

1 **Title:** Temporal patterns and regional comparisons of recruitment rates of United States fish
2 stocks

3
4 **Running title:** Temporal and regional recruitment

5
6 **Authors:**

7 1. Rachel C. Marshall*

8 rcmarshall@uri.edu

9 University of Rhode Island
10 Graduate School of Oceanography
11 South Ferry Rd.
12 Narragansett, RI 02882
13 USA

14 2. Jeremy S. Collie

15 jcollie@uri.edu

16 University of Rhode Island
17 Graduate School of Oceanography
18 South Ferry Rd.
19 Narragansett, RI 02882
20 USA

21 3. Richard J. Bell

22 rich.bell@tnc.org

23 The Nature Conservancy
24 South Ferry Rd.
25 Narragansett, RI 02882
26 USA

27 4. Paul D. Spencer

28 paul.spencer@noaa.gov

29 NOAA Fisheries
30 Alaska Fisheries Science Center
31 Sand Point Way NE
32 Seattle, WA 98115
33 USA

34 5. Cóilín Minto

35 coilin.minto@atu.ie

36 Marine & Freshwater Research Centre
37 Department of Natural Resources and the Environment
38 Atlantic Technological University
39 Dublin Road
40 Galway H91 T8NW
41 Ireland

42
43 ***Corresponding Author**

46 **Abstract**

47
48 Several previous studies of marine fish stocks have demonstrated time-varying recruitment
49 productivity and indicated that including time-varying parameters can track process variation in
50 recruitment. Few studies have synthesized signal-to-noise ratios and underlying reasons for time-
51 variation across stocks and regions. Using Peterman's Productivity Method (PPM), we provide a
52 broad synthesis of time-varying density-independent productivity in 84 stocks across five regions
53 of the United States. Of all stocks investigated, 50 were found to have time-varying productivity,
54 challenging assumptions on the stationarity of recruitment parameters and dependent reference
55 points. Our results demonstrate the power of PPM for synthesizing the form and pattern of
56 recruitment time-variation among regions, including general summaries of directional change
57 over time. Furthermore, our results show regional differences in time-varying patterns,
58 particularly the signal-to-noise ratio (SNR) of low- to high-frequency variation. The SNR was
59 lower in the California Current region than in two Atlantic regions and two Alaska regions.
60 Generalized linear modeling used to synthesize results suggests that stocks with higher contrast
61 in spawning stock biomass over time, standardized regardless of actual spawning stock size,
62 were more likely to have time-varying productivity than stocks with low contrast. The likelihood
63 of time-variation in productivity of a given stock was also found to be closely related to the
64 autocorrelation of the recruitment time series. Such inter-regional and inter-stock comparisons of
65 variation are vital in understanding the roles of local and global environmental change on fish
66 productivity.

67

68 **Keywords**

69

70 Dynamic linear model, Kalman filter, Peterman Productivity Method, Ricker model, Stock-
71 recruit model, Time-varying recruitment

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86 **Table of Contents**

87

88 1. Introduction

89 2. Methods

90 2.1. Stock assessment time series

91 2.2. Dynamic Ricker model

92 2.3. Impact of embedded stock-recruitment model in stock assessment

93 2.4. Factors influencing the probability of time-variation

94 2.5. Quantifying temporal patterns in productivity

95 3. Results

96 3.1. Impact of embedded stock-recruitment model in stock assessment

97 3.2. Dynamic Ricker model

98 3.3. Factors influencing the probability of time-variation

99 3.4. Temporal patterns in productivity

100 4. Discussion

101 5. Acknowledgements

102 6. Data Availability Statement

103 7. Conflict of Interest Statement

104 8. References

105 9. Tables

106 10. Figure Captions

126 **1. Introduction**

127

128 Commercial fisheries are an economically important industry globally, in the United
129 States alone supporting 1.7 million jobs and generating over \$250 billion USD in sales in 2020
130 (NMFS, 2022). To support and maintain such a valuable industry, it is important for fisheries
131 scientists and managers to understand the capacity of fish stocks to reproduce and replenish the
132 populations while subject to fishing pressure and other stressors (Hilborn and Walters, 2013).
133 Understanding the temporal behavior of fish stock dynamics and improving the statistical models
134 that inform fisheries management is necessary, especially in the face of local and global
135 environmental change.

136 Recruitment is the largest source of variability in marine fish stocks (Sissenwine, 1974),
137 and thus understanding recruitment is essential to understanding stock dynamics. Stock-
138 recruitment models explore the relationship between the spawning output of the fish stock and
139 the number of recruits. Age-structured stock assessment models use the numbers-at-age from
140 scientific surveys and fisheries landings in combination with age-specific parameters such as
141 growth, selectivity, and maturity, to estimate the fish population size, spawning output, and
142 recruitment. A stock-recruitment function is then needed to close the life cycle in order to project
143 stock size as a function of fishing pressure. The recruitment model may be simply deviations
144 from the mean, a segmented linear model (Barrowman and Myers, 2000), or one of the classic
145 stock-recruitment models (Beverton and Holt, 1957; Ricker, 1954). Productivity, the capacity of
146 fish stocks to increase their abundance and biomass is one of the parameters in stock-recruitment
147 functions. We focus on the portion of this capacity attributable to reproduction, and define
148 productivity as the density-independent expected number of recruits from an individual spawner
149 or unit spawning biomass. Stock assessment models are frequently run with the assumption that
150 productivity is constant, regardless of varying conditions over time. However, research has
151 increasingly demonstrated that for many stocks, this may not be the case (Peterman et al., 2003;
152 Collie et al., 2012; Minto et al., 2014; Szuwalski et al., 2015; Stock and Miller, 2021). The
153 consequences of incorrectly assuming stationary recruitment productivity may be detrimental to
154 the stock. For example, in cases where productivity has declined over time, assuming an average
155 productivity value overestimates recruitment, resulting in biological reference points and
156 expected yields too high to achieve (Tableau et al., 2019; Collie et al., 2021).

157 Recognizing time-varying recruitment productivity is important for setting biomass and
158 fishing mortality reference points, catch quotas, rebuilding targets, and other management
159 actions. A dynamic Ricker model fit with a Kalman filter has been used to investigate time-
160 varying productivity for a number of stocks in Canada (Peterman et al., 2003), the United States
161 (Tableau et al., 2019; Bell et al., 2023), other areas of the north Atlantic (Minto et al., 2014;
162 Silvar-Viladomiu et al., 2023) and worldwide (Britten et al., 2016). The Kalman filter is a linear,
163 state-space model that extracts the underlying signal in variable time series data by filtering
164 observations at each time step based on the prediction from the previous time steps, error
165 variances, and the new observation. The Kalman smoother provides smoothed predictions based

166 on both past and future time steps. Using a Kalman filter for stock-recruitment data has been
167 demonstrated to improve predictions of recruitment and calculation of fisheries reference points
168 (Tableau et al., 2019; Collie et al., 2021). In recognition of the seminal contributions of Prof.
169 Randall Peterman and team in developing and applying this method of stock-recruitment
170 analysis, Silvar-Viladomiu et al. (2022) named the time-varying recruitment parameter method
171 “Peterman’s Productivity Method” (PPM).

172 In the present study, we apply the dynamic Ricker model with the Kalman filter to stock
173 assessment time series from stocks with age-structured assessments in five regions on the
174 Atlantic and Pacific coasts of the United States to identify stocks with time-varying productivity.
175 Several stocks in New England, the Mid-Atlantic (Tableau et al., 2019), and the California
176 Current (Bell et al., 2023) have been studied previously. Tableau et al. (2019) and Bell et al.
177 (2023) suggest that the Atlantic stocks are likely to have time-varying productivity, and the
178 California stocks are more often time-invariant, possibly due to oceanographic differences on
179 opposite coasts. We expand on previous research by analyzing all regions together and extending
180 the range of study to include, in addition to the Atlantic and California regions, stocks off of
181 Alaska. Notably, by investigating five regions in a single study, we will be able to (1) explore
182 regional and stock-specific differences in temporal patterns of productivity previously
183 unreported, (2) make regional comparisons on productivity time-variation and the ratio of
184 process error to observation error, and (3) evaluate explanatory factors for time-varying vs. time-
185 invariant productivity. By pinpointing whether productivity changes are occurring pre- or post-
186 recruitment, these analyses will help target management interventions to the appropriate stage of
187 the life cycle.

188

189 **2. Methods**

190

191 *2.1 Stock assessment time series*

192

193 Commercial fish stocks with age-structured assessments were candidates for analysis
194 with the dynamic Ricker model. Time series of spawning stock size (in units of kt spawning
195 stock biomass or number of eggs/larvae depending on the stock) and recruitment (numbers at age
196 of recruitment) were compiled directly from publicly available stock assessment reports and
197 supporting material. In a few cases for which time series were not published with the stock
198 assessment reports, the time series were acquired following personal communication with the
199 stock assessment scientists. Effort was made to compile the longest time series possible for each
200 stock for as long as age-structured assessments were conducted. Spawning stock and recruitment
201 information from years before length or age data were available were not included in the present
202 study. Eighty-five time series were compiled in this way, for 84 stocks (Table 1a-e). In cases
203 where multiple models were reported in stock assessments, the author-preferred model was used.
204 Pacific halibut is assessed and managed with an ensemble of multiple assessment models, with
205 no author-preferred model as in other stock assessments with multiple possible models. Time

206 series from two of the Pacific halibut models were included in the present study, Coast-wide
207 Short and Areas-As-Fleet Short (Stewart and Hicks, 2022), to compare results between time
208 series for Pacific halibut and test if both time series accounted for the same underlying qualities
209 of productivity in the Pacific halibut stock (Table 1d). Pacific halibut was grouped with other
210 stocks in the Gulf of Alaska region.

211

212 *2.2 Dynamic Ricker model*

213

214 A dynamic Ricker stock-recruitment model estimated with the state-space Kalman filter,
215 was applied to all the compiled stock assessment time series following Peterman's Productivity
216 Method. Early applications of this method by Peterman et al. (2003) and Dorner et al. (2008)
217 used a single-stock approach and compared the Kalman-smoothed single-stock results post-
218 modeling. In the present study, following more recent applications of PPM (e.g. Minto et al.,
219 2014; Tableau et al., 2019; Bell et al., 2023), stocks in each region were fit simultaneously in a
220 multi-stock model format. Within the multi-stock format, the equations in the state-space model
221 for each individual stock include the linearized Ricker model of observations (Eq. 1), where R is
222 the recruitment (numbers of recruits), and S is the spawning stock size (by kt weight of spawners
223 or numbers of eggs/larvae, depending on the stock); when spawning stock was in units of
224 eggs/larvae, the value was converted to millions to keep the magnitude of productivity on
225 approximately the same scale for all the stocks.

226

$$227 \log_e \left(\frac{R_{t+r}}{S_t} \right) = a_t - bS_t + v_t \quad v_t \sim N(0, \sigma_v^2) \quad Eq. 1$$

228

229 Both R and S are time-dependent (subscript t), and r is the lag between when a fish is spawned
230 and when it reaches age at recruitment. Productivity is defined here as the density-independent
231 coefficient a in units of $\ln(R/S)$, and b is a constant density-dependent coefficient. Productivity
232 (a) is allowed to be time-dependent and modeled with a random walk (Eq. 2).

233

$$234 a_{t+1} = a_t + w_t \quad w_t \sim N(0, \sigma_w^2) \quad Eq. 2$$

235

236 Previous studies performing similar analyses have also tested allowing the density-
237 dependent mortality b term in Eq. 1 to vary with time instead of and in addition to time-varying a
238 (Britten et al., 2016; Szuwalski et al., 2019; Silvar-Viladomiu et al., 2023). Researchers found
239 that it was often difficult to tell whether variability in recruitment was associated with
240 productivity (a) or density-dependent mortality (b), and the patterns of variation were similar,
241 simply attributed to whichever parameter was allowed to vary in the given model (Szuwalski et
242 al., 2019; Silvar-Viladomiu et al., 2023). Britten et al. (2016) reported results that combined the
243 effects of a and b , but their supplementary figures (Appendix 1) suggest that variability in
244 recruitment was applied either to a or b and not a combination of both. Likewise, in other
245 studies, models with time-varying a and b were rarely statistically better than models with only

246 one time-varying parameter (Szuwalski et al., 2019). Previous studies (Silvar-Viladomiu et al.,
247 2023), and preliminary fits in the present study found more support for models with time-varying
248 a than b . We therefore chose to focus only on time-varying productivity (a) such that variation in
249 density-independent productivity impacts recruitment at all spawning stock sizes, contrary to
250 density-dependent recruit mortality, which has an impact that increases at high recruitment
251 densities expected with higher spawning stock biomass (Peterman et al., 2000).

252 Equations 1 and 2 are the observation and state equations of the state-space models and
253 each have an error term. In the linearized Ricker stock-recruitment model, “ v ” accounts for
254 observation error (or high-frequency true variability that does not propagate), and in the
255 productivity random walk, “ w ” accounts for the process error, or the signal in the recruitment
256 variability that is accounted for by the variation in the productivity time series. The variances of
257 these error terms are defined as σ_v^2 and σ_w^2 . The ratio of the standard deviation of the process
258 errors to the standard deviation of the measurement errors (σ_v/σ_w) is the signal-to-noise ratio
259 (SNR).

260 Simulation studies conducted as part of previous studies have confirmed the ability to
261 estimate productivity from data simulated with realistic levels of variance (A. Tableau,
262 unpublished data). However, it is challenging to estimate both the process-error (σ_w^2) and
263 observation-error variances (σ_v^2) with the length of time series typically available for fish stocks.
264 To avoid cases in which the Kalman filter resulted in all the variance being assigned to either
265 noise or signal, as opposed to a mixture of the two, we generated more appropriate SNRs by
266 simultaneously modeling all stocks in a given region. Within the multi-stock framework, the
267 individual stock time series were constrained by the regional SNR parameter optimized and
268 estimated in the model, following success of previous research using similar regional
269 assumptions (Tableau et al., 2019; Bell et al., 2023). The SNR may be influenced by other
270 factors besides region, such as stock size, life-history characteristics, or finer-scale
271 environmental factors. However, the assumption that a regional SNR was appropriate for the
272 present study was accepted because of the success of the method in previous studies, and because
273 stocks in a given region are expected to be subject to similar large-scale environmental or
274 anthropogenic conditions that affect variability in productivity, as well as similar fisheries
275 dependent and independent data collection. For example, most of the stocks in each region are
276 demersal, occupying similar habitat, captured within similar fisheries, and surveyed with similar
277 methods. Importantly, by estimating region-specific SNRs we can compare this summary
278 parameter across regions.

279 In addition to the time-varying productivity model, each stock-recruitment dataset was
280 also modeled with a standard Ricker model with time-invariant productivity. The results of this
281 time-invariant productivity model were compared to those of the time-varying productivity
282 model for each stock, and model selection determined which interpretation of the time series of
283 productivity was more appropriate for each stock. A diagnostic comparison between time-
284 invariant productivity values and mean time-varying productivity values was run by plotting the

285 values against each other on top of a 1:1 line to see whether the time-varying model, constrained
286 by the regional SNR, was producing reasonable estimates relative to the time-invariant model.

287 Model selection consisted of a likelihood ratio test comparing the time-varying and the
288 time-invariant models. The likelihood ratio has a χ^2 distribution with one degree of freedom to
289 account for the addition of the process-error variance in the time-varying model. A p-value <
290 0.05 was interpreted as evidence that the time-varying model fit better for the given stock. The
291 time-invariant model was selected in all other cases.

292 Bell et al. (2023) tested whether the time-varying productivity time series would be
293 different if estimated with a dynamic Ricker model or a dynamic Beverton-Holt model, and the
294 analysis found that while the magnitude of the estimates could be different, the pattern of the
295 time-varying productivity time-series was the same for both stock-recruitment functions.
296 Because the present study is only focused on the patterns in the productivity, only the Ricker
297 model was used. The analyses were performed using R statistical analysis software (v4.2.3, R
298 Core Team, 2023) and the “dlm” package (Petris et al., 2009; Petris, 2010).

300 *2.3 Impact of embedded stock-recruitment model in stock assessment*

302 The stock assessment models used to generate the spawning stock and recruitment time
303 series used in the present study estimate recruitment as deviations from the long-term average or
304 as deviations from a stock-recruitment model. Often the stock-recruitment function provides
305 initial estimates of recruitment that are then adjusted to the length and age data in the catch and
306 survey observational time-series. Provided that the standard deviation of recruits (sometimes
307 termed σ_r) is large enough, the final estimates of recruitment are unconstrained by the stock-
308 recruitment relationship within the stock assessment model.

309 Small values of σ_r in the stock assessment model constrain the recruitment deviations to
310 be very similar to predicted recruitment values from the stock-recruitment model. As the values
311 of σ_r increase, the recruitment deviations become less and less constrained by the underlying
312 stock-recruitment model. Therefore, σ_r could impact the estimated recruitment, and the time-
313 varying productivity time-series estimates from the dynamic Ricker model used in the present
314 study (described above). To test this potential effect using one data-rich example, the stock
315 assessment model for eastern Bering Sea walleye pollock, for which estimated recruitment is
316 influenced by deviations from a mean level of recruitment as well as deviations from an
317 embedded Ricker stock-recruitment model, was run with several different σ_r values (0.2 to 1.8).
318 Typical σ_r values in the stock assessments investigated in the present study were between 0.4 and
319 1.0, with a mean value of about 0.6. The output time series of these tests were modeled with the
320 dynamic Ricker stock-recruitment model, and the output productivity estimates were compared
321 to see if changing σ_r in the stock assessment model had a strong impact on the estimates of
322 productivity from the dynamic Ricker model, which would indicate how strongly the variability
323 in estimated recruitment is constrained with assessment assumptions.

325 2.4 Factors influencing the probability of time-variation

326

327 To test which factors might make a stock more or less likely to be time-varying, we
 328 compared the stocks that were selected as having time-varying productivity to those that were
 329 selected as having time-invariant productivity using a biased-reduced generalized linear model
 330 (GLM) with a binomial error distribution implemented in the “brglm2” package in R (Kosmidis,
 331 2023). A biased reduced GLM was used because some combinations of explanatory factors
 332 resulted in complete separation of the binary response (Firth, 1993). Possible explanatory
 333 variables influencing the probability that productivity was time-varying (Eq. 3) included
 334 taxonomic order, total variance calculated from the time-varying model, three summaries of
 335 current exploitation status in terms of fishing mortality (F/F_{msy}) and spawning stock size
 336 (S/SSB_{msy}) and the proportion of the entire time series that was overfished (PropOF; i.e. SSB
 337 was lower than SSB_{msy} , detailed below), an estimate of contrast in the spawning stock time series
 338 (detailed below), the length (i.e. number of years of data) of the time series (YOD), and age at
 339 maturity. Support for models with all possible combinations of covariates was compared with the
 340 Akaike information criterion (AIC) (Akaike, 1974).

341

$$342 \quad y_i \sim Bin(n = 1, p_i) \quad Eq. \ 3 \\ 343 \quad logit(p_i) = \alpha + Order_i + \beta_1 TotalVar_i + \beta_2 (F/F_{msy})_i + \beta_3 (SSB/SSB_{msy})_i + \beta_4 PropOF_i \\ 344 \quad + \beta_5 Contrast_i + \beta_6 YOD_i + \beta_7 MatAge_i$$

345

346 Exploitation was summarized in three ways. First, current overfishing status was
 347 summarized as the ratio of the estimate of fishing mortality or exploitation rate (depending on
 348 the stock) in the terminal year of the stock assessment relative to the reference point (e.g. F_{msy}
 349 and proxy values), as reported in the stock assessment to determine overfishing status. Second,
 350 current overfished status was summarized as the ratio of the estimate of SSB or spawning output
 351 (depending on the stock) in the terminal year of the stock assessment relative to the reference
 352 point in comparable units (e.g. SSB_{msy} and proxy values), as reported in the stock assessment to
 353 determine overfished status. Measures of terminal year overfished and overfishing status were
 354 included to test whether current status could be used as a convenient indicator to fisheries
 355 scientists and managers of likely time-variance in a given stock. Third, the proportion of the
 356 time-series overfished was summarized as the proportion of the spawning stock time series
 357 reported in the stock assessment used (Table 1a-e) that had stock sizes below the reference point
 358 in comparable units reported in the same stock assessment to determine overfished status. Ratios,
 359 as opposed to the reference points directly, were used in an attempt to standardize the summaries
 360 of exploitation across different stock assessment conventions in different regions.

361 Contrast in the spawning stock data was calculated as another summary of stock history
 362 following methods by Rindorf et al. (2022). Contrast summarizes the spread of the spawning
 363 stock data, standardized across all stocks. The contrast term encompasses whether or not the
 364 stock ever reached particularly low or high spawning stock sizes. High contrast means that the

365 stock has experienced a full range of spawning stock sizes. As a covariate in the GLM, contrast
366 was calculated using 90th percentiles and 10th percentiles of the spawning stock time series data
367 for each stock (Eq. 4).

368

369
$$\text{Contrast} = \log_e \left(\frac{S90\%}{S10\%} \right) \quad \text{Eq. 4}$$

370

371 *2.5 Quantifying temporal patterns in productivity*

372

373 We used a weighted linear regression to quantify patterns of directional change in the
374 productivity time series that were selected as time-varying. We conducted weighted linear
375 regressions of the productivity full time series, and then repeated the method on the last ten years
376 and the last five years to indicate recent trends in productivity to compare to the overall time
377 series. Weights were equal to the inverse of the variance on each α estimate ($1/\sigma_\alpha^2$). If regression
378 coefficients were significant ($p < 0.05$), the sign of the coefficient was used to indicate whether
379 the productivity had increased or decreased over the given time interval.

380 Additionally, the mean and standard deviation of the normal distribution of the difference
381 in estimated productivity between the beginning and the end of each stock time series were also
382 used to estimate the change in productivity (Eq. 5).

383

384
$$\text{Difference} \sim N(\mu, \sigma^2) \quad \mu = \mu_{\text{end}} - \mu_{\text{start}} \quad \sigma = \sqrt{\sigma_{\text{end}}^2 + \sigma_{\text{start}}^2} \quad \text{Eq. 5}$$

385

386 If $\geq 80\%$ of the joint distribution was > 0 , i.e. the difference was positive between the
387 current (with regard to the stock assessment used in the present study) productivity and the
388 productivity at the start of the time series; this indicated that the productivity is currently higher
389 than at the start of the time series. Conversely, if $\leq 20\%$ of the distribution was > 0 , this indicated
390 that the productivity is currently lower. If $< 80\%$ but $> 20\%$ of the distribution was > 0 , it was
391 determined that there was no clear positive or negative change in productivity since the
392 beginning of the time series. We performed the same method on the last five years and the last
393 ten years of the timeseries.

394

395 **3. Results**

396

397 The dynamic Ricker stock-recruitment model with the Kalman filter was applied to 85
398 stock-recruitment time series of US commercial fish stocks with age-structured stock
399 assessments from five regions (Table 1a-e).

400

401 *3.1 Impact of embedded stock-recruitment model in stock assessment*

402

403 The temporal pattern of the productivity parameter estimated from assessment estimates
404 of stock and recruitment were similar across various values of σ_r in the assessment for eastern

405 Bering Sea walleye pollock. At some time points, the scale of the productivity parameter
406 changed slightly at lower values of σ_r , but the time series remained largely unchanged (Figure 1).
407 These results indicated that even at the lower end of σ_r values at which the recruitment deviations
408 are more constrained, information from the length and age data are informing the temporal
409 pattern of estimates of recruitments, and patterns of time-varying productivity could be extracted
410 with a dynamic Ricker stock-recruitment model applied to stock assessment output with a range
411 of σ_r values, ranging both smaller and greater than the 1.0 σ_r value used in the eastern Bering Sea
412 pollock stock assessment.

413

414 *3.2 Dynamic Ricker model*

415

416 The time-invariant productivity values and mean time-varying values of productivity
417 were well correlated (Figure 2a), as were the estimates of the density-dependence term (Figure
418 2b). The time-invariant model is estimating a value of productivity and density dependence
419 comparable to the average productivity and constant density dependence from the time-varying
420 model, such that by constraining the dynamic Ricker model with a regional SNR, we are not
421 introducing unforeseen bias into the model estimates that would affect how productivity was
422 interpreted for further stock assessment and management, e.g. calculating biological reference
423 points.

424 The multi-stock models yielded unique SNRs for each region (Figure 3), which
425 constrained the single-stock model outputs for each region: 0.799 (New England), 0.762 (Mid-
426 Atlantic), 0.396 (California Current), 0.790 (Gulf of Alaska), and 0.957 (eastern Bering
427 Sea/Aleutian Islands). When compared to the standard Ricker model with time-invariant
428 productivity, the dynamic model with time-varying productivity was selected by the likelihood
429 ratio test for 50 stocks, and the time-invariant model was selected for 34 stocks (35 time series
430 including both Pacific halibut time series). By region, New England had 11 (85%) time-varying
431 and 2 time-invariant stocks, the Mid-Atlantic had 10 (71%) time-varying and 4 time-invariant
432 stocks, the California Current had 15 (48%) time-varying and 16 time-invariant stocks, the Gulf
433 of Alaska had 6 (50%) time-varying and 6 time-invariant stocks (7 time-invariant time series
434 including both Pacific halibut time series), and the eastern Bering Sea/Aleutian Islands had 8
435 (57%) time-varying and 6 time-invariant stocks (Table 1a-e). Stock-recruitment relationships for
436 all stocks are shown in Supplementary Figures S1a-e.

437 Recruitment autocorrelation, calculated for each stock time series, indicated that time
438 series that were selected for time-varying productivity more often than not had higher
439 autocorrelation than those that were time-invariant (Figure 4).

440

441 *3.3 Factors influencing the probability of time-variation*

442

443 Using only complete cases (i.e. removing two stocks for which there were no estimates of
444 F/F_{msy} or SSB/SSB_{msy}), the full biased-reduced GLM model with all predictors, and all possible

445 combination models were investigated for GLM model selection. Whether a stock's productivity
446 was time-varying or time-invariant was best explained by any of nine possible GLMs (Table 2)
447 with AIC values within two units of the lowest AIC model (Burnham and Anderson, 2002). The
448 only significant covariate was contrast in two of the ten models, such that stocks with higher
449 contrast in the spawning stock time series were significantly more likely ($p < 0.05$) to have time-
450 varying productivity than stocks with lower contrast (Figure 5). Investigating all combinations of
451 covariates, contrast was significant in 5 models, including the two models within two AIC units
452 of the lowest AIC value.

453

454 *3.4 Temporal patterns in productivity*

455

456 Time series of productivity estimated by the time-varying and time-invariant models are
457 shown for all stocks in Supplementary Figures S2a-e, and a selection of stocks are highlighted in
458 Figure 6. Patterns of productivity varied widely between stocks, but there were some recurring
459 patterns that were observed, such as positive (e.g. Atlantic mackerel) and negative (e.g. SNE
460 yellowtail flounder, DMV tautog), or cyclical frequency (e.g. decadal GOM haddock) trends
461 with time (Figure 6). For comparison, time series of spawning stock size and recruitment used in
462 the present study from the stock assessments are shown in Supplementary Figures S3a-e.

463 Weighted regression applied to the productivity time series summarized well the trends in
464 productivity that mirrored the observable temporal patterns in the time series (Figure 6). Some
465 stocks appear to have decreased productivity at the end of the time series relative to the
466 beginning, although a decreasing trend only persisted through recent years for a few stocks,
467 particularly in the Mid-Atlantic and Gulf of Alaska (Figure 7). There were overall fewer cases of
468 increasing trends in productivity across the entire time series, but there were some increases in
469 more recent years across most regions (Figure 7). However, some stocks with time-varying
470 productivity did not show any distinct positive or negative trend in the productivity over the
471 whole time series, or in the most recent years (Figure 7).

472 Sometimes a stock (e.g. Figure 6, CC dover sole) showed no distinct change in
473 productivity across the time series or in recent years, and the productivity time series appears to
474 have low temporal variation, but the time-varying model was still selected as the best model for
475 the stock. Such cases suggest low-amplitude variability such that allowing productivity to vary
476 with time still improves the model fit, even though the confidence interval is wide.

477 Comparing the productivity estimates at the end of the time series to the beginning, or to
478 the past five or ten years, using the analytical approach with mean and variance of the joint
479 distribution also suggested some patterns of change in productivity, but the results were not as
480 easily interpretable as those from the weighted linear regression. Results from this analytical
481 comparison are presented in Supplementary Figure S4.

482

483 **4. Discussion**

484

485 We analyzed time-variation in recruitment rates of 84 stocks from five regions around the
486 United States. Consistent with previously reported results, our results demonstrate that applying
487 the Kalman filter to the linearized Ricker stock-recruitment model is an effective way to
488 determine time-variation in productivity, a parameter typically modeled as time-invariant. A test
489 case of eastern Bering Sea walleye pollock (*Gadus chalcogrammus*) indicated that time-variation
490 in productivity was insensitive to assumptions made about recruitment in the stock assessment
491 model. This result held true, even with a stock-recruitment model embedded in the assessment
492 model that output the time series, because the estimates of recruitment were largely
493 unconstrained by the internal stock-recruitment relationship. For data-rich stocks such as eastern
494 Bering Sea walleye pollock, this result reflects that recruitment estimates are largely determined
495 from informative age and length composition data rather than the stock-recruitment relationship.
496 It is important to note that while changing the standard deviation of recruitment (σ_r) in the stock
497 assessment model did not change the temporal pattern of productivity, changing σ_r can alter the
498 scale of recruitment and SSB estimates, which would result in different values of MSY-based
499 reference points calculated from parameters in the stock-recruitment model. However, in our test
500 case, the magnitude of productivity was not strongly impacted by changing the underlying
501 Ricker model over a range of σ_r values.

502 We used a likelihood-ratio test to classify stocks as time-varying or time-invariant. Our
503 results highlight regional differences in the percentage of time-varying stocks in a region, and in
504 the relative extent to which the signal from time-varying productivity is influencing recruitment
505 variability (i.e. the SNRs). A higher percentage of both the New England and Mid-Atlantic
506 stocks had time-varying productivity than the west coast and Alaska stocks, which may be a
507 result of less risk-averse management strategies in the Atlantic relative to the Pacific, or of
508 different Pacific region climate drivers relative to the Atlantic. Similarly, the SNR value for
509 California Current was lower than that of the other four regions, suggesting that the low-
510 frequency productivity signal was less important in the California Current ecosystem. This
511 difference could occur, either because total variability was lower than in other regions, or
512 because the process variability was high frequency, which may suggest differences in the
513 environmental drivers in the northeast Pacific and northwest Atlantic Oceans. The California
514 Current has not experienced the same long-term rate of warming compared to the Atlantic (Lima
515 and Wethey, 2012), which may be associated with less time-variance in productivity. Also, Bell
516 et al. (2023) suggested that the productivity of species in the California Current may be less
517 influenced by large-scale environmental processes such as El Nino because the species have
518 evolved to live under these types of changing conditions.

519 Additionally, we note that time-varying stocks generally had higher autocorrelation in
520 their recruitment than time-invariant stocks. This simple diagnostic helps to distinguish stocks
521 with high frequency or low frequency dynamics, and suggests that they may be subject to
522 different frequencies of environmental forcing.

523 The estimation of the dynamic Ricker model and the use of regionally constant SNRs is
524 intended to identify time series behavior apart from high-frequency patterns. In practice,

525 however, the estimates of recruitment and stock size from assessments are not data and have
526 estimation variances that are expected to be larger in the most recent years (Brooks and Deroba,
527 2015). In theory, the time series of estimated variances of recruits and stock size could be used as
528 a minimal estimate of observation error (v_t), although this is complicated by the response
529 variable being a ratio of two random variables. While we expect estimates of general patterns of
530 productivity over the time series to be generally robust, interpretation of the productivity
531 parameter in the last five to ten years of each time series should recognize higher observation
532 variances in recent years. Thus, we consider our methodology for describing temporal patterns of
533 productivity over various time spans appropriate as a descriptive procedure to summarize general
534 patterns in the time-varying productivity time series.

535 Of the 85 time series, 50 were selected as having time-varying productivity. Similar to
536 the results reported by Britten et al. (2016), Tableau et al. (2019), and Bell et al. (2023), the
537 Atlantic stocks were more likely to have time-varying productivity than the Pacific stocks.
538 Generalized linear modelling indicated that time-varying productivity was more prevalent among
539 stocks with higher contrast in the spawning stock time series. Stocks that, over the course of the
540 time series, had experienced a full range of stock sizes, both high and low relative to the median,
541 likely allowed better parametrization of the time-varying model because they had data at both the
542 origin and the compensation maximum ends of the Ricker curve. From a stock assessment
543 perspective, stocks with higher contrast are more likely to have estimable time-varying
544 parameters that differ from the time-invariant parameters. Alternatively, stocks with low contrast
545 may not be well fit with a Ricker model, in which case the time-varying model would not
546 improve on the time-invariant model. Low spawning stock sizes may result from a combination
547 of environmental and anthropogenic conditions, including overfishing. Stocks with low contrast
548 in the present study often did not have low spawning stock sizes. Such low-contrast stocks may
549 have been subject to different exploitation history that did not lead to extensive overfishing or
550 stock crashes, which may reflect the management history of regional management councils.
551 Stocks from the Pacific regions also had less contrast than stocks from the Atlantic regions.
552 Because the time-varying vs. time-invariant stocks in the Pacific regions were not defined by a
553 particular taxonomic or community group, this result suggests that a history of management in
554 the Pacific that has kept stocks from dropping to low spawning stock sizes may play a role in the
555 temporal variability of productivity in these stocks (Bell et al., 2023).

556 Time series length was not a significant covariate in the GLM analysis explaining which
557 stocks were time-varying. Shorter time series, such as the 29-year time series of DE/MD/VA
558 tautog (*Tautoga onitis*) in the Mid-Atlantic (Figure 6), could still be selected as time-varying if
559 the variation in productivity was strong enough. However, time series lengths in the present
560 study ranged from 15 to 90 years (median 43), and sensitivity analysis of those selected as time-
561 varying indicated that when the time series were shortened, either from the beginning or the end,
562 the shorter time series were more likely to be time-invariant than the time series that were longer.
563 While the stock with the longest time series (Georges Bank haddock, *Melanogrammus*
564 *aeglefinus*) had time-invariant productivity, it is still possible that in the future, as time series get

565 longer, it will become more necessary to account for time-variation, even for stocks that appear
566 time-invariant at present. Additionally, there is certainly room for uncertainty in model selection
567 for stocks that may be borderline, or have wide confidence intervals. An example of this is dover
568 sole (*Microstomus pacificus*), which was selected as having time-varying productivity, although
569 the magnitude of the variation was low (Figure 6).

570 Of the 50 commercial fish stocks that were selected as having time-varying productivity,
571 the estimated productivity time series displayed a range of stock-specific patterns that may not be
572 accounted for in current model projections and calculation of biological reference points.
573 Consistent with previous studies, stocks from the northwest Atlantic were much more likely to
574 have declined in productivity over time compared to the Pacific stocks, which had much more
575 neutral productivity trends, even for the stocks for which productivity was time-varying (Britten
576 et al., 2016; Tableau et al., 2019; Bell et al., 2023).

577 For stocks with positive productivity trends, future recruitment may be underestimated
578 under an assumed average productivity model. The time series of productivity for Atlantic
579 mackerel (*Scomber scombrus*) has an observably positive trend in productivity (Figure 6) that is
580 significant according to weighted regression analysis (Figure 7). Despite the apparent increase in
581 productivity with time, i.e. number of recruits per unit spawning biomass, both spawning stock
582 size and recruitment appear to have decreased (NEFSC, 2021), suggesting that recruitment
583 productivity alone is not enough to compensate for other factors involved in the decrease of
584 stock size. Pre-recruit survival may be successful (i.e. increased productivity), while subsequent
585 limits to survival occur post-recruitment, such as limited prey availability. Another notable case
586 of productivity increase is Gulf of Maine haddock (*Melanogrammus aeglefinus*), which appears
587 to follow a decadal trend (Figure 6) that is not clearly reflected in the recruitment time series
588 (NEFSC, 2022a). On the other hand, sablefish (*Anoplopoma fimbria*) productivity did not
589 increase over the entire time series, but did increase in recent years (Figures 6 and 7), which is
590 consistent with recent increases in recruitment (Goethel et al., 2021). Tolimieri and Haltuch
591 (2023) linked sablefish recruitment to sea level, and their model performed well even for recent
592 years with increased recruitment.

593 A more worrying productivity pattern is one for which productivity is decreasing with
594 time, because in this case, assuming an average productivity would result in overestimates of
595 future recruitment and subsequently reference points and harvest regulations too high to maintain
596 the stock under current, lower productivity conditions (Tableau et al., 2019). Southern New
597 England yellowtail flounder (*Limanda ferruginea*) had a comparatively steep declining trend in
598 productivity for most years except for a sharp increase in recent years (Figure 6). SNE yellowtail
599 flounder recruitment has also been linked to the Cold Pool Index in the region (Stock and Miller,
600 2021; du Pontavice et al., 2022), and methods are being explored to incorporate this climate
601 variable into the stock assessment (NEFSC, 2022b). Recruitment of other stocks have also been
602 linked to regional climate variables (e.g. winter flounder, Bell et al., 2014, 2018), and
603 incorporating these climate correlates into stock assessment models is one way to account for
604 underlying time-variation in productivity in stock assessments (Stock and Miller, 2021; Tolimieri

605 and Haltuch, 2023). However, further study at the individual stock level is necessary to
606 understand what environmental factors may be influencing the productivity of each stock, and
607 the best method for incorporating these factors into assessment and management.

608 Stocks for which the time-invariant productivity model was selected often had time series
609 of spawning stock size and recruitment that were also fairly stable with time. For example, the
610 time-invariant model was selected for walleye pollock in the eastern Bering Sea (Figure 6),
611 although research has suggested that recruitment was affected by regime shifts in 1977 and 1989
612 (Benson and Trites, 2002). Further research linked recruitment to temperature, with warmer
613 springs being favorable for survival of age-0 EBS walleye pollock to summer, but warm
614 temperatures in late summer and fall reducing zooplankton prey, overwinter survival, and
615 subsequent age-1 recruitment (Hunt et al., 2011; Mueter et al., 2011; Spencer et al., 2016).
616 However, while the spawning stock size and recruitment of EBS walleye pollock has been
617 variable, it has not apparently experienced long-term trends over time (Ianelli et al., 2021), which
618 is consistent with the behavior observed in the productivity time series in the present study.

619 Alternatively, as in the case of Pacific cod (*Gadus macrocephalus*) in the Gulf of Alaska,
620 spawning stock size and recruitment have been decreasing with time (Barbeaux et al., 2021).
621 Pacific cod recruitment was affected by the 2014 to 2016 marine heatwave, which resulted in the
622 loss of thermal spawning habitat (Laurel and Rogers, 2020). Despite the demonstrated effect of
623 temperature on hatching success, productivity was also selected as time-invariant in the present
624 study (Figure 6). In this case, and others like it, where productivity remains approximately
625 constant, declines in stock size must be driven by other factors besides recruitment rate, such as
626 declines in post-recruitment survival. Both EBS walleye pollock and GOA Pacific cod exhibited
627 high-frequency variability in recruitment without clear trends, such that the time-invariant model
628 was selected for these stocks.

629 As the results of the present study demonstrate, time-varying productivity is more
630 prevalent in commercial fish stocks than may be currently accounted for in stock assessment
631 models that assume productivity to be a constant average over time. Additionally, accounting for
632 known time-variation can improve model estimates, including estimates of recent recruitment
633 and one-year-ahead forecasts, and subsequent calculation of reference points and implementation
634 of fishing regulations (Tableau et al., 2019; Collie et al., 2021; Tolimieri and Haltuch, 2023). It is
635 important to note that time-varying density-dependent mortality was not explored in the present
636 study, and as such, more complex time-variation at higher spawning stock sizes may not be
637 completely captured in our results for certain stocks. However, the results of the present study
638 may serve as justification for incorporating dynamic models into current stock assessment
639 protocols and using dynamic reference points. Stock-specific analyses will need to be conducted
640 to fully understand the recruitment dynamics of different stocks in different regions under
641 different environmental and anthropogenic conditions, but the present study represents a starting
642 point for understanding general trends that may be applicable for further investigation.

643 **5. Acknowledgements**

645
646 We would like to thank Cody Szwalski and Melissa Haltuch for their excellent comments and
647 suggestions on the manuscript. We would also like to thank Ann Henning Jocelyn and Robert
648 Jocelyn, Doonreagan House, Cashel, Connemara, Ireland for their hospitality and hosting of our
649 working group. We would also like to thank all our reviewers, and NOAA for funding this
650 research through the Climate and Fisheries Adaptation Program, award number
651 NA210AR4310384.

652
653 **6. Data Availability Statement**

654
655 Every time series used as data in the present study was available from published stock
656 assessment reports or personal communication with stock assessment scientists. The data files
657 and computer code used are available by request from the corresponding author.

658
659 **7. Conflict of Interest Statement**

660
661 The authors have no conflicts of interest to declare for the present study.

662
663 **8. References**

664
665 Akaike, H., 1974. A new look at the statistical model identification. *IEEE Transactions on*
666 *Automated Control* 19, 716–723. <https://doi.org/10.1109/TAC.1974.1100705>
667 Barbeaux, S.J., Ferriss, B., Laurel, B., Litzow, M., McDermott, S., Nielsen, J.M., Palsson, W.,
668 Shotwell, K., Spies, I., Wang, M., 2021. Assessment of the Pacific cod stock in the Gulf
669 of Alaska. In Stock assessment and fishery evaluation report for the groundfish resources
670 of the Gulf of Alaska. *North Pacific Fishery Management Council*, Anchorage, AK.
671 Barrowman, N.J., Myers, R.A., 2000. Still more spawner-recruitment curves: the hockey stick
672 and its generalizations. *Canadian Journal of Fisheries and Aquatic Sciences* 57, 665–
673 676. <https://doi.org/10.1139/f99-282>
674 Bell, R.J., Collie, J.S., Branch, T.A., Fogarty, M.J., Minto, C., Ricard, D., 2018. Changes in the
675 size structure of marine fish communities. *ICES Journal of Marine Science* 75, 102–112.
676 <https://doi.org/10.1093/icesjms/fsx118>
677 Bell, R.J., Hare, J.A., Manderson, J.P., Richardson, D.E., 2014. Externally driven changes in the
678 abundance of summer and winter flounder. *ICES Journal of Marine Science* 71, 2416–
679 2428. <https://doi.org/10.1093/icesjms/fsu069>
680 Bell, R.J., Tableau, A., Collie, J.S., 2023. Changes in the productivity of US West Coast fish
681 stocks. *Fisheries Research* 264, 106712. <https://doi.org/10.1016/j.fishres.2023.106712>
682 Beverton, R.J.H., Holt, S.J., 1957. On the Dynamics of Exploited Fish Populations, *Fish and*
683 *Fisheries Series 11*. Springer Science & Business Media.

684 Benson, A.J., Trites, A.W., 2002. Ecological effects of regime shifts in the Bering Sea and
685 eastern North Pacific Ocean. *Fish and Fisheries* 3, 95–113.
686 <https://doi.org/10.1046/j.1467-2979.2002.00078.x>

687 Britten, G.L., Dowd, M., Worm, B., 2016. Changing recruitment capacity in global fish stocks.
688 *Proceedings of the National Academy of Sciences* 113, 134–139.
689 <https://doi.org/10.1073/pnas.1504709112>

690 Brooks, E.N., Deroba, J.J., 2015. When “data” are not data: the pitfalls of post hoc analyses that
691 use stock assessment model output. *Canadian Journal of Fisheries and Aquatic Sciences*
692 72, 634–641. <https://doi.org/10.1139/cjfas-2014-0231>

693 Burnham, K., Anderson, D., 2002. *Model Selection and Multimodel Inference: A Practical
694 Information-Theoretic Approach*, 2nd ed. Springer, New York, New York, USA.

695 Collie, J.S., Bell, R.J., Collie, S.B., Minto, C., 2021. Harvest strategies for climate-resilient
696 fisheries. *ICES Journal of Marine Science* 78, 2774–2783.
697 <https://doi.org/10.1093/icesjms/fsab152>

698 Collie, J.S., Peterman, R.M., Zuehlke, B.M., 2012. A fisheries risk-assessment framework to
699 evaluate trade-offs among management options in the presence of time-varying
700 productivity. *Canadian Journal of Fisheries and Aquatic Sciences* 69, 209–223.
701 <https://doi.org/10.1139/f2011-148>

702 Dorner, B., Peterman, R.M., Haeseker, S.L., 2008. Historical trends in productivity of 120
703 Pacific pink, chum, and sockeye salmon stocks reconstructed by using a Kalman filter.
704 *Canadian Journal of Fisheries and Aquatic Sciences* 65, 1842–1866.
705 <https://doi.org/10.1139/F08-094>

706 du Pontavice, H., Miller, T.J., Stock, B.C., Chen, Z., Saba, V.S., 2022. Ocean model-based
707 covariates improve a marine fish stock assessment when observations are limited. *ICES
708 Journal of Marine Science* 79, 1259–1273. <https://doi.org/10.1093/icesjms/fsac050>

709 Firth, D., 1993. Bias reduction of maximum likelihood estimates. *Biometrika* 80, 27–38.
710 <https://doi.org/10.1093/biomet/80.1.27>

711 Goethel, D.R., Hanselman, D.H., Rodgveller, C.J., Echave, K.B., Williams, B.C., Shotwell, S.K.,
712 Sullivan, J.Y., Hulson, P.F., Malecha, P.W., Siwicke, K.A., Lunsford, C.R., 2021.
713 Assessment of the sablefish stock in the Eastern Bering Sea. In Stock assessment and
714 fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands
715 regions. *North Pacific Fishery Management Council*, Anchorage, AK.

716 Hilborn, R. and Walters, C.J., 2013. *Quantitative fisheries stock assessment: choice, dynamics
717 and uncertainty*. Springer Science & Business Media.

718 Hunt, G.L., Jr, Coyle, K.O., Eisner, L.B., Farley, E.V., Heintz, R.A., Mueter, F., Napp, J.M.,
719 Overland, J.E., Ressler, P.H., Salo, S., Stabeno, P.J., 2011. Climate impacts on eastern
720 Bering Sea foodwebs: a synthesis of new data and an assessment of the Oscillating
721 Control Hypothesis. *ICES Journal of Marine Science* 68, 1230–1243.
722 <https://doi.org/10.1093/icesjms/fsr036>

723 Ianelli, J.N., Fissel, B., Stienessen, S., Honkalehto, T., Siddon, E., Allen-Akselrud, C., 2021.
724 Assessment of the walleye pollock stock in the Eastern Bering Sea. *In Stock assessment*
725 and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian
726 Islands regions. *North Pacific Fishery Management Council*, Anchorage, AK.

727 Kosmidis I., 2023. brglm2: Bias Reduction in Generalized Linear Models. *R package version*
728 0.9, <https://CRAN.R-project.org/package=brglm2>.

729 Laurel, B.J., Rogers, L.A., 2020. Loss of spawning habitat and prerecruits of Pacific cod during a
730 Gulf of Alaska heatwave. *Canadian Journal of Fisheries and Aquatic Sciences* 77, 644–
731 650. <https://doi.org/10.1139/cjfas-2019-0238>

732 Lima, F.P., Wethey, D.S., 2012. Three decades of high-resolution coastal sea surface
733 temperatures reveal more than warming. *Nature Communications* 3, 704.
734 <https://doi.org/10.1038/ncomms1713>

735 Mueter, F.J., Bond, N.A., Ianelli, J.N., Hollowed, A.B., 2011. Expected declines in recruitment
736 of walleye pollock (*Theragra chalcogramma*) in the eastern Bering Sea under future
737 climate change. *ICES Journal of Marine Science* 68, 1284–1296.

738 Minto, C., Mills Flemming, J., Britten, G.L., Worm, B., 2014. Productivity dynamics of Atlantic
739 cod. *Canadian Journal of Fisheries and Aquatic Sciences* 71, 203–216.
740 <https://doi.org/10.1139/cjfas-2013-0161>

741 NEFSC, 2021. Northwest Atlantic mackerel 2021 Management Track Assessment Report.
742 *Northeast Fisheries Science Center*, Woods Hole, MA.

743 NEFSC, 2022a. Gulf of Maine haddock 2022 Management Track Assessment Report. *Northeast*
744 *Fisheries Science Center*, Woods Hole, MA.

745 NEFSC, 2022b. Southern New England-Mid Atlantic yellowtail flounder 2022 Management
746 Track Assessment Report. *Northeast Fisheries Science Center*, Woods Hole, MA.

747 NMFS, 2022. Fisheries Economics of the United States, 2020. U.S. Dept. of Commerce, *NOAA*
748 *Technical Memorandum* NMFS-F/SPO-236A, 231 p.

749 Peterman, R.M., Pyper, B.J., Grout, J.A., 2000. Comparison of parameter estimation methods for
750 detecting climate-induced changes in productivity of Pacific salmon (*Oncorhynchus*
751 spp.). *Canadian Journal of Fisheries and Aquatic Sciences* 57, 181–191.
752 <https://doi.org/10.1139/f99-204>

753 Peterman, R.M., Pyper, B.J., MacGregor, B.W., 2003. Use of the Kalman filter to reconstruct
754 historical trends in productivity of Bristol Bay sockeye salmon (*Oncorhynchus nerka*).
755 *Canadian Journal of Fisheries and Aquatic Sciences* 60, 809–824.
756 <https://doi.org/10.1139/f03-069>

757 Petris, G., 2010. An R Package for Dynamic Linear Models. *Journal of Statistical Software* 36,
758 1–16. <https://doi.org/10.18637/jss.v036.i12>

759 Petris, G., Petrone, S., Campagnoli, P., 2009. Dynamic Linear Models with R, *useR!* Springer-
760 Verlag, New York.

761 Ricker, W.E., 1954. Stock and Recruitment. *Journal of the Fisheries Research Board of Canada*
762 11, 559–623. <https://doi.org/10.1139/f54-039>

763 Rindorf, A., van Deurs, M., Howell, D., Andonegi, E., Berger, A., Bogstad, B., Cadigan, N.,
764 Elvarsson, B.P., Hintzen, N., Savina Roland, M., Taylor, M., Trijoulet, V., van Kooten,
765 T., Zhang, F., Collie, J., 2022. Strength and consistency of density dependence in marine
766 fish productivity. *Fish and Fisheries*. 23, 812–828. <https://doi.org/10.1111/faf.12650>

767 R Core Team, 2023. R: A language and environment for statistical computing. *R Foundation for*
768 *Statistical Computing*, Vienna, Austria. URL <https://www.R-project.org/>.

769 Silvar-Viladomiu, P., Minto, C., Brophy, D., Reid, D.G., 2022. Peterman's productivity method
770 for estimating dynamic reference points in changing ecosystems. *ICES Journal of Marine*
771 *Science* 79, 1034–1047. <https://doi.org/10.1093/icesjms/fsac035>

772 Silvar-Viladomiu, P., Minto, C., Lordan, C., Brophy, D., Bell, R., Collie, J. and Reid, D., 2023.
773 Stochastic modelling and synthesis of dynamic fish recruitment productivity in the Celtic
774 Seas ecoregion, *ICES Journal of Marine Science*, fsad146,
775 <https://doi.org/10.1093/icesjms/fsad146>

776 Sissenwine, M.P., 1974. Variability in recruitment and equilibrium catch of the Southern New
777 England yellowtail flounder fishery. *ICES Journal of Marine Science* 36, 15–26.
778 <https://doi.org/10.1093/icesjms/36.1.15>

779 Spencer, P.D., Holsman, K.K., Zador, S., Bond, N.A., Mueter, F.J., Hollowed, A.B., Ianelli, J.N.,
780 2016. Modelling spatially dependent predation mortality of eastern Bering Sea walleye
781 pollock, and its implications for stock dynamics under future climate scenarios. *ICES*
782 *Journal of Marine Science* 73, 1330–1342. <https://doi.org/10.1093/icesjms/fsw040>

783 Stewart, I., Hicks, A., 2022. Assessment of the Pacific halibut (*Hippoglossus stenolepis*) stock at
784 the end of 2022 IPHC-2023-SA-01, 37p.

785 Stock, B.C., Miller, T.J., 2021. The Woods Hole Assessment Model (WHAM): A general state-
786 space assessment framework that incorporates time- and age-varying processes via
787 random effects and links to environmental covariates. *Fisheries Research* 240, 105967.
788 <https://doi.org/10.1016/j.fishres.2021.105967>

789 Szuwalski, C.S., Britten, G.L., Licandeo, R., Amoroso, R.O., Hilborn, R., Walters, C., 2019.
790 Global forage fish recruitment dynamics: A comparison of methods, time-variation, and
791 reverse causality. *Fisheries Research* 214, 56–64.
792 <https://doi.org/10.1016/j.fishres.2019.01.007>

793 Szuwalski, C.S., Vert-Pre, K.A., Punt, A.E., Branch, T.A., Hilborn, R., 2015. Examining
794 common assumptions about recruitment: a meta-analysis of recruitment dynamics for
795 worldwide marine fisheries. *Fish and Fisheries* 16, 633–648.
796 <https://doi.org/10.1111/faf.12083>

797 Tableau, A., Collie, J.S., Bell, R.J., Minto, C., 2019. Decadal changes in the productivity of New
798 England fish populations. *Canadian Journal of Fisheries and Aquatic Sciences* 76, 1528–
799 1540. <https://doi.org/10.1139/cjfas-2018-0255>

800 Tolimieri, N., Haltuch, M.A., 2023. Sea-level index of recruitment variability improves
801 assessment model performance for sablefish *Anoplopoma fimbria*. *Canadian Journal of*
802 *Fisheries and Aquatic Sciences* 80, 1006–1016. <https://doi.org/10.1139/cjfas-2022-0238>

803 **9. Tables**

804

805 **Table 1:** The “Productivity” column refers to whether a stock was found to have time-varying or
806 time-invariant productivity parameters in the present study.

807

808 **Table 1a:** New England (NE) stocks.

Common Name	Scientific Name	Time Series	Assessment	Productivity
Acadian redfish	<i>Sebastodes fasciatus</i>	1960-2018	2020	Time-varying
American plaice	<i>Hippoglossoides platessoides</i>	1980-2020	2022	Invariant
Atlantic cod (Gulf of Maine)	<i>Gadus morhua</i>	1982-2018	2021	Time-varying
Atlantic herring	<i>Clupea harengus</i>	1965-2020	2022	Time-varying
Atlantic Wolffish	<i>Anarhichas lupus</i>	1968-2020	2022	Time-varying
Haddock (Georges Bank)	<i>Melanogrammus aeglefinus</i>	1931-2020	2022	Invariant
Haddock (Gulf of Maine)	<i>Melanogrammus aeglefinus</i>	1977-2020	2022	Time-varying
Pollock	<i>Pollachius virens</i>	1970-2020	2022	Time-varying
White hake	<i>Urophycis tenuis</i>	1963-2020	2022	Time-varying
Winter flounder (Georges Bank)	<i>Pseudopleuronectes americanus</i>	1982-2019	2020	Time-varying
Winter flounder (S. New England)	<i>Pseudopleuronectes americanus</i>	1981-2020	2022	Time-varying
Yellowtail flounder (Gulf of Maine)	<i>Limanda ferruginea</i>	1985-2021	2022	Time-varying
Yellowtail flounder (S. New England)	<i>Limanda ferruginea</i>	1973-2020	2022	Time-varying

809

810 **Table 1b:** Mid-Atlantic (MDA) stocks

Common Name	Scientific Name	Time Series	Assessment	Productivity
Atlantic mackerel	<i>Scomber scombrus</i>	1968-2018	2021	Time-varying
Atlantic menhaden	<i>Brevoortia tyrannus</i>	1955-2021	2022	Time-varying
Black sea bass	<i>Cetopristis striata</i>	1989-2018	2021	Invariant
Bluefish	<i>Pomatomus saltatrix</i>	1985-2019	2021	Invariant
Butterfish	<i>Peprilus triacanthus</i>	1989-2019	2020	Time-varying
Golden tilefish	<i>Lopholatilus chamaeleonticeps</i>	1971-2019	2021	Time-varying
Scup	<i>Stenotomus chrysops</i>	1984-2019	2021	Time-varying
Striped bass	<i>Morone saxatilis</i>	1982-2016	2018	Invariant
Summer flounder	<i>Paralichthys dentatus</i>	1982-2019	2021	Invariant
Tautog (DE/MD/VA)	<i>Tautoga onitis</i>	1990-2019	2021	Time-varying
Tautog (Long Island Sound)	<i>Tautoga onitis</i>	1984-2019	2021	Time-varying
Tautog (MA/RI)	<i>Tautoga onitis</i>	1982-2019	2021	Time-varying
Tautog (NJ/NY Bight)	<i>Tautoga onitis</i>	1989-2019	2021	Time-varying
Weakfish	<i>Cynoscion regalis</i>	1982-2016	2019	Time-varying

811

812 **Table 1c:** California Current (CC) stocks

Common Name	Scientific Name	Time Series	Assessment	Productivity
Arrowtooth flounder	<i>Atheresthes stomas</i>	1965-2016	2017	Time-varying
Aurora rockfish	<i>Sebastodes aurora</i>	1978-2012	2013	Invariant
Black rockfish	<i>Sebastodes melanops</i>	1975-2014	2015	Time-varying
Blackspotted/rougheye rockfish	<i>S. melanostictus / S. aleutianus</i>	1980-2012	2013	Invariant
Blue/deacon (CA)	<i>Sebastodes diaconus</i>	1960-2016	2017	Time-varying
Blue/deacon (OR)	<i>Sebastodes diaconus</i>	1970-2016	2017	Invariant
Bocaccio	<i>Sebastodes paucispinus</i>	1954-2016	2017	Time-varying

Cabezon (N. CA)	<i>Scopaenichthys marmoratus</i>	1962-2018	2019	Time-varying
Cabezon (OR)	<i>Scopaenichthys marmoratus</i>	1980-2018	2019	Invariant
Cabezon (S. CA)	<i>Scopaenichthys marmoratus</i>	1970-2018	2019	Invariant
Canary rockfish	<i>Sebastodes pinniger</i>	1968-2014	2015	Time-varying
Chilipepper rockfish	<i>Sebastodes goodei</i>	1965-2014	2015	Invariant
Darkblotched rockfish	<i>Sebastodes crameri</i>	1960-2016	2017	Invariant
Dover sole	<i>Microstomus pacificus</i>	1975-2020	2021	Time-varying
Greenstriped rockfish	<i>Sebastodes elongatus</i>	1970-2008	2009	Invariant
Kelp greenling	<i>Hexagrammos decagrammus</i>	1980-2014	2015	Time-varying
Lingcod (N.)	<i>Opiodon elongatus</i>	1960-2020	2021	Time-varying
Lingcod (S.)	<i>Opiodon elongatus</i>	1972-2020	2021	Invariant
Longspine thornyhead	<i>Sebastodes altivelis</i>	1997-2012	2013	Invariant
Pacific hake	<i>Merluccius productus</i>	1975-2020	2021	Invariant
Pacific ocean perch	<i>Sebastodes alutus</i>	1975-2016	2017	Time-varying
Petrale sole	<i>Eopsetta jordani</i>	1959-2018	2019	Invariant
Quillback rockfish (CA)	<i>Sebastodes maliger</i>	1991-2020	2021	Time-varying
Quillback rockfish (OR)	<i>Sebastodes maliger</i>	1980-2020	2021	Invariant
Sablefish	<i>Anoplopoma fimbria</i>	1975-2020	2021	Invariant
Sanddab	<i>Citharichthys sordidus</i>	1977-2012	2013	Time-varying
Scorpionfish	<i>Scorpaena guttata</i>	1965-2016	2017	Time-varying
Splitnose rockfish	<i>Sebastodes diploproa</i>	1960-2008	2009	Time-varying
Widow rockfish	<i>Sebastodes entomelas</i>	1970-2018	2019	Invariant
Yelloweye rockfish	<i>Sebastodes ruberrimus</i>	1980-2016	2017	Time-varying
Yellowtail rockfish (N.)	<i>Sebastodes flavidus</i>	1970-2016	2017	Invariant

813

814

Table 1d: Gulf of Alaska (GOA) stocks, including two time series representing Pacific halibut

Common Name	Scientific Name	Time Series	Assessment	Productivity
Arrowtooth flounder	<i>Atheresthes stomas</i>	1977-2020	2021	Time-varying
Blackspotted/rougheye rockfish	<i>S. melanostictus / S. aleutianus</i>	1977-2018	2021	Invariant
Dusky rockfish	<i>Sebastodes sp. cf. ciliatus</i>	1977-2017	2020	Invariant
Flathead sole	<i>Hippoglossoides elassodon</i>	1978-2012	2017	Invariant
Northern rockfish	<i>Sebastodes polypinus</i>	1977-2018	2020	Time-varying
Pacific cod	<i>Gadus macrocephalus</i>	1977-2020	2021	Invariant
Pacific halibut (AAF Short model)	<i>Hippoglossus stenolepis</i>	1992-2017	2022	Invariant
Pacific halibut (Coast-wide short model)	<i>Hippoglossus stenolepis</i>	1992-2017	2023	Invariant
Pacific ocean perch	<i>Sebastodes alutus</i>	1961-2019	2021	Time-varying
Rex sole	<i>Glyptocephalus zachirus</i>	1982-2020	2021	Time-varying
Rock sole (N.)	<i>Lepidopsetta bilineata</i>	1977-2020	2021	Invariant
Rock sole (S.)	<i>Lepidopsetta bilineata</i>	1977-2020	2021	Time-varying
Walleye pollock	<i>Gadus chalcogrammus</i>	1970-2020	2021	Time-varying

815

816

Table 1e: Eastern Bering Sea/Aleutian Islands (BSAI) stocks

Common Name	Scientific Name	Time Series	Assessment	Productivity
Alaska plaice	<i>Pleuronectes quadrituberculatus</i>	1975-2014	2021	Time-varying
Arrowtooth flounder	<i>Atheresthes stomas</i>	1976-2019	2020	Time-varying
Atka mackerel	<i>Pleurogrammus monopterygius</i>	1977-2020	2021	Invariant
Blackspotted/rougheye rockfish	<i>S. melanostictus / S. aleutianus</i>	1977-2014	2020	Time-varying
Flathead sole	<i>Hippoglossoides elassodon</i>	1964-2016	2020	Time-varying
Greenland turbot	<i>Reinhardtius hippoglossoides</i>	1945-2019	2020	Time-varying
Kamchatka flounder	<i>Atheresthes evernanni</i>	1991-2018	2020	Time-varying

Northern rockfish	<i>Sebastes polypinus</i>	1977-2015	2021	Invariant
Pacific cod (Aleutian Islands)	<i>Gadus macrocephalus</i>	1991-2020	2021	Invariant
Pacific cod (Bering Sea)	<i>Gadus macrocephalus</i>	1977-2020	2021	Invariant
Pacific ocean perch	<i>Sebastes alutus</i>	1960-2014	2020	Time-varying
Sablefish	<i>Anoplopoma fimbria</i>	1960-2018	2021	Time-varying
Walleye pollock (Aleutian Islands)	<i>Gadus chalcogrammus</i>	1978-2017	2020	Invariant
Walleye pollock (Bering Sea)	<i>Gadus chalcogrammus</i>	1964-2020	2021	Invariant

817

818

819

820

821

822

823

Table 2: Biased reduced GLMs in the present study were compared with the AIC values.

824 Reported here is the full model including all fixed effects, and models within 2 units of the
 825 lowest AIC model, assumed to be functionally equivalent in best explaining the variability in the
 826 response variable (Burnham and Anderson, 2002). Significant covariates in each model are
 827 indicated in bold italics. The sign of the parameter estimates for each covariate are indicated with
 828 the sign (plus/minus) preceding the covariate.

	Fixed Effects	AIC	r ²	Delta AIC
Full Model	± Order – TotalVar + F/F _{msy} + SSB/SSB _{msy} + PropOF + Contrast + YOD + MatAge	122.67	0.154	12.54
Null Model	<i>Intercept Only</i>	112.53	0.000	2.40
Lowest AIC Models within 2 units	+ Contrast – TotalVar	110.13	0.071	0.00
	+ Contrast – TotalVar + YOD	110.53	0.089	0.40
	+ Contrast + SSB/SSB _{msy} – TotalVar	111.12	0.082	0.99
	+ Contrast	111.39	0.034	1.26
	+ Contrast – F/F _{msy} – TotalVar	111.58	0.077	1.45
	+ Contrast + SSB/SSB _{msy} – TotalVar + YOD	111.62	0.098	1.49
	+ Contrast + Order	112.11	0.137	1.98
	+ Contrast – PropOF – TotalVar	112.13	0.071	2.00
	+ Contrast + MatAge – TotalVar	112.13	0.071	2.00

829

830

831

832

833

834

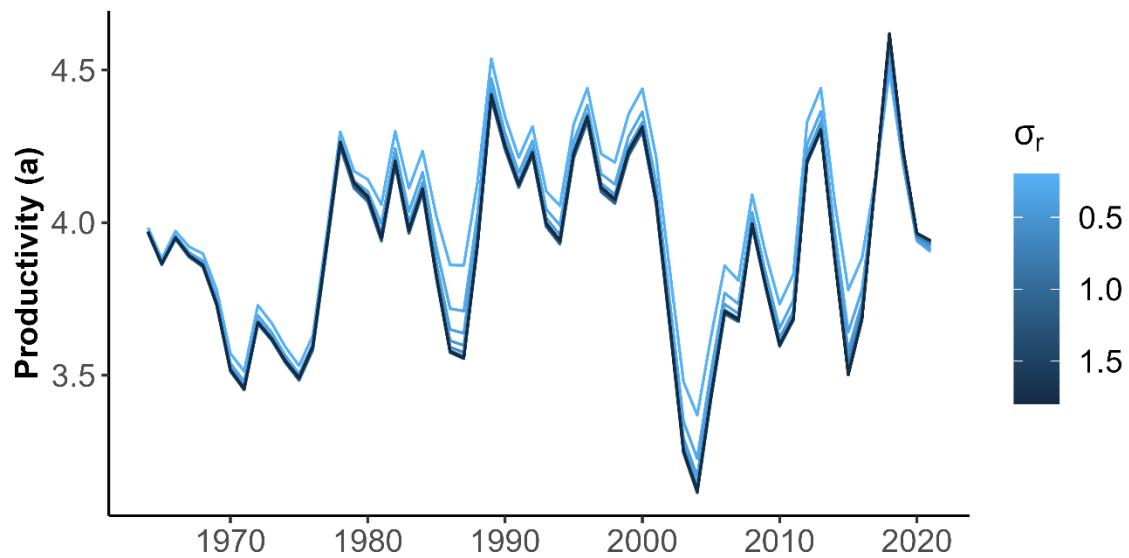
835

836

837

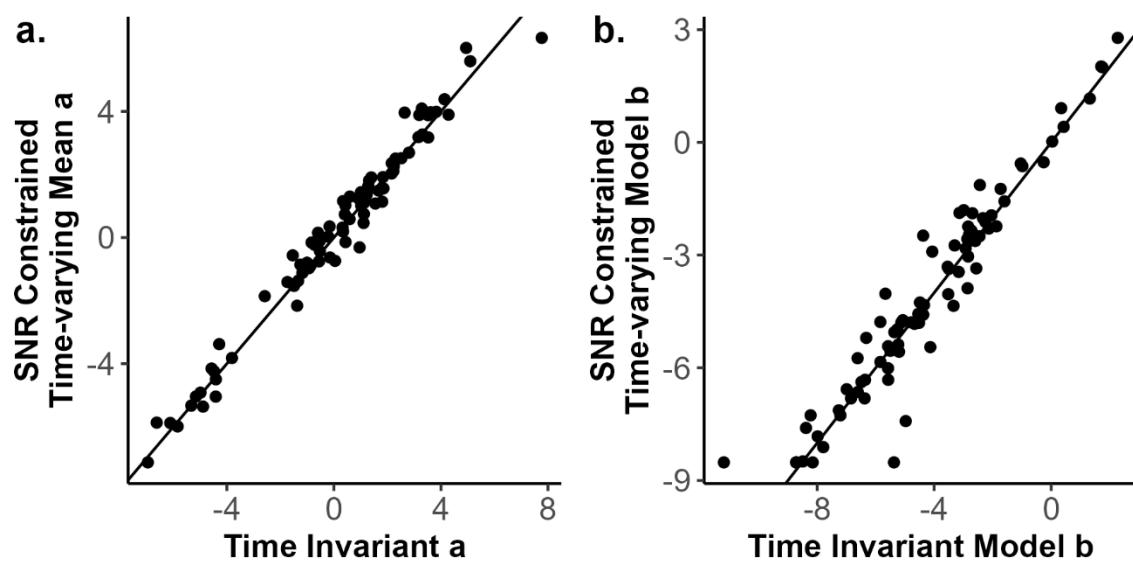
838 **10. Figures**

839



840
 841 **Figure 1:** Productivity (a) time series estimated by the dynamic Ricker model with the Kalman
 842 filter applied to stock assessment model outputs of eastern Bering Sea walleye pollock stock-
 843 recruitment time series calculated with different values of σ_r influencing the recruitment
 844 deviations from a mean recruitment level and fit with an internal Ricker stock-recruitment
 845 relationship.

846

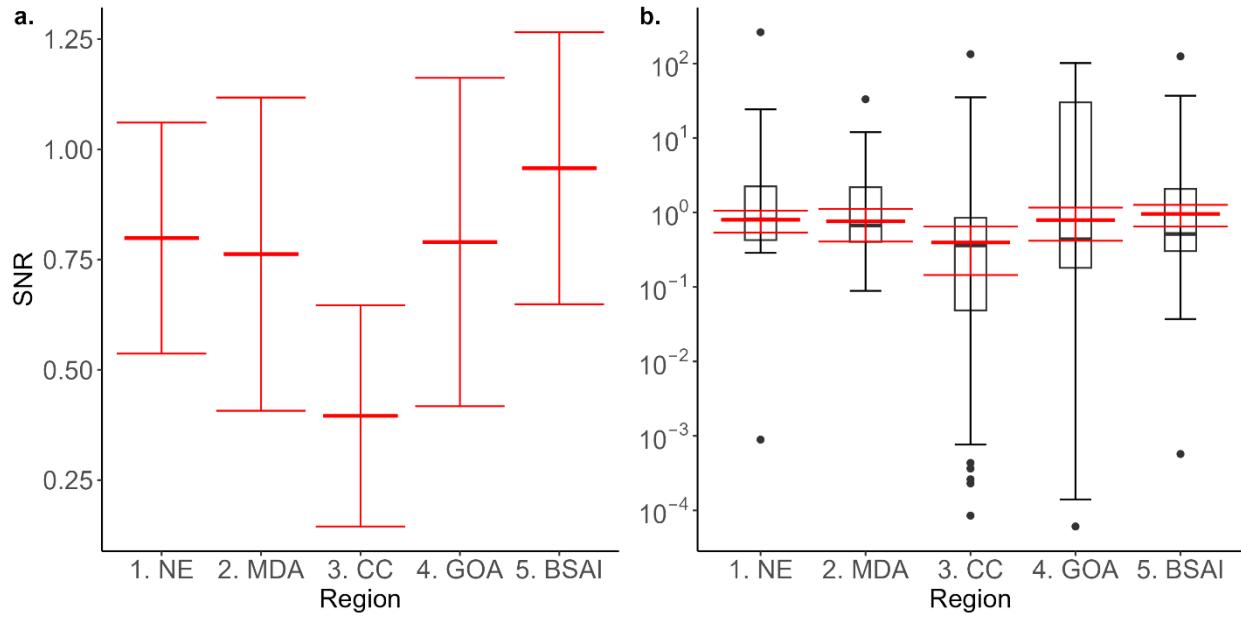


847

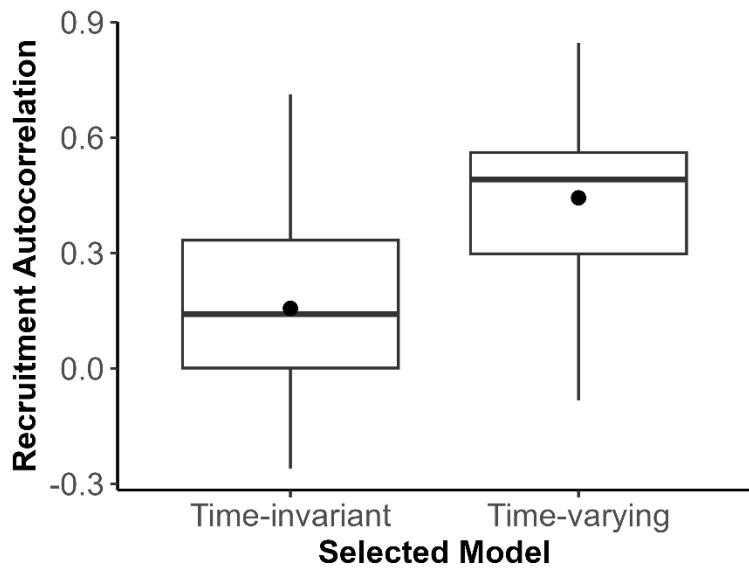
848 **Figure 2:** Diagnostic plot of coefficients on a log scale estimated by the time-invariant a model
 849 relative to the mean values from the time-varying model a constrained by a regional SNR,
 850 plotted on top of the 1:1 line. Each point corresponds to one stock.

851

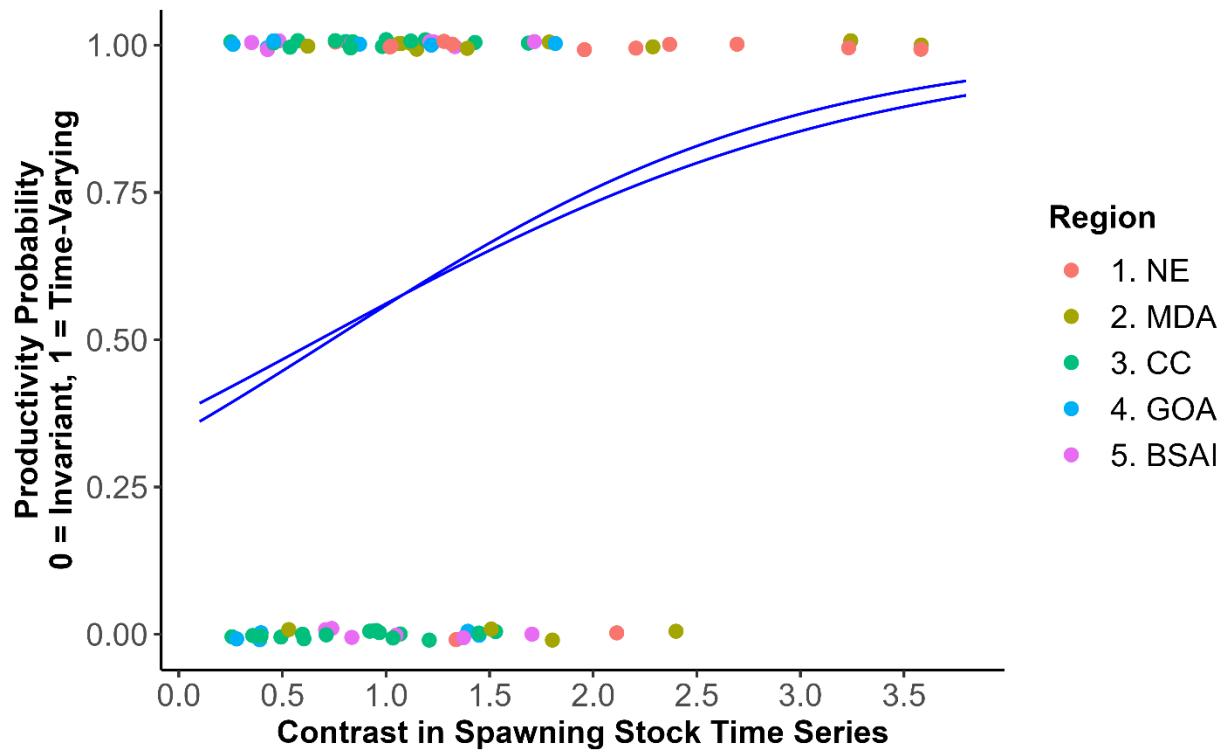
852



853
854 **Figure 3:** Regional SNRs and confidence intervals estimated by the multi-stock model plotted
855 relative to each other (a.) and in relation to the SNRs estimated by the single-stock models for
856 each region initially, unconstrained by a prescribed SNR (b.), plotted on a log scale because of
857 some extreme unrealistic SNR values estimated for the single-stock models unconstrained by
858 regional SNRs.
859

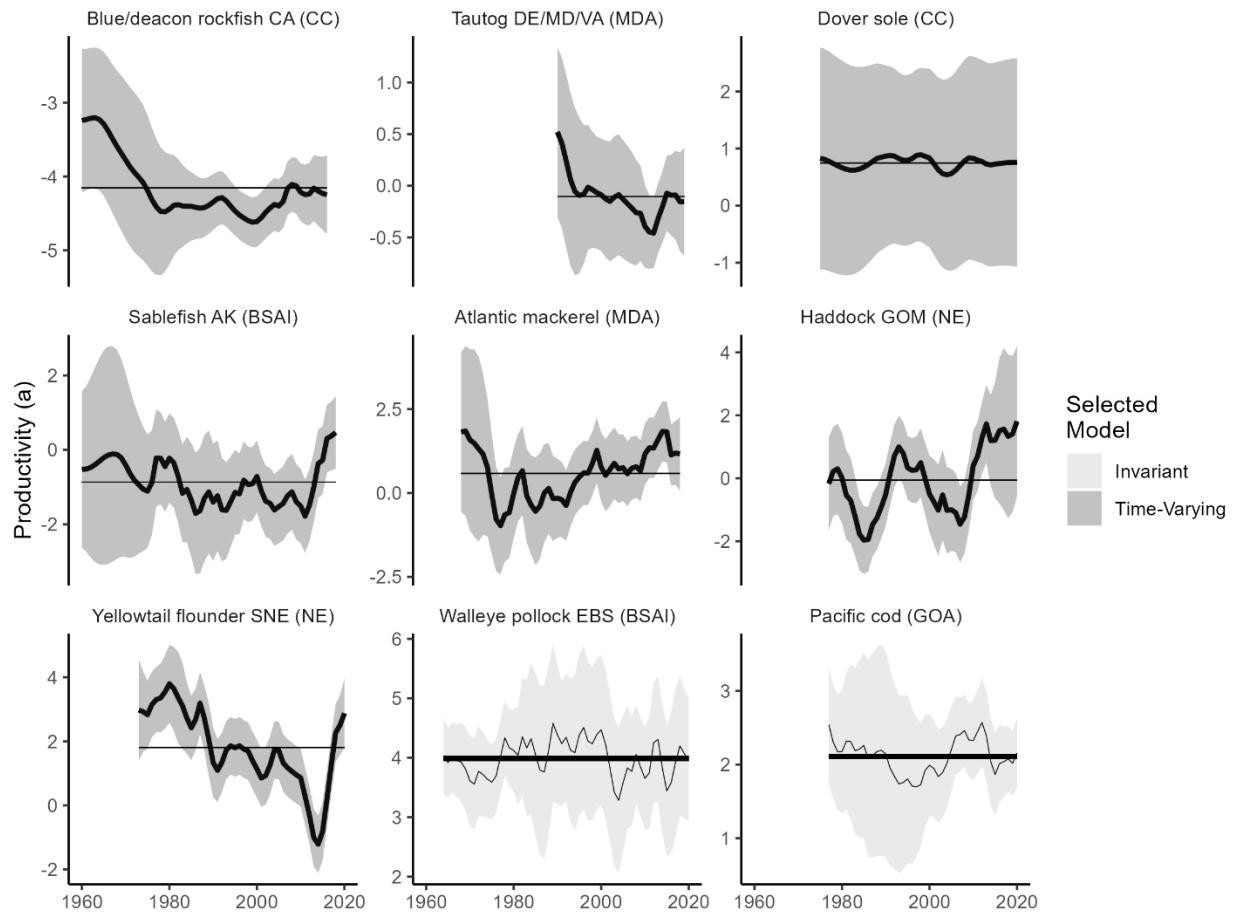


860
861 **Figure 4:** Autocorrelation in the recruitment time series for each time-invariant and time-varying
862 productivity stock. Box plots indicate the medians, first and third quartiles, and whiskers
863 extending to the last values ≤ 1.5 times the interquartile range. Mean values are indicated by
864 single points.
865
866



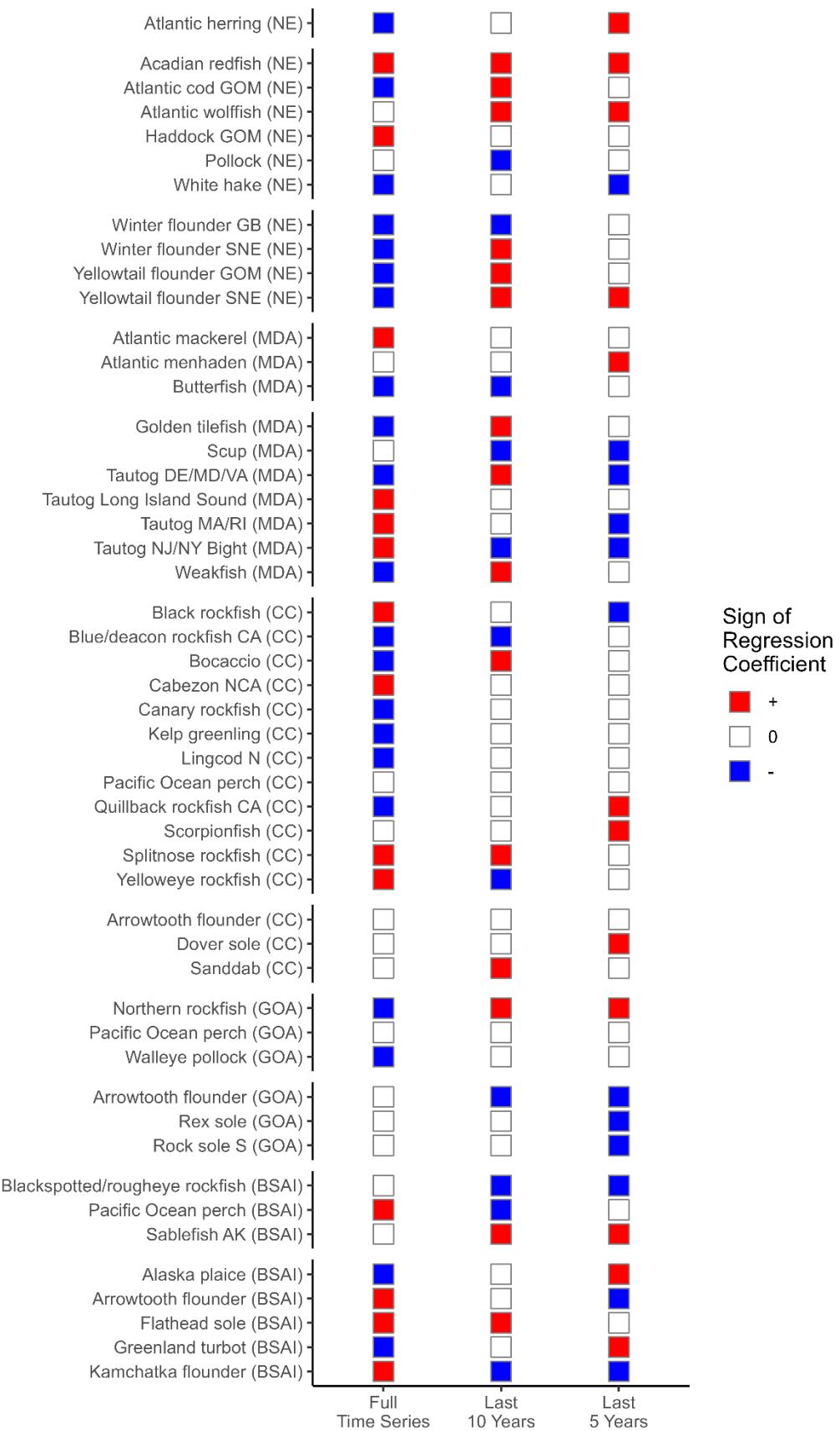
867
868
869
870
871
872

Figure 5: Partial effect of contrast on whether a stock was selected as having time-varying or time-invariant productivity. Results are shown for the two lowest AIC models (within 2 units) for which contrast was a significant predictor. Points indicate the contrast in the spawning stock time series for each stock, and colors indicate region.



873
874
875
876
877

Figure 6: Time series of estimated productivity (a) in units of $\log(R/S)$, for nine highlight cases from the total stock list. The selected model output is shown in bold line (time-varying for all except GOA Pacific Cod and Bering Sea Walleye Pollock).



879 **Figure 7:** Summary of productivity trends estimated with weighted regression across the full
880 time series (col. 1), ten years prior to current (col. 2), and five years prior to current (col. 3). Red
881 squares indicate that productivity has increased, and blue squares indicate that productivity has
882 decreased. White squares indicate that the regression coefficient was insignificant, i.e.
883 productivity has not followed a detectable trend in the given time interval.
884

Supplementary Figure S1a-e

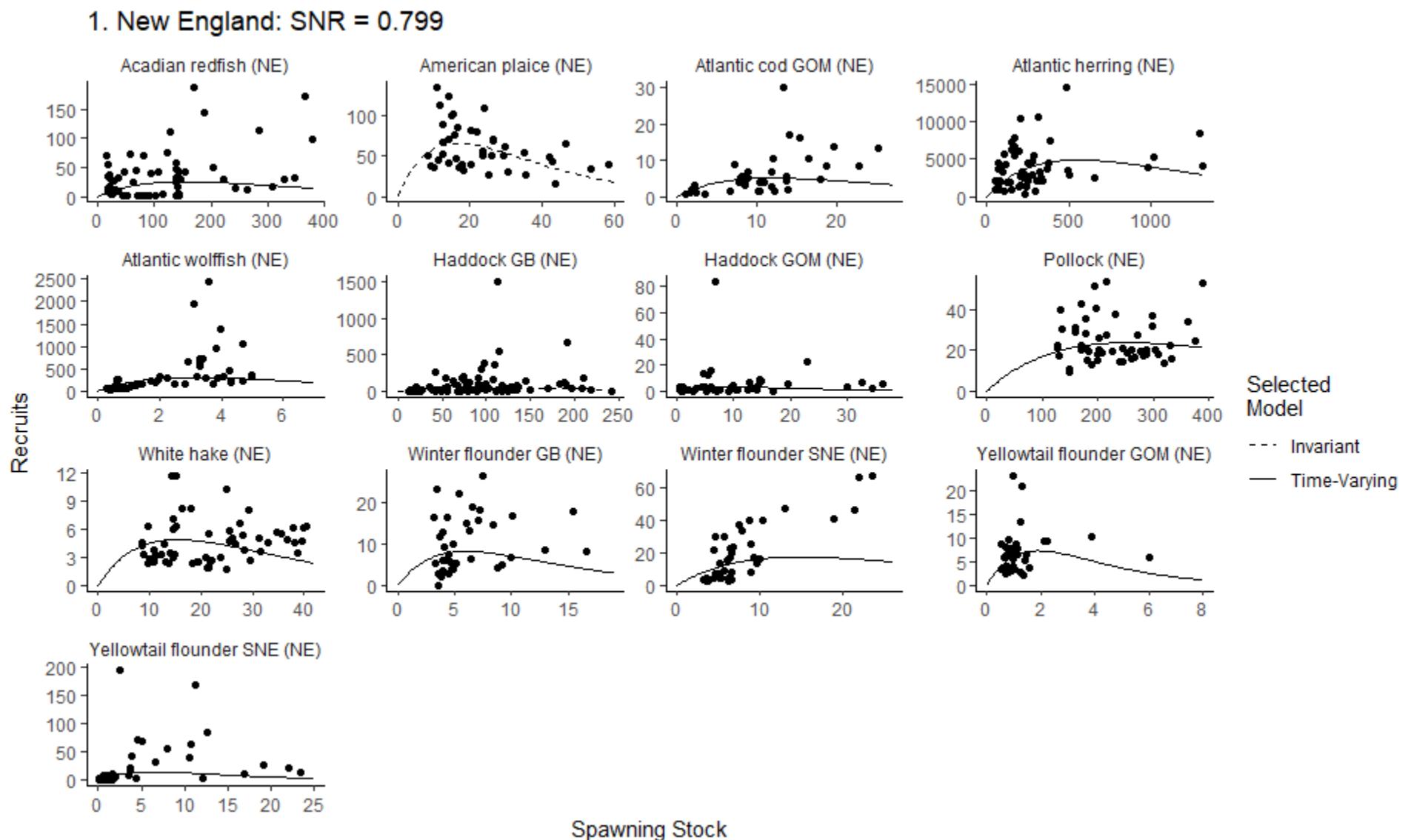


Figure S1a: Stock-recruitment values from stock assessment reports (points), and the estimated Ricker curves based on the average productivity estimated by the dynamic Ricker model with the Kalman filter. Solid lines indicate that the productivity was selected as time-varying, and thus the average is not the best fit of the data, and dashed lines indicate that the productivity was selected as time-invariant. Units are SSB (kt) and recruits (millions).

2. Mid-Atlantic: SNR = 0.762

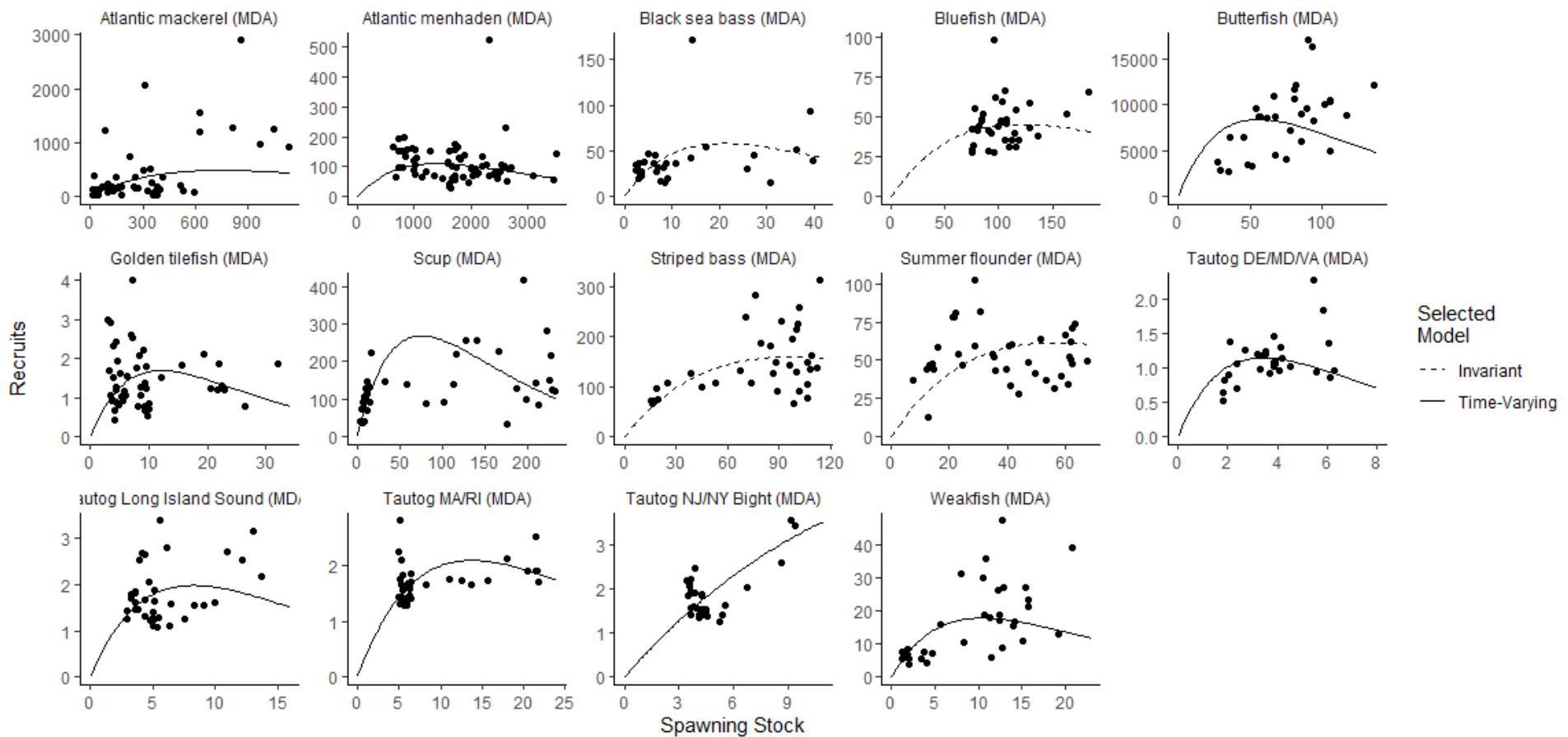


Figure S1b: Stock-recruitment values from stock assessment reports (points), and the estimated Ricker curves based on the average productivity estimated by the dynamic Ricker model with the Kalman filter. Solid lines indicate that the productivity was selected as time-varying, and thus the average is not the best fit of the data, and dashed lines indicate that the productivity was selected as time-invariant. Units are SSB (kt) and recruits (millions), except for Atlantic menhaden, which has units of spawning output (trillion eggs) and recruits (billions).

3. California Current: SNR = 0.396

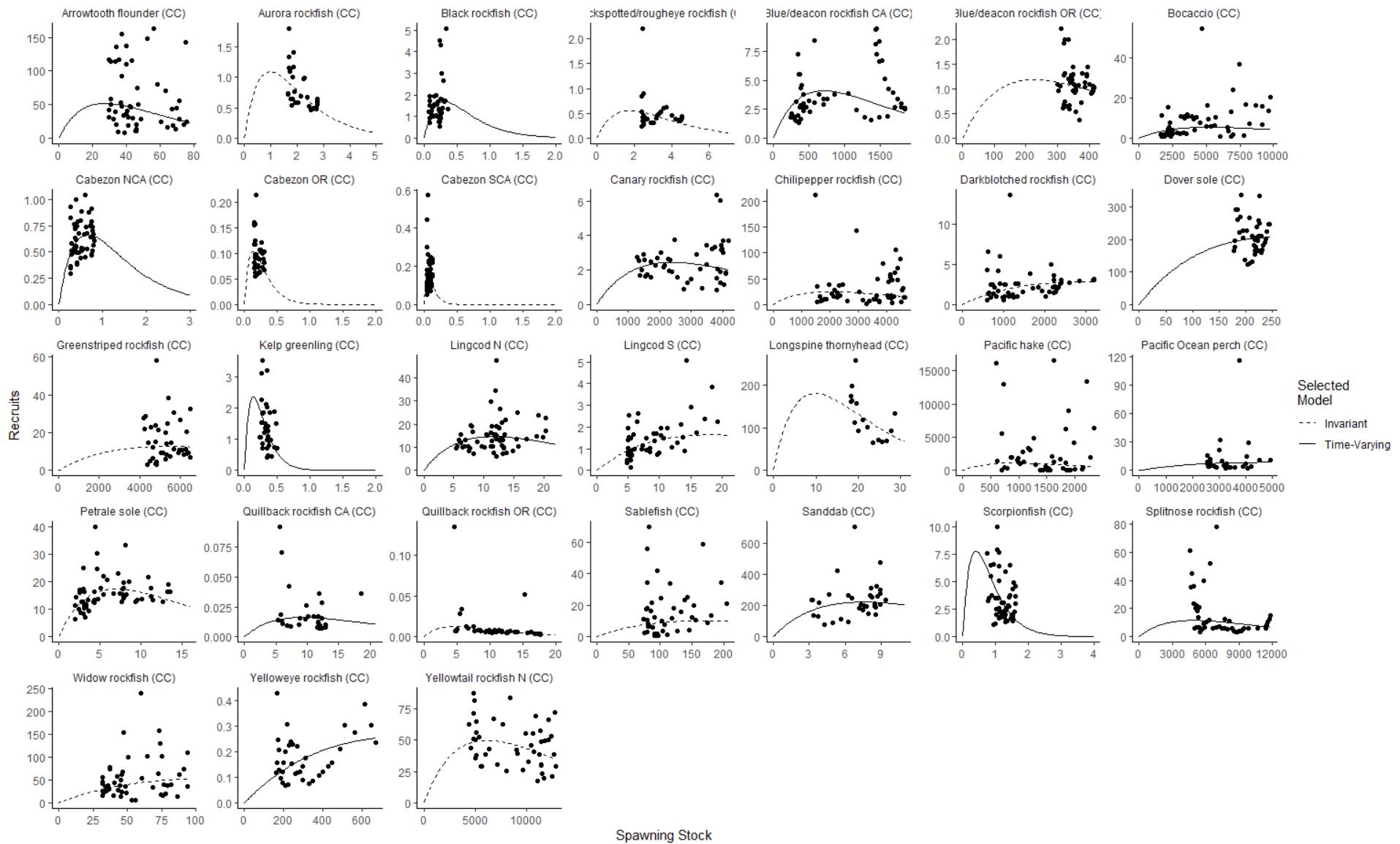


Figure S1c: Stock-recruitment values from stock assessment reports (points), and the estimated Ricker curves based on the average productivity estimated by the dynamic Ricker model with the Kalman filter. Solid lines indicate that the productivity was selected as time-varying, and thus the average is not the best fit of the data, and dashed lines indicate that the productivity was selected as time-invariant. Units are SSB (kt) and recruits (millions), except for 13 rockfish species with units of spawning output (millions/billions of eggs/larvae; see Figure S3c).

4. Gulf of Alaska: SNR = 0.790

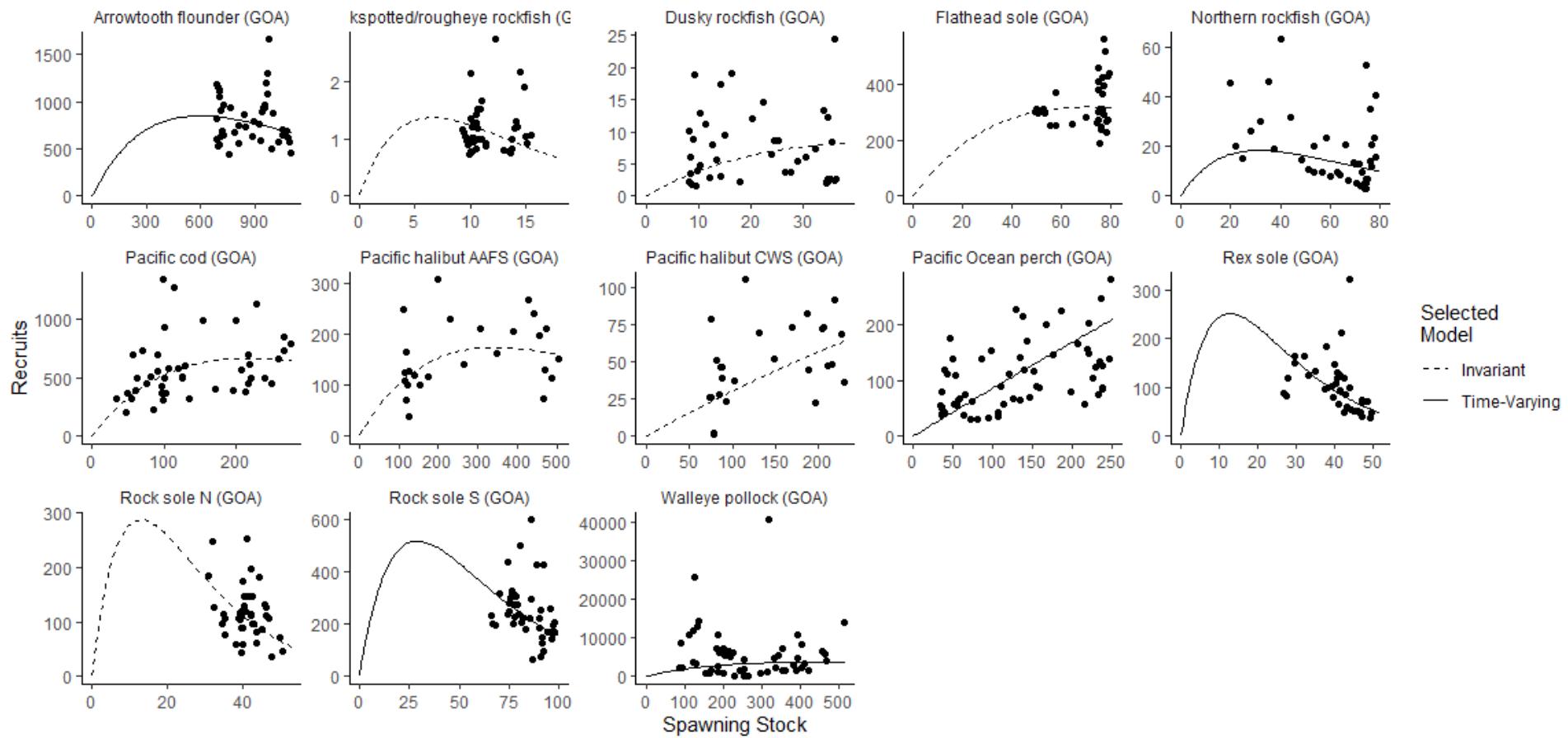


Figure S1d: Stock-recruitment values from stock assessment reports (points), and the estimated Ricker curves based on the average productivity estimated by the dynamic Ricker model with the Kalman filter. Solid lines indicate that the productivity was selected as time-varying, and thus the average is not the best fit of the data, and dashed lines indicate that the productivity was selected as time-invariant. Units are SSB (kt) and recruits (millions).

5. Eastern Bering Sea/Aleutian Islands: SNR = 0.957

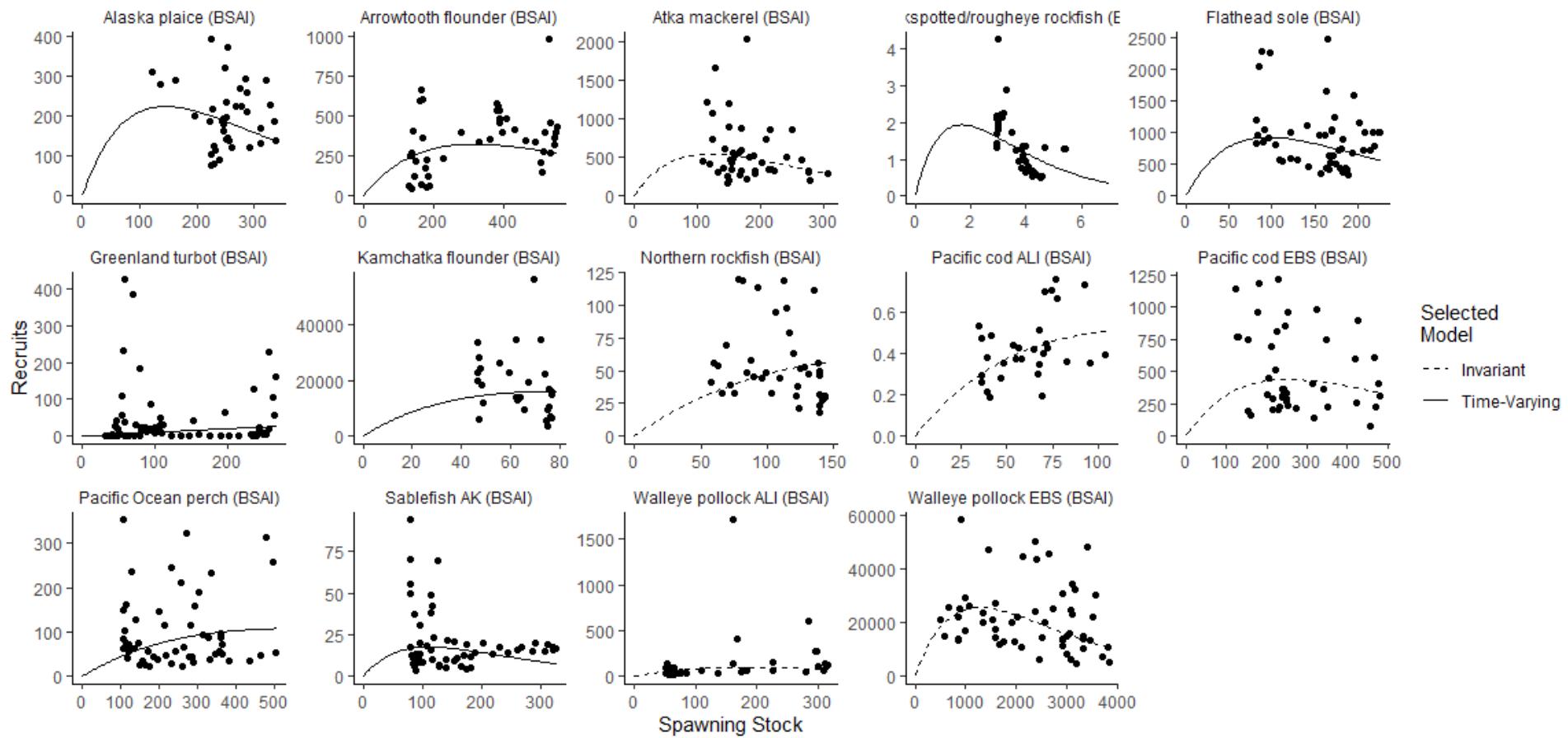


Figure S1e: Stock-recruitment values from stock assessment reports (points), and the estimated Ricker curves based on the average productivity estimated by the dynamic Ricker model with the Kalman filter. Solid lines indicate that the productivity was selected as time-varying, and thus the average is not the best fit of the data, and dashed lines indicate that the productivity was selected as time-invariant. Units are SSB (kt) and recruits (millions).

Supplementary Figure S2a-e

1. New England: SNR = 0.799

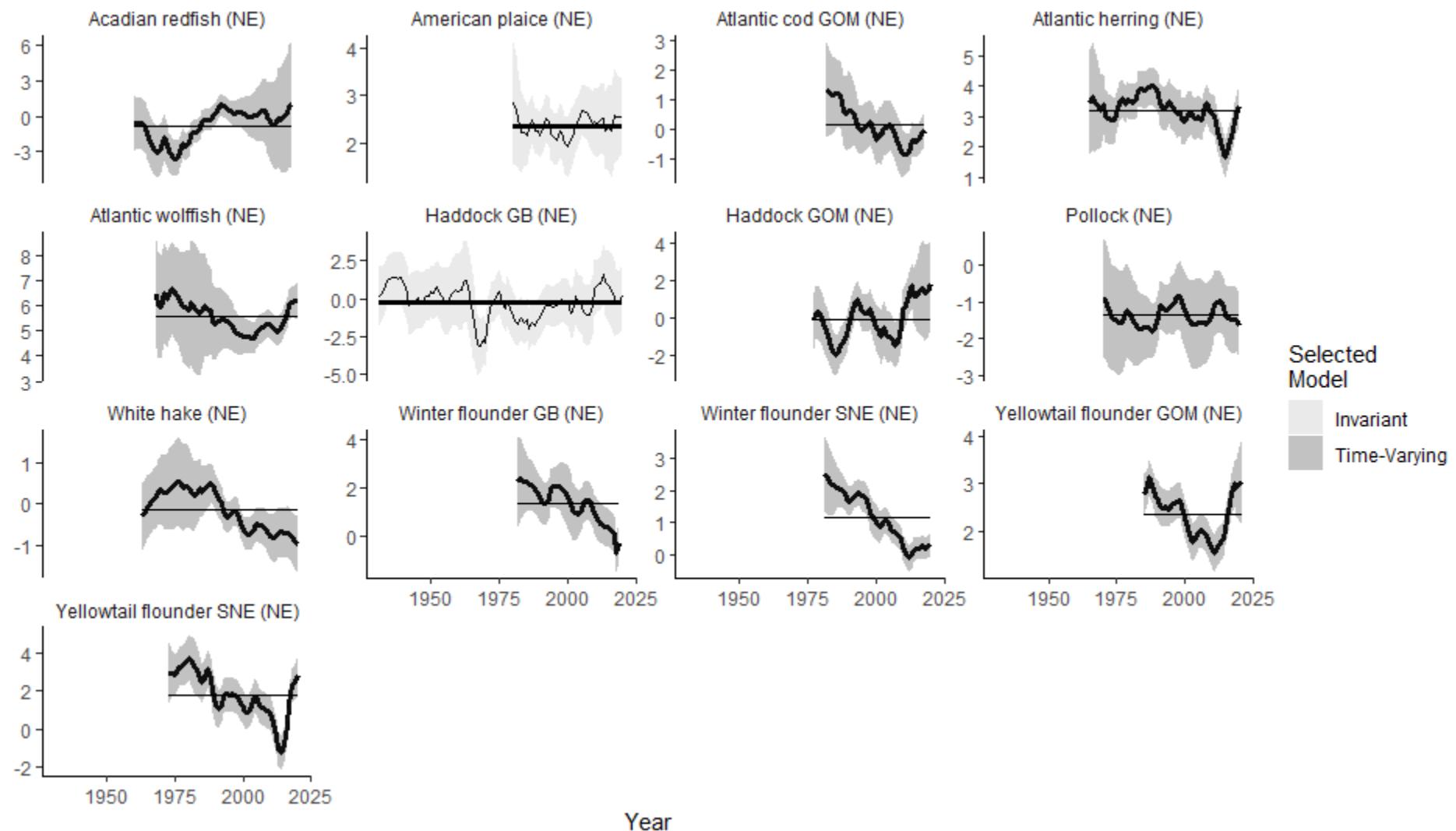


Figure S2a: Time series of productivity (a) in units of $\log(\text{recruits/spawner})$ estimated by the dynamic Ricker model with the Kalman filter. Stocks selected as having time-varying productivity are shown with bold productivity time series, and stocks selected as having time-invariant productivity are shown with bold horizontal line indicating average productivity across the estimated time series.

2. Mid-Atlantic: SNR = 0.762

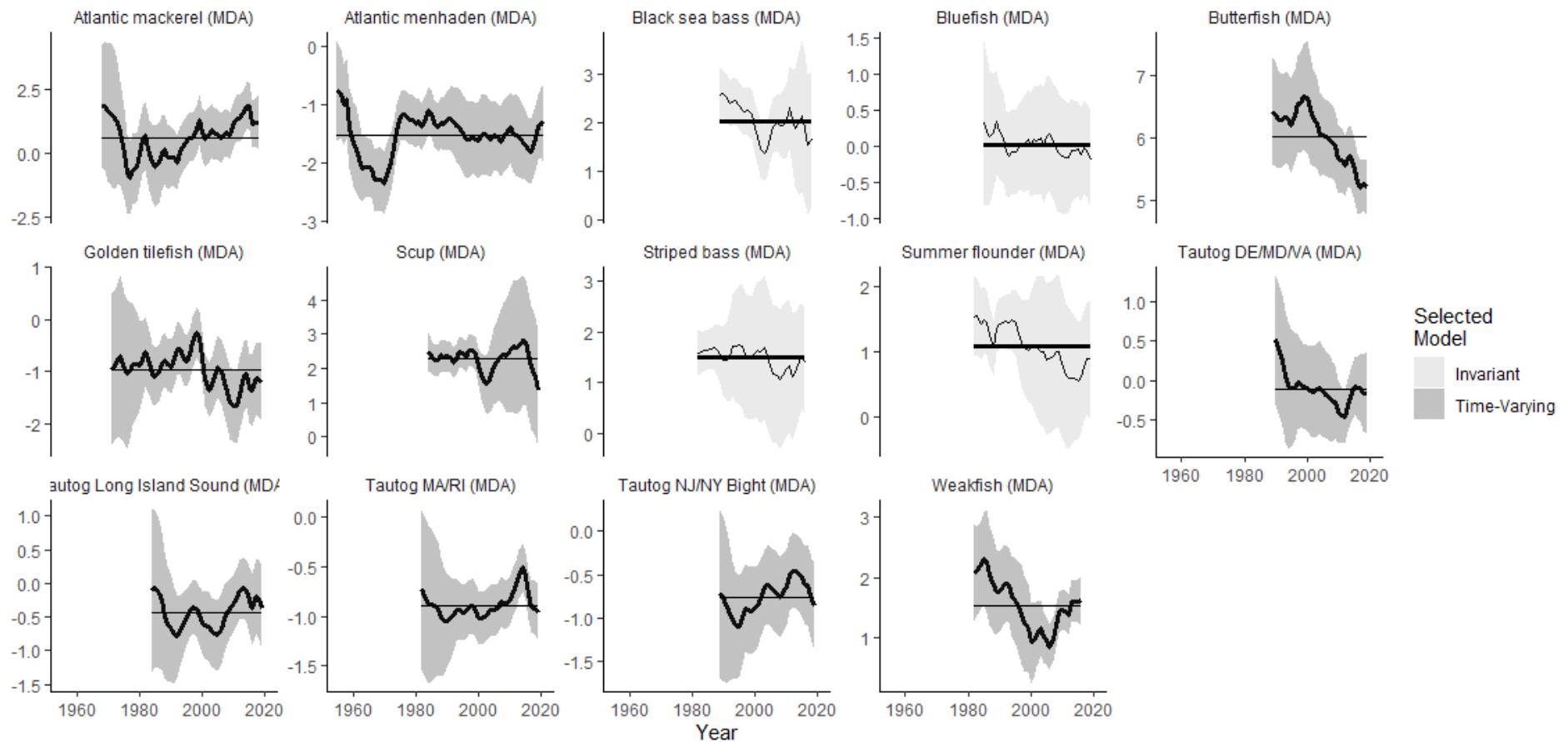


Figure S2b: Time series of productivity (a) in units of $\log(\text{recruits/spawner})$ estimated by the dynamic Ricker model with the Kalman filter. Stocks selected as having time-varying productivity are shown with bold productivity time series, and stocks selected as having time-invariant productivity are shown with bold horizontal line indicating average productivity across the estimated time series.

3. California Current: SNR = 0.396

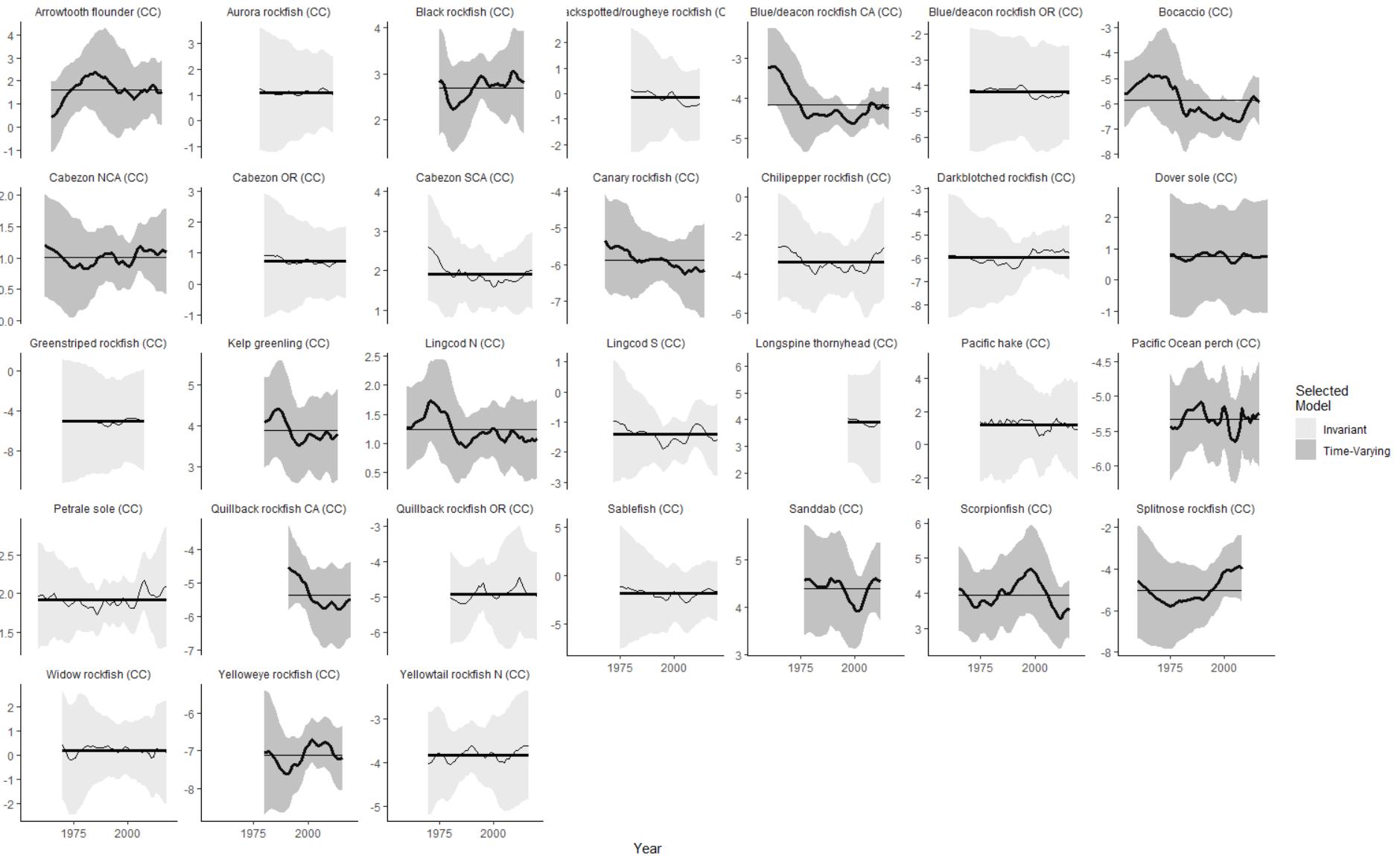


Figure S2c: Time series of productivity (a) in units of $\log(\text{recruits/spawner})$ estimated by the dynamic Ricker model with the Kalman filter. Stocks selected as having time-varying productivity are shown with bold productivity time series, and stocks selected as having time-invariant productivity are shown with bold horizontal line indicating average productivity across the estimated time series.

4. Gulf of Alaska: SNR = 0.790

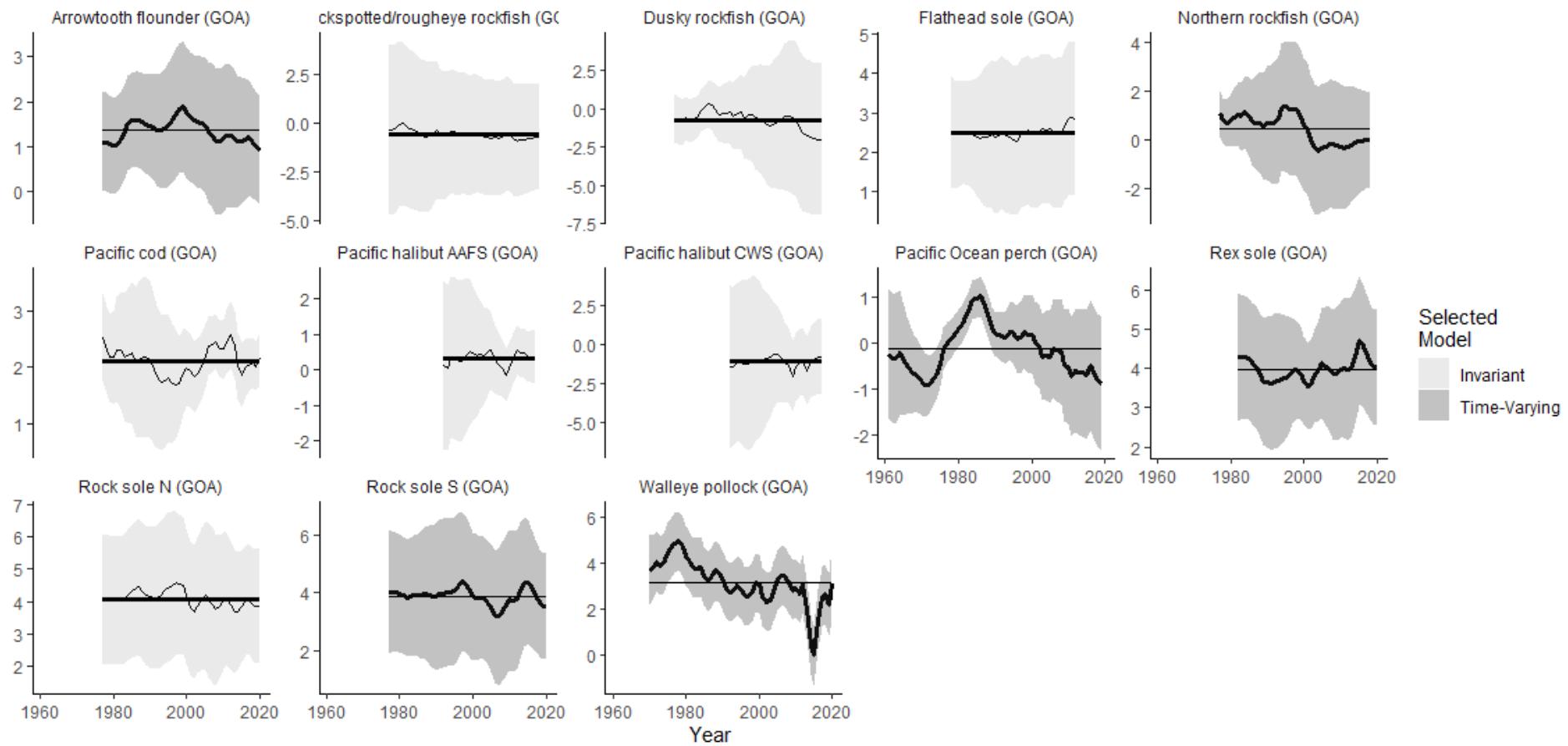


Figure S2d: Time series of productivity (a) in units of $\log(\text{recruits/spawner})$ estimated by the dynamic Ricker model with the Kalman filter. Stocks selected as having time-varying productivity are shown with bold productivity time series, and stocks selected as having time-invariant productivity are shown with bold horizontal line indicating average productivity across the estimated time series.

5. Eastern Bering Sea/Aleutian Islands: SNR = 0.957

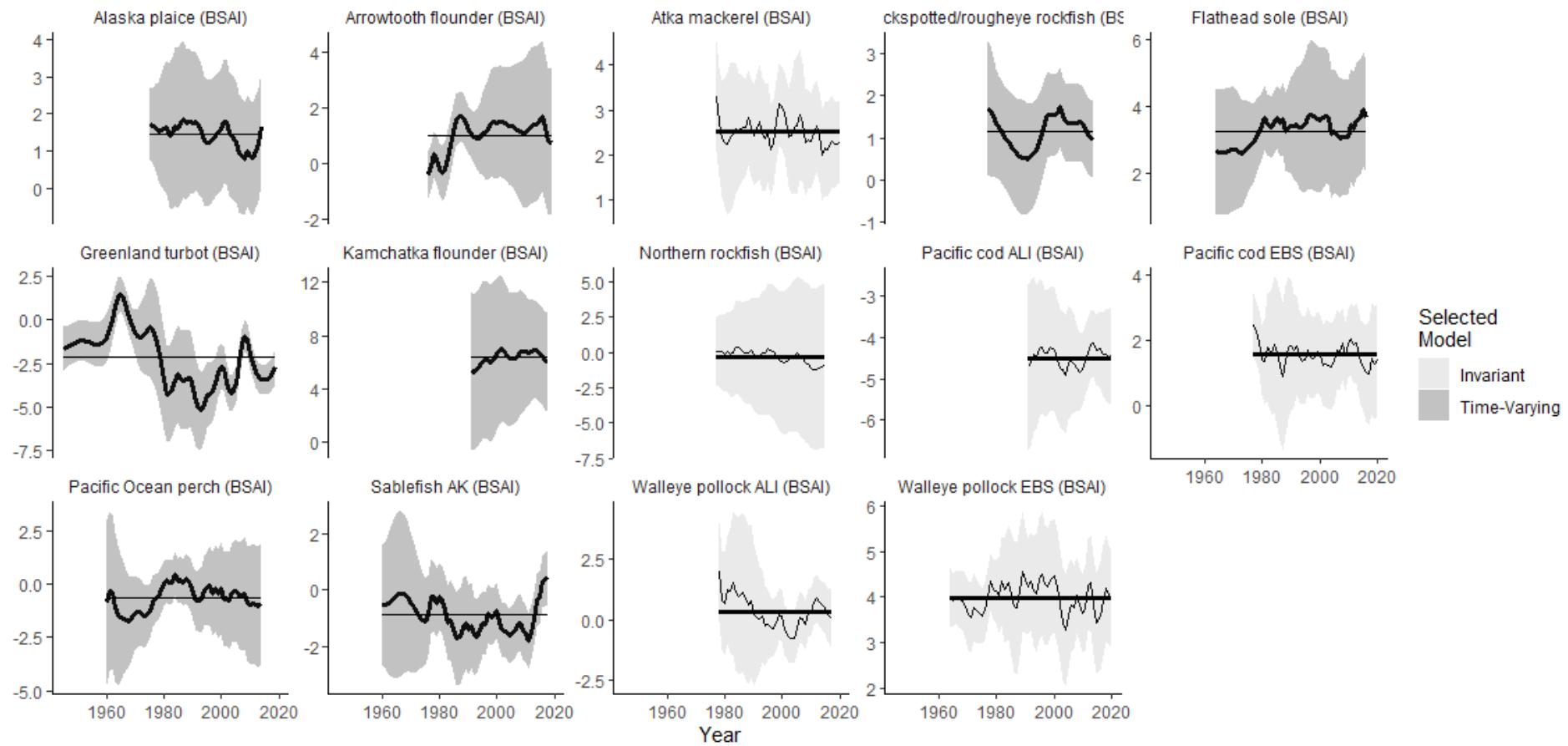


Figure S2e: Time series of productivity (a) in units of $\log(\text{recruits/spawner})$ estimated by the dynamic Ricker model with the Kalman filter. Stocks selected as having time-varying productivity are shown with bold productivity time series, and stocks selected as having time-invariant productivity are shown with bold horizontal line indicating average productivity across the estimated time series.

Supplementary Figure S3a-e

1. New England

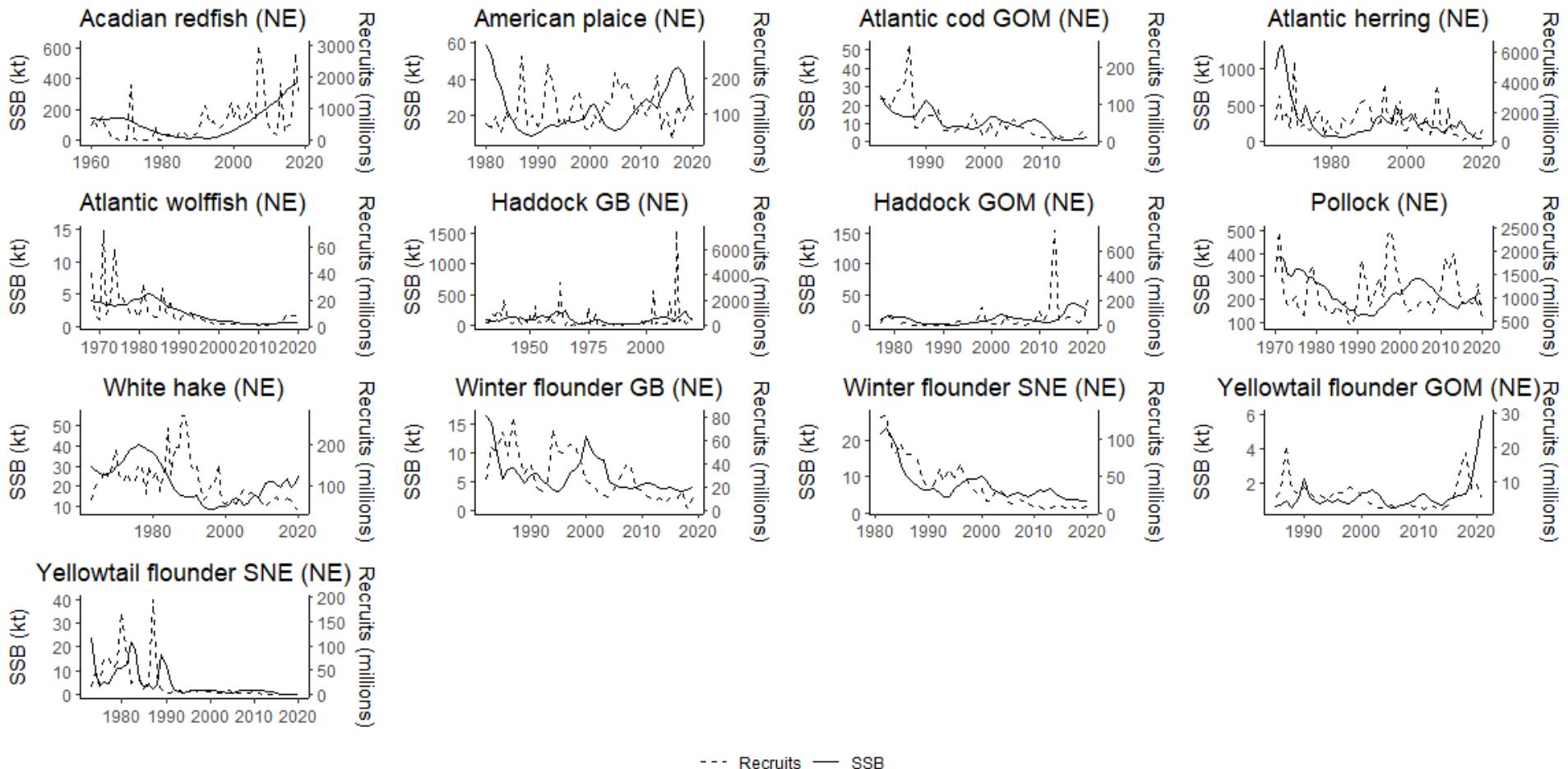


Figure S3a: Time series of spawning stock biomass (solid line) and recruitment (dashed line) from stock assessment reports.

2. Mid-Atlantic

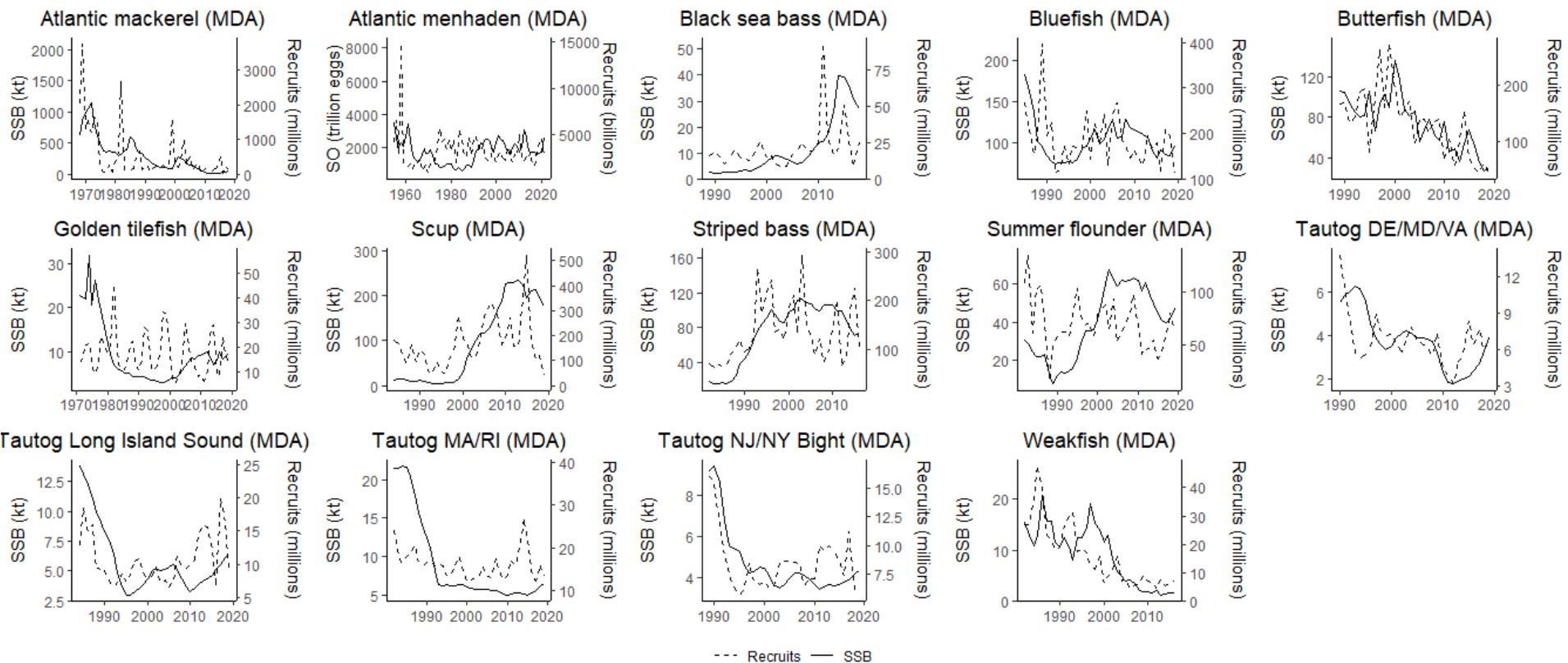


Figure S3b: Time series of spawning stock biomass or spawning output (solid line) and recruitment (dashed line) from stock assessment reports.

3. California Current

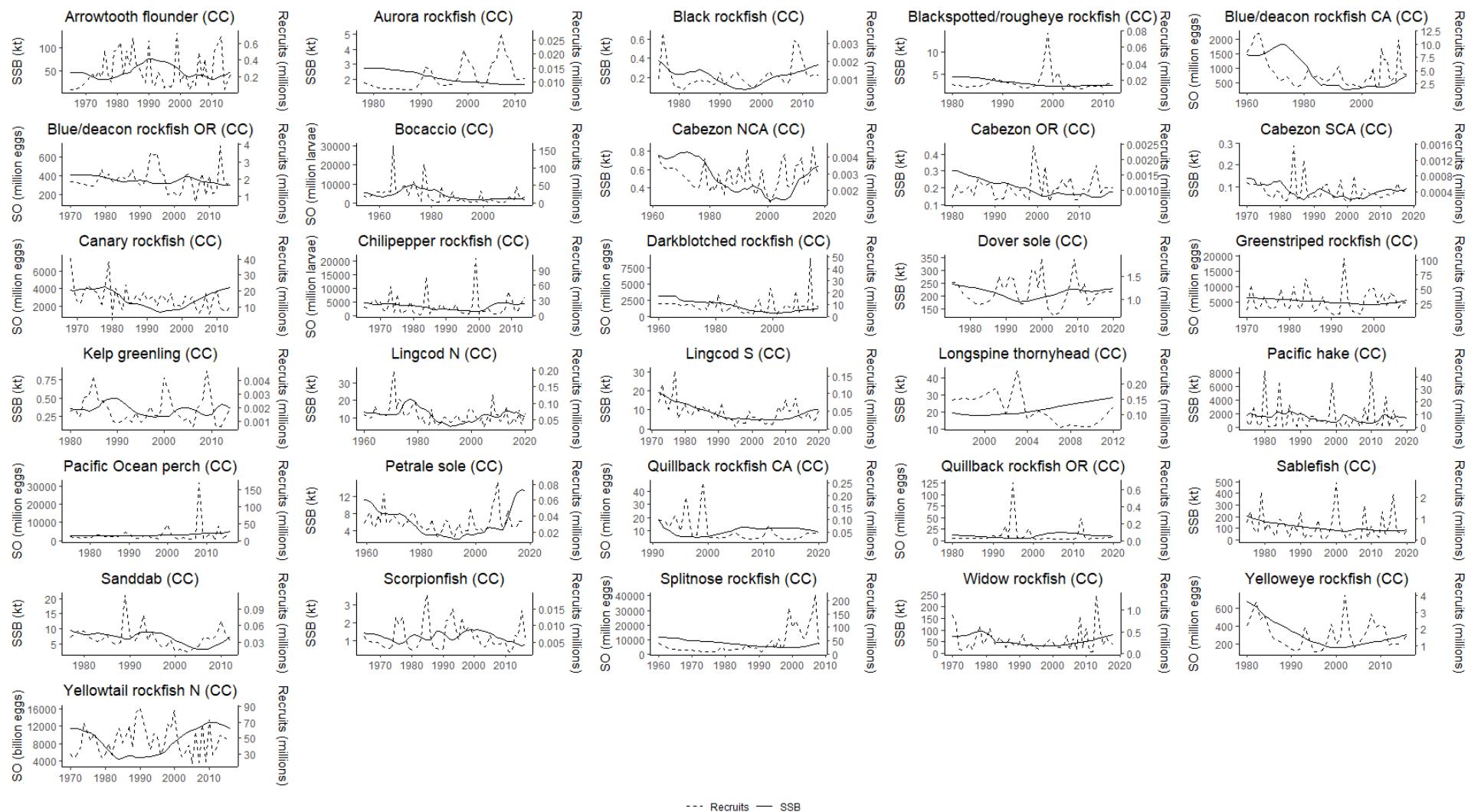


Figure S3c: Time series of spawning stock biomass or spawning output (solid line) and recruitment (dashed line) from stock assessment reports.

4. Gulf of Alaska

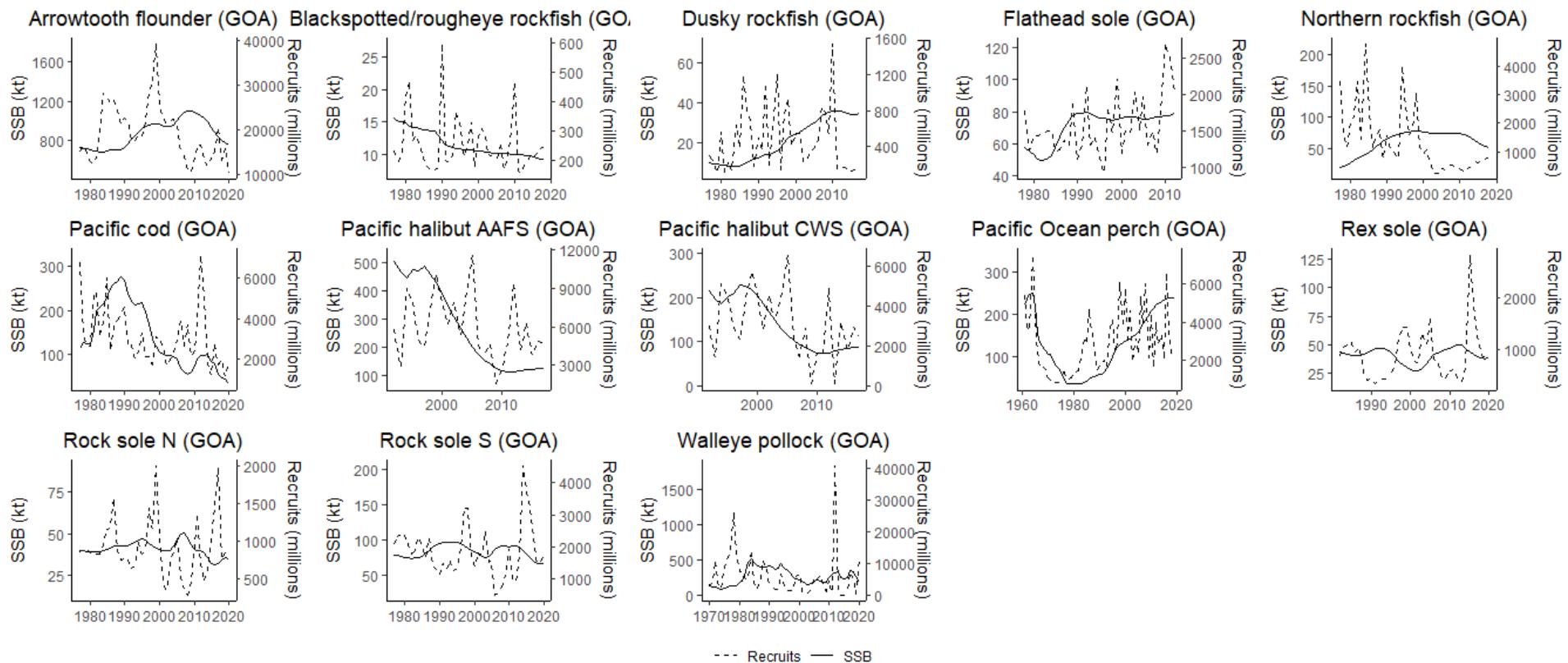


Figure S3d: Time series of spawning stock biomass (solid line) and recruitment (dashed line) from stock assessment reports.

5. Eastern Bering Sea/Aleutian Islands

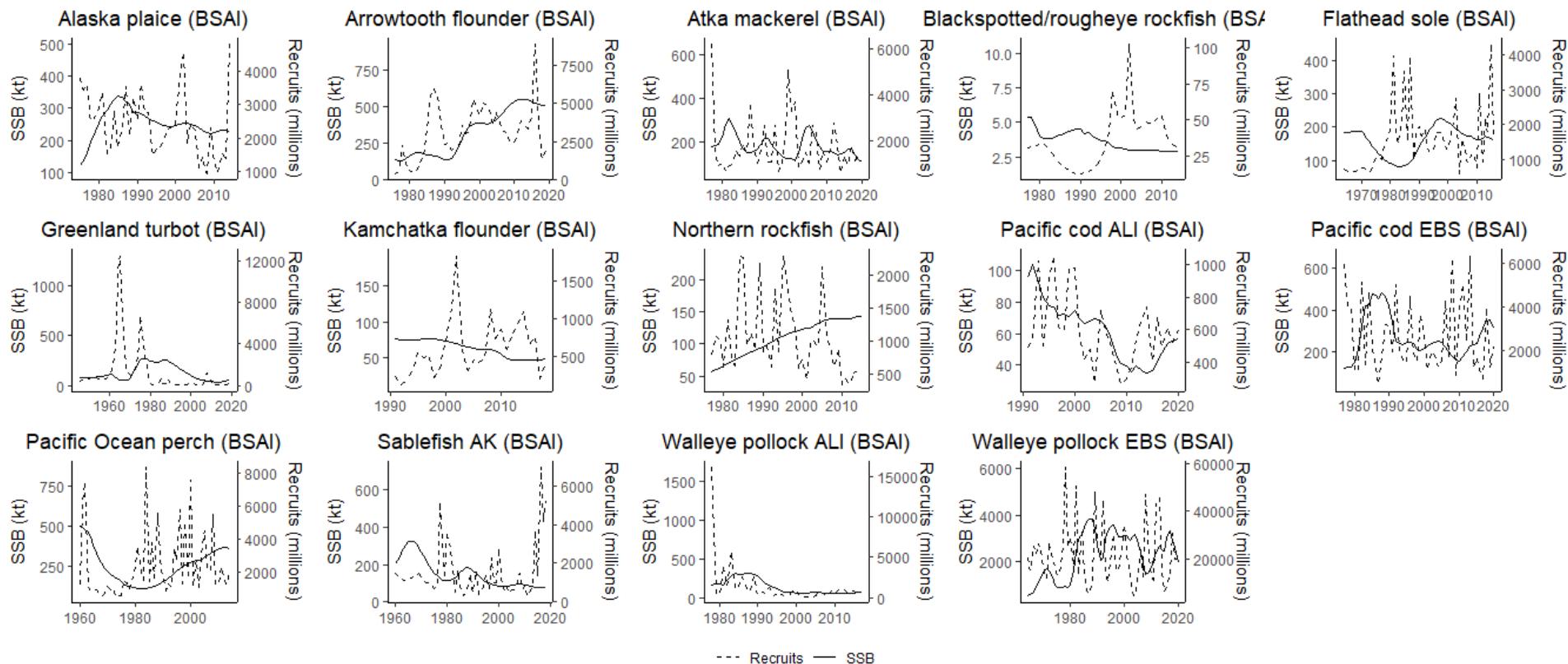


Figure S3e: Time series of spawning stock biomass (solid line) and recruitment (dashed line) from stock assessment reports.

Supplementary Figure S4

Figure S4: Summary of the difference in current mean stock productivity relative to the mean estimated at the beginning of the time series (col. 1), ten years prior to current (col. 2), and five years prior to current (col. 3). Red squares indicate that productivity is currently higher than it was at the beginning of the given time period (i.e. increased), and blue squares indicate that productivity is currently lower (i.e. decreased). White squares indicate that the productivity has not changed notably since the beginning of the given time period, relative to the standard error of the productivity estimate.

