Natrella (1963), Wilson (1952) and
Yates (1960).

2.1 Establishing Objectives:

The objective is a statement in the form of questions to be answered, the
hypothesis to be tested or, of the effects to be estimated. The statement should
be lucid and specific. Common faults are vagueness and excessive ambition, i.e.,
- that the program cannot be accomplished within the limitations of time, money,
and avaiiabi]ity of material, personnel, or other constraints. Establishing
an objective is more than writing down a few key words or parameters. A proper
setting for objectives depends on purpose, tempered by the physical restrictions

12 process of taking measurements and other constraints. An objective should

<iude an account of the range over which generalizations or statistical
inferences are to be made. The objective should be described in detail, and an
outline of the analysis should be constructed. Then following the details of
how the experiment is to be conducted and analyzed.

As examples we should consider the following -- an initial field survey at
sea designed to furnish answers to the questions of desired sample size and
precision? Are the results of the controlled laboratory exposures with heavy
metals to measure stress upon marine organisms similar to levels expected to
be found at sea? Can results be used to explain facets of theory not adequately
understood before? Are we solely interested in estimates of primary productivity
around some particular sites? If not, how will tests of significance be

determined for links in determining trophic food chain dynamics?



Once we establish the objectives and decide what we are going to ao in the
experiment, then observations through some sampling system will prov{de an
estimate of the population being studied. Our ultimate goal is to have small
variance (experimental error), bias (systematic error), with mean estimates
about the same as the true value. The extent of bias and variance in the
experiment are to a large extent independent. We can have estimates having
small variance, i.e. differ 1little among themselves, but with a large bias, so
that all the estimates differ greatly from the true value. Bias may arise from
a poor method of analysis, but more likely from a poor choice of samples, or
from the method from which the measurement or counts are made from the sample.

If the size of replicates or samples increases, then the variance will be
reduced, but the bias will remain unchanged. This leads to the discussion below
on replication. However, the bias can only be detected and hence eliminated by
careful examination of the whole sample procedures from beginning to end and must
utilize the concept of randomization.

2.2 Replication:

It is seldom that only one observation in an experiment is regarded as
sufficient. Repetitions are considered desirable to confirm results and to form
a basis for estimating precis{on. The precision is concerned merely with
repeatability of measurements. ''This process of replication is especially necessary
when the parameter under study is not precisely defined, and is subject to wide
variations. When this applies, large numbers for testing may be required, but it
is also desirable to make check runs to determine the experimental errors

(random errors).



Three main sources of experimental errors may be distinguished. lThe first
{s inherent or intrinsic variability in the experimental material to' which
the treatment are applied. The second is lack of uniformity in physical conduct
of the experiment, i.e. failure to standardize the experimental technique. Third
is the size of the experiment, in the sense of either providing replicates or
including additional treatments.

Whatever the source of the experimental error, replication of an experiment
steadily decreases the associated error. But precautions have been taken to
ensure that one treatment or factor is no mofe likely to be favored in any
replicate than another, so that the errors affecting any treatment tend to cancel
out as the number of replications is increased. The rate at which the experimental
error is reduced is predictable from statistical theory. One should avoid two
common mistakes: 1) require more precision than the purpose warrants, and 2)
obtaining insufficient precision for the purpose. In the first mistake, the
experiment will cost more money than is necessary. In the second mistake, the
experiment fails to achieve significance.

The basic quantity used to measure experimental errors is the error variance
per experimental unit, which is defined as the expected value of the square of
the error that affects the observations for a single experiment unit. The

square root of this quantity is called the standard error per unit, i.e.

error variance per unit
no. of-replicates

standard error =

Hence, to estimate the number of replicates, we need only the error variance
per unit (which is usually obtained from the analysis of variance) and the desired
or required standard error (precision). Further readings for this are in

Cochran and Cox (1957 and Cox (1958).



2.3 Randomization:

One way to eliminate bias is the use of the principle or randomization.

The use of a strictly random choice (not some process such as guessing numbers
which the experimenter perceives as random), has two aims. The first is the
essential -one of ensuring that the inevitable prejudices and preferences of the
experimenter do not bias the experiment. The second aim is to provide a
mathematically sound bias for calculation of approximate probability of error,

as well as a statistically meaningful inference for interpretation of the results.

The basic operation of randomization is that of arranging in random order a
series of numbered objects. In the more complicated designs this process must
be applied several times. An essential feature of randomization is that it be
an objective impersonal procedure. Arranging things in random order does not
mean just a manipulation into some order that looks haphazard. Methods of
randomizing include rolling dice, shuffling numbered cards or drawing numbered
balls out of a well-shaken bag. The main method is the use of numerical random
tables. It is used as follows: choose a starting point without looking at the
tables. For example, write down a number for the page, a number for the row,
and a number for the column block. Similarly we can also choose multi-digit
random numbers according to the experimental unit or treatment for which we want
to establish a random order.

The positive advantages of randomization are assurances that a randomized
experiment is more accurate than a corresponding nonrandomized one in which an
unskillful assignment to treatments to units leads to systematic bias. Randomization
can prevent human bias from entering in the selection of the sample and in making
the assignment of treatments or observations. It also assures that the random
error of the estimated treatment effects can be measured and their level of
statistical significance examined. The concept of randomization was introduced

by R. A. Fisher and further readings are in Fisher (1947) and Cox (1958).



Table 1. Some requisites and tools for sound experimentation.

Requisites _ Tools
1. The experiment should have carefully de- 1. The definition of objectives requires all of -
fined objectives. the specialized subject-matter knowledge of
2 the experimenter, and results in such things
as:

(a) Choice of factors, including their range;
(b) Choice of experimental materials, pro-
cedure, and equipment;
. (c) Knowledge of what the results are
- . applicable to.

2. As far as possible, effects of factor should" 2. The use of an appropriate experimental pattern
not be obscured by other variables. helps to free the comparisons of interest from
the effects of uncontrolled variables, and"’
simplifies the analysis of the results.

3. As far as possible, the experiment should be 3. Some variables may be taken into account by
free from bias (conscious or unconscious). planned grouping. For variables not so taken
care of use randomization. The use of
replication aids randomization to do a better

job.
4. Experiment should provide a measure of 4. Replication provides the measure of precision;
precision (experimental error). - randomization assures validity of the measure

of precision.

5. Precision of experiment should be sufficient 5. Greater precision may be achieved by: Refine-
to meet objectives set forth in requisite 1. ments of technique; experimental pattern
: (including planned grouping); replication.




3. Sampling

Sampling is a method th%t guides quantitative studies of content, behavior,
performance, material and causes of differences. Every sampling system is used
to obtain estimates of certain estimates of certain measurements or properties
of the population being studied, and the system can be judged by how good the
estimates obtained are in the-sense of minimizing errors and bias. A good
system provides a frequency distribution with a small variance and bias with the
.estimatéd mean close to the true value. The requirements for precision and
randomization have to be fulfilled.

To extend valid generalizations from samples about characteristics of the
population in which we are interested, the samples must have been obtained by a
suitable sampling scheme. Such a scheme ensures two basic conditions: 1) all
possible samples associated with the sampling scheme must bear a known relation
to the characteristics of the population (if the population is small, it is
sometimes convenient to obtain the information by collecting the data for the

nle of the population); 2) generalizations may be drawn from such samples in
accordance with the validity of the mathematical theory of probability. If a
sampling scheme is to meet these two requirements, it is necessary that the
selection of the individuals td be included in a sample involve some type of
random selection, that is, each possible sample must have a fixed and determinate
probability of selection.

There are excellent reference books for sampling methods. Yates (1960), is
more practical and readable than some of the popular ones, and contains a list
of references over all disciplines. For fisheries and marine science, recent
publications are available; for instance, Gulland (1966, fisheries biology),
Gonor and Kemp (1978, quantitative ecology), Stofan and Grant (1978, phytoplankton),

Jacobs and Grant (1978, zooplankton), Swartz (1978, macrobenthos), Mearns and Allen



(1978, small otter trawls), Grosslein (1970, groundfish survey), Saila (1900,
sequential sampling for benthos). Excerpts from Grosslein (1970) appear in
Appendix I.

3.1 Simple Random Sampling:

The most useful type of selection is simple random sampling. This type of
sampling is defined by the reqdirement that each individual in the population
has an equal chance of being the first member of the sample; after the first
is selected, each of the remaining individuals in the population has an equal
chance of being the second member of the sample; and so forth. For simple random
'sampling, it is not sufficient that each individual in the population has an
equal chance of appearing in the sample, but it is sufficient that each possible
sample has an equal chance of being selected.

A useful and widely applicable method of obtaining a truely random sample
is by use of random numbers as described earlier. The individuals in the
population from which a sample is to be drawn are allotted numbers, and those
to be sampled are determined by reference to a table of random numbers. For
instance, if a sample of 10 clams or fish has to be taken from a population of

"9, and the first 10 random numbers may be, say, 57, 21, 79, 29, 45, 86, 3, 17,
16, and 93, the individuals corresponding to those numbers will be selected.
If the number of individuals in the population is not exactly 100, some random
numbers occurring will not correspond to numbers to be discarded. For example,
if we want to have a sample of 10 from 24 fish, we consider only random numbers
ranging from 1 to 24. Two or more digits may be ascribed to each individual,
so that the first unit has, for instance, numbers 01 to 04, the second, 05-08
and so forth, the 24th has 93-96, and numbers 97-100 are not used. Or instead

of selecting all the units in the sample individually from the random number



table, units may be taken at regular intervals systematically, e.g. évery
third or seventh of which the first one is chosen by random number. IIn other
words, if the randomly chosen number is three, then we choose for the sample
every third individual to reach the required sample size.

If a randomization process is not employed, then it is likely that all
individuals in the population will not have equal chances of selection in the
sample. If we just "grab a handful" the individuals in the handful almost always
resemble one another on the average more than do the members of a sample chosen
with randomizition process. Cochran, Mosteller and Tukey (1954) pointed out
that a "grab" sample tends to underestimate the variability in the population.
We should have to overestimate it to obtain valid estimates of variability of
"grab" sample means by substituting such an estimate into the formula for |
variability of means of simple random samples. Thus, using simple random sample
formulae for "gr}ﬁ" sample means introduces a double bias, both parts of which
Tead to an unwa;fanted appearance of higher stability.

Now suppose that we draw a sample of n units from a population of N units

& these units from 1 to n in order of which they are selected. Then a sample
of n independent random individuals is taken with values x;, X5, ... Xn, the

resulting estimate of the mean value per unit in the population is:

n
=l(X1 +X2 ... +xn) =.|_z,: Xi
n n i=1]

x

and the variance of x is expressed by:
=y _ N-n s2
var(x) = N n ]
2 = ] = _.l_ z (x._i)z
where s< = sample variance o 1
Tbe factor of N-n is derived from the basic sampling scheme without replacement,

n
and for further details and proof, one should consult with Cochran (1977, p. 23).



The above precision of a sample estimate (variance of the mean estimate)
or standard error is a measure of absolute error. However, if we deal with
precision of a standard error of the estimate over the value being estimated
(symbolically expressed by var(x) /X), then it is expressed in terms of a

relative precision of a sample estimate. It is referred to as "the coefficient

of variation". Yates (1960) supported the formula for the sample size determination

in a random sample as:

( var(x)/x)? |
(desired sample error -
in the sample)?

n=

Calculations of biochemical data using this are given in Appendix II.

3.2 Stratified Random Sampling:

In stratified random sampling, the population is subdivided into groups or
“strata" before selection of the sample. These strata may either all contain the
same number of units or differing numbers of units. If a uniform sampling fraction

=c, the same fraction of the units of each stratum is included in the sample,
the units selected being chosen at random from all the units within each stratum.
A stratified sample is thus equivalent to a set of random samples on a number
of subpopulations, each equivalent to one stratum,

The increase in precision and bias reduction of sample estimates accomplished
by stratification depends on the degree of homogeneity that is achieved within
strata.- In other words, the amount of the variability in the characteristic
being estimated is reflected in the differences among the strata, This in turn
depends on how effectively strata have been defined,

In establishing a stratum, all information could help classify members of the
population into groups which differ from one another with respect to the
characterfstic being measured or with respect to the cost of collecting data.

Each. stratum is then sampled independently, and estimates obtained for each stratum.
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These can then be combined to give the estimate for the whole popu]a;ion. The
variance of this estimate will also be obtained by combining the variances
of the estimates within the individual strata. Since the strata are relatively
homogeneous, the variance within strata will tend to be small, and possibly the
variance of the combined estimate will be smaller than the variance in the
population as a whole. This is the rationale for employing stratification
procedures in the sampling.

The following steps are required for the stratified random sampling scheme:
1) defining the strata to be utilized; 2) determining the size of sample to be
taken from each stratum; 3) selecting the sample from the strata as defined; 4)
calculating the estimate from the sample; and 5) evaluating the reliability of
the sample estimafe with variance estimates.

Suppos? the population consists of N individuals, N; is the ith stratum

where N = £ . Nj, and a sample of Ny, Np, ..., Ny units are taken from the I
i=1
“rata respectively. Let Xij be jth values of quantity in ith stratum to be

estimated (e.g. length of fish, amount of enzyme, etc.) with j = 1, 2, ... nj.

The estimated mean value xj in the stratum is:

nj
ety X.

Xj = n—1'J=] 1)

and an unbiased estimate of the mean value in whole population is given as

the weighted mean of the means of the individual strata (the weighting factor

being the total numbers in each stratum)
I -
Z Nj Xxj

=_._1
o I

If the variance within the ith strata is an extension of simple ramdom sampling

=y _ 1 (Ni-nj) _.,
var(x;) N s§



=
J Drpgxi)2

where sj2 =
nj-1

thenwe have an unbiased estimate of the variance of x for the overall strata

expressed by:

I
L 2 =
var(x) = N% 151 N;# var(x;)
I
N2 i=] n,i i
I
2 £ No (Nj-nj) 1 542

il i
Nz i=1 nj

To determine the sample size in a stratified sampling scheme, the values

of the sample size n;j in the respective strata are expressed by Neyman (1934)
M= N, var(xi)

n E————————————

Ni var(x;)
1

([ o B ) B

;

Although the above equation give the nj in terms of n, we do not know what n has.
~ solution depends on whether the sample is chosen to meet a specific or desired

variance of the stratified mean (v). If v is fixed, and we substitute the

optimum nj in the formula for var(x), then we have an optimum allocation of n as

Loy

i (§H)? [var(xi)12

>

i (N1) [var(x;)28

n =

1
V+N
Suppose we minimize the variance of the estimate x, var(x), for a specified
cost of taking the sample or to minimize the cost for a specified value of var(x).

The simple cost function is of the form

cost = C=Cy + ? Cin,

where C, represents an overhead or initial cost for a sampling scheme, and Cj
is cost per unit varying from stratum to stratum so that the cost is proportional

to the size of sample.



Then, the optimum size of sample is:

%
n = (C-C,) i [Nj var(xj)/v Ci]

0
i Nj var(xj) v Cj

and z Ns ! z VE -
i o+ var(xi) ¥ Ci] [i Nl var(xi)// Cil
1z N -
TR 1= var(x;)

Further readings in detail for the optimum a]]ocafion problems and the sample
size determination in the stratified random sampling scheme are referred to in
books by Cochran (1977) and Hansen, Hurwitz and Hadow (1953). The applications
for NMFS groundfish survey and its variability estimates with the stratified
random sampling method are referred to in Grosslein (1971) and Hennemuth (1976).
An interesting application for the structure of New York Bight benthic data
using post-collection stratification of samples based on the physical character-
istics of each grab sample rather than classical spatial strata classification
is given by Walker, Saila and Anderson (1979). Excerpts of this paper are

given in Appendix III.



4, Statistical Methodology:

Modern statistics provides research workers with knowledge. However, the
extent of statistics makes it difficult to define. It was developed to deal
with those problems where, for the individual observations, laws of causes
and effect are not apparent to the observer and where an objective approach is
needed. In such problems, there must always be some uncertainty about any
inference based on a limited number of observations. Hence, statistics is the
science, pure and applied, of creating, developing, and applying techniques
such that the uncertainty of inductive inference may be evauated.

4.1 Parametric Statistics

A parameter is a measure of some characteristic of a statistical population.

For example, the mean and the variance are two such measures which occur in a
normal (bell-shaped) distribution. Statistical methods.which rest on particular
assumptions about the forms of distribution and their parameters are called
parametric methods. The most frequently assumed distribution form is normal.
For many years the normal distribution has established a pre-eminent position
in statistical theory. It deserves its position on two grounds. First, a large
number of variables, including sample statistics such as means, appear to be
distributed normally or nearly s0. Second, non-normal distributions often
can be readily transformed to normal form.
4.1.1 Linear Regression Analysis

4.1.1.1 Simple Regression

We consider the problem of statistical inferences which can be made
regarding the variability of a dependent variable, y, relative to an independent
variable, x. The y's can fluctuate from sample to sample, for example the
measurements of fish physiological stress, y (e.g. enzyme level) are affected

by the amount of contaminants, x. Furthermore, the x's will also be variable



subject to random fluctuation. As another example, we may wish to examine
the rate of primary productivity, y for different environmental variables, x
of nutrients observed.
Regression has many uses. Perhaps the objective is only to learn if
y depends on x; or prediction of y from x may be the goa]( Some wish to
determine the shape of the regression curve. Others are concerned with the
error in y in an experiment after adjustment has been made for the effect of a
related variable x. If you have a theory about cause and effect, employing
regression can test this hypothesis. ) /
To satisfy these various needs an extensive account of regression method
is required. If a variable y is a linear function of a variable, x, we may have
Y=o+ Bxte

where e represents some residual or random errors, the amount of y not accounted

\
for in the regression on line of y on x. We postulate that the regression 1ine}J

is selected so that residuals are of a random nature and uncorrelated with each
ther, with a usual added assumption that the € are normally distributed with
mean 0 and variance 2 (Figure 1). Suppose we consider both variables (x and y)
are subject to an error measurement which has a joint probability distribution
at (x1, y1). It is represented by the "mounds" centered over the true point
(Figure 2). Similarly, the points (x2, y2) and x3, y3) are demonstrated.
To estimate the relationship between the y and x variate, n simultaneous
observations will be obtained on y and x, i.e.:
Y1s ¥22---Yn

X1s X230+ Xn
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Then, we can write each observed value y;, for ith observations as
. = .+ .
i T Y T8
where y, and e; are estimates of y; and ej.

¥

Figure 3. True and estimated regression lines.
For a given observation (xj, yi) the true error is £j, the estimated error by
ej in the above figure. In order to obtain the "best" linear fit to the data,
it is reasonable to make the e's as small as possible (Figure 3). Some choices
are available to make the e's small;

1) minimize the sums of the absolute values of the e
) minimize the sum of squares of the e. Method (2) (Called the "method of
least squares") is probably the easiest to apply and has certain optimum
properties.

Mathematically, we can express the minimization of sum of squares of the

e's as Min. [z e% = (y1-§i)2] so that
I owi i
2(y;=y:)2 = zl(y;-9) - (v;-9)12

s(y;-9)2 + (9;-9)2 -2(y;-9) (¥5-¥)]
Z(y;-¥)? + £(y;-¥)? -2z(y;-Y) (v-¥)

The third term can be rewritten as

-25(y;-y) (y5-¥) = =25 (y;-3) [b £(x;-%)]



It is because, for example, in the case of simple regression (one y and one

x are linearly re]afed), i.e.

Yi = gt B %y, Ty
;1 =a+bx; andsince a = y -b x
=y+b (xi-i)
and ;1-9 = b(xi-i) ................................................. *

One step further, we know

b = Z(xi=X) (yi-y)

z(xi-x)2

b Z(x5-X)2 = E(X§=X) (YY) «evnnneeetiiee i %k

So, the third term of the original equation is expressed by:

-2 2(yi-¥)(yi-¥)

= -2 z(y;-y)[bz(xi-x)] ..... (by *)

= -2b z(yj-¥)(xj-X)

= =2b2Z(X§=X)2 tiiiiinnnnnnn (by**)

= -25(¥i-¥)2 ciiiiiiiiannn. (by*)
Thus, we have

z(yi-y)2 + £lyi-y)? -2z(y;-¥)?
z(yi-y)2-z(yi-¥)?

Rearrange the terms, we have

2(yi-y)? = Z(yi-y)2 +2(y;i-y)2

i.e. (sum of squares) - (sum of squares s (sum of squares )
about the mean about regression due to regression



We can construct an analysis of variance (ANOVA) table in Table 2,
which indicates that the mean square error (MSE)

MSE = ss about regression
n-2

is an unbiased estimate of o2 and relate how to test of regression (test of
regression slope; Ho:e=0).

It is also possible to obtain the exact probability. distribution on the
estimates ;i, a, b, and thus, the confidence intervals for the predicted line
and the individual parameters. However, we will skip a detailed analysis. You
should consult one of the following: Anderson and Bancroft (1952), Draper and
Smith (1966), Natrella (1963), Snedecor and Cochran (1967), and Steel and Torrie
(1960). Ricker (1973) is an excellent reference for details of the functional
relation of linear regress-ons in fisheries research problems, particularly
in cases where x and y are both subject to random fluctuations.

The comprehensive ANOVA table and other statistics for the simple regression
are obtained by an ADP computer program (Dahlberg, 1969). The biomedical computer
program, BMDol1R (Dixon, 1974) provides similar output for analyses, but has an
output difficult to read. Dahlberg's program provides the plots of regression
and the analysis of the weighted regression if you have to utilize computational
weight factors.

To obtain a degree of confidence that the relationship is indeed linear,

a test of deviation from linearity may be derived. We must have more than one
value ("i) of y's for a given value of X5
Y11» ¥125>---5¥1n, one ny repeat observation of X

Y21, y22,...,y2n2 are n, repeat observation at Xo

Yrls Yr2s---s¥2,n, are n repeat observation at X
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Then we can subdivide the quantity of sum of squares about regression (ss error)
to two terms of pure error and "lack of fit" sum of squares. The mean square

for pure error is expressed by:

y nij £ o5
g2 . if]1 g £ Wig - i)
e r
5 nj-r
i=1
Then, the "lack of fit" sum of squares are obtained by subtraction of sg from

ss about regression, i.e.

ss about regression - s_ = lack of fit sum of squares

e
The test of linearity is:

F* = _SS lack of fit/r-2 " F(r-

2 p
Sa / ? n;-r

2, % ni-r).

If the test is rejected (i.e. F* statistics is greater than F table value
with r-2 and In;-r degree of freedom) the linear regression model appears to be
inadequate. If the test is not rejected, the model presents no reason to doubt
‘he adequacy of linearity, and both pure error and lack of fit mean squares
can be used as estimates of 2. You should consult Draper and Smith (1966) for

“details.

4.1.1.2 Multiple Linear Regression Analysis

Often it is more realistic and economical to be concerned with the joint
effects of a number of independent variables (xj,...xr) on a single dependent
variable y rather than examining each variable separately. As in the simple
regression, the simplest and most used functional relationship is a linear one.

The multiple linear regression model has the form of:

{ = a& X14 % Wder ¥ & g M. F gy
¥3 B Xig Yz X2y Bp Xry T



for i =1, 2,...n and where €5 follows normal distribution with mean O
and variance ¢2, and €; and ej are uncorrelated each other.
The application of the least square technique is the same as described

for simple regression. We have to minimize

Frrab .\
Iz Wi - vig)?®
i=1 j=1
The ANOVA table is summarized in Table 3. The formulae for estimating parameters,
testing, and confidence 1imits are omitted, but one should consult Afifi and
Azen (1972) or Draper and Smith (1968).

In many regression situations, the experimenter does not have sufficient
information about the order of relative importance of the indgpendent variables
21, Xpsee X, in predicting the dependent variable y. Testingqa hypothesis:

B; = 0 for each X i- 1,2,...n does not reveal this ordering. Suppose we reject
the test on false conclusions that X was the only variable of importance in
predicting y.

Then, our question is, which x variables are most important in determining
and predicting y. Usually no unique or fully satisfactory answer can be given,
but a few approaches have been tried: 1) standard partial regression coefficient
(see Snedecor and Cochran, 1967); 2) multiple correlation coefficient (see next
section), and 3) stepwise regression procedures (see Afifi and Azen, 1972 and
Draper and Smith, 1968).

The solution for the stepwise regression selects a single variable
X3 which best predicts y. The second step finds the variable xj which best
predicts y, with the given X the first variable entered. In the steps that

follow, either: 1) a variable is entered which best improves the prediction

of y given all variables entered from the previous steps; or 2) a variable is



removed from the set of predictors if its predictive ability falls be]ow
a given level. The process is terminated when no further variable improves
the prediction of y.

The computation of the stepwise regression is obtained by computer
program BMDO2R (Dixon, 1974).
4.1.2 Correlation Analysis

4.1.2.1 Simple Correlation

In its most general sense correlation denotes the interdependence
between quantitative or qualitative data. However, in a more restricted sense
we will consider correlation as a measure of the degree of relationship between
the variables, independent of the units or terms in which they are originally
expressed. A closely related measure may permit you to state the relative
amount of variation which is explained by the estimating regression equation.
Recalling the expression/BF sum of squares (SS) in the previous section, the
fraction of SS due to regression is expressed by SS about the mean. This is
called the coefficient of determinations in the regression analysis, i.e.

r2

SS due to regression
ss about mean

€ §)2
L (yi-9)

This coefficient is equal to the ratio of the reduction in the sum of squares

of deviations obtained by using the linear regression to the total sum of
squares of deviations about the sample mean y, which would be the predictor

of y if x were ignored. This provides a more meaningful interpretation of the
strength of the relation between y and x than the Pearson product moment, the

coefficient of correlation is:

r = I (x4-%) (yi-¥)
v 2(xi=X)2 ¥ £(yi-y)?




Squaring both sides,

r2 = [2(xi-x) (yi-y)1?
z(x§=x)Z z(yj-y)?

Dividing by }:(xi—x)2 or £(y;-y)? we have

r = [z(xj-x) (yi-y)1/-z(xj-x)?

z(y;-y)?

reduction in SS (y) attributable to x
SS (y) about mean = corrected total SS (y)

= [2(x§-x) (yi-y)12/z(yi-y)? '

Z(Xi-X)2

= reduction in SS (x) attributable to y
SS (x) about mean = corrected total SS (x)

In addition,

PRSP R o (R0 17 BUSEP R P (by, ) (by)

z{x4-x)2 2(yi-y)?
where byx and bxy are the regression coefficient slopes for the regression
~f y on x and of x on y. Thus, the product of the regression coefficient is the
square of the correlation coefficient, inversely the correlation coefficient is
the square root of the product of the regression slopes or their geometric mean.
Hence, if we are interested in testing whether there is a linear relationship
between x and y (Ho: o = 0 where ; is population correlation coefficient) a
statistical test is available (Snedecor and Cochran, 1967 and Steel and Torrie,
1960). In fact, this test is equivalent to testing that the hypothesis g = 0.
While r provides a nice measure of the goodness of fit of the least squares
line to the fitted data, its use in making inferences concerning p would seem
to be of dubious value in many situations. This is simply because it is unlikely

that a phenomenon y observed in natural science, especially marine environmental

science, would be a function of a single variable x. The larger reduction in



SS about regression (SS error) could possibly be obtained by constructing
a predictor of y based on a set of variables x{,xz.... It leads to’multiple
and partial correlation which will be described below.

A few reminders concerning the interpretation of r are worthwhile.

1) if r = 0.6 as indicative of a linear relation between x and y, this
value 0.6 would imply that use of x in predicting y reduces the sum
of squares of deviation about the prediction line by only r2 = 0.36
or 36 percent;

2) r is a measure of linear correlation and x and y could be perfectly
related in some curvilinear function when the observed value of r
is even very low;‘

3) 1if the linear correlation coefficients between y and each of two
variables X and X, were calculated 0.6 and 0.7 respectively, it does
not follow that a predictor y using both variables would account for
a (0.6)2 + (0.7)2 = 0.85 or an 85 percent reduction in the sum of
squares of deviation. Actually X and X, might be highly correlated
and therefore contribute the same information for the prediction of y;

4) detecting linear correlation visually from plotted points can be
difficult. An unfortunate choice of scale may hide a real correlation
or indicate a real one when none is present. A change of scale will also
change the slope of regression line. Further with an unfortunate choice
of scale, visual detection is further hindered by the fact that the
relation between r and r2 (proportion of the total sum of squares
expressed by regression) is not linear;

5) the correlation coefficient is considered only when variables x and y

are both subjecf to random errors.



4.1.2.2 Multiple Correlation

The simple correlation may not be what is desired in situatjons where
the dependent variable is influenced by two or more independent variables.
Multiple correlations provides an analysis of the relations among two or more
predictor measures. It measures the closeness of representation by the regression
plane and may also be regarded as the maximum of the correlation coefficient
between the dependent variable and all linear functions of a set of two or
more of independent variables. The coefficient is usually denoted by R but is
regarded as essentially non-negative; the quantity R2 being the one which occurs

. L o y 3
in practice as r- in simple correlation.

R2 = SS due to regression
SS about mean
= 2(y§-5)°
z(y;-y)2

Multiple correlation coefficients are strictly applicable only when
the total observation, that is (yi,X]i,Xzi...Xpi) is subject to random error
as we have noted in the case of simple correlation. However, regardless of
randomness of the observations, these correlation coefficients may be useful
for computing and for other reasons. The reminders given for simple correlation
coefficients are a11-va1id for multiple correlation coefficients. Recommended
readings for multiple correlation are Steel and Torrie (1960) and Kendall (1961).
The computations of multiple correlation coefficients are obtained

through computer program BMDO2R (Dixon, 1974), stepwise regression analysis.



4.1.2.3 Partial Correlation

The simple correlation and multiple correlation coefficients are
measures of the closeness represented by the regression line or plane, i.e.
measures between two or more variables. This consideration leads us to
examine the correlations between variables when other variables are held as
constant, i.e. conditionally upon those other variables taking certain fixed
values. These are so-called partial correlations.

Suppose there are three variables. Then we have three simple correlation
coefficients among variables: variables 1 and 2, ryp; 1 and 3, ry3 and 2 and 3,
Yo3- The partial correlation is expressed as the correlation between variables
1 and 2 in a cross section of individuals all having the same values of variable
3); r]2(3), i.e. the variable is held constant over variables 1 and 2 which are
involved in the correlation coefficient computation.

When we come to interpret a measure of interdependence, we often

meet difficulties, as when the first variable is correlated with second variables.
This may be merely incidental to the fact that both are correlated with another
variable or set of variables. This consideration leads to an examination of
the partial correlation. If we find that holding the third variable fixed
reduced the correlation between two variables, we make the inference that
their interdependence arises in part through the agency of a third variable.
If the partial correlation coefficient (r]2(3)) is very small, we infer their
interdependence is entirely attributable to that agency, and conversely if the
partial correlation is larger than the original simple correlation coefficient
(r]2) as a measure of dependence between variables, then we make the inference
that the third variable was obscuring the stronger correlation or making the

correlation.




A useful identity between the partial and multiple correlation
coefficients for the set of variables (y, Xy x2...xp) is

1-R%y, =12 )@ .2 Y. i(] L2

XsXp Tyxy T yxa(x7) b yxp(x]xz..xp)

where Rz.y o is multiple correlation coefficient between variable y and
"l’p

2 2 . .
XpoeeeaXps T yxz(x1) and r VD (x], x2,...xp_]) are the partial correlation
coefficients between y and X5 when Xy is held as constant, and of y and xp when
other x,, Xpe+oXp_ variables are held as constant. For instance, in the

above three variable case, we have

%
LB ST

2 2
(- Fhe)edriia(ay)
where
rip = 2(x14-X7) (x24-X2)
)2V I(xys-%)°

v E(xli'xi

e 3y thre 1k 3ubos
Lo aoR R
vy {1 r]3) (1 r23)

A test of significance of the partial correlation coefficients, e.qg.
r]2(3), is available (Snedecor and Cochran, 1967 and Afifi and Azen, 1972).
BMDQ2R (Dixon, 1974) stepwise regression analysis provides computations of
the partial correlation coefficient. Utilization of the stepwise regression

analysis are referred to in Draper and Smith (1966) and Afifi and Azen (1972).



4.1.3 Multivariate Analysis

As we have seen in the section of multiple regression and correlation,
observations on more than one random variable may be made for each individual
in the sample. The multivariate analysis is used rather loosely to denote
the‘analysis of data which are multivariate in the sense that each member
bears the values of p variables. In regression problems emphasis is placed
upon the relationship between the dependent variable on one hand and the set
of independent variables on the other hand. In other multivariate analyses,
however, all of the random variables are analyzed simultaneously as a random
vector having a multivariate distribution. Some multivariate methods are a
generalization of the univariate method, while others are unique to multivariate
analysis.

Most of the continuous multivariate analyses assume that the underlying
distribution of the random vector is a normal multivariate. The justification
of this assumption, similar to those in the univariate case, are: 1) many
observable phenomena follow an approximate multivariate normal distribution;
2) transformations of some or all of the components of the random vector
sometimes induce a multivariate normal distribution; and 3) the central limit
theorem for one random variable extends to the multivariate case, that is,
summations of many independent and identically distributed random vectors
apbroach multivariate normality.

Anderson (1958) classifies the multivariate analysis into the following
categories:

1. correlation (multiple and partial correlation analysis);
2. analogues of univariate statistical analysis (multiple regression,
multivariate analysis of variance, generalized T2-test for discriminant

function analysis;



3. problems of coordinate systems (principal components ana]y;is,
canonical correlation analysis);

4. more detailed problems (factor analysis);

5. dependent observation (time series problems with serial correlation
analysis).

We will cover some of the selected topics including discriminant
function analysis, principal component analysis and canonical correlation
analysis. Correlation analysis and multiple regression analysis were discussed
earlier.

4.1.3.1 Discriminant Function Analysis

Discriminant analysis is a procedure for estimating the position of a
measurement on a line that best separates classes or groups. The estimated
position is obtained as a linear function of the n measurement values. Since
one best 1line may not exhaust the predictive power of the test battery in
distinguishing among the classes, additional discriminant functions, all
mutually orthogonal (in the sense that discriminant va]ﬁes are uncorrelated),
may be fitted.

The geometric interpretation of discriminant analysis can be seen for
the case of two groups and two variables with the assistance of Figure 4, in
which the two sets of concentric ellipses represent the bivariate swarms of
data for the two groups in idealized form. The variable x, y are slightly
positively correlated. Each ellipse is the focus of points of equal density
(or frequency) for a group (category). For example, the outer ellipse for
group A might define the region within which 90 percent of group A lies, and
the inner ellipse concentric with it might define the region within which 75
percent of group A lies. The two points at which corresponding ellipses
intersect Aefine a straight line II. If a second line I, is constructed

perpendicular to line II, and if the points in the two-dimensional space are



projected onto line I, the overlap between the two groups will be sma]]er
than for any other possible line. The discriminant function therefore trans-
forms the measurement values to a single discriminant value, and that value
Ts the measurement's location along line I. The point b where II intersects
I would divide the one-dimensional discriminant space into two regions, one
indicating probable observation in group A and the other region for group B.
Notice that this figure depends on the equality of the two group variances.
If either the variance of x and y or the x,y covariance were different from
the two groups, the ellipses for two groups would not have the same shape

and orientation, the boundary (1ine II) would not be a straight line. The
size of the two populations do not have to be the same, only teh variance and
covariances.

We can consider, similar to the example above, the case of classifying
a two-dimensional observation into a one-dimensional normal population, to
classify a p-dimensional observation vector x* = (X*]’X*Z""X*n) into one k
multivariate normal populations with mean u, and variance-covariance matric
Z, i - 1,2,...k. Since x* is a realization of a random vector x = (x], x2...xp),
the results presented so far used all p variables X1 x2...xp to discriminate
between k populations. In many applications, however, it is desired to identify
a subset of these variables which best discriminates between the k populations.
This problem is analogous to that of stepwise regression analysis in an earlier
section, in which it was desired to identify a subset of independent variables
which best predicts a dependent variable.

This stepwise discriminant procedure is as follows. We first identify
the variable for which the mean values in the k populations are most different.
For each variable this difference is measured by one-way analysis of variance F
statistics and the variable with the largest F is chosen (or entered). On

successive steps, we consider the conditional distribution of each variable

not entered given the variable entered. Of the variables not entered, we



identffy the variable for which the mean values of the conditional dfstributions
in the k populations are mosf different. This difference is also méasured
by one-way analysis of variance F statistics. The stepwise process is stopped
when no additional variables significantly contribute to the discrimination
between the k populations. The computations are obtained by BMDO7M (Dixon,
1974), and details are referred to by Afifi and Azen (1972).

4.1.3.2 Principal Component Analysis

The method of principal component analysis is a general technique of
displaying interrelations ;in the data, but it is not a statistical technique
which can lead to a decision or a hypothesis. This interrelationship, called
the dependence structure, may be measured by the covariances, or equivalently
the variances and correlations between variables x]...xp. It is possible

which generates

to find a linear combination Y15 Yps---Y (q<p) of Xps XpeooX

q’ P
the dépendence structure between x's. Then, the new variates y's which are
independent of each other account in tufn for as much of the variation as
nossible in the sense that the variance of y, is a maximum among all linearly
transformed variates, the variance of Yy is a maximum among all linearly trans-

formed variates orthogonal to y, and so on. Then we have

p
Y1 52 ay: X
LI B
. P
Yq -151 “qi ™
P 2 P
with £ ay; = 1, eousZ a2 =1
i=1 i=1 qi
P q -
and £ I 0315150 fori=1,2,...,p, 1 + il
i=1 j=1 J



From these equations, it is seen that new variables y's are uncorrelated

and ordered by their variances, viz, cov (yj yj) = 0 for all j, j*d', and

var (y}) > var (y2) > > var (yq) where cov and var are covariance and

variance. Further, the total variance v = £ var (yj) = ¢ var (x1) are the
- Jj=1 .i=1

same after the transformation. In this way, a subset of the first q y's may

explain most of the total variance and is therefore a parsimonious description
of the dependence structure among the original variable x's. The method of

principal components is to determine the coerficients 542 which are eigenvectors.

Since we assume that x , x2...xp have multivariate distribution (not

necessarily normal) with mean u and known covariance matrix £ = ( ), we

01J
wish to find eigenvector as

Qs
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var (y]) =

i=illen il

is maximized subject to the condition ijg] a?j = 1. Thus, the first principal
component explains 100 [var (y])]/V percent of the total variance. Likewise

we have the first two principal components explain 100[var (y]) + var (yz)]/v
percent of total variance, and so forth. Hence yq is the qth principal
component, the variables ¥qs y2...yq explain 100[ g var (yj)]/v percent total
variance. And we found the set of eigenvectors fé?]each principal component.

To compare the contribution of XpsXge oo X to yj we examine the quantities

P
“ji/oi’ i=1, 2,...p and j=1, 2,...q, and i the standard deviation of X since

the correlation between x; and o is given by o5 [var (yj)]ﬁ/ci. Furthermore,

when the correlation matrix used, then comparison of coefficient a.. is all

Ji
that is necessary. Hence the larger the coefficient, the larger the contribution

of the variables xi,xz...xp to the principg] component, y],yz,...yq.



A geometric intérpretation of the principal component with p ? 2
is as follows. Each variable X1s Xo is repre;ented by a coordinate‘axis
from the origin with mean u, and u,. Then, as eigenvector specifies its
direction and eigenvalue (variance of yqor y2) specifies the length of an
axis of notional ellipse. In principal component analysis, we search for a
notation of these axes so that the variable y, ;epresented by the first new
principal axes has a maximum variance. The variable g represented by the
second of the new axes is'uncorrelated with Yys and has a maximum variance under
this-restriction. Hence, the first principal component Y1 7991 X ek VR is
in the direction of the major axis of the ellipse, and second principal component
Yo = oy X + @0 Xy is in the direction of the minor axis of the ellipse
(Figure 5).

The computations are obtained by BMDOIM (Dixon, 1974), and details are
referred to by Afifi and Azen (1972).

4.1.3.3 Canonical Correlation Analysis

Canonical correlation analysis can be considered a generalization of
multiple correlation. In the multiple correlation problem, we have a set of
p variables X1 x2...xp and one variable y; The quective is to find a linear
compound of the x-variables that has the maximum correlation with y. In canonical
correlation analysis, there is more than one y-variable, and the objective is
to find a linear compound of the y-variables. The most suitable class of
examples that comes are those where the x-variables are from a different domain
than the y-variables. For example, the x-variables could be background variables
referring to environmental data, and the y-variables descriptive variables
such as the abnormal stages of fish egg embryos. The problem would be to find
out whether there is some combination of background variables, that has high

correlation with a combination of the y-variables.



However, after that a pair of linear functions that maxima]]y.correlates
has been located, there may be an opportunity to locate additional .pairs of
functions that maximally correlate, subject to the restriction that the
functions in each new pair must be uncorrelated with all previously located
functions in both domains. That is, each pair of functions is so determined
as to maximize the correlation between the new pair of canonical variables,
subject to the restriction that they be entirely orthogonal (uncorrelated) to
all previously derived linear combinations. The analytical trick is to display
the structure of relationships across domains of measurement in the canonical
analysis by reducting the dimensionality to a few linear functions of the
measures that have maximum covariances between domains subject to restrictions
of orthogonality. :

Thelcomputations are obtained by the BMDO9M (Dixon, 1974) and further

reading for the canonical correlation analysis see Cooley and Lohnes (1971).
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4.1.4 Variance Analysis

4.1.4.1 Analysis of Variance

The analysis of variance attempts to analyze the variation of a response
and to assign portions of this variation to each of a set of independent
variables (factors). The reasoning is that response variables vary only because
of variation in a set of unknown independent variables. Since the experimenter
will rarely include all the variables affecting the response in the experiment,
random variation in the responses is observed even though all independent
variables considered are held constant. The objective of the analysis of variance
is to locate important independent variables in a study and to determine how
they interact and affect the response.

Recall the subdivisions of the sum of squares in the regres§ion analysis,
or the sample variance which explains the variability of a set of n measurements
~as the suh of squares of deviations. The analysis of variance partitions the
sum of Squares of deviation, called the total sum of squares (corrected with
méan), say, 12 (yij-i..),finto parts, each of which is attributed to one of
ithe independea{ variables (factors) in the experiment, plus a remainder that
is associated with random error.

For cases, we can consider 1) when the independent variables are unrelated
to thé;response, it can be shown that each of the pieces of the total sum of
squares of deviations, divided by an appropriate constant, provides an
independent and unbiased estimator of 02, the variance of experimental error;

2) when a variable is highly related to the response, portion of its sum of
squares for the variable will be calculated. This condition can be detected

by comparing the estimate of 02 for a particular independent variable with that
obtained from the sum of squares for error using an F-test. If the estimate
for the independent variable is significantly larger, the F-test will reject a
hypothesis of "no effect for the independent variable", and produce evidence

to indicate a relation to the response.



The basic assumptions for the analysis of variance where testé of
significance are attained are 1) independent variable, factor, or t}eatment
effects are additive; 2) experimental errors are random, independent and
normally distributed about a zero mean and with a common variance. The
assumption of normality is not required for estimating components of variance.

In practice we are never certain that all these assumptions hold; often there
is good reason to believe some are false. Excellent discussions of these
assumptions, the consequences when they are false, and remedial steps are

given by Eisenhart (1947), Cochran (1947), and Bartlett (1947). Steel and
Torrie (1960), and Cox (1958) summarize this topic in a short but comprehensive
discussion.

There are some ways to reduce the effects of uncontrolled variations
on the error of treatment (variable or factor) comparison. Error control can
be accomplished by the experimental design. The general idea of choosing a
suitable design is the common sense one of grouping the units into sets (blocks),
all the units into a block being as alike as possible, the assigning the treatments
so that each occurs once in each block. All comparisons are then made within
blocks of similar units. The variation among units within a block is less than
that among units in different blocks, the precision of the experiment is
increased as a result of error control. Such blocks of similar outcome are
also called replicates. This kind of design is known as a randomized complete
block design. Sometimes two or more systems of blocking suggest themselves
and it may be desired to use them simultaneously. When the units are simultaneously
blocked in two ways this is called the Latin square design. If the units are
blocked in three ways simultaneously, the desing is called a Graeco-Latin

square design.



As the number'of treatments in an experiment increases, the nﬁmber
of expeéimenta] units required for a rep]icéte increases. In most cases,
this results in an increase in the error, that is, in the variance in the
parent population. Designs are available where the complete block is subdivided
into a number of incomplete blocks such that each incomplete block contains
only a portion of the treatments. The subdivision into incomplete blocks is
done according to certain rules, so that the experimental error can be estimated
among the units within the incomplete blocks. Precision is increased to extent
that the units within an incomplete block are more uniform than the incomplete
blocks within a replicate. The split-plot design, balanced incomplete block
design, partially balanced lattices and other designs within the incomplete
design are discussed fully in Cochran and Cox (1957), Federer (1955), and
Kempthorne (1952).

The second approach for an error control mechanism is the utilization
of concomitant observation. For example, if you study weight gains, it is
useful to consider initial weights. An essential condition has to be satisfied
in order that after use of the concomitant observation an estimated treatment
of effects for the desired main observation shall still be obtained. This
condition is that the concomitant observations should be unaffected by the
treatment. In practice concomitant observations should be taken before the
assignment of treatments to unit is made or the concomitant observations are
made after the assignment of treatment, but before the effect of treatment has
had time to develop. The supplementary observation value for any unit must
be unaffected by the particular assignment of treatments to units acutally used.
The analysis for the concomitant observations is called the analysis of covariance
which will be discussed in a later section. The design for the reduction of

error is discussed in detail by Cox (1958).



Further details of procedures for analysis of variance are omjtted,
however, excellent references include Cochran and Cox (1957), Cox f]958),
Federer (1955), Kempthorne (1952), Snedecor and Cochran (1967) and Steel and
Torrie (1960). Steel and Torrie is the best choice for developing an understanding
the analysis of variance.

The biomedical computer program (BMD, Dixon, 1974) package provides
the computations of analysis of variance: BMDO1V for one way classification,
completely randomized block design, BMDO2V for factorial design, BMDO5V, BMDO8V
and BMD10V for any hierarchical designs including partially crossed, fully
crossed, partially nested, fully nested designs. BMDO5V and BMD10OV are more
flexible for setting up any design problem.

4.1.4.2 Multiple Comparison

In a completely random design (one-way classification model), an analysis
is designed to detect a difference in a set of more than two populations means

(HO: Uy - U, .= up). The hypothesis Ho will be rejected if

F = ss of between treatment/p-1
ss of within treatment/
= MST F
MSE =

where MST = 1 ni(ii-y..)z/p-1
i

MSE =z (y.:~ ¥..)/T n.-p
gt e
yij = the jth observation on the ith treatment
Yi. = ith treatment mean
y.. = mean of all observation

Fa = critical value (F table value) based on (p-1) and & nj-p
T
degree of freedom for probability of a type I error, o.
If the H0 is not‘rejected (F statistics for treatment is not significant),

the evidence is against rejecting the HO and specific treatment comparisons



should not usually be necessary. In other words, if F is not significant,
the treatment means are regarded as indistinguishable. However, if.F is
significant (H0 is rejected), the ordinary t-test for the difference between
two means is applied to every pair of means. Where the difference of any two

means exceeds the critical value they are significantly different, i.e.

(7595, tas (mni=p) /MSE(. + )
where ta, (zZnj-p) is tabular value of t for error degrees of freedom. This is
called the least significant difference (1sd). The 1sd is basically a t-test
using a pooled error variance. Since the 1sd need be calculated only once
and takes advantage of the pooled error variance, its use is seen to be a
timesaver as compared with making individual t-tests.

Since the 1sd can be and is often misused, some statisticians hesitate
to recommend it. The most common misuse is to make comparisons suggested
by the data, comparisons not initially planned. For the tabulated confidence
levels to be valid, the 1sd should be only for independent or nonindependent
comparisons planned before data have been examined. A valid test criterion
for planned comparisons of paired means, a criterion in considerable vogue
both past and present, used the 1sd.

The uncritical use of the 1sd and the need for other methods of making
multiple comparisons among treatment means, especially nonindependent comparison,
have led to several other tests, such as Duncan's new multiple range test,
Tukey's w-procedure (significantly different, hsd), Student-Newman-Keul's
test, Dunnett's test (comparing all means with a control) and Scheffe's
multiple contrasts test. Scheffe's method should not be used for paired
comparison, but it fits for tests of more complicated contrasts. The testing
procedures of other tests are very similar to each other. The references for
this topic are by Li (1964) and Steel and Torrie (1960). The computation for

Duncan's multiple test is obtained by BMDO7V (Dixon, 1974).



4.1.4.3 Analysis of Covariance

It is possible to superimpose upon the simple linear regression model
a one-way analysis of variance model. This combination of analysis of
variance and regression techniques is called analysis of covariance. Analysis
of covariance arises in several situations, but mainly in two: 1) the variable
x is introduced to increase experimental precision or is inherenf in the
problem and must be accounted for in the analysis. One very important
assumption in using the covariance method is that variation of the x value
is not due to the treatment; 2) the linear relationships are themselves the
object of study in several treatment groups.

Let us have available pairs of observations from several samples,

which may be arranged in an array as follows:

Sample from Sample from Sample from Totals
Population 1 Population 2... Population y Xy
*11 1 191 X Im
%12 %75 X920 Yoo _ #sm %o Vg

X y X y

1n] Ty 2np “2mp Xpny ymr
Total X . Xo Yo cee X Yo Xag Yas
No. of Observ. n, n, L N
Means X) Y. Xo Yo e X, EYE X8y

Often it is desired to test the null hypothesis of a common line of
the form against the alternative hypothesis of the form, i.e.

Ho : y:: =a + B ( - X..)

ij *Xij

s . . =b _-.
Hi : Yij = % + By (Xij Xi.)



Within each sample @ and B; are estimated by a, =y, and
ny
by = Iy (vij - ¥i.) (xij- X )
i j=1 Wij - Yi. 1j i

z ( xpra)d
I X.. = X
j=1 1J 1 |
The error ss about the ith individual line is

- ;0203 [l %y )21

(SSE)i = (SS Tota])i - (SS Treat)i = (y 3
J

iy
Then, total error ss about 5 individual regression lines is

r )
SSE = £  (SSE)i /
i=1
with N-2r degree of freedom.

Meantime, ss about the single line under the Ho, we have estimate a=y.. and

% T 4 )
b=i g Wig-y. ) (yy-x ) b
£z (x: - X )2 1
ij 1J »

and the total variability about the single line is

1

SST=3: ¢
iJ ’ i J

(vyg =¥, )2 = b2 5 3 (xg; - X )7

With N-2 degree of freedom (d.f.). Consequently, we have the summary

table for analysis of covariance as follows:

Source SS d.f. F
Excess explained SST-SSE 2(r-1) (SST-SSE)/2(r-1)
by r lines SSE/N-Zr
About r lines SSE N-2r

About single line SST N-2



If Ho is accepted, then we may regard the populations as having the game
linear re]ationship of y on x. If Ho is rejected, it may be that the slopes

B; are the same, just the intercepts o differed. In other words, the
regression lines may be parallel but not coincident. Thus, in some situations,

it is also desirable to have a test of the new hypothesis against the same

Ha’ i.e.
Ho = y;5 = a;%B(x5 - X )
Hy = Y55 = o3*Bilxg5 = %)

This is identical to the test of the hypothesis as:
Ho : By = B2 = ... =Br =28
Ha : 8; i_sj for some i + j.
Under the Ho, all the samples have a common slope which is estimated by

- M

(viy = 93 (%

z
i o ij " %)

% -
1] . B

. = M

3?( - %, )2

The ss about these parallel lines is

: ij

_,-(1_')2]
iJ

iJ

The new analysis of covariance table for one common slope is as follows:

Source 2 SS d.f. F
Excess explained SSC-SSE r-1 (SSC-SSE)/r-1
by r lines SSE/N-2r
About r lines SSE N-2r
About single slope SsSC N-r-1

r different intercepts

If Ho is accepted, the lines are parallel. If Ho is rejected, then we may
perform another test which is often referred to as the test of adjusted means.
The new Ho and Ha is the following: i.e.

Ha : Yij T @j+B (xij - %)



This is identical to the test of the hypothesis

HO:G.]_:Ctz:...:(Xr:Ct

Ha : ot oy for some i + j.

Under the Ho, we have a new table of analysis of covariance as:

Source 5Si d.f. B
Explained by SST-SSC r-1 (SST-SSC)/r-1
r intercepts - SSC/N-r-1
About single slope SSC n-r-1

r different intercept

About single line SST N-2

When covariance is used in testing adjusted treatment means, it is important

to know whether or not the independent variable is influenced by the treatments.
If the independent variable is so influenced, the interpretation of the data

is changed. This is because the adjusted treatment means estimate the values
expected when the treatment means for the independent variable are the same.
Adjustment removes part of the treatment effects when means of the independent
variable are affected by treatments. This does not mean that covariance should
not be used in such cases, but that care must be exercised in the interpretation
of the data.

The computations of analysis of covariance are obtained by BMDO3V,
BMDO4V, and BMDO9V (Dixon, 1974). General reference books for the analysis of
covariance are Li (1964), Snedecor and Cochran (1967), and Steel and Torrie
(1960).

4.1.5 Goodness of Fit

The method of measuring the discrepancy between an observed and a

theoretical distribution and of deciding when the discrepancy is so large that

the theoretical distribution is not a good fit and does not adequately explain



the observed distribution is developed in a simple procedure where all

the parameters are known in advance. A not very obvious but perfectly valid
relative measure of the discrepancy between an observed (0) and expected
frequency (E) is expressed as (O—E)Z/E. The sum of these quantities for all
classifications (sample events or categories) is an index of discrepancy, which
is called the chi-square (x2) goodness of fit test. The degrees of freedom

are the number of categories (k) decreased by one and the number of parameters
(m) estimated, i.e.

)2

- & with k-1-m degree of freedom.

This test statistic has approximately a x2 distribution provided expected
frequencies are large (five to ten as a minimum). I fthe expected frequencies
are too small in both end categories, they can be pooled into the adjacent
categories. However, since the tails of a distribution often offer the best
source of evidence for distinguishing among hypothesized distributions, the

x2 approximation is improved at the expense of the power of the test (Steel

and Torrie, 1960). Cochran (1942, 1952, and 1954) has shown that there is little
disturbance to the 5% x2 test when a single expected frequency is as low as 0.5.
However, in general, the accuracy of the x2 approximation improves as observed
frequencies (01) increase. The classification (category) should be chosen so
that each observed frequency is not small, that is, it suffices to insure that
each 05 > 5, but the approximation is reasonable even when a few 0j > 2 and the

remaining 05 > 5.



Suppose that we have a random sample of size n, and se]ected‘k class
intervals [x1, x2), [x2, x3), [x3> Xg)s...[Xk> Xk+1), With say xj = -=
and xk+] = +=. Let f; be the observed frequency in the interval [xj, Xit+1).
To compare an observed distribution with a normal distribution with mean
pu and variance 2. i.e. N(u,o0 2), then the expected frequencies are required.
To compute expecfed frequencies, the probabilities associated with each interval
are necessary. These probabilities are obtained by Z; = (xj -u)/o, i.e.

Pi =P (xij <Xx<xj+]1) =P (xj-u < Z < xj+]l -u).

(0] (o)
So we find the sample mean x and variance 52 and consider them pand o2.
Then each probability on a given interval times the total frequency n, i.e.

Ei = nxpj, gives an expected frequency on that interval. We compute now the

value of the test statistics defined by the formula as the above

k
X2 =.Z

i

(0§ - Ei)2

E;

with k-1-2 = k-3 degrees of freedom (d.f.), since we lost 2 d.f. for estimating

1

two parameters yand 02. We reject the null hypothesis Hg (E(x) = 0(x)) if
x2>Ax2a, k-3 where xza, k-3 is the critical value from chi-square table with
k-3 d.f. and o level of significance, and E(x) in a distribution of expected
frequencies (in the above example) (E(x) = N (u, 02), and 0(x) is a distribution
of given observed frequencies. This is a so-called "test for normality".

In a similar way we could test whether a random sample has a Poisson
or negative binomial distribution by a goodness of fit test. These are a
so-called "test of randomness". Steel and Torrie's book (1960) is a good

"starting point for reference on this topic. Kendall and Stuart (1961) is

an excellent reference for the theoretical structure of a goodness of fit test.



4.1.6 Biological Assay

4.1.6.1 Bioassay

Biological assays are methods for the estimation of natural constitution
or potency of a material by means of the reaction that follows its application
to living matter. The typical bioassay involves a stimulus (heavy metal,
drug, vitamin, fungicide, etc.) applied to a subject (fish, animal, a piece
of fish tissue, plant, bacterial culture, etc.). Application of the stimulus
is followed by a change in some measurable characteristic of the subject, the
magnitude of change being dependent upon the dose. A measurement of this
characteristic is the response of the subject. The relationship between dose
and response will not be exact, but will be obscured by random variations
between replicate subjects.

Typically two preparations are involved, one designated as "“standard"
and the other as "unknown". Any test preparation of the stimulus, having an
unknown potency, is assayed by finding the mean response to a selected dose,
and equating this does to that of a standard preparation shown by experiment

produce the same mean response; experimentation with several different
doses of one or both preparations is almost always needed in order to accomplish
this satisfactorily. The ratio of the two equally effective doses is an estimate
of the potency of the test preparation relative to that of the standard.

Bliss (1954) describes three types of bioassay and their underlying
assumptions as follows:

1. Comparative assays occur most widely and are of special interest
in research. They estimate the relative potency under specified conditions,
of two preparations which give a similar response. To determine whether the
estimated potency is independent of the level of response requires two or

more dosage levels of both the standard and the unknown. To test the assumed



linearity of the dosage response curves requires three or more 1eve1§.

2. Analytical assays for biological standardization depend,‘
theoretically upon the following additional assumptions: 1) the standard
and the unknown differ only in the concentration of the same active agent,

2) the same relative potency would be obtained with all methods of assay or
test organisms, 3) if the stimulus contains two or more active proportions
in both the standard and the unknown.

3. Pass or fail assays test whether the unknown preparation meets
prescribed standards but do not determine its actual potency. Although
comparative or analytical assays are often used instead, they may be relatively
less efficient for inspection purposes.

When the response can be E]otted linearly against the logarithm of the
dose, the relative amounts of the two preparations which produce any given
response is estimated by the horizontal distance between two parallel regression
lTines. Suppose Xx¢ is a dose of a standard stimulus, S, and Ys is the response
measured on a subject receiving this dose under the specified experimental
conditions. Let T be a stimulus of the unknown to be compared with assayed
against S. We have similarly Xt and Y7 for a dose and response of the unknown
preparation. Then, we summarize as two equations:

YS = ag *+ b log xg
Yr = ar + b log x7
There are two parameters (ag and aT) for each stimulus and b is identical
for S and T. What we want to have is the estimate of potency (InST) which
is the difference between equipotent values x, the horizontal distance between
the two lines for S and T; i.e.
St = exp [(as - ar)/b]
InST = (ag - aT)/b .



The detailed treatment of estimation of potency, test hypothesis of potency,
test hypothesis on linearity, parallelism and analysis of variance.are
described well by Finney (1964).

As an example, there may be reason to believe that St represents a
chemical property of T, the ratio of its content of the active constituent
to the corresponding content for S, independent of the particular conditions
of experimentation. Provided that measurements of YS and YT for various doses
are made under the same experimental conditions, a requirement usually fulfilled
by arranging for simultaneous experimentation with random allocation of subjects
to preparations and doses, and an estimate of ST will then have general validity.
Statistical analysis cannot prove that ST exists and is independent of experimental
conditions. The purpose of validity tests, such as the test of parallelism
in a parallel line assay, is to examine whether a particular assay experiment
shows any indications of departure from the general pattern: Accidental
introduction of impurities or other disturbances may be detected by a typical
behavior of responses, so enabling a faulty experiment to be discarded and
replaced.

Cornfield (1964) has justifiably criticized that certain statistical
criteria of validity be met before any assay is regarded as of practical value
for relative potency, ST' Such an idealization may be scarcely relevant to
the reality of many assay situations; if the preparations assayed are qualitatively
dissimilar, the strict dilution requirements can scarcely be satisfied. The
linear regression of response on logarithm dose may not be parallel, yet results
of such comparative assays may still seem useful in giving some indication of

relative potency. He comments that if the slopes in such as assay do differ



considerably, then there is no alternative other than to treat relative

potency as a function of response level. He develops a statistical technique
based on representation of relative potency as itself a linear function of

the expected response to preparation. Finney (1965) examines the general
situation in a broader framework, to see how far Cornfield's proposal conforms

to reasonable requirements on the properties of a measure of relative potency.
However, Finney stated that Cornfield's considerations deserve further theoretical
study as well as experimental approaches and his paper invites discussion rather
than acceptance.

The complicated bioassay designs, such as regression analysis with
factorial techniques and quantal responses, are referred to in Finney (1964),
Bliss (1952) and Bliss (1954).

4.1.6.2 Probit Analysis

In the biological assay data the percentage or proportions of the
subject reacting to the doses of stimulus can be converted into probit (probability

nit). Bliss (1934) defines the probit as the normal equivalent deviate increased
by 5 in order to make negative values very rare. Probit for specific percentage
va]ﬁes were tabulated by Bliss (1935), and were reproduced by Fisher and Yates
(1964, Table IX) and Finney (1971, Table I). A simplified table, sufficiently
detailed for many purposes, is given as Table 4 (Finney, 1971, Table 3.2).

The relation between the probit of the expected response proportion
response and the dose is y = 5 + %-(x-u) where u, o are mean and standard
deviation of the normal distribution estimated from data, and x is the logarithm
value of the stimulus (dose) level. Y probit from above tables, is related
to p which is the probability derived from the normal distribution as follows:

y-5 1

o2
— e Y3 dy = p
- @ 2n

Then, least square procedures are used to estimate the best straight line



passing through the k points (xj, yi), i.e. yj = (5- g) +-% Xj = a*B Xj.

To test whether this probit regression line is well represented with the
results of the experiment, the utilization of a chi-square goodness test
is appropriate, i.e.

(ri - njPj)2
1 niPi(1-P;)

with I-2 degree of freedom

>
N
N1 =

i

h

where r; is the observed response out of the nj samples of 1t dose level

and pj is the probability defined as above under the normal curve with yj,

probit of 1th

dose level. If the test is not rejected, then the probit
regression line appears to be a satisfactory representatibn of the experimental
results. Otherwise, we need to find a suitable transformation to analysis

and meet the requirement of the experiment. Then (5-a)/g is an estimate of

the logarithm value of the lethal dose of 50 percent responses (log LD50).

The real LD50 value is obtained by taking the value of anti-log LD50. The
standard error of log LD50 is approximated by s = 1/ ¢ I N Wi where n; is

the sample size of 1th dose level and W is the weight ;oefficient for ith dose
level (Table 5, Finney, 1971, Table 3.5), if the log LD50 is not very different
from the mean value of dosageé (x) in the experiment. This expression makes

no allowance for sampling errors in the estimation of 8. If log LD50 is far
from the mean value of dosages, the standard error is grossly underestimated.

It requires adjustment with correction factors, i.e. the variance of log LD50

is expressed as:

1] , (1og LD50 - X)2
b2 * T njwj I niwi(
i i

s2 = var (log LD50) =

x-X )2



Thus, the confidence limits for log LD50 at the 5 percent level of |
significance is obtained by log LD50 + 1.96 s. If logarithm sca]erto base
10 is used, we have confidence limits for LD50 expressed as, i.e.:

LD50 * 1.96 [ (10LD50) (1og, 10) (s) 1.
For further details, Finney (1971) is appropriate.

In practice, when experimental data on the relation between dose and
mortality have been obtained, either a graphical or an exact probit solution
(regression as above) can be used to estimate the parameters. The graphical
approach is rapid and sufficiently good for many purposes, but for some more
complex problems or when an accurate assessment of precision of estimates is
required, the exact probit solution is necessary. Both approaches are
described with detailed examples in Natrella (1973). The more advanced design
problems and foundations of probit analysis are presented by Finney (1971).
Computation of the exact probit solution is obtained by the BMDO3S (Dixon, 1974)

computer program.



Table 4. Conversion table for probits (Y) from response percentage (i.e. r/n where
r is number of responses out of n sample size), e.g. Y = 5.39 if (r/n)

100 = 65.

% 0 1 2 8 4 5 6 7 8 9

0 - 2.67 2.95 8.12 8.25 3.36 3.45 3.52 3.169 3.66
10 3.72 S 3.82 3.87 3. 192 3,96 4.01 4.05 4.08 4.12
20 4.16 4.19 4.23 4.26 4.29 4.33 4.36 4.39 4.42 4.45
30 4.48 4.50 4.53 4.56 4.59 4.61 4.64 4.67 4.69 4.72
40 4.75 4.77 4.80 4.82 4.85 4.87 4.90 4.92 4.95 4.97
50 5.00 5.03 5.05 5.08 5.10 B.13 5.J8 5.48 5.20 5123
60 5.25 5.28 5.31 S 5.36 839 5.41 5.44 5.47 5.50
70 5.82 5.55 5.58 5.61 5.64 5.67 5.71 5.74 5.77 5.81
80 5.84 5.88 5.92 5595 5:99 6.04 6.08 6.13I 6.13 6.23
90 6.28 6.34 6.41 6.48 6.55 6.64 6.75 6.88 TS 7.33

99 .35 7.37 7.41 7.46 7.51 7.58 7.65 7.75 7.88 8.09

3



“§

.Table 5. The weighting coefficient (w) for the probits, e.g. w = 0.503 if y = 4.2.

:; 0.0 . 0.1 0.2 O; 8 0.4 B.© 0.6 U7 0.8 0.9

1 0.001 o0.001 0.001 0.002 0.002 0.003 0.005 0.006 0.008 0.01
2 0.015' 02019 %507025<" 0031+ '0.040: ' %0.050) 0. 062+ 205076 ra0:0021:40.110
3 0.131. 0.154 0.180 0.208 0.238 0.269 0.302 0.336 0.370 0.405
4 0.439 0.471 0.503 0.532 0.558 0.581 0.601 0.616 0.627 0.634
5 0.637°" 0.634" "00627-"°0.616 *0,.601 « 0,581 .0 ,558:210.582) 40.503 #0471
6 0.439 0.405 0.370 0.336 0.362 0.269 - 0.238!1:+40.208; 4 0.180.,+0.154
7 0.131 0.110 0.092 0.076 '0.062 0.050 0.040 0.031 b 06 028, 0.019
8 0.005 0.011 o0 0.001

.008 0.006 0.005 0.003 0.002 0.002 0.001

o



4.1.7 Time series analysis
Observations on a phenomenon which is moving through time génerates
an ordered set known as a time series. The objective of time series analysis,
as~st$tistica] analysis as a whole, is to arrive at a deeper understanding
of the causal mechanisms which generated it, because we wish to extrapolate
into the future.
The typical time series may be composed of four parts:
1) Trend or long term movement,
2) oscillations about the trend with a greater or lesser regularity,
3) seasonal effects, and '
4) random, unsystematic or irregular components.
We can always represent a series as one of these constituents or sum of several
of them. A large part of the traditional theory of time series is devoted
to an analysis of the data into such components, so as to;>§olate them for
separate study. However, if we can represent a series as the sum of such
experiments, they correspond to independently operating causal systems. The
analysis of components of a series is often useful, but it may be misleading.
In any case it is not the ultimate object of statistical analysis. The
statistical analyses are not detailed here, however, Kendall and Stuart
(1966), Davis (1941) and Croxton .and Cowden (1947) cover the subject. Croxton
and Cowden is the best choice for a starting point to understand and comprehend
time series analysis. Kendall and Stuart are theoretical, but cover the
subject thoroughly. Davis' book is oriented toward economic time series, not
the environmental monitoring aspect, but is still worthwhile. BMD computer
programs are available, but these require considerable knowledge for inter-

pretating output.



4.1.7.1 Trend
The concept of trend is difficult to define succinctly. The

statistical problem is toldecide_what type of trend fits the data closely.
It must describe data logically. Such a trend is not only an expression of
tendencies; but also provides a base from which to measure deviations. Thus,
there are two reasons for attempting to describe the trend of a series by
some kind of curve fitting. First, it may be desirable to measure the deviations
from trend. These deviations consist of cyclical, seasonal and random movements.
Second, it may be useful to study the trend itself, in order to note the effect
of factors bearing on the trend, to compare one trend with another, to discover
what effect trend movements have on cyclical fluctuations or to forecast
future trend movements.

The simplest method of describing a trend is a graphical present-
ation, drawing it free hand or by use of curve-fitting rules. Plots of the
data on semi-logarithmic paper tend to straighten out some rate trends. The
trend will be a straight Tine on this type of scale if the series is increasing
or decreasing at a constant rate.

If the polynomial is fitted to the whole series by the least
squares method, it may produce a linear or curvilinear regression line of
Y, on the time variable t, i.e’

t

5 2 P
Yt a+b]t + b2t 49, s bpt

It is clear, however, that to obtain a satisfactory trend curve for marine

environmental data, we should have to take a polynomial of rather high order
or a somewhat complex general function. This may be not too easy to handle and
in any case the coefficients of such a polynomial, being based on higher order

term, would tend to be unstable from the sampling viewpoint. A more practical



point is if we add another term'to the series, for example if we are'keeping
an annual series current from year to year, the curve fitting hasffo be
redone each time. Moreover, the trend 1ine may be affected throughout its
length. When, therefore, the series has no obvious trend to utilize the
polynomial, it is more convenient to use the moving average method.

The moving average method is a simple and flexible mathematical
technique of trend fitting. The moving average is to take the first n terms
(n being chosen at will), fit a polynomial of degree p, not greater than n-1,
to them, and use that polynomial to determine the value in the middle of its
range; then to repeat the procedure with next n terms from the second to the
(n+1)th, from third to (n+2)th, and so on, moving on one term at each stage.
Unless other considerations require it, we take n to be an odd number, so that
the middle point of the range corresponds in time to a value which is actually
observed. Otherwise, if we take n to be an even number, the middle point falls
halfway between two observed values, or we have to use some value of fitted

polynomial other than the middle point which results in a loss of useful

symmetry. A simple example of a moving average is illustrated below:

3 year 3 year
Moving Moving
Time Period Observation Total Average
1 22.1 -
2 23.8 71.6 23.87
3 25 4l 74.4 24.80
4 24.9 78.8 26.27
8 28.2 -

Thus, the moving average is a device for obtaining a series of figures, and
the corresponding graph, which represents the general trend because the minor

deviations of the series are averaged out in the process of its construction.



4.1.7.2 Seasonality

Perhaps the easiest component to understand and to remsve from
the time series is the seasonal effect. This is a fluctuation imposed on the
series by a cyclic phenomenon external to the main body of causal influences
at work upon it. The seasonality, refers to the effects which are annual in
period, or applies to any phenomendn generated by strictly periodic natural
processes, such as spring and neap variation in tides or daily variation in
temperature. We must, however, be careful about extending the notion of season-
ality to phenomena which are not demonstrated beyond reasonable doubt to depend
on strictly periodic stimuli. For instance, to speak of sunspot variation as a
seasonal effect, it may be too extreme to infer seasonality in the climatic
and oceanic environment as a function of sunspots, even 1f the relation between
the two were established.

Kendall and Stuart (1966) stated a few approaches to deal with the
seasonality factor. A possibility is to use a moving average to eliminate
trend before examining the residual values for seasonality. We then, of course,
run into the danger of distorting the residuals. However, if we choose the
moving average with care, we can minimize this effect so far as seasonal effects
are concerned. In fact, if the simple moving average (with equal weights) is
equal in extent to the period of a cyclical component, the trend value of the
components is zero, so that residual is unimpaired. The effect of trend
elimination both on seasonal components and random residuals are treated with
spectrum analysis. Readers who are interested in pursuing spectrum analysis
should consult the book by Kendall and Stuart (1966).

To treat seasonal effects, we rank the quarters within any one

year from 1 to 4 and consider how the ranks vary from year to year. To test



these seasonal indices, we use the model equation ut = y+sq+z for
t=1,2..., n,g=1, 2, 3, 4. The procedure is to assume that edch
observation is the sum of three effects: a yearly value, y, a seasonal value,
s (constant from year to year in proportional effect), and an error term I,
which is random. If the trend is slow, so that the seasonal effect may be
regarded as constant from year to year in absolute (not proportional) magnitude,
we have approximately u = Yt i sq + z, which is an ordinary analysis of variance
model. If the trend is not slow, we have to transform the equation as log Ug
log Yt + log sq filog. Then, the analysis of variance model is also utilized.

4.1.7.3 Oscillation

If we remove the attributable elements to seasonal variation and .
trend, we shall be left with a series oscillating about some constant value.
This movement may bquso small as to be virtually negligible. The series, then
consists entirely o;#geasonality and trend. The seasonality and trend may
themselves be non-existent, in which case the series is entirely oscillatory.
An oscillation in a time series (or more generally, in a series ordered in time
and space) is a more or less regular fluctuation about the mean value of the
series. In this sense it can be sharply distinguished from a cycle, which is
strictly periodic; thus a cyclical series is oscillatory, but an oscillating
series is not necessarily cyclical. To fit an oscillatory curve, we can
utilize a sine-cosine function curve to adjust the cyclical pattern of observed
values, y. A typical curve is expressed as:
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However, it is found that most environmental data series in practice are not
exactly periodic or oscillatory, and that it is difficult to describe them
adequately by mathematical curves.

4.1.7.4 Randomness

We have discussed long term trends, seasonal effect and systematic
oscillatory behavior. Hdwever, some of the time series which we are concerned
with in environmental phenomena are clearly expressed by none of the above
characteristics. An ordered series of observations could have risen by pure
chance. There are many tests for randomness. Kendall and Stuart (1966)
suggest a few such as the rank correlation test, difference-sign test, series

correlation test and others.



4.2 Non-Parametric Statistics

Non-parametric statistics require no particular assumptions about the
form of population distribution. Thereby, a non-parametric statistical test
is one whose model does not specify conditions about the parameters of the
population from which the sample was drawn. Certain assumptions, however,
are associated with most non-parametric statistical tests; i.e. that the
observations are independent and that the variable under study has an underlying
continuity. These assumptions are much weaker than those associated with
parametric statistical tests. Moveover, non-parametric tests do not require
the forms of real value that are required for the parametric tests; most
non-parametric tests apply to data in an ordinal scale, and some apply also
to data in nominal scale.

Non-parametric statistics have a number of advantages: 1) Probability
statements obtained from most non-parametric statistical tests are exact
probabilities (except in the case of large samples where approximations are
available), regardless of the shape of the population distribution from which
the random sample was drawn; 2) there are suitable non-parametric statistical
tests for treating samples made up of observations from several different
populations; 3) since they may use ranks or signs of difference, they are often,
though not always, quick and easy to apply and to learn; 4) for the same reasons,
they may reduce the work of data collecting.

The non-parametric statistical tests discussed in this manuscript represent
only a few of many non-parametric statistical inference methods available.

A much larger collection of non-parametric test procedures, along with worked
examples, are given in Siegel (1956) and Conover (1971). The popular general
statistic books, suéh as Snedecor and Cochran (1967), Steel and Torrie (1960)
and Mendenhall (1975) are good starting points for a better understanding of

the topics. Several popular non-parametric statistical tests are computed by

DMDP)3S computer program (Dixon 1977).



4.2.1 Wilcoxon Two. Sample Rank Sum Test (Mann-Whitney U—Test)‘

When at least ordinal measurement has been achieved, the Mann-Whitney
U-test may be used to test whether two 1ndepéndent groups have been drawn from
the same population. This test is one of the most powerful of the non-parametric
statistical tests, and it is a most useful alternative to the parametric t-test
when the experimenter wishes to avoid the assumptions of the t-test.

Suppose we have samples from two populations, population A and B. The
null hypothesis, Ho, is that A and B have the same distribution. The alternative
hypothesis, HA’ against which we test Ho, is that A is stochastically larger
than B. Let njy be the number of cases in the smaller of two independent groups,
and nz be the number of cases in the larger. Then, the test statistic is
computed as follows:

1. Rank all observations in the whole experiment disregarding that the

samples are drawn from A and B.

2. Compute the sum of the ranks for each group (Ty and Tj).

3. Average the ties for rank computation. Each score is given the

mean of the ranks for which it is tied.
4. Look at the rank sum from a group which has the smaller sample size.
Call this rank sum T.

5. Compute T' = ny(ny+np+1) - T

6. Compute the smaller rank sum with tabulated critical values (Snedecor
and Cochran, 1967, and Steel and Torrie, 1960).

7. Reject Ho if the smaller rank sum is less than the critical table
value at a given significance level a.

8. If the critical table value is inadequate, we can use the mean and

standard deviation of T as




up =3 [np(np#nz+1)]

°rT v nin2(ny+ng+1)
12

With these and T, we may compute quantity Z = (T - ut)/oT, which is approximately
normally distributed with mean O and variance 1 as njy and np become large.

Use the critical values of normal distribution as in the usual (parametric)
testing hypothesis procedure.

To use Mann-Whitney U-test procedures, we follow the steps as above then,

U=ny np + ni(n+1) - T
2
or U= nn, + na(ng+l) - To

2

5* Compare the smaller U with tabulated critical values (Siegel, 1956).

6* Reject Ho if smaller U is less than the critical table values at given
significance level.

7* Similar way as Wilcoxon's test, a simplified larger sample test can be
obtained using the familiar Z statistics. When the population distributions
are identical, it can be shown that the Mann-Whitney U-test statistics has

the mean and standard deviation of U as

g

s = v 1 [nynp(ny+ng+1)]
2

Then Z = (U-pg)/og tends to distribute normally with mean zero variance 1 as
ny and n, become large. This approximation will be adequate when ny and np
are both greater than or equal to 10.

The computations are obtained by BMD_)3S (Doxon, 1977) computer program.



4.2.2 Kruskal-Wallis Test
The Kruskal-Wallis one-way analysis of variance by ranks is a;hseful
test for deciding whether k independent samples are from different populations.
Sample values almost invariably differ somewhat, and the question is whether
the differences among the samples signify genuine population differences or
whether they represent merely chance variations such as are to be expected
among several random samples from the same population. The null hypothesis
for the Kruskal-Wallis test is that the k samples come from the same population
or from identical populations with respect to average. The test assumes that
the variable under the study has an underlying continuous distribution. It
requires at least ordinal measurement of that variable.
The procedures for utilizing the Kruskal-Wallis test are the following:
1. Rank all the k sample combined observations in a single series
disregarding the samples that are drawn from k samples.
2. Compute the sum of the ranks in each k groups, Ri for i - 1,2,...,k
3. Average the ties which occur between two or more scores, each score
is given the mean of the ranks for which it is tied.

4. Compute the test statistics

k 2
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where N = £ nj;, the number of all observations in k samples combined, ny = number
=i

of observations in ith sample, and Ri = sum of ranks in ith sample. This test
statistic is distributed approximately as chi-square with degrees of freedom
of k-1, for sample size (ni's) sufficiently large.
5. Reject null analysis Ho if K-W x2 g, (k-1) where x2, (k-1) is the
critical value found in the chi-square table with degree of freedom

k-1 and o level of significance.



We may recall the concept of multiple comparison technique in the
parametric statistical procedures. If the K-W statistic is not significant,
the k samples come from the sample population. However, if K-W is significant
(Ho is rejected), this suggests that at least two samples are drawn from
different populations.

Hence, we want to explore which samples do not satisfy the hypothesis.
Where the difference of any two mean rank exceeds the critical value, they

are drawn from significantly different populations, i.e.

1 Ri-Rj1 >/ x%oy(k-1) ¥ N(W1 Lo
12 i ol
where Rj = average rank of 1th sample
= n.
T n=1

We can perform all possible pair-wise testing procedures for better
interpretation. Unfortunately, even if we reject the null hypothesis of the
Kruskal-Wallis procedure, we cannot detect any difference between 1th and jth
mean rank difference i.e., we cannot find any ]ii'ﬁj] is greater than a given
critical value as above. The reader should consult more details of the multiple
comparison test and approximation procedure for the Kruskal-Wallis tests in
the books by Miller (1966) and Hollander and Wolfe (1973).

The computations are obtained by BMDP)3S computer prog}am (Dixon, 1977).

4.2.3 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov one sample test, is a test of goodness of fit.

It is concerned with the degree of agreement between the distribution of a set

of sample values (observed scores) and some specified theoretical distribution.



It determines whether the scores in the sample can reasonably be th&ught
to have come from a population having the theoretical distribution: The test
involves specifying the cumulative frequency distribution which would occur
under the theoretical distribution and comparing that with the observed
cumulative frequency distribution.

Let Fo(x) be a completely specified comulative frequency distribution
under the null hypothesis Ho. That is, for any values of x, the value of F(x)
is the proportion of the case expected to have scores equal to or less than

Xx. S(x) is the observed cumulative frequency distribution (step function) of

a random sample of N observations. Where x is any possible score, S(x) =
k/N where k is the number of observations equal to or less than x. So under
the Ho, it is expected that for every value of x, S(x) should be close to F(x).
The Kolmogorov-Smirnov one sample test focuses on the largest of the deviations,
i.8.1
D = maximum 1 F(x) - S(x) 1

The sampling distribution of D under the Ho 15 known. We can compare the
value of D and critical table value (Siegel, 1956). If D > a given critical
value, we reject the Ho.

The Kolmogorov-Smirnov two sample test is a test of whether two independent
samples have been drawn from the same population or from populations with
the same distribution. The two-tailed test is sensitive to any kind of differences
in location (central tendency) and dispersion. The one tailed test is used
to decide whether the population values from which one of the samples was

drawn are stochastically larger than the values from other populations.



Let Sy(x) and Sp(x) be the observed cumulative frequency distribution
(step function) of the first and second sample, i.e S7(x) = k/ny and
Sz(x) = 1/np. The Kolmogorov-Smirnov two samples test focuses on

D = maximum 1 Sj3(x) - So(x) 1

The principle of hypothesis testing is the same as the one sample test
with different critical table values for the two sample test (Siegel, 1956 and
Hollander and Wolfe, 1973). In the case of large sample approximation
procedures see Hollander and Wolfe (1973).

4.2.4 Correlation

If, with a given set of experimental data, the requirement is not met or
the normality assumption is unrealistic, then use one of the non-parametric
correlation coefficients, Spearman rank correlation, Kendall rank correlation,
Kendall partial rank correlation and Kendall coefficient of concordance. Non-
parametric measures of correlation are available for both nominal and ordinal
data. The tests make no assumption about the shape of the population from
which the scores were drawn. Some assume that the variables have underlying
continuity, while others do not even make this assumption. Moreover, we find
that, especially with small samples, the computation of a non-parametric
measure of correlation and test of significance is much easier than the
computation of the Pearson correlation described earlier.

The detailed procedures of computation and applications are found in
Siegel (1956), and the computation for Spearman rank correlation is obtained

by BMDP)3S (Dixon, 1977) computer program.



4.3 Measures of Association

Originally we were'to attempt summarizing a few indices of measurements
useful for marine ecological investigations, i.e. methods to determine measures
of similarity, diversity, and clustering. Since there are excellent references
for the topics, all well detailed, we did not attempt summarization. Refer
to the following:

Similarity - Boesch (1977) and Clifford and Stephenson (1975

Diversity - Clifford and Stephenson (1975), Pielou (1974) and Pielow (1975)

Clustering - Boesch (1977) and Everitt (1974).



5. Applications

None of the quantities involved in Ocean Pulse research can be‘observed
or measured throughout the whole population. Conclusions will be based on the
attributes of samples considered representative. If the sampling and analysis
are good the interpretation derived may differ little from reality. In order
to achieve this the objective will require a thorough grasp of individual
subjects and indices developed in allied fields. Some recognition of limitations
(probabilities) is necessary for deriving projections of events. The correlations
of time series will 1ikely be employed and the topic will be an important part
in the synthesis of research findings. At the present time the array of intended
test species and enlisted disciplines is noted in Table 4. Each of the activities
is considered a promising arbiter of enQifonmenta1 quality. However, the
efficiency, reproducibility and other attributes of the studies still remain
to be evaluated in many cases. The selection of test species has been derived
from the availability of species encountered in sampling gear during early
cruises. Nevertheless, these key species must be linked as a part of the
tangible ecosystem model which we develop and characterize in our synthesis.
The subjects range from phytoplankton, constituent chemicals and chlorophyll
through particulate, filter feeding invertebrates and commercially harvestable
fish species. The suitability of various statistical tests is discussed below
for each of the study disciplines (Table 5). However it must be remembered
that after the basic survey series of results there will be material to begin
determining time series trends. Only from the integration of individual study

results, will there follow an evaluation of ecosystem impacts.



5.1 Community Studies

Descriptions of population makeup by location will require anaiyses
to determine similarities of composition, by species and biomass. These
referred to here are of general assemblages in the water column or living
on and in the sediments.’ Special topics treated below are basically of special
indicator groups. Succession studies simp]& measure population changes over
time. Correlations and diversity indices are appropriate as are equitability
indices. A c]usteriﬁg analysis is available in a computer package which
E]assifies the similarity and dissimilarity hierarchy of organisms. Multiple
regression and all multivariate analyses are most appropriate in relating
change or differences to background variables.
5.2 Seasonal Abundance of Organisms (Host and Parasitic)

Contaminants, such as heavy metals can be correlated to such variables
as substrate, water mass characteristics and climatological phenomena. This
presentation is a natural outgrowth of a time series analysis. Regression,
correlation, multivariate analysis and analysis of variance are all appropriate.
Some non-parametric tests.
5.3 Succession Studies |

To measure the natural and unnatural progress of dominmant organisms, both
water column, substrate biota and fish are considered. This can include an
analysis of species interactions (i.e. replacement). Multivariate tests and
variance analysis are all appropriate, obviously in a time-series mode.
5.4 Anaerobic Analysis

A special form of population analysis to express the dynamics of the
bacterial population. Interest in the enumeration of anaerobic bacteria in

sediment, water and animal tissue and the presence or absence of disease producing



organisms. Inshore-offshore interactions will be studied as well as
comparative analyses of impacted and control sites. Multiple corre}étion,
analysis of variance, bioassay and clustering techniques are all feasible
tests. Changes will be observed seasonally and some non-parametric tests may
be found appropriate.
5.5 Calorimetry

Technique is to measure bound carbon in the biota. This may provide an
index of condition to measure differences or relate with impacts upon species.
This is related to the study for trophic interactions and energy budgets.
Regression and correlation techniques, analysis of variance and covariance are
principal tests. Some non-parametric tests are appropriate. Correlations will
be made to physiological and pathological survey data.
5.6 ﬁhysio]ogica1 Activities

The objective of physiological and biochemical activities is the detection
of abnormal variations from baseline norms in a variety of marine animals,
including finfish, molluscs and crustaceans. The plan is to sample key species
to compare between impacted areas and control stations. Field detected
abnormalities will be compared with those noted in laboratory studies. As
levels of enzymes and blood are established and compared, many tests are
appropriate. These include regression, correlation, multivariate analyses,
analysis of variance, bioassay techniques, and profit analysis. Some non-
parametric tests will be pertinent. These will be related to temporal and
spatial differences. Studies will be coordinated with pollutant uptake studies
and pathological findings. There will be an intimate association with the

chemistry staff. Tissues used by physiology and biochemistry will be analyzed.



5.7 Parasite Analysis

This is a special form of population study consisting of pathdbiological
survey and the effects of transmitted parasites and pathogens and their
routing levels of selected planktonic and benthic crustaceans. Parasites,
gross and histological abnormalities of selected species taken from pristine
and contaminated stations will be evaluated.

Blood parasites will be investigated in five finfish species - cod,
haddock, yellowtail, herring and silver hake. The object will be to determine
the distribution and prevalénce. Molluscan pathology will include the target
species of sea scallop anthe]1inoid clams. Pathological observations will
include gross and histological examination for abnormalities. Parasite
burdens, regression, correlation, multivariate techniques and analysis of
variance, are likely techniqugs. A time ser{es analysis is possible as are
also community analyses, such,gg clustering.

5.8 Virology

Delineation of blood virus characteristics of marine organisms.

Five commercially important species have been selected including cod, haddock,
yellowtail, herring, and silver hake. Clinical techniques are available for
assaying variations from normal. In these species as well as many others,
norms- have yet to be established on types and incidence. Multivariate,
correlation analyses, and analysis of variance are possible choices for
analyses, also bioassay and non-parametric techniques. Population measures
(diversity, etc.) may also be adaptable as data accure.

5.9 Anomalies

Measures of gross and histopathological effects include type, frequency
and distribution. Correlations and both parametric and non-parametric analyses

of variance are likely. One target species is Ammodytes. The egg is demersal;



adults spawn along the inside edge of the shelf and are also demersé],
spending considerable time burrowed in the sediments associated wifh
degraded habitats.
5.10 Nutrient Bioassay

Initial study is planned as a growth assay employing two phytoplankton
species, seasonally dominant in Bight waters. Test data will consist of species
growth rates under experimental conditions. Test variables will include
nitrogen, phosphorus, metal, vitamins, and chelators. The objective is to
assess the influence of key substances known to 1limit phytoplankton growth.
Here all correlation and multivariate analysis techniques are useful. Non-
parametric tests are effective tools along with the obvious bioassay and
probit analysis applications.
5.11 Pollution Uptake Studies

Levels of metals in sediments and tissue collected from impacted and
normal environments will be determined. Subsequent tests can make use of
multivariate and correlation analyses, possibly a utilization of bioassay and
probit analysis. One aspect will be to compare field data with laboratory
exposure. A time series analysis to determine seasonal changes should be
considered as well as non-parametric tests.
512 Genetic Studies

Studies of miotic figures and embryonic anomalies can utilize both
regression and correlation analyses. Correlations will be made with water
chemistry. Multivariate analysis should prove particularly useful. A larval
development series under laboratory exposures can be analyzed using bioassay
and probit techniques. Non-parametric tests are feasible as is the use of

a clustering for interpreting field data.



5.13 Petroleum Bioassay

A specific variation of pollution uptake studies and the same’
statistical techniques pertain.
5.14 Limiting Factors

This study relates to a determination of the sources of mortality of
surf clams and an estimate of relative impact. Analyses will include correlation
analyses, possibly bioassays if lab exposures are conducted. Probit and non-
parametric techniques are appropriate. Clustering could provide a useful
analyses of similarities.
5.15 Hydrocarbon Exposure Studies

These will make use of all the correlation analyses. This may be a
special variant of the pollution uptake studies. Multivariate analyses and
analysis of variance will test effects of various petrochemicals on growth
and survival of biota. Non-parametric tests will be useful. Both bioassay
and probit analyses are likely choices for obtaining and analyzing data.
5.16 Benthic Respiration

Benthic respiration (seabed oxygen consumption) rates are an indicator
of organic loading and other impacts to the benthos. The objective is to
detect abnormal variations in organic loading. This requires the establishment
of both temporal and spatial baselines of the natural system in both and
uncontaminated areas as well as laboratory tests to illustrate the nature of
the loading or stress versus the response of the system. Multiple regression,
analysis of variance, multivariate analysis, time series analysis and non-

parametric methods are most appropriate for achieving the objectives.



5.17 Total Plankton Respiration

Total plankton respiration rates are an index of the rates of,aecomposition
of organic matter (utilization of oxygen) and the concurrent regeneration of
nutrients required for phytoplankton growth. The objective is to detect major
shifts in the temporal, spatial or size component distribution of plankton
respiration. This requires the establishment of temporal, spatial and size
component baselines of the natural system in both contaminated and uncontaminated
areas as well as laboratory and/or shipboard experiments to illucidate the
response of the system to contaminants and/or other stresses. Multiple
regression, analysis of variance, multivariate analysis, time series analysis
and non-parametric methods are most appropriate for achieving the objectives.
5.18 Phytoplankton Biomass and Primary Productivity

Chlorophyll a pigments are used as an index of phytoplankton biomass.
We are particularly concerned with the relationship between eutrophication
and shifts in abundance as well as shifts in size classes of phytoplankton
(chlorophy11) which may alter marine food chains. Correlation and multivariate
analyses will be applied to ascertain relationships between inorganic and
organic nutrients, heavy metals, and phytoplankton chlorophyll. Measurements

]4C methods) will be correlated with phytoplankton

of primary productivity (via
biomass measurements, as well as measurements of nutrients, metals, light
and other oceanographic data to determine principle forces affecting organic
production.
5.19 Nutrient Studies

Inorganic nutrients (nitratés, phosphates, silicates, etc.) and organic
nutrients will be related to spatial and temporal distributions of pollutants
(metals, hydrocarbons, etc.). Nutrients will also be correlated with physiological
assays as well as with primary productivity measurements to determine which

nutrients are driving forces behind production. Multivariate analyses and multiple

regression tests will be employed.



6. Synthesis

Synthesis of the Ocean Pulse analysis encompasses the effects:of natural
and man-induced stresses on marine ecosystems and living resources. The program
should emphasize not only an integrated trend index analysis for marine
pollution problems, but also develop an understanding of an environmental system

and living resources as a whole.

The integrated trend analysis is mainly rated on baseline data of the
occurrence of marine pollutants, physical and chemical factors and their effects
on many species from lower trophic levels to higher levels. Thé synthesizing
trend interpretation also requires basic criteria for monitoring parameters
as standard measurements from effects observed under laboratory conditions. These
can be extended or extrapolated to the natural marine environment and living
resources. The integrated environmental systems-oriented analysis deals with
a total environmental system. The natural and man-induced stresses are effects
on the food chain dynamics and energy flow system, species composition and
* community structure, biomass changes and the relationship between living
resources and their supporting environment.

6.1 Trend Index Interpretation

6.1.1 Determination of indicator parameters for monitoring

The right selection of ocean monitoring parameters is essential for
project success. The parameters are the biological, chemical, and physical
factors necessary for a synchronized trend analysis and systems interpretation.
They are a crucial linkage of species, nutrients, heavy metals, pollutants,
parasites, pathogens and other selected foci. These measured and/or estimated
parameters in the water column, sediment and/or organisms determine the trend

indices -- their interpretation will provide appropriate monitoring schemes.



6.1.2 Establishing criteria of the key parameters for mon1tor1ng under
laboratory conditions.

First, pertinent parameters are recognized and determined by‘their roles
within natural and man-induced stress environmental and ecological systems.
Then, following the establishment of criteria for describing tolerance limits
on biological responses. Direci]y or indirectly, growth, survival, health,

and other attributes of marine organisms influenced by varying environmental

quality must be examined. In other words, we have to establish the range of
threshold values of parameters which affect survival and influence the process
in which key species cope with man-induced stresses (e.g. heavy metal influx)
and natural mortality factors (parasites and pathogens). Without these criteria,
any monitoring activities are purely exercises of data collection documentation.

An important aspect of establishing criteria is how to consider the
problems of multiple exposure of pollutants, heavy metals, or other contaminated
matter. Synergistic effects behave in a compounded fashion. These may not
be easily interpretable as a single exposure case, or may not be even detectable
as the compounded responses. If the measurements of multiple exposure of
stimulants are available, the criteria may be obtained by the method of
bioassay with factorial designs and may be interpreted by utilization of
canonical correlation techniques.

6.1.3 Determining correlations of the criteria to survey field data

The applications of established criteria of the key parameters for marine
environmental conditions on various man-induced stresses should be directly
utilized from the survey field data. Ideally, onboard inspection and analysis
of the samples is desirable to detect abnormalities and for monitoring and

diagnosis of marine organism health on a real-time basis.



6.1.4 Interpretation of natural fluctuations and man-induced stress
processes, i.e. contrasts of contaminated against pristine areas

. ’
This is a logical proposition for monitoring marine environment. However,

the interpretation of the results require extreme caution for practical apph’cations|

in monitoring the marine environment. The spatial and temporal marine environ-
mental conditions from which the samples are obtained are influenced by so

many external variables and constraints. These natural variables and constraints
make identification of aberrant levels or oscillations extremely difficult and
interpretation tenuous.

6.1.5 Time series interpretation

Once a series of observations for many desirable variables is compiled
from the field, the examination and interpretation of time series analysis
provides the means of monitoring schemes for the environmental fluctuation
and changes which are closely related to the abundance of marine organisms and
their community structures. As we have described in an earlier section, the
analyses of trend, seasonal variation, oscillatory phenomena and random
fluctuation processes are required the meaningful interpretation of significant
changes in the measured or estimated environmental parameters. Utilizing this
basic information will provide timely advice and warning to management so
appropriate actions may be taken.

Preferably, the interpretation of marine population cycles or successions
and environmental parameters should require extreme caution in environmental
assessment. This is simply because many cases of marine population successions
and environmental parameters may be essentially natural random fluctuations with
serial correlation between the populations and their environment in successive
- years. We should focus attention upon the processes of marine population
dynamics as a whole; upon growth and decline processes, health problems with
various environmental limiting factors and carrying capacity of given environments

as well as unexplainable environmental changes and their parameters. These lead




to a broadly scoped monitoring scheme for a total ecosystem evaluation for
aﬁy environmental management.
6.2 Systems Oriented Interpretation
6.2.1 Ecosystem change monitoring

6.2.1.1 Food chain and energy flow dynamics

The study of food chain and energy budget flow dynamics in the
marine environment describes the dietary components and interrelation between
trophic energy transport. The study also identifies not only the process of
competition, predation, interactions and energy flow among organisms, but also
estimates the effects of transmitted parasites, pathogens, heavy metals, etc. and
their routing from lower to higher trophic levels within the marine environment.
Such a continuing monitoring effort will achieve the objectives of the Ocean
Pulse.

6.2.1.2 Species composition and community structure

Similarly, analysis of food chain and energy flow dynamics, species
composition and community structure changes within a given marine environment
will provide a monitoring technique for natural and man-induced stress effects.
It requires a standard mechanism or criteria for detecting and distinguishing
differences of normal or abnormal conditions. “pecies composition and community
structure changes in a given marine environment, i.e. spatial and temporal
variations will be the input for interpretation of marine environmental assess-
ment. The main problem in attaining the stated objectives will be that of
establishing an acceptable healthy marine environmental model. Achievement
of this model will result from synthesizing the various inputs of individual
disciplines. The criteria for defining aberrancy and delineation of causal

effects will depend on a long series of insightful analysis.



6.2.2 Biomass change monitoring

The measurement of biomass changes over time is another way to attempt
a meaningful monitoring in population changes of marine environment. The
measurement of absolute values of total biomass in the marine environment
is an ideal, but the actual figure is impossible to obtain. The relative
biomaés indices are computed on the basis of quantified relative contribution
of time periods expressed in terms of an arbitrary standard time period base.
The index of the overall species relative biomass throughout the time periods
relates to spawning success, survival and growth within a given marine community.
However, as an alternative, we can select a few indicator species for monitoring
relative biomass changes over time. The choice should be based upon forms in
a well delineated and known, food web and community structure organization.
Both major and minor elements should be included from each trophic level in
the subset. It will then be easier to monitor any changes in biomass of the
subset. Again, we should emphasize detecting and distinguishing natural

fluctuations from those caused by man-induced stresses.



7.  FEEDBACK

For our project or analysis to succeed and to minimize the errors between
what it is doing and what it intended to do to meet its objective, it must
somehow monitor its own activities. It must feed back a portion of its output
results for comparison with its input. Finding the cause of defectiveness
and the optimum solution for a given problem is usually difficult and requires
honest introspection. Thus, trial comparison of several alternatives can
determine the best resolution for a given problem. The continuing verification
of experimental alternates with realignment of the objectives under given
constraints is the feedback process.

The selection of alternatives for the optimum solution should be associated
with the prechosen criteria. A criterion is a rule or standard for ranking
the afternatives in their order of desirability and indicating the most promising
within fixed contingences, i.e. it usually provides a means for weighing cost
against performance within fixed contingencies, we must compute for each solution
the expected value of effectiveness measured and choose the solution that has
the highest expected effectiveness, assuming equal cost. We may also employ
the maximum procedure for measure of effectiveness.

For some of these contingencies, there may be available either sufficient
data (the constraints imposed on Ocean Pulse are the contents of the data
themselves) or sufficient theory so that we know the probability of occurrence
of each contingency. At the present time, we do not know how to determine the
probability distribution for the system which will deliver the expected measure
of effectiveness. Furthermore, if we construct some kind of robustness test

for the alternatives and the best solution, then such tests may be used as the



main body of criteria. These robustness tests and expected value criteria
should be based upon either some known probability distribution (pﬁrametric)
or completely distribution-free (non-parametric) method, so that they are
mainly dependent on the structure of the system or model, set of alternatives

and data themselves.



8. DATA MANAGEMENT*

Ocean Pﬁ]se is not a limited study 1nvo1vin§ but a single disﬁip]ine.
If it were, data management would not need to be formally structured. The
testing of the Ocean Pulse project hypotheses will be attainable only through
multidisciplinary studies. The goals and objectives are derived from all the
disciplines and investigators in any one discipline do not necessarily provide
the total input in the resolution of questions. Project activities are

interdependent.

The experimental design of each project is essentially determined within

the project in consultation with biostatisticians. The project data bank

will lie in the NE Regional ADP System at the Sandy Hook Laboratory and its

data processing will function in archiving and updating files. Formats used

will be amendable to conversion to NODC files. To attain these objectives

the following description defines terms and a system to be used in data operations.
It is intended to provide a backdrop to researchers in planning their activities.

8.1 Introduction

The goals of Ocean Pulse include:

a. The collection and integration of data sets which assist in understanding

the nature and driving forces of complex marine ecosystems.

b. The creation of a data bank for use by a variety of users including

the public, scientists, and administrators.

The realization of these goals requires a systematic approach in the
organization and storage of data for maximum benefit to users in access and
retrieval; we call this approach data administration. The development of this
foundation for organizing information is intended to avoid costly duplication

of effort wherever possible.

* This material adapted from "Data Administration for Marine Ecosystems
Analysis", NOAA Tech. Memo. ERL & MESA-36 by P. A. Eisen, A. Sadler, Jr.,
and M. E. Sheffler.



Information is a decision-making and research tool. Efficient.data
systems can make a large amount of relevant information readily acﬁessib]e.
The data administrator holds responsibility for convincing scientists that
the services provided by data systems can be used in the solution of complex
problems. Assuming you have a rudimentary knowledge of computers, we will
illustrate some ways to effectively use data administration in marine environ-
mental research.

This report presents a methodology of data administration. This methodology
has been adopted in some degree by the other NOAA Programs. We hope its
presentation here will encourage a dialogue for scientists and decision makers
to the data services they require.

The central aim of our data administration is to make data‘ostained
from research accessible to users. To accomplish this, the responsibility for
data archival and retrieval has been transferred from scientists to data centers
via the ADP staff. The reason behind this transfer of responsibility is that it
both frees investigators from time-consuming tasks and offers several advantages
to data users. Direct informal exchanges of data among scientists and others
also occurs and can be efficient. The ADP can facilitate informal data
exchanges by personal referrals to appropriate sources.

8.1.1 The Freedom of Information Act

In compliance with the Freedom of Information Act, unclassified data and
information, whether produced, sponsored, collected, or obtained by the Project,
reside within the public domain. It is the policy of NOAA (NOAA Directives
Manual: Chapter 21, Section 25) to supply these data and information by load,
exchange, or sale (at cost of reproduction) through the ADP Office and the

Environmental Data Service (EDS). Requests for data or informétion are handled

expeditiously, usually within ten days when possible.



8.1.2 Data Necessary for Project Success

Two principal tasks of Ocean Pulse are:

1. To identify and describe the major existing ecological systems,
processes, stresses, and responses operating in the Middle Atlantic

Bight, and define their relationships and rates of change.

2. To determine the types, transport rates, fates and 1mpacts.of

pollutants, and other people-related stresses on the ecosystem.

The extent to which Ocean Pulse output fﬂrthers accurate assessments and
predictions of marine coiogica] impacts will be a criterion of its success.
Such -success is predicted on the type of data acquired and processed, its
statistical validity, and the quality of its technical interpretation. Evaluators
of the data administration will require user needs to be met properly with
sifficiently detailed data.

8.1.3 1Initial Project Plans for Data Administration

This framework for data administration is cognizant of the unique nature
of study and the need to outline the relationships among participants. Some
guidelines for data administration standards and responsibilities follow.

8.2 Analysis of Available Systems

It may be helpful to review the technological perspective on which data

administration systems are based. Following that is an analysis of strategies

for handling data that are in common use today.

Much of today's computer information technology evolved because of a need
for a generalized tool for handling large banks of data reposited on computer
storage media (e.g., magnetic and paper tapes, disc packs, punch cards, magnetic
core). Out of this need grew Data-Base Management Systems (DBMS), Information
Retrieval Systems (IRS), and Management Systems (MIS). Though the differences

between the above systems are, in some cases, subtle, we will not concern ourselves



with individual aspects or goals of these systems, but review qualities
that are common and fundamental to all three systems.
Data administration technology can be traced back to the late fifties

when the success of "generalized" routines were first discussed. These

routines can sort the components of any data set (file) regardless of its content.

The significance of this work was the proposal that these ideas be extended
into other areas, such as data set maintenance and report generation. This
generalized processing entails the building of special programs which perform
frequently used, common, and repetitive data processing tasks. The benefits
of such a generalized approach are the elimination of program duplication, and
the amortization of one-time development costs over many applications of the
program. Generalized data processing techniques have evolved into a class of
sophisticated, generalized systems (DBMS, MIS, IRS) and have helped establish
concepts of data administration technology.

The origin of data administration technology also stems from data definition
languages development and report generator packages of the fifties. Data
definition languages provide a facility for describing data-bases that are
accessed by multiple users diverse application programs. Thus, the structure
of data can be defined to avoid special programming effort by the user.

The development of report generatoré stems from the need to produce
good reports without large programming efforts. In most cases, report generators
can perform complex table transformations and produce sophisticated reports
from a data-base. Thus, these allow the user to examine, process, and summarize

large volumes of data fairly easily.




The implementation of data administration tools (e.g., DBMS, IRS, MIS) |
rests on organizational schemes which have been characterized in three commonly
used strategies: brute force, piggyback, data-base/key-task. We can also
call these strategies: (a) traditional/inflexible, (b) traditional/flexible,
and (c) data-base/key-task. The first word of the strategy titles (a), (b),
(c), indicates the way data are stored, i.e. using a traditional method or a
data-base. A slash separates the strategy titles into a second half which refers
to ways that data can be retrieved.
A11 the strategies use the terms, fields, records, and files. Each data
value or piece of raw information a system stores,iretrieves, and processes is

called an elementary data item. A data item is placed into a named storage

location called a field. A collection of data items or fields is called a record.
Records are collected into logical units called files. Files are made up of
records having an important feature in common (e.g., {J] from a single cruise).

In the traditional/inflexible and traditional/flexible strategies, data
files are the principal structures for organizing data. These data can be
distributed into compartmentalized and clearly defined units called files which
are loosely linked in some way for retrieval purposes. In this report, a program
is a sequence of instructions written in some computer language. The program
will always use data, possibly taking the data from files, to perform desired
operations.

8.2.1 The Traditional/Inflexible Strategy

This strategy for storing and retrieving data is one of the earliest used
techniques and is still common. The word "traditional", describes ways of
storing data, means that data are collected into a file, but the data in the
file can be read only by a specific program. Each file essentially becomes

glued to a specific program, and is not versatile. The retrieval aspect of this



strategy is inflexible because a newly created program cannot simp]} use
data that resides within a given file. If a program is written thgt needs
some data in an existing file, a totally new file must be created, copying
the pertinent data from the original file (Fig. 1).
The duplication of effort involved in recopying data into the new file
is inefficient and introduces error. If an update of data in one file is made,
it must be remembered that values from data are also in other files. The result
is that one occurrence of the data is edited, while another is not. The
discrepancy may not be noticed until other uses of the file have been made.
Tracking the error is time consuming and the original inefficiency is compounded.
This approach to data storage and retrieval also does not take advantage

of recent advances in computer hardware. It is now feasible to keep relatively

high amounts of data alive in on-line storage systems since computer memory
is cheaper today. The development of large capacity disc devices has also
greatly reduced the costs of random-access storage. These are invitations
to adjust data storagé schemes to maximize potential user benefits.

8.2.2 The Traditional/Flexible Strategy

This is the present situation in the Sandy Hook operation. As in the
traditional/inflexible strategy, this strategy, of data storage is traditional
in that data files are the structures used to organize data, but these data
files are constructed to allow data retrieval to become flexible. Figure 2
shows the organization of this strategy. The one-to-one correspondence between
data files and recurring programs still holds, but the files are organized so
that they are centrally located and available to a team of programmers. When
data values from existing files are needed, the values can be pulled from the
files and put into a special data pool. Data values not in the files can be

added to the special data pool.



The special data pool represents a particular set of data needéd to
solve a problem. Any number of data sets can be constructed for tHe speciaf
data pool. Data sets in the special data pool can be generated by a looping
routine. First, data values are taken from a data file and augmented with
additional raw data, thereby forming the special data pool. Then the special
data pool is fed into an interface system for special applications (a package
combining specialized and commercial software) which produces the desired
output. The looping routine can return to a second data file and repeat the
process until terminated.

The disadvantage of this strategy lies in the necessity to construct
a data pool from the current files. Work has already been done to put the
data values into the system, but additional effort must'be extended to write
a software package that strips the data values from existing files and also
inserts new ones into the special data pool. Any advantage that accrues to
this flexible data retrieval capability depends on the development of an
efficient data-independent interface system for special applications.

8.2.3 The Data Base/Key Task Strategy

This is the system to which we are developing. In the data-base/key
task strategy, individual files become an optional means for storing data.
Within the data-base storage system, data values are translated into computer
readable data which are then merged into a single conceptual storage entity
called a data-base. In a rough way, a data-base can be considered a giant file,
because the computer readable data are not connected in an arbitrary way. This
macrocosm called a data-base is predicated on an underlying logical system

devised by defining key-tasks. The definition of key-tasks results from a



comprehensive evaluation as to the types of data that will be co]]eéted

and the general applications required of the data. The way data are to be
used thus plays a role in where a data value is stored within the data-base
and how that data value is linked to the rest of the data-base for retrieval
purposes.

Figure 3 gives a visual breakdown of the components in the data-base/key
task strategy. The cylinder in Figire 3 represents the storage area of data
values, i.e., the data-base. Raw data values are coded, inserted into their
particular place in the data-base, and exist in that place as computer readable
“data until it is necessary to examine or update them.

The octagon in Figure 3, the general data-base interface system, contains
software that accesses data values and performs operations on data values.

If updating data values is desirable for economy or efficiency, the general
data-base interface system does to work. This system facilitates the care
and grooming of the data-base by the programmer. Since the general data-base
interface system accesses data values, it also extracts input data for the
running of routine key-task programs.

Bacause specialized sophisticated needs arise and must be accommodated,
an additional software system is available. It is called the interface
system for special applications and appears in Figure 3 as a six-sided polygon.
The interface system for special applications answers ad hoc requests and
produces solutions by skillfully utilizing data values made available via
the general data-base interface system.

An interface system for special applications is also a feature of the
previous traditional/flexible strategy. The data-independent nature of this

system is important to both strategies because the versatility of the system



is enhanced. But the data storage differences between the two strafegies
affect the end results of the interface system for special app]icafions.

In the traditional/flexible strategy, the data storage pool must access data
values from various files. Each file is built with its unique logical
structure. The retrieval of data values from several fi]es requires cognizance
of each structure and, therefore, can become unwieldy and inefficient. Given
the constraints on the data accessibility, the traditional/flexible strategy
yields limited ad hoc reporting programs.

In contrast, the data-base storage system allows the interface system
for special applications a greater range. Data values reside in an interlocking
structure, the data-base, whereby they can be readily successed. Data retrieval
for any néeded data values proceeds uniformly by using the general data-base
interface system as a tool. As a result, greater responsiveness to ad hoc
requests accrues to the interface system for special applications.

One constraint on the use of the data-base/key task strategy for
administrating data lies in the definition of key-tasks. If scientists and
administrators focus on key-tasks that use much or all of the project's data
and require extensive integration of data types, then organizing the data-base
becomes complex. In the long run, the data-base/key-task approach is usually
the most expedient and cost-efficient approach for data retrieval. However,
its successful inplementation depends on the ability to identify key-tasks,
and then insure that the data processing personnel, who are responsible for

structuring and maintaining the data-base clearly understand them.



8.3 The Design and Rationale Project Data System

For Ocean Pulse, a system that integrates the traditiona]/f]eiib]e
strategy and data-base/key-task strategy is planned. A strict application
of the traditional/flexible strategy does not respond to the project's needs.
Data requests from the public are handled routinely. It is not practical to
constantly strip data from existing files to form the special data pool in
response to many ad hoc demands. Tagging into files with unique logic
structures requires regular modification of programs and subroutines to
operate similarly in different data files.

On the other hand, a data-base/key-task approach requires a comprehensive
evaluation as to the types of data that will be collected and applications for
the data. Definition of key-tasks necessitate that the comprehensive evaluation
be an ongoing process, subject to constant revision.

There also is a concern in the scientific community that parallels the
invasion of privacy issue raised by the public in regard to large computer
systems. Scientists usually have a proprietary attitude about data they have
collected and are apprehensive about the possible premature use of the data
by others. The-data could reside in the data-base after initial reduction but
before the scientist has comp]éte]y edited them (i.e., eliminated all erroneous
values). Working via a data-base éan raise this concern as well as a concern
about data loss and inaccessibility in a big system environment.

In summary, a synthesis of both the traditional/flexible strategy and
data-base/key-task strategy can be successful. Most data collectors must
organize and specially structure the data values of their own files. The data

collectors do this using data formats that are designed by the Data Coordinator.



The prototype of the traditiona]/f]exib]e'strategy has centrally located,
individualized and logically unique files from which data values a}e pulled.
The data values are then held inside a special data pool. Within the data
system, the use of coordinated data formats, resulting in data files structured
for interface, negates the need for the special data pool. When demands are
made of the data values in the files, the interface system for special
applications, consisting of a high-level programming language, works directly
and efficiently with the specially structured data files.
8.4 The Data Catalogue

8.4.1 Background Theory

The data system diagram in Figure 4 shows the data catalogue branching
from data collection. The data catarOQUe is produced through the joint actions
of the computer technician and Data Index. The data catalogue is a resource
devised to display the current status of data collection efforts. These
collection efforts wi]]_generate many data files. The data catalogue defines
the collected files, what they contain, who has them, and whether they are
available for retrieval. The data catalogue can be compared to a card
catalogue in a library. The data catalogue is consulted to ascertain the
Project's holdings, just as the library card catalogue is consulted to ascertain
the library's holdings.

The data catalogue is organized in the following way: Each work unit
has one or more cruises undertaken to gather necessary samples. The samples
gathered from each cruise are used to measure pertinent parameters (e.g., incident
radiation, carbon assimilation rate). Each parameter has common information
reported as to its accessibility and sampling frequency (e.g., name of scientist

responsible, number of stations). These gqualitative details are entered into



the data catalogue. Since the data catalogue is much smaller than ﬁhe
processed data file it describes, it is an efficient tool for locating
needed data files.
8.5 Data Archival and Retrieval

Project data services utilize the interface system for special applications
(Figure 4). The interface system for special applications is geared to
operate through special data storage formats.

8.5.1 Data Formats

The approach used on format development is the specification of a common
structure that can be applied to most data sets regardless of content. The
result is a set of formats for difference types of data which are linked by a
common framework. The consequent degree of standardization has facilitated

data retrieval.’
I.|

j’! Project data sets are put into a structure called network. The theory
behind network is as follows. Individual records having the same format are
grouped into a record type. A family of record types composes a data file.

Each record type must be linked to another record type in some way in order to
build the structure of the data file. Linkages of record types are accomplished
by connecting each record of one record type (owner records) to any other
records of other record types (member records). We say the linkages of all
owner records in record type 1 to all member records in record types 2,3...,N
define a '1-2-3...-N' set type. The constraints which can be put on set types
differentiate networks (e.g., given record types 1,2,3,4, let a set type include

owner records in record type 1 and member records belonging only to record type 2).



A form of network is commonly called a tree structure. Here, aﬁ owner
can have any number of members (a 1imb can have any number of branches), but
the convention used is that no record can act as a member record for more
than one set (e.g., no branch is attached to more than one 1imb). This
structure allows us to identify relationships among records in the data file.
A11 direct relationships are inserted onto each record as keys and usurp
a certain amount of space in the files.

8.6 Anticipated Requirements

Early in 1979 a questionnaire was circulated to task leaders to determine
what information they anticipated gathering, at least for the preliminary
phases of OP. The 1list of questions included type of field and laboratory
- data, how recorded, sets per station, statistical analyses, format status
and objectives.

The response was good but not unanimous. One of our objectives was to
determine requirements for building data files, etc. A certain degree of naivete
and resistance appeared from some quarters and some guidance is needed to
direct investigations in adopting adequate record keeping techniques to
inplement computer file record development. Design of formats was requested
by investigations at Milford associated with contaminant biochemistry. The
genetics group has a format in development. Other format design is needed for

pathology, microbiology and some chemistry (unless the present heavy metals format

is adopted).



Data volumes have been estimated as follows (Table 8) for the following

investigators:

Thomas 15,000

Robertson cards per year

Phoel 1,000 cards

Mahoney approx. 2,000 cards per year

Cohn approx. 1,000 cards per year

Reid 25,000 cards per year

Radosh 7,500 cards per year

0'Reilly 20,000 cards per year

Evans 50,000 cards per year (2 cruises per year)
Waldhauer 4,000 cards per year (2 cruises per year)
Zdanowicz 7,000 cards per year

MacKenzie 1,000 cards per year

Longwell ?

Murchelano 1,000 cards per year

Ziskowski

Calabrese

Gould 16,000 cards per year

Thurberg 7,200 cards per year (2 cruises per year)
Graikoski 4,800 cards per year (2 cruises per year

This results in a minimum of 187K cards per year on 2 cruises per
year.

The index data file types, and analysis programs are summarized in
Table 9.

Future problems are difficult to identify but one procedure should be
made eminently clear. The investigators making observations at a given station
should all use the same station identification. The integration of data between
disciplines will be effectively conducted only if key indices can be identified
between files. Contractural arrangements with a systems analyst would be an

effective procedure to develop a viable structure for data management.



NODC has developed a number of formats which are on file in the Sandy
Hook computer offices. For general information and review the following
are available:

Seabed Oxygen Consumption

Water Column Respiration

Index of Relative Importance (stomach analysis)
Zooplankton

Intertidal/Subtidal (sediment, specie, fish, stomach)
Marine Invertebrate Pathology

Trace Elements (heavy metal)

Mutagenesis

Photosynthetically Active Radiation

Primary Productivity 2

Hydrocarbon 2 (sediment, organism, water)

Fish Resource Assessment

Hydrocarbon 1

Primary Productivity

Phytoplankton Specie

Specimen Feeding Studies (food sample content)
Fish Resource Assessment (shellfish)

Water Physic and Chemistry

Marine Fish Pathology

Bacteriology

Fin Rot

Benthic Macrofauna File

Metal in Organisms, Sediment and Water
Sediment Characteristics

Benthic Organisms



Benthic  Ocean- Prim. Micro- Contam- Patho-
Resources  Ography Prod. Chemistry biology Surf clam inants biology Genetics

' Greig
Zdanowicz -~ Graikoski
Thomas Draxler Calabrese Murchelano
Reid Robertson 0'Reilly Waldhauer Cohn Gould Z1skowski
Radosh Phoel Evans Matte Mahoney MacKenzie Thurberg Sawyer Longwell

Cruise

Sta. Grab

Date

Time (local GMT)

Latitude

Longitude

°C temperature (Bot. _ X

Surf.)

Depth

Salinity

D.O.

Sediments
% silt/clay

% organic

Sorting index
Macrofauna

Metals

Primary productivity X
Chlorophyll :

Nutrients _ X X
Hydrocarbons

Blood chem.

Pathology

"Enzymes :

Oxygen consumption X

Bacteria

Chemistry ' X X ?
Genetics '

Phytoplankton Dist./Abund. X X
Zooplankton

Applications Programs

Diversity/equitability X . ,
Cluster analysis X X _ X
Length frequency X

>X >X > >X >X X
> >

> >

> > > >xX X >
> >




Table 6. Ocean Pulse interaction between studies and environmental elements.
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9. FUTURE PERSPECTIVES |

We have passed through a description of several stages in the development
of Ocean Pulse activities: the examination or sampling procedures required
for collecting laboratory and field survey data, then the treatment phase
with applications of statistical methods, next the diagnosis phase synthesizing
the various research unit results with feedback refinement procedures. The
final step in the series is construction of recommendations to implement
management practices for ocean welfare. Recommendations will draw from some
predicting capacity to anticipéte emergencies. This predictiye ability may
evolve from the development of ecosystem models. Although Ocean Pulse will
be primarily concerned with biological aspects of modeling, the economic models
must also be considered.

Future coastal ocean management activities could proceed along these

\

steps: ,fj

1. Construct a small-scale model based on well established ecological
links. Derivations include food chain and energy budget dynamics.

2. Expand the elementary model to a total ecosystem model. Linkages
between the several compartmental model systems.

3. Extend implications of the biological model to economic and socio-
logical impacts. This action would present an integrated approach
to a national coastal ocean management system.

4. Utilize techniques of dynamic programming to develop such a management
system. This process will define those conditions which must be
satisfied by an optimal time -- staged decision process. We will
discover what conditions will result in a best strategy for monitoring

ocean welfare.



The biological models are concerned with energy flow and yields. The
ultimate operating model, however, will probably be the economic involving
maximization of benefits. Research will be supported only from the political
“premise that assures certain things are being done to support a "status quo"
of the environment.

In the absence of attitudinal studies toward the marine environment, we
can infer public attitudes are derived from the common-property status of
marine resources. Environmental requirements affecting water quality, resource
abundance, palatability, and food chain continuity are paramount. Maintenance
of the aesthetic impressions of a shoreline or fishing experience is also
important. We must understand these as given rights and benefits to the
community of citizens. Considerations, such as these will ultimately govern

management actions.
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Coding as follows

Table 7. Summary of suitability of various statistical methods for each of the study disciplines.
(1) definitely appropriate; and (2) possibly useful.
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APPENDIX 1.

Excerpts from a paper on the accuracy of abundance indices froﬁ research
vessel surveys by Grosslein (1979) are relevant where analagous sampling
conditions in the Ocean Pulse area prevail.

"In order to help evaluate the cost-benefit ratio of surveys it is necessary
to have some idea of the magnitude of change in stock size that is considered
significant, as well as the magnitude of change we are able to detect and with
that probability." Clearly one of the most important questions is whether
surveys can measure changes in abundance with sufficient accuracy to permit
meaningful assessment of the short-term affects of fishing. However, it is
important to remember that we are also concerned with long-term changes involving
not just a few priority species but the entire groundfish community. In general,
a lower level of accuracy probably would suffice for monitoring long-term
changes than in the case of assessment on a year-to-year basis. My principal
aim here is to provide some information on what accuracy is possible with
catch-per-haul statistics from research vessel surveys.

"When considering accuracy of estimates, we must distinguish between
statistical precision or sampling error (variance) and bias. That is, an
estimate may be very precise in terms of a small variance but have a large
bias, and therefore not be very accurate. In our problem we are concerned
not only with precision but also with the possible biases in the survey abundance
index (catchability coefficient) between the relative abundance index and the
true absolute abundance of the stock. The next step is to estimate this

coefficient so that we can estimate actual total numbers in the population."



Statistical characteristics of trawl catch data.  "As is well known,

trawl catches are highly variable even within relatively restricted areas
because fish are not uniformly distributed; and random trawl hauls result

in a frequency distribution of catches which is highly skewness is that the
variance is generally much larger than the mean resulting in very imprecise
(although unbiased in the statistical sense) estimates o? the mean, and even
less reliable estimates of the variance itself, except with very large sample
sizes. That is, the standard error associated with the variance is particularly
susceptible to departures from normality, and without a reliable estimate of the
variance of course, it is not possible to calculate meaningful confidence limits
about the mean...

"A standard approach to this general préb]em is to stratify the population
to be sampled into high and low density units or strata, and then sample
randomly within individual strata within each of which skewness is then reduced.
Control of variability in this manner is one of the primary advantages to be
gained from the technique of stratified random sampling. However, in the case
of trawl catcher considerable skewness remains even after stratification...

"Another well known approach is to try to find a transformation which
normalizes the frequency distribution of variables. We have found that on
the average, stratum variances of trawl catches are approximately proportional
to the square of the mean, i.e. the standard deviation is proportional to the
mean. ..

"This relation indicates that a log transformation is appropriate and
such a transformation tends to normalize the data and stabilize the variance
(i.e. make means and variances independent). Also the log transformation converts

multiplicative effects into linear additive effects. In terms of our problem



of estimating proportional changes in abundance, this means that ]jnear

changes on a log scale represent estimates of.mu1tiple or factor changes on

the original scale. That is, the anti-log of the difference between two

log means represents the proportionality constant relating means in the linear
scale. The estimates unbiased in the statistical sense, but it should be

noted that the re-transformed mean is a biased e;timate of the true mean on the
linear scale (an unbiased estimate is theoretically possible).

Calculation of stratified mean and variance

hThe basic index of abundance dealt with here is the stratified mean
catch per standard haul, calculated by weighting each stratum mean according
to the proportional size (area) of the stratum relative to all strata in
the set. The variance of a stratified mean is similarly derived by weighting
each stratum variance in proportion to the stratum area and inversely according
to the number of hauls in the stratum.”

Examples of precision on log scale

On the log scale the variances are yearly stabilized and the CV's
of stratified means are on the order of 10-15 percent for the same species
and strata. However, note that now we are interested in the absolute rather
than relative size of the standard deviation. Fof haddock +2 S.D.'s (+ .40)
corresponds to +50 percent of the linear scale. Thus there is no great
improvement in the size of difference (proportional change on linear scale)
we are able to detect as compared with the non-transformed scale, but we have
more efficient estimates of those differences over the range of abundance levels,
and the estimated confidence limits more closely approximate true 95 percent

confidence intervals.



The most significant feature of these data is that they indicate the
present survey cannot detect with high probability, proportional changes
in abundance which are less than a factor of about 2. That is, the log
difference between the lower and upper 1imits of the 95 percent C.I. is
about 0.7 corresponding to a factor difference ofl2 on the linear scale;
and to be very sure that two means are significantly different there must be
no overlap in the 95 percent confidence intervals.

"The most serious biases in commercial abundance data arise from unknown
changes in the effective unit of effort usually related to economic or
technological factors. Even with standard gear however, bias can result simply
from variations in availability of fish. With proper sample design the
research changes in availability. For example the catchability coefficient
for a given species and research trawl may change due to a change in vertical
distribution of the species, in response to some environmental factor or even
as a function type intuitively would seem to be much greater for a species

for which the trawl has a very low efficiency."



P—

timn. €

N

P sl

lor 1.

( Sf.L‘n .'\\\

- -~
L LNy

Lg 4l

M Aot
. 4

S

{7’

/UGL"‘? MDH
PR S i

LOHL

) Al ol

i H/I ;

i P e

AT N YRR T £1.5 27t ¢ 217 03 00k
, o N5 G N3 G)s! x> (3)a4
CLASMY NG 504 Y3 1638 A5 3
R ‘7\ J :
. fipe 4 17,7 0,261 el L Fcl pas 16.5% 0197 s 4
1 ‘f—ﬁ’*\;' 237 7 e T o P Bliioy
: , : —
$1C #1278 415 zv-'vV ﬁ-‘:} 72051 Gl 5190 BT e
u(s (s | N G2 o% Qi Ja s
f’J" ¢ 21 21.1% i g srsdd i | 1ADEANE N7
(e i | | i ] ,Q‘ ; :
&13)'1‘4‘93 238%317 | 4qus, 73 ) 2.6t s 012 <.9¢
; RS O Weril ) [T (%)06
] b ) tacly Viivesma 1o (252 jrr3ixs A i YS; M i
! | B | i ! ! !
(Sa) 743529001 868 % 3¢ —TEe¢ U (10938 2330 03 % oos' ! —
gesi (s | €55 sl GDS) (N3
| 298 | 12,9« S T £ 073 —
| ‘ | { i )
o) i | i : A,
e i
T TN
i T
| S : i
Mt)lt'\ Lo H LiMa | 1 pE L PRO- — ]
i ! . ! .
L2 l e W S ‘ .
14352 65758 734! 3922 |°g ¥ z22.61] 7955 217,55 102 ond T | ] |
ans {149 2— L X3 [—d/Acde—1 @ (e5%y — | f |
33.57 25,53 73,39 | 7. &3 [ TR , oo NI
! ' | RO B 3 & N
G 69 mm 60.2) 8.0 f‘;fa 6.5 5974 1554, e32. #.06 | ‘ [ ; P
N(sY DS S1. 4k 7123 G ez Dok | i | g g T
N(2Y 3. b 12)97 19.92 -y {4 AL UL 168 &= P i |
. B | Lieh R o S
(6> 5525255 24 it (7.9 635] 76341902l 037 ase| T = !
N( G @3S -k 82,57 | 07 v | | (D67 | T _s .
M RAD 1.[s2 Y 45U 1+ {ge. | f| PN
S : — i I i l | | | |
(227 4u§8 149 3 TP O M ST §00 2 195 <! UL oeb ! ! '
SO WEAL | e A 7 ; 1
N 536 | b2/0¥ Wrheres | S48 i ENERdy . | . ' i | :
: ! i ‘ | ! i |
| ! ' | [ i i
| | ' | ] : | | | i [ | i |
) i T ! i :
1 i | i I - -
| i | | i [ | ! i \
| | i ! i | ! ! | :
MR __J_.___ S RS 5 e . | , T ‘ i i ! '



APPENDIX III.

An interesting approach to analyses of benthic populations in,}e1étion
to pollution paid in the New York Bight was presented by Walker, Saila and
Anderson (1979). Their approach was to search for patterns among the physical
variates and then search for related patterns among biological variates.
~ Some of their rationale is relevant to Ocean Pulse research.

"The correspondence of geographical space and physical space assumed on
the classical analysis tempts one to treat the stafion grid of the New York Bight
exactly as if it were a cornfie]d. However, we are not sampling from a
geographical space which is uniform except for externally imposed treatments,
as in the cornfield example. Instead, we are searching for the effect of the
input of various types of waste being dumped in the New York Bight, where
biological variability seen as the result of the dumping is superimposed on
substantial microenvironmental variability...

"We are in the position of the agricultural experimenter who is trying
to determine the response of corn to multiple treatment inputs, the spatial
extent of which is not known at the time of the sampling. It is as if corn
were not planted on a field of uniform soil, but within the field there exists
and unknown mixture of soil types. In addition, it is not possible to return
to the same geographical position during each sampling interval and expect
to find the same soil characteristics of fertilizer levels. Thus, all
semblance of treatment plots have disappeared because there is no longer any
correspondence between geographical position and treatment...

"Within the benthic sample data set, the way we have chosen to face
these problems in analysis is to break up the continuous response variables of
the sediments into discrete levels: Four for sediment mean grain. size and two

each for heavy metals and percent organic matter. In this way we can test



for the response of the organisms sampled to 16 combinations of thg three
variables (16 strata). We have defined a new set of 16 variates, and we
examine the response of benthic macroinvertebrates to these variates...

“Because the physical variates are high]y correlated, it is clear that
we are not able to test for any main effects (i.e., the response of any
organism to one of the variables independent of the other variables). Rather,
we are limited to testing for the various combinations of the three variates
which exist in the data set. Because of the high intercorrelation among the
variables, many empty cells are to be expected within the cells of the strata
thus defined. The geographical space of the cornfield has been replaced with
a variable space. Given the assumption that the level of occurrence of specific
benthic organisms is dependent upon.these variates, we are in a position to
test for the biological response of the system to physical and chemical
surroundings...

"The discriminant functions are the best linear combinations for predicting
strata from the biological information. For each species, the relative
magnitude of the coefficients of the discriminant functions over strata
indicates the relative importance of that species in predicting the various
dtvataslt

"There are several advantages inherent in this approach. (1) The problem
of microhabitat variability is dealt with by stratifying on the basis of physical
characteristics of each grab sample. Since the microhabitat variability
presumably influences the variability in species abundances, estimates of species
abundance which ignore microhabitat effects are apt to be much more variable
than estimates which take microhabitat influences into account. As a direct
consequence of judicious stratification the estimates of species abundance
can be much more precise. However, the degree of information precision should
be empirically tested. (2) It is posible to obtain estimates of known

precision for strata of particular interest. Since the information in each



grab can be worked up in two steps, it is possible to allocate analytical
effort much more efficiently. Species counts may be made for a few of the
grabs in some strata, and many more grabs for strata of particular concern.

For a particular value of variance for species abundance, increased sample
size reduces the spread of confidence limits on a stable mean density estimate.
(3) Even if it is realized that the monitoring program must fall short of

the desired scope and precision, it can ofcus on a few key questions. Due

to limited financial resources, it may not be practical to monitor the
abundances of a large nqugr of species. Rare of highly yariab]e species

may have to be ignored. Of the remaining list a few key/species can be selected
in order to monitor the influence of sludge dumping with sufficient precision
to say something about shifts in species abundance over time.

In attempting to assess the stability of benthic faunal populations,
several populations parameters are important. True insightjuﬁ]] be possible
when interpretation of density changes can be related to a detailed knowledge
of life history, age or stage-specific fecundity and mortality, and survival
strategies of species under consideration. For most benthic organisms this
type of background information is sorely lacking, and as a result it is
difficult to determine if density changes are due to natural variations in the
population or the effects of a pollutant.

From data on abundance of a few common conservative species and their
within strata variations over time, the analysis could move into a third step;
that of size frequency (or age frequency) estimation. It is here that a real

Jjump in information about the population stability of selected species might

be expected."



This approach to the problem differs from tradition techniques which
either search for patterns in biological variates and attempt to interpret
them as responses to physical variables or search for patterns of relation-

ship in two sets of variates simultaneously. This technique could be useful

in present Ocean Pulse analyses.



Table 1. Stratum means (catch/haul, pounds) and viériaces for haddock in three sampling strata on Georges
Bank. Albatross IV surveys. ‘

STRATUM 16 STRATUM 19 STRATUM 20

Std. Std. Std. l

No. devia- No. devia- ‘No. devia- '
CRUISE hauls Mean Variance tion hauls Mean Variance tion hauls Mean Variance tion
63-05 7 41 2,740 52 4 126 22,442 150 3 7 52 7
63-07 7 101 4,330 66 4 291 66,992 259 4 115 33,379 183,
64-01 10 41 857 2% 7 ‘147 37,875 . 194 5 37 1,322 36
64-210 8 300 338,823 582 5 364 209,248 457 5 356 70,072 264
64-13 7 148 31,926 179 6 168 - 26,652 163 5 335 155,074 394
65-2 6 73 6,309 80 6 392 - 243,932 494 5 21 338 18

65-510 8. 405 682,555 826 6 800 2,019,784 1421 5 618 188,942 435 .

" 65-14 . 7 78 3,266 57 5% Rl 7 14,377 120 S 332 160,830 401 i

66-601 7 73 17,357 132 6 49 6,058 78 5 43 1,243 35 '
66-614 7 62 1,423 38 6 54 15,495 124 5 126 . 11,584 108
67-721- 8 14 564 24 9 52 4,096 - 64 6 37 4,140 65
68-803 9 49 5,533 74 . 8 42 1,189 34 6 13 351 19
68-817 8 19 2,850 53 9 0 - - 6 25 3,574 60
69-902 14 71 26,570 163 8 45 1,831 43 6 3 41 6
69-908 10 7 185 14 9 6 124 11 6 23 2,610 51

- 69-911 12 4 117 - 11 9 7 413 20 6 16 1,137 34 ;

70-703 10 130 120,926 348 8 11° . 409 20 S 5 76 9 1




le 4. Stratified mean catch per haul (1b, 1oge scale) and

measures of precision for selected specles. Albatross IV
fall surveys, Strata 13-25.

YELLOWTAIL

S.D./ Mean#+ Factor
Year Mean Variance S.D. Mean 2 S.D. 2 S.D. diff.

1563 - 1.97 .026805 .1637 .08 .33 1.64-2.30 1.9
1964 1.41 .037142 .1927 .14 .38 1.03-1.79 2.1
1965 1.32 .029119 .1706 .13 .34 .98-1.66 2.0
1566 "0.96 .025860 .1608 .17 .32 .64-1.28 1.9
1967 1.32 .027724 .1665 .13 .33 .99-1.65 1.9
- 1968 1.40 .038260 - .1956 .14 .39 1.01-1.79 2.2
1969 . 1.35 .025200 .1587 .12 .32 1.03-1.67 1.9
1970 0.96 ' .0204 .1428 <15 .28 .68-1.24 1.8

HADDOCK

1963  3.34  .052176  .2284 .07 .46  2.88-3.80 2.5
1964 . 3.86  .080315  .2834 .07 .57  3.29-4.43 3.1
1965  4.02  .042355  .2058 .05 .41  3.61-4.43 2.3
2966.  2.43  .044512  .2110 .09 .42  2.01-2.85 2.3
1967  2.45  .052075  .2282 .09 .46  1.99-2.91 2.5
1968  1.15  .029587  .1720 .15 .34  0.81-1.49 2.0
1.10  .021536  .1467 .13 .29  ©.81-1.39 1.8
1.35  .0345 .18572 .14 .37 0.98-1.72 2.1

COD

1.75  .084829  .2912 .17 .58  1.17-2.33 3.2
1.29  .056270  .2372 .18 .47  0.82-1.76 2.6
1.32  .041737  .2043 _ .15 .41  0.91-1.73 - 2.2
1.20  .040673  .2017 .17 .40  0.80-1.60 2.2
1.74-  .047301  .2175 .12 .44 1.30-2.18 2.4
1.04  .031888  .1786 .17 - .36  0.68-1.40 2.1
1.32  ©.025381  .1593 .12 .32  1.00-1.64 1.9

1.35 .0332 .1822 13 .36 0.99-1.71 2.1
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https://0.80-1.60
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APPLICATIONS

None of the quantites involved in Ocean ‘Pulse research can be’observed
or measured throughout the whole population. Conclusions will be based on
the attributes of samples considered representative. If the sampling is good
the conclusions derived will differ 1ittle from reality. One of the tasks
expected will be that of forecasting. In order to achieve this goal will
require a thorough grasp of individual subjects and indices developed in
allied fields. Some recognition of limitations is necessary for deriving
projections of events. The correlation of time series will very likely be
employed and the topic will be a part of the synthesis of research finding.
At the present time the array of test species and disciplines is noted in
Table I. Each of the 15 activities considered a promising arbiter of
environmental quality. However, the efficiency, reproductibility and other
attributes of the studies will remain to be evaluated in many cases. The
selection of test species has been derived from the availability encountered
in sampling gear during early cruises. The”subjects range from phytoplankton,
constituent chemicals and chlorophyll through particulate and filter feeding
invertebrates to species used for harvest. The suitability of various
statistical tests are arrayed below for each of the study disciplines. However,
it must be remembered that after a basic series of results are abailable there
will be material for determining time series variation and analysis of
covariance between disciplines. The most powerful test of effects will

prevail when reinforcements are found to occur between several studies.



SPECIES

Community Diversity

Equitability

(gross-Histo)

Seasonal Abundance
Succession
Anaerobes
Calorime;ry
Phygiclogical’
Activity
Parasites
Virology
Anomalies

Nutrient

Bioassay -

Uptake

Genetic

roleum
Bioassay

FPet

[imiiiﬁg Factors

IHydrocarbon
Exnosure

Water
Temperature

Constituents

Chlorophy1l
Phytoplankton
Sediments
Benthos
Nekton
© Mysids
Isopods
Euphaunds
Crangon
" Rock Crab
‘Lobster

Teltinoid Mussel

Scallop
Spisula
"Arctica
Herring
Flounders
Winter

Yellowtail
Windowpane

Hake
Red
Silver.
"~ Ammodytes
Cod
Haddock

8- Crustacean

> X X > X

>

’
>

DM ICICICIC D¢ O< 3¢ X<

*- Fisfish eggs available
**. Fish larvae and gonad developement
invertebrate:

0- Eggs and larval

— —

Table I

x*
x*

x*

o

i3

oo oOoo



GLOSSARY OF SELECTED STATISTICAL TERMS*

Confidence Interval

If it is possible to define two statistics ¢; and ¢, (functions of
- sample values only) such that, © being a parameter under estimate,
| P(t1<0 5) = a

where g is some fixed probability, the interval between ¢; and ¢, is called
a confidence interval. The assertion that @ lies in this interval will be true,
on the average, in a proportion a of the cases when the assertion is made.
Correlation

In its most general sense corelation denoted the interdependence between
quantitative or qualitative data. The concept is quite general and may be
egfended to more than two variates.

The word is most frequently used in a somewhat narrower sense to denote
the relationship between measurable variates or ranks.

Correlation, Coefficient of

A correlation coefficient is a measure of the interdependence between two
variates. It is usually a pure number which varies between -1 and 1 with the
intermediate value of zero indicating the absence of correlation, but not
necessarily the independence of the variates. The limiting values indicate
perfect negative or positive correlation.

If there are two sets of observations z;...x, and y;...y,, and a score
is alloted to each pair of individuals, say aj; (for the z-group) and bjj (for
the y-group), a generalized coefficient of correlation may be defined as
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where I is a summation over all values of < and j (Z # J) from 1 to =.

* Adopted from Kendall, M. B. and W. R. Buckland. A Dictionary of Statistical
Terms. Hafner Publ. Co., 575 p. 2nd ed.



If positive values of one variate are associated with positive &alues
of the other (measured from their means) the correlation is sometimés said
to be direct or positive; as contrasted with the contrary case, when it is
said to be inverse or negative.
jhere are numerous other correlation coefficients of a different character.

Degrees of Freedom

This term is used in statistics in slightly different senses. It was
introduced by Fisher on the analogy of the idea of degrees of freedom of a
dynamical system, that is to say the number of independent coordinate values
which are necessary to determine it. In this sense the degrees of freedom
of a set of observations is the number of values which could be assigned
arbitrarily within the specification of the system; for example, in a sample
of constant size n grouped into k intervals there are k-1 degrees of freedom
because, if k-1 frequencies are specified, the other is determined by the
total size n; and in a contingency table of p rows and g columns with fixed
marginal totals there are (p=1), (g-1) degrees of freedom.

From a different viewpoint the expression "degrees of freedom" is also
used to denote the number of independent comparisons which can be made between
the members of a sample.

Eigenvalue

The characteristic root of a square matrix A is a value A such that
[A-AI] = ), where I is the identity matrix. For a pxp matrix there are,
ingeneral, p such roots. They are also known as Latent Roots and Characteristic

Roots.



The corresponding row-vestors u or column-vectors v for which
UA = xu or Av = )v
are called characteristic vectors.

Exponential Curve

A series of observations ordered in time which has a constant, or
approximately constant, rate of increase can be represented over a long period
by the curve:

e aebt
where a and b are constants and ¢t is time. \This, or some simple transformation,
is called the exponential curve. The fitting of an exponential trend of this
form by the method of least squares is facilitated by transforming into the
logarithmic form:
;1ogey = 1ogga + bt.

Goodness Fit

In general, the goodness of agreement between an observed set of values
and a second set which are derived wholly or partly on a hypothetical basis,
that is to say, derive from the "fitting" of a model to the data. The term
is used especially in relation to the fitting of theoretical distributions to
observation and the fitting of regression lines. The excellence of the fit
is often measured by some criteria depending on the squares of differences
between observed and theoretical value, and if the criterion has a minimum

value the corresponding fit is said to be "best".



Graeco-Latin Square

An extension of the Latin-square. Formally, it is an arrangement in
a square of two sets of letters (say A, B,... etc. and a, B,... etc.),
one of each in each cell of the square, such that no Roman letter occurs
more than once in the same row or column, no Greek letter occurs more than
once in the same row or column, and no combination of the two occurs more than

once anywhere. For example, a 4 x 4 square of this kind is

Aa Bg Cy D¢
By As Da Ce
Cs Dy Ag Ba
DB Ca Bs Ay

The arrangement is used in experimental designs to allocate treatment
of three factors so that all comparisons are orthogonal.

Latin Square

One of the basic statistical designs for experiments which aim at removing
from the experimental error the variation from two sources, whicy may be
identified with the rows and columns of the square. In such a design the
allocation of k experimental treatments in the cells of a k by k (Latin)
square is such that each treatment occurs exactly once in each row or column.

A specimen design for a 5 x 5 square with five treatments, A, B, C, D, and E

is as follows:
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The earliest recorded discussion of the Latin square was given by Euler (1782)
but it occurs in puzzles at a much earlier date. Its introduction into

experimental design is due to R. A. Fisher.



Level of Significance

Many statistical tests of hypotheses depend on the use of the proability
distributions of a statistic ¢ chosen for the purpose of the particular test.
When the hypothesis is true this distribution has aknown form ( & least
approximately) and the probability P( ¢>;2 or P( t<o# can be determined for
assigned t, to t;. The acceptability of the hypothesis is usually discussed,
in terms of the values of ¢ observed; if they have a small probability, in
the sense of falling outside the range ¢, to ¢, ( P( ¢3)t and P( ¢<,3 small)
the hypothesis is rejected. The probabilities P( ¢>;3 and P( t< 3 are called
levels of significance and are usually expressed as percentages, e.g. 5 per cent.
The actual values are, of course, arbitrary, but popular values are 5, 1 and
0.1 per cent. Thus, for example, the expression "t falls above the 5 per cent
level of significance" means that the observed value of ¢ is greater than ¢;
where the probability of all values greater than ¢; is 0.05; ¢; is called the
upper 5 per cent significance point, and similarly for the lower significance
point ¢,.

Model

A model is a formalized expression of a theory or the causal situation which
is regarded as having generated observed data. In statistical analysis the model
is generally expressed in symbols, that is to say in a mathematical form, but
-diagrammatic models are also found. The word has recently become very popular

and possibly somewhat overworked.



Nested Sampling

A term used in two somewhat different senses: (1) as equivalent to
multi-stage sampling because the higher-stage units are "nested" in the
lower-stage units; (2) where the sampling is such that certain units are
imbedded in larger units which form part of the whole sample, e.g. the entry-
plots of clusters are "nested" in this sense.

Precision

In exact usage precision is distinguished from accuracy. The latter
refers to closeness of an observation to the quantity intended to be observed.
Precision is a quality associated with a class of measurements and refers to
the way in which repeated observations conform to themselves; and in a somewhat
narrower sense refers to the dispersion of the observations, or some measure
of it, whether or not the mean value around which the dispersion is measured
approximates to the "true" value. In general the precision of an estimator
varies with the square root of the number of observations upon which it is
based.

Probit

The normal equivalent deviate increased by 5 in order to make negative
values very rare. The word was suggested by Bliss (1934) as a contraction
of "probability unit".

Random

This work may be taken as representing an undefined idea, or, if defined,
must be expressed in terms of the concept of probability. A process of
selection applied to a set of objects is said to be random if it gives to each
one an equal chance of being chosen. Generally, the use of the work "random"

implies that the process under consideration is in some sense probabilistic.



Regression

This term was originally used by Galton to indicate certain relationships
in the theory of heredity but it has come to mean the statistical method
developed to investigate those relationships.

If a variate y consists of two components, a variate and a systematic
element s(X) depending on a variable X,

y = f(X)+e
then the regression of y on X is the equation

Y = £(X)
where it is supposed that € has zero expectation. The definition remains valid,
if X, instead of being a single variable, refers to a set of variables X;, X,,

etc.

In particular, X itself may_be given as the values of a variate, in which
case the regression of y on x may be regarded as expressing the dependence of
the mean of y (for given z) on the corresponding zx:

E(y|lz) = S(z).
The most frequently considered form of s(x) is a polynomial, particularly
a linear function, giving the regression of y on X
Y = BotB1X
or, for p variables
Y = Bo*tB1Xit. . 4BpXy
Such regressions are called regression equations. The X's are called
"independent", "predicated" variables, "predictors" or "regressions".

yis called the "depenedent variate", "predictand" or "regressand".



Significance

An effect is said to be significant if the value of the statistic used
to test it lies outside acceptable limits, that is to say, if the hypothesis
that the effect is not present is rejected. A test of significance is one
which, by use of é test-statistic, purports to provide a test of the hypothesis
that the effect is absent. By extension the critical values of the ;tatistics
are themselves called significant.

Standard Deviation

The most widely used-measure of dispersion of a frequency distribution.
It is equal to the positive square root of the variance.
Variance

The variance is the second moment of a frequency distribution taken

about the arithmetic mean as the origin namely

o s 2
(z-u; ) dr

-

where y; is the mean and F the distribution function. It is a quadratic
mean in hte sense that it is the mean of the squares of variations from the
arithmetic mean. It may also be regarded as one-half of the mean-square of
differences of all possible pairs of variate-values.

Variance-Analysis

The total variation displayed by a set of observations, as measured by the
sums of squares of devisions from the mean, may in certain circumstances be
separated into components associated with defined sources of variation used
as criteria of classification for the observations. Such an analysis is called
an analysis of variance, although in the strict sense it is an analysis of sums

of squares. Many standard situations can be reduced to the variance-analysis form.
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