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13 Abstract  
Two primary methods  for parameterizing sex-specific age and length composition  likelihoods  in 
fishery stock assessments exist, which we refer to as the ‘Joint and ‘Split’  approaches. When 
using the ‘Joint’  approach, sex-composition data are assumed to arise from a single statistical  
model  that describes the probability  of sampling across all  ages and sexes in a given year. By  
contrast, the ‘Split’  approach assumes that sex-composition data arises from several statistical 
models: sex-specific models that describe  the probability of sampling ages within each sex, and 
an additional model that  describes the sex-ratio information from  composition data.  In this  
mathematical proof, we derive  the statistical properties of both approaches  under  multinomial 
and Dirichlet-multinomial sampling and show that they produce equivalent model expectations. 
However, we illustrate that  the ‘Split’  approach leads to smaller assumed  variances  when  
sampling follows a Dirichlet-multinomial distribution, because overdispersion acts 
independently within each sex rather than jointly  across sexes. Given that  both approaches yield 
equivalent  model expectations, we  generally  recommend  using the ‘Joint’ approach for  
parameterizing sex-composition likelihoods. The ‘Joint’ approach is simpler  to implement, aligns  
with  most fisheries  sampling designs, and is  able to jointly  account for overdispersion and 
sampling correlations  across sex es. However, we acknowledge that  in some cases, the ‘Split’ 
approach may be more appropriate.  
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34 Introduction 
Sex-specific composition data (i.e.,  age and length) are commonly used to estimate sex-specific 
processes (e.g., natural mortality,  selectivity) within fishery stock assessments (Maunder and 
Wong, 2011). Two primary methods  for parameterizing sex-specific composition likelihoods  
exist.  In the  first approach, which we term ‘Joint’, compositions sum to 1  across all  ages and  
sexes within a given year,  and a single likelihood function is used  to describe  these data. In the  
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second approach, which  we term ‘Split’, composition data are divided into datasets that describe  
the observed age-or size-structure of  each sex, along with a dataset that represents the sex-ratio  
of these data. Thus, in the ‘Split’ approach, sex-specific likelihood functions are parameterized  to  
describe composition data,  along with a n additional likelihood component to describe sex-ratios  
(Francis, 2014). In our experience, sex-structured  stock assessments for federal fisheries in  the  
Alaska region  are primarily  parameterized  utilizing  the  ‘Joint’ approach ( > 90%; e.g., Shotwell et 
al., 2021; Spies  et al., 2019). Additionally, several assessment applications  exist  outside of  the  
Alaska region  that employ  the  ‘Split’ approach (e.g., Rudd et al., 2021; Wang et al., 2007, 2005).  
In some instances, a variant of the ‘Split’  approach has  also  been  utilized,  where sex-specific 
likelihood functions are  used  for  composition data, but  does  not include  a likelihood component  
to describe sex-ratios  (e.g., Cope et al., 2023; Goethel  et al., 2023). Nonetheless, the  general  
statistical properties of  the ‘Joint’ and ‘Split’ approaches  have yet to be mathematically  
described in  the peer-reviewed literature (to our knowledge) and understanding these  properties  
can provide  insights into the benefits and drawbacks of each approach.  
 
In the following sections, we  describe the probability mass function  (PMF), expectation, and 
variance  of the ‘Joint’ approach using the  multinomial and Dirichlet-multinomial distributions as  
examples.  We then  proceed to derive  these same quantities  for the ‘Split’ approach, which 
involves  a hierarchical (compound) process  initially  conditioned on a  binomial distribution,  
followed by a  multinomial distribution  or  a Dirichlet-multinomial distribution. Finally, we  
compare the similarities and differences between  the two approaches, both  analytically and 
numerically.   
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62 Probability Mass Function,  Expectation,  and Variance  of 
the ‘Joint’  Approach  (Multinomial)  
For a given year, sampling composition data following the ‘Joint’ approach are determined by   
probabilities across age or length (here we use the subscript  a  to denote  the category for age, but  
note that  l  could be used interchangeably for length)  categories and sex categories (s, where we 
derive  the following for  two sexes: female,  F, and  male, M), resulting  in a vector  𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽:  

�  �  𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  = 1 𝐸𝐸𝐸𝐸. 1  
𝐴𝐴  𝑆𝑆  

The vector  𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽   then governs the  probability of observing a given age and sex category.  In the  
subsequent  sections, we use subscripts {(1, 𝐹𝐹), (2, 𝐹𝐹) … (𝑎𝑎, 𝑀𝑀)}  to abbreviate 
{(1, 𝐹𝐹), (2, 𝐹𝐹) … (𝑎𝑎, 𝐹𝐹), (1, 𝑀𝑀), (2, 𝑀𝑀) … (𝑎𝑎, 𝑀𝑀)}  for conciseness.  The  corresponding PMF  is then 
defined as  (ignoring normalization constant  for brevity):  

𝑥𝑥
𝑃𝑃�𝑿𝑿𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 = 𝐽𝐽𝐽𝐽𝐽𝐽 1,𝐹𝐹 𝒙𝒙�  ∝  �𝜋𝜋𝐽𝐽𝐽𝐽  �   𝑥𝑥𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 � 2,𝐹𝐹 𝑥𝑥

�𝜋𝜋𝐽𝐽   … �𝜋𝜋𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  𝑎𝑎,𝑀𝑀  

1,𝐹𝐹  2,𝐹𝐹  𝑎𝑎,𝑀𝑀  � 𝐸𝐸𝐸𝐸. 2  
where 𝑿𝑿𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽   represents a random variable arising from a multinomial sampling process,  𝒙𝒙   are 
the observed counts for  age  a  and sex  s, and 𝑛𝑛   represents the total sample size (in  the sampling  
context  would represent  the nominal sample size; in a stock  assessment model  context, this  
would represent the input sample size;  see  Hulson and Williams (2024)  for standardized  
definitions of these terms). T herefore,  𝑿𝑿𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽   has an expectation of:  

𝔼𝔼�𝑿𝑿𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  �  = 𝑛𝑛𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  𝐸𝐸𝐸𝐸. 3  
and variance of:   

𝕍𝕍�𝑿𝑿𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  �  = 𝑛𝑛𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  �1 −  𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽� 𝐸𝐸𝐸𝐸. 4  
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82 where both equations 3 and 4 are known properties of the  multinomial distribution.  

Probability Mass Function,  Expectation,  and Variance of  
the ‘Split’  Approach  (Multinomial)  
In  the ‘Split’ approach, sampling composition data represents a  hierarchical  process.  Sex-specific  
sample sizes  (𝑁𝑁𝑠𝑠  )  are  random variables  initially  determined by a binomial  distribution, governed 
by the sex-ratio  (𝜙𝜙𝑠𝑠)  observed by the sampling unit  and the total sample size  (𝑛𝑛). In a scenario  
where two sexes are modeled, this results in the following PMF  (using females as an example  
and ignoring normalization constant for brevity):  

𝑃𝑃�𝑁𝑁 = 𝑘𝑘�  ∝  𝜙𝜙𝑘𝑘  (1 −  𝜙𝜙 )𝐽𝐽−𝑘𝑘  
𝑓𝑓  𝐹𝐹  𝐹𝐹 𝐸𝐸𝐸𝐸. 5  

𝜙𝜙 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  
𝐹𝐹  = �  𝝅𝝅𝐹𝐹   

𝐴𝐴  
where 𝑘𝑘   are sample sizes for females, and  𝑛𝑛  −  𝑘𝑘   are sample sizes for  males. Note that  the term  
1 −  𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  𝜙𝜙   

𝐹𝐹  = 𝜙𝜙𝑀𝑀  = ∑𝐴𝐴  𝝅𝝅𝑀𝑀  .This sampling process  results  in the  following expectation for  𝑁𝑁𝑓𝑓  :  
𝔼𝔼�𝑁𝑁𝑓𝑓�  = 𝑛𝑛𝜙𝜙𝐹𝐹  𝐸𝐸𝐸𝐸. 6 

with a variance of:  
𝕍𝕍�𝑁𝑁𝑓𝑓�  = 𝑛𝑛𝜙𝜙𝐹𝐹(1 −  𝜙𝜙𝐹𝐹) 𝐸𝐸𝐸𝐸. 7  

both of which are  also known properties of  the  binomial distribution.  
 
Following the determination of sex-specific sample sizes, sampling sex-specific composition 
data using the ‘Split’ approach normalizes probabilities within a given sex:  

𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  

𝝅𝝅𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  = 𝐹𝐹  𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  𝑀𝑀  
𝐹𝐹  ∑ 𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  , 𝝅𝝅𝑀𝑀  = 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  𝐸𝐸𝐸𝐸. 8  

𝐴𝐴  𝐹𝐹  ∑𝐴𝐴  𝝅𝝅𝑀𝑀  

� 𝝅𝝅𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽   
𝐹𝐹  = 1 , � 𝑆𝑆𝑆𝑆  𝝅𝝅 𝑆𝑆𝐽𝐽𝐽𝐽  

𝑀𝑀  = 1  
𝐴𝐴  𝐴𝐴  

Sex-specific composition data  are  then  assumed to  arise from two  sex-specific multinomial 
processes,  conditioned on a binomial process:  

𝑥𝑥 𝑥𝑥
𝑃𝑃�𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  = 𝒙𝒙 , 𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  = 𝒙𝒙 �𝑁𝑁 = 𝑘𝑘� ∝ 𝜙𝜙𝑘𝑘  (1 − 𝜙𝜙 )𝐽𝐽−𝑘𝑘�𝜋𝜋𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  � 1,𝐹𝐹  �𝜋𝜋𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  � 2,𝐹𝐹    𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  𝑎𝑎,𝑀𝑀  

𝐹𝐹  𝑭𝑭 𝑀𝑀  𝑴𝑴 𝑓𝑓      𝐹𝐹    𝐹𝐹 1,𝐹𝐹   2,𝐹𝐹  … �𝜋𝜋𝑎𝑎,𝑀𝑀  � 𝐸𝐸𝐸𝐸. 9  
Given the  hierarchical  sampling process, we next  invoke the  law of iterated expectations to 
derive the  expectation  and variance  arising from the ‘Split’ approach for  𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽   and 𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  

𝐹𝐹  𝑀𝑀 . The  
iterated  expectation for  compositions for females is as follows:  

𝔼𝔼�𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  � 𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽
𝐹𝐹    = 𝔼𝔼�𝔼𝔼�𝑿𝑿   

𝐹𝐹 �𝑁𝑁𝐹𝐹��  𝐸𝐸𝐸𝐸. 10 
= 𝔼𝔼�𝑁𝑁𝐹𝐹𝝅𝝅

𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  
𝐹𝐹  �

[𝑁𝑁𝐹𝐹]𝝅𝝅𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽   
= 𝔼𝔼 𝐹𝐹  

= 𝑛𝑛𝜙𝜙𝐹𝐹𝝅𝝅
𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  
𝐹𝐹  

Similarly, the expectation for compositions from  males simply replaces the subscript  F  with M  in 
equation 10.  We next derive the variances in  a similar  manner, where the variance for  
compositions for females is:  
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𝕍𝕍�𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  𝐽𝐽
 � = �𝕍𝕍�𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆

𝐹𝐹  𝔼𝔼 𝐽𝐽  
 𝐹𝐹 �𝑁𝑁𝐹𝐹��  + 𝕍𝕍�𝔼𝔼�𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  

𝐹𝐹 �𝑁𝑁𝐹𝐹��  𝐸𝐸𝐸𝐸. 11 
= 𝔼𝔼�𝑁𝑁 𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  

𝐹𝐹𝝅𝝅𝐹𝐹  �1 −  𝝅𝝅𝐹𝐹 ��  + 𝕍𝕍�𝝅𝝅𝐹𝐹 𝑁𝑁𝐹𝐹�
2

= 𝝅𝝅𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  𝑆𝑆
 𝝅𝝅𝑆𝑆𝑆𝑆

𝐹𝐹     
�1 − 𝐽𝐽𝐽𝐽 

𝐹𝐹 �𝔼𝔼[𝑁𝑁𝐹𝐹] + �𝝅𝝅𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  
𝐹𝐹 � 𝕍𝕍[𝑁𝑁𝐹𝐹] 
2

= 𝝅𝝅𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  �1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  𝝅𝝅   𝝅𝝅 𝑆𝑆
𝐹𝐹 � � 𝑆𝑆  

 + 𝑆𝑆 𝐽𝐽𝐽𝐽 
𝐹𝐹  𝑛𝑛𝜙𝜙𝐹𝐹 𝐹𝐹 � 𝑛𝑛𝜙𝜙𝐹𝐹(1 −  𝜙𝜙𝐹𝐹) 

Likewise, the  variance for compositions for  males  simply  replaces the subscript  F  with  M  in 
equation 11.  

Comparison of  Probability Mass Function,  Expectation,  
and Variance  (Multinomial)  
Comparing the  PMFs  in equation 2 and 9, we find that  the  PMF  of the ‘Split’  approach can be  
simplified  to align with the  PMF  of the ‘Joint’ approach. Simplifying equation 9, substituting  
∑ 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  
𝐴𝐴  𝝅𝝅𝐹𝐹   for  𝜙𝜙𝐹𝐹, ∑𝐴𝐴  𝝅𝝅𝑀𝑀   for  1 −  𝜙𝜙𝐹𝐹, and noting that  ∑𝑎𝑎  𝒙𝒙𝑭𝑭  = 𝑘𝑘   and ∑𝑎𝑎  𝒙𝒙𝑴𝑴  = 𝑛𝑛  −  𝑘𝑘   results in  

the following  expression:  
𝑃𝑃�𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  

𝐹𝐹  = 𝒙𝒙 𝑆𝑆𝑆𝑆 𝐽𝐽 
𝑭𝑭, 𝑿𝑿 𝑆𝑆𝐽𝐽  

𝑀𝑀  = 𝒙𝒙𝑴𝑴�𝑁𝑁𝑓𝑓  = 𝑘𝑘�  𝐸𝐸𝐸𝐸. 12 
𝑥𝑥 𝑥𝑥 𝑥𝑥  

∝  𝜙𝜙𝑘𝑘    
𝐹𝐹  (1 −  𝜙𝜙 𝐽𝐽−

𝐹𝐹) 𝑘𝑘�𝜋𝜋𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  � 1,𝐹𝐹  �𝜋𝜋𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  � 2,𝐹𝐹  … �𝜋𝜋𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  𝑎𝑎,𝑀𝑀 

 2,𝐹𝐹  𝑎𝑎,𝑀𝑀 �
 

1,𝐹𝐹  
𝑘𝑘  𝐽𝐽−𝑘𝑘  𝑥𝑥𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  1,𝐹𝐹  𝑥𝑥

𝜋𝜋𝐽𝐽 𝜋𝜋𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  2,𝐹𝐹  𝑥𝑥𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  𝑎𝑎,𝑀𝑀  

∝ ��𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  � ��𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  � � 1,𝐹𝐹  � � 2,𝐹𝐹 𝜋𝜋
� ,𝑀𝑀     𝑎𝑎

      
𝐹𝐹  𝑀𝑀            

𝝅𝝅  … � �
∑ 𝐽𝐽𝐽𝐽𝐽𝐽
𝐴𝐴 𝝅𝝅

𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  
𝐹𝐹 ∑ 𝐽𝐽𝐽𝐽  

  𝐴𝐴  𝐹𝐹  ∑ 𝐽𝐽𝐽𝐽 𝐽𝐽 
𝐴𝐴 𝝅𝝅

𝐽𝐽𝐽𝐽  
𝐴𝐴    𝐴𝐴  𝑀𝑀  

𝑘𝑘  𝐽𝐽−𝑘𝑘  𝑥𝑥 𝑥𝑥 𝑥𝑥𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  1,𝐹𝐹  𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  2,𝐹𝐹  𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝑎𝑎,𝑀𝑀  

∝ ��𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  � ��𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  �𝜋𝜋
� 1,𝐹𝐹  � �𝜋𝜋2,𝐹𝐹  � … �𝜋𝜋𝑎𝑎,𝑀𝑀        �

𝐹𝐹    𝑀𝑀    𝑘𝑘 𝐽𝐽−𝑘𝑘  
�∑  𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽       

𝐴𝐴  𝐴𝐴  𝐴𝐴  �  �∑   𝝅𝝅
𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  

𝐹𝐹  𝐴𝐴 𝑀𝑀  �
𝑥𝑥

∝ �𝜋𝜋𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 � 1,𝐹𝐹  𝑥𝑥2,𝐹𝐹  𝑥𝑥
� 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽    

1,𝐹𝐹  𝜋𝜋2,𝐹𝐹  � … �𝜋𝜋𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  𝑀𝑀  

 �
𝑎𝑎,

𝑎𝑎,𝑀𝑀  
∝   𝑃𝑃�𝑿𝑿𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  = 𝒙𝒙�   

indicating that the  PMF  from both approaches  are proportional. Given this, we can  conclude that  
these approaches are equivalent  under  the assumption of  multinomial sampling. Consequently, 
their expectations and variances are also equivalent, a nd we  do not  elaborate further  on their  
equivalency in these aspects below. To further confirm  these derivations, we conducted 100,000 
simulations  with  𝑛𝑛  = 100  and  𝐴𝐴  = 15. In these simulations,  𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽   and 𝝅𝝅𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  

𝑠𝑠   were randomly 
generated from  𝑈𝑈𝑛𝑛𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈~(0,1)  and normalized according to equation 1 and  equations 5 and 8, 
respectively, while random variables  𝑿𝑿𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽   and  𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  

𝑠𝑠  were both drawn from  multinomial 
distributions. As expected, the two approaches resulted in similar  values for expected values and 
variances (approximate given the  simulated nature; Fig. 1A  and 1B).  Additionally, a  comparison 
of  the empirical  cumulative distribution function of  multinomial  samples generated  indicated  that 
both a pproaches  resulted in  the same distributional form  (Fig. 1C)  (refer to  
https://github.com/chengmatt/SexCompProof  for  a  code  example  of simulations).  

113 

114 
115 

116 

117 
118 
119 
120 
121 

122 

123 

124 

125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 

https://github.com/chengmatt/SexCompProof
https://github.com/chengmatt/SexCompProof


139 Probability Mass Function,  Expectation,  and Variance of  
the ‘Joint’ Approach (Dirichlet-multinomial)  
Following the notation described in earlier  sections, we next describe the  PMF,  expectation, and 
variance under  Dirichlet-multinomial sampling when utilizing the ‘Joint’ approach, which is  
governed by  𝑛𝑛, 𝜃𝜃, and 𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽   (linear parameterization; Thorson et al., 2017). Here, 𝑛𝑛𝜃𝜃 =  𝛼𝛼𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽    

0  , 
which represents a parameter that controls  the degree of overdispersion. The resulting PMF  
under the  ‘Joint’  approach is given by the following (ignoring normalization constants):  

𝑃𝑃�𝑿𝑿𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  = 𝒙𝒙�  𝐸𝐸𝐸𝐸. 13  
Γ�𝛼𝛼𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  � Γ�𝑛𝑛𝑥𝑥 + 𝛼𝛼𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝜋𝜋𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  �Γ�𝑛𝑛𝑥𝑥 + 𝛼𝛼𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  𝜋𝜋𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  

0    1,𝐹𝐹  0 1,𝐹𝐹  2,𝐹𝐹  0 2,𝐹𝐹  �  … Γ�𝑛𝑛𝑥𝑥𝑎𝑎,𝑀𝑀∝   + 𝛼𝛼0 𝜋𝜋𝑎𝑎,𝑀𝑀 �    

Γ�𝑛𝑛 + 𝛼𝛼𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  � Γ�𝛼𝛼𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  𝜋𝜋𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  �Γ�𝛼𝛼𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽
 

   𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  
0    0  1,𝐹𝐹  0 𝜋𝜋2,𝐹𝐹  �  … Γ�𝛼𝛼0 𝜋𝜋𝑎𝑎,𝑀𝑀  �

where 𝑿𝑿𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽   here is a random variable arising from a  Dirichlet-multinomial process, and 𝒙𝒙   
represent the associated observations.  Random variable 𝑿𝑿𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 then has an expectation of:  

𝔼𝔼�𝑿𝑿𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  �  = 𝑛𝑛𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  𝐸𝐸𝐸𝐸. 14  
and variance of:   

𝑛𝑛 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  + 𝛼𝛼   

𝕍𝕍�𝑿𝑿𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  �  = 𝑛𝑛𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  �1 −   0  𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽� �  𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  �  𝐸𝐸𝐸𝐸. 15  
1 + 𝛼𝛼0  

where both equations 14 and 15 are  properties of the  Dirichlet-multinomial distribution.  

Probability Mass Function,  Expectation,  and Variance of  
the ‘Split’ Approach  (Dirichlet-multinomial)  
When utilizing the ‘Split’ approach and assuming that composition samples arise from  a  
Dirichlet-multinomial process,  the  same  hierarchical  process described in previous sections  
applies. Sex-specific sample sizes initially  arise from a binomial distribution (equation 5)  with  
expectation and variance of this binomial process following equations 6 and 7. The binomial  
process then results in  𝑘𝑘   samples for females and  𝑛𝑛  −  𝑘𝑘   samples for  males. In the subsequent  
derivations, we assume that the  parameter  𝜃𝜃   is  consistent  for both sexes  to maintain 
comparability with previous  sections. Therefore, the  overdispersion for females is expressed  as  
𝑘𝑘𝜃𝜃  = 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽0𝐹𝐹   and for  males as  (𝑛𝑛 − 𝑘𝑘)𝜃𝜃 = 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽        

0𝑀𝑀  . The probabilities  of sampling composition data  
are then normalized  within a given sex (equation 8), and composition data arise from  sex-
specific Dirichlet-multinomial processes  with the  following PMF:  

𝑃𝑃�𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  = 𝒙𝒙 , 𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  
𝐹𝐹  𝑭𝑭 𝑀𝑀  = 𝒙𝒙𝑴𝑴�𝑁𝑁𝑓𝑓  = 𝑘𝑘�  𝐸𝐸𝐸𝐸. 16 

∝  𝜙𝜙𝑘𝑘  𝐽𝐽−𝑘𝑘  
𝐹𝐹  (1 −  𝜙𝜙𝐹𝐹)  

Γ�𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽   
0𝐹𝐹  �Γ�𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽 0𝑀𝑀  �  Γ�𝑛𝑛𝑥𝑥 + 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  𝜋𝜋𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  �Γ�𝑛𝑛𝑥𝑥 + 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  𝜋𝜋𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  �… Γ�𝑛𝑛𝑥𝑥 𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽 

1,𝐹𝐹  0𝐹𝐹  1,𝐹𝐹  2,𝐹𝐹  0𝐹𝐹  2,𝐹𝐹    𝑎𝑎,𝑀𝑀  + 𝛼𝛼0𝑀𝑀  𝜋𝜋𝑎𝑎,𝑀𝑀  �
    𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  

Γ�𝑘𝑘 + 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽    0𝐹𝐹  �Γ �(𝑛𝑛 − 𝑘𝑘) + 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽�  Γ�𝛼𝛼0𝐹𝐹  𝜋𝜋1,𝐹𝐹  �Γ�𝛼𝛼    0𝑀𝑀  0𝐹𝐹  𝜋𝜋2,𝐹𝐹  �… Γ�𝛼𝛼0𝑀𝑀  𝜋𝜋𝑎𝑎,𝑀𝑀  �
Invoking the law of iterated expectations, the expected values  for  female  composition samples  
using the  ‘Split’ approach under the  assumption of Dirichlet-multinomial sampling is:  
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𝔼𝔼�𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  �  = 𝔼𝔼�𝔼𝔼�𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  
𝐹𝐹  𝐹𝐹 �𝑁𝑁𝐹𝐹��  𝐸𝐸𝐸𝐸. 17 

= 𝔼𝔼�𝑁𝑁 𝑆𝑆𝑆𝑆
𝑓𝑓𝝅𝝅

𝑆𝑆𝐽𝐽𝐽𝐽  
𝐹𝐹  �
𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  

= 𝔼𝔼�𝑁𝑁𝑓𝑓�𝝅𝝅
 

𝐹𝐹  

= 𝑛𝑛𝜙𝜙 𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  
𝐹𝐹𝝅𝝅𝐹𝐹  

Similarly, the  expectation for composition  samples f rom  males replaces the subscript  F  with  M  
in equation 17. Deriving the variances in a similar fashion results in  the following expression:  

𝕍𝕍�𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  � 𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽
𝐹𝐹    = 𝔼𝔼�𝕍𝕍�𝑿𝑿   

𝐹𝐹 �𝑁𝑁𝐹𝐹��  + 𝕍𝕍�𝔼𝔼�𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  
𝐹𝐹 �𝑁𝑁𝐹𝐹��  𝐸𝐸𝐸𝐸. 18 

𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  

= 𝔼𝔼 �𝑁𝑁 𝝅𝝅𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  �1 − 𝝅𝝅𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽 𝐽𝐽  𝑁𝑁𝐹𝐹  + 𝛼𝛼0𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆 𝐽𝐽 
𝐹𝐹 𝐹𝐹     

𝐹𝐹 � �   
1 + 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  

�� + 𝕍𝕍�𝝅𝝅𝐹𝐹  𝑁𝑁𝐹𝐹�
0𝐹𝐹  
𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  

2
= 𝝅𝝅𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽     𝑁𝑁 + 𝛼𝛼

�1 − 𝝅𝝅𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  �𝔼𝔼 �𝑁𝑁 � 𝐹𝐹  0𝐹𝐹  �� + �𝝅𝝅𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽 
   

𝐹𝐹  𝐹𝐹 𝐹𝐹     𝐹𝐹  𝕍𝕍[𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽 � 𝑁𝑁𝐹𝐹]
1 + 𝛼𝛼   

 
0𝐹𝐹

1 2  
= 𝝅𝝅𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽 

𝐹𝐹  �1 − 𝑆𝑆  𝝅𝝅 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  
𝐹𝐹 � � 𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽 𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽    [ 2]   [ ]   [𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  �𝔼𝔼 𝑁𝑁𝐹𝐹  + 𝛼𝛼0𝐹𝐹  𝔼𝔼 𝑁𝑁𝐹𝐹 + �𝝅𝝅𝐹𝐹 � 𝕍𝕍 𝑁𝑁𝐹𝐹]

1 + 𝛼𝛼0𝐹𝐹  

𝝅𝝅𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  �1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  𝝅𝝅   �𝑛𝑛𝜙𝜙 (1 −  𝜙𝜙 ) 2
= 𝐹𝐹  𝐹𝐹 𝐹𝐹 𝐹𝐹 + (𝑛𝑛𝜙𝜙  𝑆𝑆𝑆𝑆 𝐽𝐽𝐽𝐽

𝐹𝐹)2 + 𝛼𝛼 𝑆𝑆   𝑛𝑛𝜙𝜙𝐹𝐹 + �𝝅𝝅𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  � 𝑛𝑛𝜙𝜙𝐹𝐹(1 −  𝜙𝜙𝐹𝐹)
1 + 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  0𝐹𝐹    𝐹𝐹

0𝐹𝐹  
In the same way, the  variance for  male compositions  is  determined by  replacing  the subscript F  
with  M  in equation 18.  

Comparison of  Probability Mass Function,  Expectation,  
and Variance  (Dirichlet-multinomial)   
Comparing equations 13 and 16 ( PMFs of Dirichlet-multinomial under the ‘Joint’ and  ‘Split’ 
approaches), we find that  equation 16  cannot be  reduced into the form of  equation 13  given the  
presence of sex-specific overdispersion parameters (i.e., 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  and 𝛼𝛼 𝐽𝐽𝐽𝐽  

0𝐹𝐹  𝑆𝑆𝑆𝑆𝑆𝑆
 0𝑀𝑀  ). Despite that, we find 

that the  derived expected values are consistent  between the  two approaches, under Dirichlet-
𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  

multinomial sampling. To show this, we  substitute  ∑ 𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽      
𝐴𝐴  𝐹𝐹  for 𝝅𝝅𝜙𝜙 𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽 

𝐹𝐹   and  for  𝝅𝝅𝐹𝐹  into 
∑ 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  
𝐴𝐴 𝝅𝝅

   
 𝐹𝐹  

equation 17:   
𝔼𝔼�𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  � 𝐽𝐽 𝑛𝑛𝜙𝜙 𝝅𝝅𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽 =   

𝐹𝐹  𝐹𝐹 𝐹𝐹 𝐸𝐸𝐸𝐸. 19 
𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝝅𝝅   

= 𝑛𝑛 𝐽𝐽  ∑ 𝐽𝐽𝐽𝐽𝐽𝐽 𝐽𝐽  𝐹𝐹  
𝐴𝐴  𝝅𝝅𝐹𝐹  ∑ 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  

𝐴𝐴  𝝅𝝅𝐹𝐹  

= 𝑛𝑛𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  
𝐹𝐹  

= 𝔼𝔼�𝑿𝑿𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  
𝐹𝐹  �

While  the expected values are i dentical, the variances  between the two approaches  differ  (cf.  
equations  15  and 18).  In particular, sampling via  the  ‘Split’ approach is expected to  result in  
lower sampling variability  because the  overdispersion propagates independently within  each sex,  
when  sampling follows  a  Dirichlet-multinomial process. N ote that  the variance expression 
derived in equation 18 c annot be simplified to align with equation 15. To  further verify the  
derivations for both approaches  under  a Dirichlet-multinomial sampling process, 10,0 00 
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192 simulations  were conducted with 𝑛𝑛  = 100, 𝐴𝐴  = 15, 𝜃𝜃  = 1. 𝝅𝝅𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽   and 𝝅𝝅𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  
𝑠𝑠   were generated  

from 𝑈𝑈𝑛𝑛𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈~(0,1), normalized according to equation 1 and equations 5 and 8, respectively, 
and  𝑿𝑿𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽   and  𝑿𝑿𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽  

𝑠𝑠   were drawn from Dirichlet-multinomial distributions.  Consistent with the  
derivations  described  above,  these  simulations indicated  that while  both a pproaches  yielded  
similar expected values,  the ‘Split’ approach exhibited  lower variability  (Fig. 1D and 1E). 
Further comparison of  the empirical cumulative distribution function of Dirichlet-multinomial 
samples revealed  that  the two approaches produced different distributional forms  (Fig. 1F).   

193 
194 

196 
197 
198 

199 Discussion  
We have mathematically  demonstrated  that  the  ‘Joint’ and ‘Split’ parameterizations of sex-
composition l ikelihoods  yield  equivalent model expectations, irrespective of  whether  
compositions  arise  from a  multinomial or Dirichlet-multinomial sampling process.  However,  
under Dirichlet-multinomial sampling, the ‘Split’ approach  produces smaller  variances.  This  
occurs  because  the parameter 𝜃𝜃   here is assumed to  be  consistent between sexes,  where 
overdispersion acts independently within  each sex  and  across fewer  bins. Conversely, the ‘Joint’  
approach considers overdispersion  jointly  across sexes  and a  larger number of bins. Therefore, in 
extreme scenarios  of  clustered sampling, the ‘Split’ approach can produce  realized samples  of a 
limited  number of  ages, but  assumes they are distributed  more  consistently across sexes,  whereas  
the ‘Joint’ approach may  generate  samples that  favor a particular sex. In theory, estimating sex-
specific parameters for  𝜃𝜃   when utilizing t he ‘Split’ approach, as opposed to assuming a 
consistent  𝜃𝜃   among s exes, should enable overdispersion to more closely resemble that of the  
‘Joint’ approach. However, this process  still does not yield the same distribution, given the  
introduction of new parameters, and is also  a less parsimonious parameterization.  Nonetheless, 
the  conclusion that  both ‘Joint’ and ‘Split’ approaches produce  identical model  expectations  
should hold regardless of the  multivariate  likelihood function used. Additionally, the  reduced 
sampling variability observed when using  the 'Split' approach is  also  expected  to apply across 
various multivariate  likelihoods capable of accommodating over-dispersed sampling processes  
(when over-dispersion  parameters are  not sex-specific), given that overdispersion acts  
independently within each sex  and across fewer  bins.   
 
Findings from this proof should also generally hold true  regardless of the number of sexes 
represented in compositional data. For instance, in the New Zealand Rock Lobster (Jasus  
edwardsii)  stock assessment, where sexes are divided into three categories: immature females,  
mature females, and males (Rudd et  al., 2021), the  ‘Split’  approach is employed to analyze sex-
composition data. In this particular case, rather  than using a  binomial  likelihood, the stock 
assessment first utilizes a  multinomial likelihood to  first describe the sex  ratio among these three 
categories, followed by three additional  multinomial likelihoods to model composition data. 
Given that the  multinomial distribution is a generalization of the binomial, this approach is 
equivalent  to the  ‘Joint’  parameterization under the assumption of  multinomial sampling  (i.e., 
equations  10  and 11  remains  consistent for a given bin).  
 
Overdispersion when sampling composition data is common in  fisheries, because  individuals  are 
often clustered  in space  and time, and likely acts across sizes, ages, and sexes  (Pennington and 
Volstad, 1994), typically reflecting the ‘Joint’ parameterization.  Within the context of integrated  
stock assessment  models, multiple data sources are combined  into  a single analysis, where model  
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236 fits to  particular data  sources  are influenced by the relative weighting applied  or estimated  
(Maunder and Piner, 2015; Maunder and Punt, 2013). While  both approaches outlined in this  
study lead to equivalent expectations, the method by which overdispersion is applied to sexes  
(i.e.,  ‘Joint’ or ‘Split’) in likelihoods  that account  for overdispersion may  influence  the relative  
weighting of data sources, potentially  influencing  model fits and resulting parameter  estimates.  
In general, differences in  variances between the two approaches were  relatively  minor  (although 
these differences depend  on the number of bins  modeled and the specific values of  𝜃𝜃) when 
compared to  other sources of uncertainty in the stock assessment process, including survey 
abundance indices, natural mortality, and recruitment. Consequently, addressing disparities  
between these two approaches  in  an  integrated  assessment model  may not be  the  highest  priority. 
Nonetheless, additional  research within the  framework  of an integrated model is  necessary to  
ascertain  the specific effects  of this type of  model  misspecification. C onsidering  that both 
approaches  yield equivalent model expectations, we  generally recommend the ‘Joint’ approach 
for parameterizing sex-composition likelihoods, due to its simplicity, alignment with fisheries 
sampling designs, along with  its  ability  to account  for  overdispersion and correlated processes  
jointly  across sexes. However, the ‘Split’ approach may also  occur  in certain fishery sampling 
schemes. For example, in cases where sexes can be  visually distinguished (i.e., crustaceans), 
animals  might first be separated by sex and then randomly sampled within each sex.  Thus, 
practitioners should also carefully consider whether composition data arises from a ‘Joint’ or  
‘Split’ approach.  
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Figure 1. Comparison of expected values, variances, and empirical cumulative distribution 
functions of simulated composition data generated under the ‘Joint’ or ‘Split’ approaches, 
assuming either multinomial (top row) or Dirichlet-multinomial (bottom row) sampling. Panels 
in the first and second columns compare expected values and variances between the ‘Joint’ and 
‘Split’ approaches, with the dashed sloped line representing a 1:1 relationship. Panels in the third 
column depict average differences in empirical cumulative distribution functions (‘Split’ minus 
‘Joint’), with the dashed horizontal line indicating no difference. 
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