

1 **Title**

2 A mathematical proof comparing the statistical properties between two common approaches for
3 parameterizing sex-composition likelihoods in fishery stock assessments

4 **Authors**

5 Matthew LH. Cheng^{1*}, Peter-John F. Hulson², Daniel R. Goethel², Curry J. Cunningham¹

6 ¹Department of Fisheries at Lena Point, College of Fisheries and Ocean Sciences, University of
7 Alaska Fairbanks, 17101 Point Lena Loop Rd, Juneau, Alaska 99801, USA

8 ²National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska
9 Fisheries Science Center, Auke Bay Laboratories, 17109 Point Lena Loop Road Juneau, Alaska
10 99801, USA

11 *** Corresponding Author** (lhcheng@alaska.edu)

12

13 **Abstract**

14 Two primary methods for parameterizing sex-specific age and length composition likelihoods in
15 fishery stock assessments exist, which we refer to as the ‘Joint’ and ‘Split’ approaches. When
16 using the ‘Joint’ approach, sex-composition data are assumed to arise from a single statistical
17 model that describes the probability of sampling across all ages and sexes in a given year. By
18 contrast, the ‘Split’ approach assumes that sex-composition data arises from several statistical
19 models: sex-specific models that describe the probability of sampling ages within each sex, and
20 an additional model that describes the sex-ratio information from composition data. In this
21 mathematical proof, we derive the statistical properties of both approaches under multinomial
22 and Dirichlet-multinomial sampling and show that they produce equivalent model expectations.
23 However, we illustrate that the ‘Split’ approach leads to smaller assumed variances when
24 sampling follows a Dirichlet-multinomial distribution, because overdispersion acts
25 independently within each sex rather than jointly across sexes. Given that both approaches yield
26 equivalent model expectations, we generally recommend using the ‘Joint’ approach for
27 parameterizing sex-composition likelihoods. The ‘Joint’ approach is simpler to implement, aligns
28 with most fisheries sampling designs, and is able to jointly account for overdispersion and
29 sampling correlations across sexes. However, we acknowledge that in some cases, the ‘Split’
30 approach may be more appropriate.

31

32 Keywords: sex-structure, compositional likelihoods, age composition, length composition, stock
33 assessment models

34 **Introduction**

35 Sex-specific composition data (i.e., age and length) are commonly used to estimate sex-specific
36 processes (e.g., natural mortality, selectivity) within fishery stock assessments (Maunder and
37 Wong, 2011). Two primary methods for parameterizing sex-specific composition likelihoods
38 exist. In the first approach, which we term ‘Joint’, compositions sum to 1 across all ages and
39 sexes within a given year, and a single likelihood function is used to describe these data. In the

40 second approach, which we term ‘Split’, composition data are divided into datasets that describe
 41 the observed age-or size-structure of each sex, along with a dataset that represents the sex-ratio
 42 of these data. Thus, in the ‘Split’ approach, sex-specific likelihood functions are parameterized to
 43 describe composition data, along with an additional likelihood component to describe sex-ratios
 44 (Francis, 2014). In our experience, sex-structured stock assessments for federal fisheries in the
 45 Alaska region are primarily parameterized utilizing the ‘Joint’ approach (> 90%; e.g., Shotwell et
 46 al., 2021; Spies et al., 2019). Additionally, several assessment applications exist outside of the
 47 Alaska region that employ the ‘Split’ approach (e.g., Rudd et al., 2021; Wang et al., 2007, 2005).
 48 In some instances, a variant of the ‘Split’ approach has also been utilized, where sex-specific
 49 likelihood functions are used for composition data, but does not include a likelihood component
 50 to describe sex-ratios (e.g., Cope et al., 2023; Goethel et al., 2023). Nonetheless, the general
 51 statistical properties of the ‘Joint’ and ‘Split’ approaches have yet to be mathematically
 52 described in the peer-reviewed literature (to our knowledge) and understanding these properties
 53 can provide insights into the benefits and drawbacks of each approach.
 54

55 In the following sections, we describe the probability mass function (PMF), expectation, and
 56 variance of the ‘Joint’ approach using the multinomial and Dirichlet-multinomial distributions as
 57 examples. We then proceed to derive these same quantities for the ‘Split’ approach, which
 58 involves a hierarchical (compound) process initially conditioned on a binomial distribution,
 59 followed by a multinomial distribution or a Dirichlet-multinomial distribution. Finally, we
 60 compare the similarities and differences between the two approaches, both analytically and
 61 numerically.

62 Probability Mass Function, Expectation, and Variance of 63 the ‘Joint’ Approach (Multinomial)

64 For a given year, sampling composition data following the ‘Joint’ approach are determined by
 65 probabilities across age or length (here we use the subscript a to denote the category for age, but
 66 note that l could be used interchangeably for length) categories and sex categories (s , where we
 67 derive the following for two sexes: female, F , and male, M), resulting in a vector $\boldsymbol{\pi}^{Joint}$:

$$68 \quad \sum_A \sum_S \boldsymbol{\pi}^{Joint} = 1 \quad Eq. 1$$

69 The vector $\boldsymbol{\pi}^{Joint}$ then governs the probability of observing a given age and sex category. In the
 70 subsequent sections, we use subscripts $\{(1, F), (2, F) \dots (a, M)\}$ to abbreviate
 71 $\{(1, F), (2, F) \dots (a, F), (1, M), (2, M) \dots (a, M)\}$ for conciseness. The corresponding PMF is then
 72 defined as (ignoring normalization constant for brevity):

$$73 \quad P(\mathbf{X}^{Joint} = \mathbf{x}) \propto (\pi_{1,F}^{Joint})^{x_{1,F}} (\pi_{2,F}^{Joint})^{x_{2,F}} \dots (\pi_{a,M}^{Joint})^{x_{a,M}} \quad Eq. 2$$

74 where \mathbf{X}^{Joint} represents a random variable arising from a multinomial sampling process, \mathbf{x} are
 75 the observed counts for age a and sex s , and n represents the total sample size (in the sampling
 76 context would represent the nominal sample size; in a stock assessment model context, this
 77 would represent the input sample size; see Hulson and Williams (2024) for standardized
 78 definitions of these terms). Therefore, \mathbf{X}^{Joint} has an expectation of:

$$79 \quad \mathbb{E}[\mathbf{X}^{Joint}] = n\boldsymbol{\pi}^{Joint} \quad Eq. 3$$

80 and variance of:

$$81 \quad \mathbb{V}[\mathbf{X}^{Joint}] = n\boldsymbol{\pi}^{Joint}(1 - \boldsymbol{\pi}^{Joint}) \quad Eq. 4$$

82 where both equations 3 and 4 are known properties of the multinomial distribution.

83 Probability Mass Function, Expectation, and Variance of 84 the 'Split' Approach (Multinomial)

85 In the 'Split' approach, sampling composition data represents a hierarchical process. Sex-specific
86 sample sizes (N_s) are random variables initially determined by a binomial distribution, governed
87 by the sex-ratio (ϕ_s) observed by the sampling unit and the total sample size (n). In a scenario
88 where two sexes are modeled, this results in the following PMF (using females as an example
89 and ignoring normalization constant for brevity):

$$90 \quad P(N_f = k) \propto \phi_F^k (1 - \phi_F)^{n-k} \quad Eq. 5$$
$$91 \quad \phi_F = \sum_A \boldsymbol{\pi}_F^{Joint}$$

92 where k are sample sizes for females, and $n - k$ are sample sizes for males. Note that the term
93 $1 - \phi_F = \phi_M = \sum_A \boldsymbol{\pi}_M^{Joint}$. This sampling process results in the following expectation for N_f :

$$94 \quad \mathbb{E}[N_f] = n\phi_F \quad Eq. 6$$

95 with a variance of:

$$96 \quad \mathbb{V}[N_f] = n\phi_F(1 - \phi_F) \quad Eq. 7$$

97 both of which are also known properties of the binomial distribution.

98 Following the determination of sex-specific sample sizes, sampling sex-specific composition
99 data using the 'Split' approach normalizes probabilities within a given sex:

$$100 \quad \boldsymbol{\pi}_F^{Split} = \frac{\boldsymbol{\pi}_F^{Joint}}{\sum_A \boldsymbol{\pi}_F^{Joint}}, \quad \boldsymbol{\pi}_M^{Split} = \frac{\boldsymbol{\pi}_M^{Joint}}{\sum_A \boldsymbol{\pi}_M^{Joint}} \quad Eq. 8$$
$$102 \quad \sum_A \boldsymbol{\pi}_F^{Split} = 1, \quad \sum_A \boldsymbol{\pi}_M^{Split} = 1$$

103 Sex-specific composition data are then assumed to arise from two sex-specific multinomial
104 processes, conditioned on a binomial process:

$$105 \quad P(\mathbf{X}_F^{Split} = \mathbf{x}_F, \mathbf{X}_M^{Split} = \mathbf{x}_M | N_f = k) \propto \phi_F^k (1 - \phi_F)^{n-k} (\pi_{1,F}^{Split})^{x_{1,F}} (\pi_{2,F}^{Split})^{x_{2,F}} \dots (\pi_{a,M}^{Split})^{x_{a,M}} \quad Eq. 9$$

106 Given the hierarchical sampling process, we next invoke the law of iterated expectations to
107 derive the expectation and variance arising from the 'Split' approach for \mathbf{X}_F^{Split} and \mathbf{X}_M^{Split} . The
108 iterated expectation for compositions for females is as follows:

$$109 \quad \mathbb{E}[\mathbf{X}_F^{Split}] = \mathbb{E}[\mathbb{E}(\mathbf{X}_F^{Split} | N_f)] \quad Eq. 10$$
$$= \mathbb{E}[N_f \boldsymbol{\pi}_F^{Split}]$$
$$= \mathbb{E}[N_f] \boldsymbol{\pi}_F^{Split}$$
$$= n\phi_F \boldsymbol{\pi}_F^{Split}$$

110 Similarly, the expectation for compositions from males simply replaces the subscript F with M in
111 equation 10. We next derive the variances in a similar manner, where the variance for
112 compositions for females is:

113

$$\begin{aligned}
\mathbb{V}[\mathbf{X}_F^{Split}] &= \mathbb{E}[\mathbb{V}(\mathbf{X}_F^{Split} | N_F)] + \mathbb{V}[\mathbb{E}(\mathbf{X}_F^{Split} | N_F)] \\
&= \mathbb{E}[N_F \boldsymbol{\pi}_F^{Split} (1 - \boldsymbol{\pi}_F^{Split})] + \mathbb{V}[\boldsymbol{\pi}_F^{Split} N_F] \\
&= \boldsymbol{\pi}_F^{Split} (1 - \boldsymbol{\pi}_F^{Split}) \mathbb{E}[N_F] + (\boldsymbol{\pi}_F^{Split})^2 \mathbb{V}[N_F] \\
&= \boldsymbol{\pi}_F^{Split} (1 - \boldsymbol{\pi}_F^{Split}) n \phi_F + (\boldsymbol{\pi}_F^{Split})^2 n \phi_F (1 - \phi_F)
\end{aligned}
\tag{Eq. 11}$$

114 Likewise, the variance for compositions for males simply replaces the subscript F with M in
115 equation 11.

116 **Comparison of Probability Mass Function, Expectation,
117 and Variance (Multinomial)**

118 Comparing the PMFs in equation 2 and 9, we find that the PMF of the ‘Split’ approach can be
119 simplified to align with the PMF of the ‘Joint’ approach. Simplifying equation 9, substituting
120 $\sum_A \boldsymbol{\pi}_F^{Joint}$ for ϕ_F , $\sum_A \boldsymbol{\pi}_M^{Joint}$ for $1 - \phi_F$, and noting that $\sum_a \mathbf{x}_F = k$ and $\sum_a \mathbf{x}_M = n - k$ results in
121 the following expression:

$$\begin{aligned}
&P(\mathbf{X}_F^{Split} = \mathbf{x}_F, \mathbf{X}_M^{Split} = \mathbf{x}_M | N_f = k) \\
&\propto \phi_F^k (1 - \phi_F)^{n-k} (\pi_{1,F}^{Split})^{x_{1,F}} (\pi_{2,F}^{Split})^{x_{2,F}} \dots (\pi_{a,M}^{Split})^{x_{a,M}} \\
&\propto \left(\sum_A \boldsymbol{\pi}_F^{Joint} \right)^k \left(\sum_A \boldsymbol{\pi}_M^{Joint} \right)^{n-k} \left(\frac{\pi_{1,F}^{Joint}}{\sum_A \boldsymbol{\pi}_F^{Joint}} \right)^{x_{1,F}} \left(\frac{\pi_{2,F}^{Joint}}{\sum_A \boldsymbol{\pi}_F^{Joint}} \right)^{x_{2,F}} \dots \left(\frac{\pi_{a,M}^{Joint}}{\sum_A \boldsymbol{\pi}_M^{Joint}} \right)^{x_{a,M}} \\
&\propto \left(\sum_A \boldsymbol{\pi}_F^{Joint} \right)^k \left(\sum_A \boldsymbol{\pi}_M^{Joint} \right)^{n-k} \frac{(\pi_{1,F}^{Joint})^{x_{1,F}} (\pi_{2,F}^{Joint})^{x_{2,F}} \dots (\pi_{a,M}^{Joint})^{x_{a,M}}}{(\sum_A \boldsymbol{\pi}_F^{Joint})^k (\sum_A \boldsymbol{\pi}_M^{Joint})^{n-k}} \\
&\propto (\pi_{1,F}^{Joint})^{x_{1,F}} (\pi_{2,F}^{Joint})^{x_{2,F}} \dots (\pi_{a,M}^{Joint})^{x_{a,M}} \\
&\propto P(\mathbf{X}^{Joint} = \mathbf{x})
\end{aligned}
\tag{Eq. 12}$$

122 indicating that the PMF from both approaches are proportional. Given this, we can conclude that
123 these approaches are equivalent under the assumption of multinomial sampling. Consequently,
124 their expectations and variances are also equivalent, and we do not elaborate further on their
125 equivalency in these aspects below. To further confirm these derivations, we conducted 100,000
126 simulations with $n = 100$ and $A = 15$. In these simulations, $\boldsymbol{\pi}^{Joint}$ and $\boldsymbol{\pi}_s^{Split}$ were randomly
127 generated from $Uniform \sim (0,1)$ and normalized according to equation 1 and equations 5 and 8,
128 respectively, while random variables \mathbf{X}^{Joint} and \mathbf{X}_s^{Split} were both drawn from multinomial
129 distributions. As expected, the two approaches resulted in similar values for expected values and
130 variances (approximate given the simulated nature; Fig. 1A and 1B). Additionally, a comparison
131 of the empirical cumulative distribution function of multinomial samples generated indicated that
132 both approaches resulted in the same distributional form (Fig. 1C) (refer to
133 <https://github.com/chengmatt/SexCompProof> for a code example of simulations).

139 Probability Mass Function, Expectation, and Variance of 140 the 'Joint' Approach (Dirichlet-multinomial)

141 Following the notation described in earlier sections, we next describe the PMF, expectation, and
142 variance under Dirichlet-multinomial sampling when utilizing the 'Joint' approach, which is
143 governed by n , θ , and $\boldsymbol{\pi}^{Joint}$ (linear parameterization; Thorson et al., 2017). Here, $n\theta = \alpha_0^{Joint}$,
144 which represents a parameter that controls the degree of overdispersion. The resulting PMF
145 under the 'Joint' approach is given by the following (ignoring normalization constants):

$$146 \quad P(\mathbf{X}^{Joint} = \mathbf{x}) \quad Eq. 13 \\ 147 \quad \propto \frac{\Gamma(\alpha_0^{Joint})}{\Gamma(n + \alpha_0^{Joint})} \frac{\Gamma(nx_{1,F} + \alpha_0^{Joint} \pi_{1,F}^{Joint}) \Gamma(nx_{2,F} + \alpha_0^{Joint} \pi_{2,F}^{Joint}) \dots \Gamma(nx_{a,M} + \alpha_0^{Joint} \pi_{a,M}^{Joint})}{\Gamma(\alpha_0^{Joint} \pi_{1,F}^{Joint}) \Gamma(\alpha_0^{Joint} \pi_{2,F}^{Joint}) \dots \Gamma(\alpha_0^{Joint} \pi_{a,M}^{Joint})}$$

148 where \mathbf{X}^{Joint} here is a random variable arising from a Dirichlet-multinomial process, and \mathbf{x}
149 represent the associated observations. Random variable \mathbf{X}^{Joint} then has an expectation of:

$$150 \quad \mathbb{E}[\mathbf{X}^{Joint}] = n\boldsymbol{\pi}^{Joint} \quad Eq. 14$$

151 and variance of:

$$152 \quad \mathbb{V}[\mathbf{X}^{Joint}] = n\boldsymbol{\pi}^{Joint}(1 - \boldsymbol{\pi}^{Joint}) \left(\frac{n + \alpha_0^{Joint}}{1 + \alpha_0^{Joint}} \right) \quad Eq. 15$$

153 where both equations 14 and 15 are properties of the Dirichlet-multinomial distribution.

154 Probability Mass Function, Expectation, and Variance of 155 the 'Split' Approach (Dirichlet-multinomial)

156 When utilizing the 'Split' approach and assuming that composition samples arise from a
157 Dirichlet-multinomial process, the same hierarchical process described in previous sections
158 applies. Sex-specific sample sizes initially arise from a binomial distribution (equation 5) with
159 expectation and variance of this binomial process following equations 6 and 7. The binomial
160 process then results in k samples for females and $n - k$ samples for males. In the subsequent
161 derivations, we assume that the parameter θ is consistent for both sexes to maintain
162 comparability with previous sections. Therefore, the overdispersion for females is expressed as
163 $k\theta = \alpha_{0F}^{Split}$ and for males as $(n - k)\theta = \alpha_{0M}^{Split}$. The probabilities of sampling composition data
164 are then normalized within a given sex (equation 8), and composition data arise from sex-
165 specific Dirichlet-multinomial processes with the following PMF:

$$166 \quad P(\mathbf{X}_F^{Split} = \mathbf{x}_F, \mathbf{X}_M^{Split} = \mathbf{x}_M | N_f = k) \quad Eq. 16$$

$$167 \quad \propto \phi_F^k (1 - \phi_F)^{n-k} \\ 168 \quad \frac{\Gamma(\alpha_{0F}^{Split}) \Gamma(\alpha_{0M}^{Split})}{\Gamma(k + \alpha_{0F}^{Split}) \Gamma((n - k) + \alpha_{0M}^{Split})} \frac{\Gamma(nx_{1,F} + \alpha_{0F}^{Split} \pi_{1,F}^{Split}) \Gamma(nx_{2,F} + \alpha_{0F}^{Split} \pi_{2,F}^{Split}) \dots \Gamma(nx_{a,M} + \alpha_{0M}^{Split} \pi_{a,M}^{Split})}{\Gamma(\alpha_{0F}^{Split} \pi_{1,F}^{Split}) \Gamma(\alpha_{0F}^{Split} \pi_{2,F}^{Split}) \dots \Gamma(\alpha_{0M}^{Split} \pi_{a,M}^{Split})}$$

169 Invoking the law of iterated expectations, the expected values for female composition samples
170 using the 'Split' approach under the assumption of Dirichlet-multinomial sampling is:

$$\begin{aligned}
\mathbb{E}[\mathbf{X}_F^{Split}] &= \mathbb{E}[\mathbb{E}(\mathbf{X}_F^{Split} | N_F)] \\
&= \mathbb{E}[N_f \boldsymbol{\pi}_F^{Split}] \\
&= \mathbb{E}[N_f] \boldsymbol{\pi}_F^{Split} \\
&= n \phi_F \boldsymbol{\pi}_F^{Split}
\end{aligned} \tag{Eq. 17}$$

171

172 Similarly, the expectation for composition samples from males replaces the subscript F with M
 173 in equation 17. Deriving the variances in a similar fashion results in the following expression:

$$\begin{aligned}
\mathbb{V}[\mathbf{X}_F^{Split}] &= \mathbb{E}[\mathbb{V}(\mathbf{X}_F^{Split} | N_F)] + \mathbb{V}[\mathbb{E}(\mathbf{X}_F^{Split} | N_F)] \\
&= \mathbb{E}\left[N_F \boldsymbol{\pi}_F^{Split} (1 - \boldsymbol{\pi}_F^{Split}) \left(\frac{N_F + \alpha_{0F}^{Split}}{1 + \alpha_{0F}^{Split}}\right)\right] + \mathbb{V}[\boldsymbol{\pi}_F^{Split} N_F] \\
&= \boldsymbol{\pi}_F^{Split} (1 - \boldsymbol{\pi}_F^{Split}) \mathbb{E}\left[N_F \left(\frac{N_F + \alpha_{0F}^{Split}}{1 + \alpha_{0F}^{Split}}\right)\right] + (\boldsymbol{\pi}_F^{Split})^2 \mathbb{V}[N_F] \\
&= \boldsymbol{\pi}_F^{Split} (1 - \boldsymbol{\pi}_F^{Split}) \left(\frac{1}{1 + \alpha_{0F}^{Split}}\right) \mathbb{E}[N_F^2] + \alpha_{0F}^{Split} \mathbb{E}[N_F] + (\boldsymbol{\pi}_F^{Split})^2 \mathbb{V}[N_F] \\
&= \frac{\boldsymbol{\pi}_F^{Split} (1 - \boldsymbol{\pi}_F^{Split}) n \phi_F (1 - \phi_F)}{1 + \alpha_{0F}^{Split}} + (n \phi_F)^2 + \alpha_{0F}^{Split} n \phi_F + (\boldsymbol{\pi}_F^{Split})^2 n \phi_F (1 - \phi_F)
\end{aligned} \tag{Eq. 18}$$

174

175 In the same way, the variance for male compositions is determined by replacing the subscript F
 176 with M in equation 18.

177 Comparison of Probability Mass Function, Expectation, 178 and Variance (Dirichlet-multinomial)

179 Comparing equations 13 and 16 (PMFs of Dirichlet-multinomial under the ‘Joint’ and ‘Split’
 180 approaches), we find that equation 16 cannot be reduced into the form of equation 13 given the
 181 presence of sex-specific overdispersion parameters (i.e., α_{0F}^{Split} and α_{0M}^{Split}). Despite that, we find
 182 that the derived expected values are consistent between the two approaches, under Dirichlet-
 183 multinomial sampling. To show this, we substitute $\sum_A \boldsymbol{\pi}_F^{Joint}$ for ϕ_F and $\frac{\boldsymbol{\pi}_F^{Joint}}{\sum_A \boldsymbol{\pi}_F^{Joint}}$ for $\boldsymbol{\pi}_F^{Split}$ into
 184 equation 17:

$$\begin{aligned}
\mathbb{E}[\mathbf{X}_F^{Split}] &= n \phi_F \boldsymbol{\pi}_F^{Split} \\
&= n \sum_A \boldsymbol{\pi}_F^{Joint} \frac{\boldsymbol{\pi}_F^{Joint}}{\sum_A \boldsymbol{\pi}_F^{Joint}} \\
&= n \boldsymbol{\pi}_F^{Joint} \\
&= \mathbb{E}[\mathbf{X}_F^{Joint}]
\end{aligned} \tag{Eq. 19}$$

186 While the expected values are identical, the variances between the two approaches differ (cf.
 187 equations 15 and 18). In particular, sampling via the ‘Split’ approach is expected to result in
 188 lower sampling variability because the overdispersion propagates independently within each sex,
 189 when sampling follows a Dirichlet-multinomial process. Note that the variance expression
 190 derived in equation 18 cannot be simplified to align with equation 15. To further verify the
 191 derivations for both approaches under a Dirichlet-multinomial sampling process, 10,000

192 simulations were conducted with $n = 100$, $A = 15$, $\theta = 1$. $\boldsymbol{\pi}^{Joint}$ and $\boldsymbol{\pi}_s^{Split}$ were generated
193 from $Uniform \sim (0,1)$, normalized according to equation 1 and equations 5 and 8, respectively,
194 and \mathbf{X}^{Joint} and \mathbf{X}_s^{Split} were drawn from Dirichlet-multinomial distributions. Consistent with the
195 derivations described above, these simulations indicated that while both approaches yielded
196 similar expected values, the 'Split' approach exhibited lower variability (Fig. 1D and 1E).
197 Further comparison of the empirical cumulative distribution function of Dirichlet-multinomial
198 samples revealed that the two approaches produced different distributional forms (Fig. 1F).

199 Discussion

200 We have mathematically demonstrated that the 'Joint' and 'Split' parameterizations of sex-
201 composition likelihoods yield equivalent model expectations, irrespective of whether
202 compositions arise from a multinomial or Dirichlet-multinomial sampling process. However,
203 under Dirichlet-multinomial sampling, the 'Split' approach produces smaller variances. This
204 occurs because the parameter θ here is assumed to be consistent between sexes, where
205 overdispersion acts independently within each sex and across fewer bins. Conversely, the 'Joint'
206 approach considers overdispersion jointly across sexes and a larger number of bins. Therefore, in
207 extreme scenarios of clustered sampling, the 'Split' approach can produce realized samples of a
208 limited number of ages, but assumes they are distributed more consistently across sexes, whereas
209 the 'Joint' approach may generate samples that favor a particular sex. In theory, estimating sex-
210 specific parameters for θ when utilizing the 'Split' approach, as opposed to assuming a
211 consistent θ among sexes, should enable overdispersion to more closely resemble that of the
212 'Joint' approach. However, this process still does not yield the same distribution, given the
213 introduction of new parameters, and is also a less parsimonious parameterization. Nonetheless,
214 the conclusion that both 'Joint' and 'Split' approaches produce identical model expectations
215 should hold regardless of the multivariate likelihood function used. Additionally, the reduced
216 sampling variability observed when using the 'Split' approach is also expected to apply across
217 various multivariate likelihoods capable of accommodating over-dispersed sampling processes
218 (when over-dispersion parameters are not sex-specific), given that overdispersion acts
219 independently within each sex and across fewer bins.

220 Findings from this proof should also generally hold true regardless of the number of sexes
221 represented in compositional data. For instance, in the New Zealand Rock Lobster (*Jasus*
222 *edwardsii*) stock assessment, where sexes are divided into three categories: immature females,
223 mature females, and males (Rudd et al., 2021), the 'Split' approach is employed to analyze sex-
224 composition data. In this particular case, rather than using a binomial likelihood, the stock
225 assessment first utilizes a multinomial likelihood to first describe the sex ratio among these three
226 categories, followed by three additional multinomial likelihoods to model composition data.
227 Given that the multinomial distribution is a generalization of the binomial, this approach is
228 equivalent to the 'Joint' parameterization under the assumption of multinomial sampling (i.e.,
229 equations 10 and 11 remains consistent for a given bin).

230 Overdispersion when sampling composition data is common in fisheries, because individuals are
231 often clustered in space and time, and likely acts across sizes, ages, and sexes (Pennington and
232 Volstad, 1994), typically reflecting the 'Joint' parameterization. Within the context of integrated
233 stock assessment models, multiple data sources are combined into a single analysis, where model

236 fits to particular data sources are influenced by the relative weighting applied or estimated
237 (Maunder and Piner, 2015; Maunder and Punt, 2013). While both approaches outlined in this
238 study lead to equivalent expectations, the method by which overdispersion is applied to sexes
239 (i.e., ‘Joint’ or ‘Split’) in likelihoods that account for overdispersion may influence the relative
240 weighting of data sources, potentially influencing model fits and resulting parameter estimates.
241 In general, differences in variances between the two approaches were relatively minor (although
242 these differences depend on the number of bins modeled and the specific values of θ) when
243 compared to other sources of uncertainty in the stock assessment process, including survey
244 abundance indices, natural mortality, and recruitment. Consequently, addressing disparities
245 between these two approaches in an integrated assessment model may not be the highest priority.
246 Nonetheless, additional research within the framework of an integrated model is necessary to
247 ascertain the specific effects of this type of model misspecification. Considering that both
248 approaches yield equivalent model expectations, we generally recommend the ‘Joint’ approach
249 for parameterizing sex-composition likelihoods, due to its simplicity, alignment with fisheries
250 sampling designs, along with its ability to account for overdispersion and correlated processes
251 jointly across sexes. However, the ‘Split’ approach may also occur in certain fishery sampling
252 schemes. For example, in cases where sexes can be visually distinguished (i.e., crustaceans),
253 animals might first be separated by sex and then randomly sampled within each sex. Thus,
254 practitioners should also carefully consider whether composition data arises from a ‘Joint’ or
255 ‘Split’ approach.

256 Acknowledgements

257 We are greatly appreciative of Cole Monnahan for his thoughtful comments on an earlier draft
258 that greatly improved the manuscript. We also thank the two anonymous reviewers for their
259 helpful comments, which helped improve the manuscript. MC was supported by the National
260 Science Foundation Graduate Research Fellowship during the time of this study. Findings and
261 conclusions of this study are those of the authors, and do not necessarily represent the views of
262 the National Marine Fisheries Service, NOAA.

263 References

264 Cope, J.M., Hillier, L.K., Niles, C.B., Tsou, T.-S., Hinton, K.E., Caltabellotta, F.P., 2023. Status
265 of Black Rockfish (*Sebastodes melanops*) in 2023 in state and federal waters off
266 Washington state.

267 Francis, R.I.C.C., 2014. Replacing the multinomial in stock assessment models: A first step.
268 *Fisheries Research* 151, 70–84. <https://doi.org/10.1016/j.fishres.2013.12.015>

269 Goethel, D.R., Cheng, M.L.H., Echave, K.B., Marsh, C., Rodgveller, C.J., Shotwell, K., Siwicke,
270 K., 2023. 3. Assessment of the Sablefish Stock in Alaska. *North Pacific Fishery
271 Management Council, Anchorage, AK.*

272 Hulson, P.-J.F., Williams, B.C., 2024. Inclusion of ageing error and growth variability using a
273 bootstrap estimation of age composition and conditional age-at-length input sample size
274 for fisheries stock assessment models. *Fisheries Research* 270, 106894.
275 <https://doi.org/10.1016/j.fishres.2023.106894>

276 Maunder, M.N., Piner, K.R., 2015. Contemporary fisheries stock assessment: many issues still
277 remain. *ICES Journal of Marine Science* 72, 7–18. <https://doi.org/10.1093/icesjms/fsu015>

278 Maunder, M.N., Punt, A.E., 2013. A review of integrated analysis in fisheries stock assessment.
279 *Fisheries Research* 142, 61–74. <https://doi.org/10.1016/j.fishres.2012.07.025>

280 Maunder, M.N., Wong, R.A., 2011. Approaches for estimating natural mortality: Application to
281 summer flounder (*Paralichthys dentatus*) in the U.S. mid-Atlantic. *Fisheries Research*
282 111, 92–99. <https://doi.org/10.1016/j.fishres.2011.06.016>

283 Pennington, M., Volstad, J.H., 1994. Assessing the Effect of Intra-Haul Correlation and Variable
284 Density on Estimates of Population Characteristics from Marine Surveys. *Biometrics* 50,
285 725. <https://doi.org/10.2307/2532786>

286 Rudd, M.B., Pons, M., Roberts, J., Webber, D.N., Starr, P.J., 2021. The 2020 stock assessment of
287 red rock lobsters (*Jasus edwardsii*) in CRA 4. *Fisheries New Zealand, Tini a Tangaroa*,
288 Wellington.

289 Shotwell, S.K., Spies, I., Ianelli, J.N., Aydin, K., Hanselman, D.H., Palsson, W., Siwicke, K.,
290 Sullivan, J., Yasumiishi, E., 2021. 7. Assessment of the Arrowtooth flounder stock in the
291 Gulf of Alaska.

292 Spies, I., Wilderbuer, T.K., Nichol, D.G., Ianelli, J., 2019. Assessment of the Yellowfin Sole
293 Stock in the Bering Sea and Aleutian Islands.

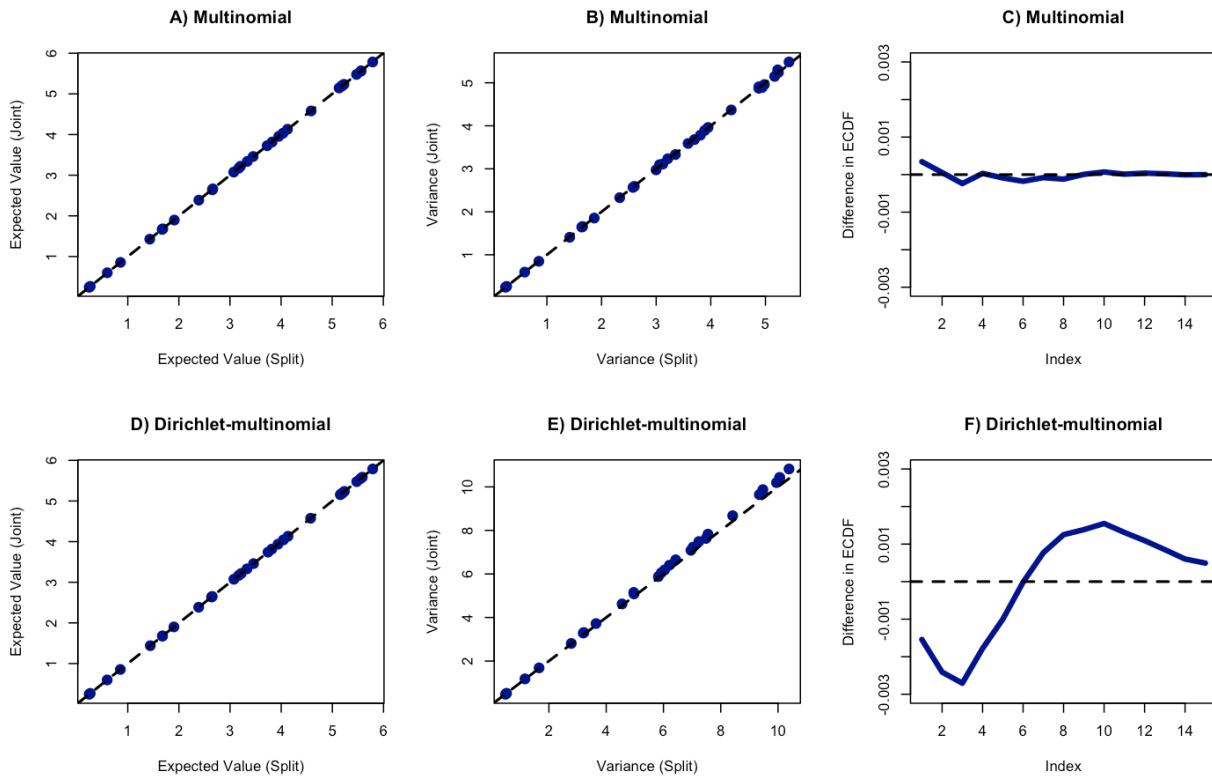
294 Thorson, J.T., Johnson, K.F., Methot, R.D., Taylor, I.G., 2017. Model-based estimates of
295 effective sample size in stock assessment models using the Dirichlet-multinomial
296 distribution. *Fisheries Research* 192, 84–93. <https://doi.org/10.1016/j.fishres.2016.06.005>

297 Wang, S.-P., Sun, C.-L., Punt, A.E., Yeh, S.-Z., 2007. Application of the sex-specific age-
298 structured assessment method for swordfish, *Xiphias gladius*, in the North Pacific Ocean.
299 *Fisheries Research* 84, 282–300. <https://doi.org/10.1016/j.fishres.2006.11.027>

300 Wang, S.-P., Sun, C.-L., Punt, A.E., Yeh, S.-Z., 2005. Evaluation of a sex-specific age-structured
301 assessment method for the swordfish, *Xiphias gladius*, in the North Pacific Ocean.
302 *Fisheries Research* 73, 79–97. <https://doi.org/10.1016/j.fishres.2005.01.001>

303

304



305
306
307
308
309
310
311
312
313
314

Figure 1. Comparison of expected values, variances, and empirical cumulative distribution functions of simulated composition data generated under the ‘Joint’ or ‘Split’ approaches, assuming either multinomial (top row) or Dirichlet-multinomial (bottom row) sampling. Panels in the first and second columns compare expected values and variances between the ‘Joint’ and ‘Split’ approaches, with the dashed sloped line representing a 1:1 relationship. Panels in the third column depict average differences in empirical cumulative distribution functions (‘Split’ minus ‘Joint’), with the dashed horizontal line indicating no difference.