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Abstract

Two primary methods for parameterizing sex-specific age and length composition likelihoods in
fishery stock assessments exist, which we refer to as the ‘Joint and ‘Split’ approaches. When
using the ‘Joint’ approach, sex-composition data are assumed to arise from a single statistical
model that describes the probability of sampling across all ages and sexes in a given year. By
contrast, the ‘Split” approach assumes that sex-composition data arises from several statistical
models: sex-specific models that describe the probability of sampling ages within each sex, and
an additional model that describes the sex-ratio information from composition data. In this
mathematical proof, we derive the statistical properties of both approaches under multinomial
and Dirichlet-multinomial sampling and show that they produce equivalent model expectations.
However, we illustrate that the ‘Split” approach leads to smaller assumed variances when
sampling follows a Dirichlet-multinomial distribution, because overdispersion acts
independently within each sex rather than jointly across sexes. Given that both approaches yield
equivalent model expectations, we generally recommend using the ‘Joint’ approach for
parameterizing sex-composition likelihoods. The ‘Joint’ approach is simpler to implement, aligns
with most fisheries sampling designs, and is able to jointly account for overdispersion and
sampling correlations across sexes. However, we acknowledge that in some cases, the ‘Split’
approach may be more appropriate.

Keywords: sex-structure, compositional likelihoods, age composition, length composition, stock
assessment models

Introduction

Sex-specific composition data (i.e., age and length) are commonly used to estimate sex-specific
processes (e.g., natural mortality, selectivity) within fishery stock assessments (Maunder and
Wong, 2011). Two primary methods for parameterizing sex-specific composition likelihoods
exist. In the first approach, which we term ‘Joint’, compositions sum to 1 across all ages and
sexes within a given year, and a single likelihood function is used to describe these data. In the
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second approach, which we term ‘Split’, composition data are divided into datasets that describe
the observed age-or size-structure of each sex, along with a dataset that represents the sex-ratio
of these data. Thus, in the ‘Split” approach, sex-specific likelihood functions are parameterized to
describe composition data, along with an additional likelihood component to describe sex-ratios
(Francis, 2014). In our experience, sex-structured stock assessments for federal fisheries in the
Alaska region are primarily parameterized utilizing the ‘Joint’ approach (> 90%; e.g., Shotwell et
al., 2021; Spies et al., 2019). Additionally, several assessment applications exist outside of the
Alaska region that employ the ‘Split” approach (e.g., Rudd et al., 2021; Wang et al., 2007, 2005).
In some instances, a variant of the ‘Split’ approach has also been utilized, where sex-specific
likelihood functions are used for composition data, but does not include a likelihood component
to describe sex-ratios (e.g., Cope et al., 2023; Goethel et al., 2023). Nonetheless, the general
statistical properties of the ‘Joint’ and ‘Split’ approaches have yet to be mathematically
described in the peer-reviewed literature (to our knowledge) and understanding these properties
can provide insights into the benefits and drawbacks of each approach.

In the following sections, we describe the probability mass function (PMF), expectation, and
variance of the ‘Joint’ approach using the multinomial and Dirichlet-multinomial distributions as
examples. We then proceed to derive these same quantities for the ‘Split” approach, which
involves a hierarchical (compound) process initially conditioned on a binomial distribution,
followed by a multinomial distribution or a Dirichlet-multinomial distribution. Finally, we
compare the similarities and differences between the two approaches, both analytically and
numerically.

Probability Mass Function, Expectation, and Variance of
the ‘Joint’ Approach (Multinomial)

For a given year, sampling composition data following the ‘Joint’ approach are determined by
probabilities across age or length (here we use the subscript a to denote the category for age, but
note that / could be used interchangeably for length) categories and sex categories (s, where we
derive the following for two sexes: female, F, and male, M), resulting in a vector 7t/°"¢:

ZZEJOW =1 Eq.1
A s

The vector /°™ then governs the probability of observing a given age and sex category. In the
subsequent sections, we use subscripts {(1, F), (2, F) ... (a, M)} to abbreviate
{(1,F),(2,F)..(a,F),(1,M), (2,M) ...(a, M)} for conciseness. The corresponding PMF is then
defined as (ignoring normalization constant for brevity):

P(X/omt = x) o ()5 ()2 (mloimty oM Eq.2
where X represents a random variable arising from a multinomial sampling process, x are
the observed counts for age a and sex s, and n represents the total sample size (in the sampling
context would represent the nominal sample size; in a stock assessment model context, this
would represent the input sample size; see Hulson and Williams (2024) for standardized
definitions of these terms). Therefore, X/ oint has an expectation of:

E[x]oint] — nn.]oint Eq 3

Joint

and variance of:
V[X]Oint] — nn.]oint(l _ n.]oint) Eq. 4
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where both equations 3 and 4 are known properties of the multinomial distribution.

Probability Mass Function, Expectation, and Variance of
the ‘Split” Approach (Multinomial)

In the ‘Split” approach, sampling composition data represents a hierarchical process. Sex-specific
sample sizes (N) are random variables initially determined by a binomial distribution, governed
by the sex-ratio (¢ ) observed by the sampling unit and the total sample size (n). In a scenario
where two sexes are modeled, this results in the following PMF (using females as an example
and ignoring normalization constant for brevity):

P(Ny = k) « pf(1 — )" " Eq.5
¢F znlj:omt

A
where k are sample sizes for females, and n — k are sample sizes for males. Note that the term

1—¢r =y =2yum ] ot Thig sampling process results in the following expectation for N:
E[Nf] = nor Eq.6
with a variance of:
V[N;] = nge(1 - ¢r) Eq.7
both of which are also known properties of the binomial distribution.

Following the determination of sex-specific sample sizes, sampling sex-specific composition

data using the ‘Split’ approach normalizes probabilities within a given sex:
T Joint T Joint
Spllt F Spllt M Eq. 8

11.'F , -
Joint Joint
ZA ZA M

Slt Slt

Sex-specific composition data are then assumed to arise from two sex-specific multinomial
processes, conditioned on a binomial process:

P(XSpllt Xy XSpllt — leNf — k) o ¢F(1 _ ¢F)n k( Split xlF( Split\*2F ( Spllt xaM
Given the hierarchical sampling process, we next invoke the law of 1terated expectatlons to

derive the expectation and variance arising from the ‘Split’ approach for X iplit and X ,Swplit. The
iterated expectation for compositions for females is as follows:

E[X;P"] = E[E(X;P"|Np)] Eq.10
_ IE[ N7t Spllt]
= E[N]m} Split
= nppms Spllt
Similarly, the expectation for compositions from males simply replaces the subscript ' with M in

equation 10. We next derive the variances in a similar manner, where the variance for
compositions for females is:

q.9
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Vx| = B[VORP )] + VIEK? )] Eq.11
_ ]E[NFTl'Spllt(l . n_Split)] + W[ﬂsplitNF]
_ n_ipllt(l _ Sput)]E NF + (nSpllt) W[Np]

lit Split Split
= P (1 - wP g + (") nepe (1 — )
Likewise, the variance for compositions for males simply replaces the subscript F with M in
equation 11.

Comparison of Probability Mass Function, Expectation,

and Variance (Multinomial)

Comparing the PMFs in equation 2 and 9, we find that the PMF of the ‘Split” approach can be
simplified to align with the PMF of the ‘Joint’ approach. Simplifying equation 9, substituting
2ATE Jomnt gor br, DTy, Joint for 1 — ¢r, and noting that ), xp = k and )., xy = n — k results in
the followmg express10n

P(XP" = xp, X3P = xy|N; = k) Eq.12

Split\*LF ; _Split\*2,F Split\*a.M
X ¢F(1 - ¢F)n k( ; ( p (na,zl)vl

]omt X1,F ]oint X2,F Joint \ *aM
(Z n_]omt) (Z n_]omt) < Ty F ) ( o F ) < Tam )
oint oint oint
YT} YT} YaTy

n- k( Joint xlF( Joint\X2F ( ]omt Xa,M

n_]omt) ( n_]omt) oL
(Z Z M (ZA ]omt) (ZA Joint k

« (n]omt xlF( Joint\*2F ( ]omt Xa,M

o P(Xf‘””t = x)
indicating that the PMF from both approaches are proportional. Given this, we can conclude that
these approaches are equivalent under the assumption of multinomial sampling. Consequently,
their expectations and variances are also equivalent, and we do not elaborate further on their
equivalency in these aspects below. To further confirm these derivations, we conducted 100,000

simulations with n = 100 and A = 15. In these simulations, 7t/°™ and nﬁp”t were randomly
generated from Uniform~(0,1) and normalized according to equation 1 and equations 5 and 8,

respectively, while random variables X/°™t and X 3‘?’“ were both drawn from multinomial
distributions. As expected, the two approaches resulted in similar values for expected values and
variances (approximate given the simulated nature; Fig. 1A and 1B). Additionally, a comparison
of the empirical cumulative distribution function of multinomial samples generated indicated that
both approaches resulted in the same distributional form (Fig. 1C) (refer to
https://github.com/chengmatt/SexCompProof for a code example of simulations).
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130 Probability Mass Function, Expectation, and Variance of
140 the ‘Joint’ Approach (Dirichlet-multinomial)

141  Following the notation described in earlier sections, we next describe the PMF, expectation, and

142 variance under Dirichlet-multinomial sampling when utilizing the ‘Joint’ approach, which is

143 governed by n, 8, and /°™ (linear parameterization; Thorson et al., 2017). Here, nf = a°™,

144  which represents a parameter that controls the degree of overdispersion. The resulting PMF
145  under the ‘Joint’ approach is given by the following (ignoring normalization constants):

146 P(X]oint _ x) Eq 13
147 F(ajomt) F(nxlF +aéomt ]Olnt)F(TlXZF +a]omt ]omt) F(nxaM +a]omt C]lol\;nt
F(Tl + a(])omt) ( Joint ]omt)r(a]omt jomt) I-.(ajomt ]omt

148 where X/ here is a random variable arising from a Dirichlet-multinomial process, and x
149  represent the associated observations. Random variable X/°¢ then has an expectation of:

150 E[X/oint] = ng/oint Eq.14
151  and variance of:
n+ a]oint
152 V[x/oint] = pp/oint(1 — qloint) <—1 " a%m) Eq.15
0

153 where both equations 14 and 15 are properties of the Dirichlet-multinomial distribution.

154 Probability Mass Function, Expectation, and Variance of
155 the ‘Split’” Approach (Dirichlet-multinomial)

156  When utilizing the ‘Split” approach and assuming that composition samples arise from a

157  Dirichlet-multinomial process, the same hierarchical process described in previous sections

158  applies. Sex-specific sample sizes initially arise from a binomial distribution (equation 5) with
159  expectation and variance of this binomial process following equations 6 and 7. The binomial

160  process then results in k samples for females and n — k samples for males. In the subsequent
161  derivations, we assume that the parameter 0 is consistent for both sexes to maintain

162  comparability with previous sections. Therefore, the overdispersion for females is expressed as
163 k6 = ag,’,f“t and for males as (n — k)8 = agﬁ,llt. The probabilities of sampling composition data
164  are then normalized within a given sex (equation 8), and composition data arise from sex-

165  specific Dirichlet-multinomial processes with the following PMF:

166 P(XP" = xp, X3P = xy|N; = k) Eq.16

167 oc¢>F(1—¢ )k

68 F(aopllt)r( Spllt) F(nxl,p + agglltnfgllt)f‘(nxzp + agglltn.;z;llt) F(nxaM + aSplltﬂj}})\;lt
F(k + aSplzt)F ((n k) N aSpllt) ( Split Spllt)l-.(aSplzt Splzt) F( Spllt Spllt

169  Invoking the law of iterated expectations, the expected values for female composition sarnples
170  wusing the ‘Split” approach under the assumption of Dirichlet-multinomial sampling is:
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E[X3P"] = E[E(XP"|Ng)] Eq.17
— [E[N n_Spllt]
— [E[Nf] Split

_ SplLt
= n¢pmy
Similarly, the expectation for composition samples from males replaces the subscript F' with M
in equation 17. Deriving the variances in a similar fashion results in the following expression:

V[XP] = E[V(XPY|NR)] + VIE(XPY|NR)] Eq.18

No + a Spllt
Split SplLt F
NFT[ (1 )( 1+ a Spllt

Spllt
<NF Ayp
F Split
1+ a?

OF

1
= P (1 — P (—1 " SW) E[NZ] + a P EN,] + () VN

=F + V[P Ny |

_ nimlt(l _ niplit)[E N + (nSp“t) V[Ng]

Spllt 1— Split _
- e s)prffF P 4 (npe? + agpnge + () e 1~ g

In the same way, the Varlance for male compositions is determined by replacing the subscript £
with M in equation 18.

Comparison of Probability Mass Function, Expectation,

and Variance (Dirichlet-multinomial)

Comparing equations 13 and 16 (PMFs of Dirichlet-multinomial under the ‘Joint” and “Split’
approaches), we find that equation 16 cannot be reduced into the form of equation 13 given the

Split Split
presence of sex-specific overdispersion parameters (i.e., p * and a, p ). Despite that, we find

that the derived expected values are consistent between the two approaches under Dirichlet-
]omt
Split

multinomial sampling. To show this, we substitute ¥ , 2°™" for ¢ and for ;""" into

]omt

equation 17:
IE[XSpllt] ¢F Spllt Eq. 19

Jo mt

Joint Tg
- nZA Sam Joint
ATR

_ Joint
= Nnmng

— ]E[lecomt]
While the expected values are identical, the variances between the two approaches differ (cf.
equations 15 and 18). In particular, sampling via the ‘Split” approach is expected to result in
lower sampling variability because the overdispersion propagates independently within each sex,
when sampling follows a Dirichlet-multinomial process. Note that the variance expression
derived in equation 18 cannot be simplified to align with equation 15. To further verify the
derivations for both approaches under a Dirichlet-multinomial sampling process, 10,000
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simulations were conducted with n = 100, A = 15, 8 = 1. w/°™ and nﬁp”t were generated
from Uniform~(0,1), normalized according to equation 1 and equations 5 and 8, respectively,

and X/°t and X3P were drawn from Dirichlet-multinomial distributions. Consistent with the
derivations described above, these simulations indicated that while both approaches yielded
similar expected values, the ‘Split’ approach exhibited lower variability (Fig. 1D and 1E).
Further comparison of the empirical cumulative distribution function of Dirichlet-multinomial
samples revealed that the two approaches produced different distributional forms (Fig. 1F).

Discussion

We have mathematically demonstrated that the ‘Joint’ and ‘Split” parameterizations of sex-
composition likelihoods yield equivalent model expectations, irrespective of whether
compositions arise from a multinomial or Dirichlet-multinomial sampling process. However,
under Dirichlet-multinomial sampling, the ‘Split” approach produces smaller variances. This
occurs because the parameter 6 here is assumed to be consistent between sexes, where
overdispersion acts independently within each sex and across fewer bins. Conversely, the ‘Joint’
approach considers overdispersion jointly across sexes and a larger number of bins. Therefore, in
extreme scenarios of clustered sampling, the ‘Split’ approach can produce realized samples of a
limited number of ages, but assumes they are distributed more consistently across sexes, whereas
the ‘Joint’ approach may generate samples that favor a particular sex. In theory, estimating sex-
specific parameters for 8 when utilizing the ‘Split” approach, as opposed to assuming a
consistent 8 among sexes, should enable overdispersion to more closely resemble that of the
‘Joint” approach. However, this process still does not yield the same distribution, given the
introduction of new parameters, and is also a less parsimonious parameterization. Nonetheless,
the conclusion that both ‘Joint” and ‘Split” approaches produce identical model expectations
should hold regardless of the multivariate likelihood function used. Additionally, the reduced
sampling variability observed when using the 'Split' approach is also expected to apply across
various multivariate likelihoods capable of accommodating over-dispersed sampling processes
(when over-dispersion parameters are not sex-specific), given that overdispersion acts
independently within each sex and across fewer bins.

Findings from this proof should also generally hold true regardless of the number of sexes
represented in compositional data. For instance, in the New Zealand Rock Lobster (Jasus
edwardsii) stock assessment, where sexes are divided into three categories: immature females,
mature females, and males (Rudd et al., 2021), the ‘Split” approach is employed to analyze sex-
composition data. In this particular case, rather than using a binomial likelihood, the stock
assessment first utilizes a multinomial likelihood to first describe the sex ratio among these three
categories, followed by three additional multinomial likelihoods to model composition data.
Given that the multinomial distribution is a generalization of the binomial, this approach is
equivalent to the ‘Joint’ parameterization under the assumption of multinomial sampling (i.e.,
equations 10 and 11 remains consistent for a given bin).

Overdispersion when sampling composition data is common in fisheries, because individuals are
often clustered in space and time, and likely acts across sizes, ages, and sexes (Pennington and

Volstad, 1994), typically reflecting the ‘Joint” parameterization. Within the context of integrated
stock assessment models, multiple data sources are combined into a single analysis, where model
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fits to particular data sources are influenced by the relative weighting applied or estimated
(Maunder and Piner, 2015; Maunder and Punt, 2013). While both approaches outlined in this
study lead to equivalent expectations, the method by which overdispersion is applied to sexes
(i.e., ‘Joint’ or ‘Split’) in likelihoods that account for overdispersion may influence the relative
weighting of data sources, potentially influencing model fits and resulting parameter estimates.
In general, differences in variances between the two approaches were relatively minor (although
these differences depend on the number of bins modeled and the specific values of 8) when
compared to other sources of uncertainty in the stock assessment process, including survey
abundance indices, natural mortality, and recruitment. Consequently, addressing disparities
between these two approaches in an integrated assessment model may not be the highest priority.
Nonetheless, additional research within the framework of an integrated model is necessary to
ascertain the specific effects of this type of model misspecification. Considering that both
approaches yield equivalent model expectations, we generally recommend the ‘Joint” approach
for parameterizing sex-composition likelihoods, due to its simplicity, alignment with fisheries
sampling designs, along with its ability to account for overdispersion and correlated processes
jointly across sexes. However, the ‘Split’ approach may also occur in certain fishery sampling
schemes. For example, in cases where sexes can be visually distinguished (i.e., crustaceans),
animals might first be separated by sex and then randomly sampled within each sex. Thus,
practitioners should also carefully consider whether composition data arises from a ‘Joint’ or
‘Split’ approach.
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Figure 1. Comparison of expected values, variances, and empirical cumulative distribution
functions of simulated composition data generated under the ‘Joint’ or ‘Split’ approaches,
assuming either multinomial (top row) or Dirichlet-multinomial (bottom row) sampling. Panels
in the first and second columns compare expected values and variances between the ‘Joint” and
‘Split’ approaches, with the dashed sloped line representing a 1:1 relationship. Panels in the third
column depict average differences in empirical cumulative distribution functions (‘Split” minus

‘Joint”), with the dashed horizontal line indicating no difference.
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