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Abstract 

Several previous studies of marine fish stocks have demonstrated time-varying recruitment 
productivity and indicated that including time-varying parameters can track process variation in 
recruitment. Few studies have synthesized signal-to-noise ratios and underlying reasons for time-
variation across stocks and regions. Using Peterman’s Productivity Method (PPM), we provide a 
broad synthesis of time-varying density-independent productivity in 84 stocks across five regions 
of the United States. Of all stocks investigated, 50 were found to have time-varying productivity, 
challenging assumptions on the stationarity of recruitment parameters and dependent reference 
points. Our results demonstrate the power of PPM for synthesizing the form and pattern of 
recruitment time-variation among regions, including general summaries of directional change 
over time. Furthermore, our results show regional differences in time-varying patterns, 
particularly the signal-to-noise ratio (SNR) of low- to high-frequency variation. The SNR was 
lower in the California Current region than in two Atlantic regions and two Alaska regions. 
Generalized linear modeling used to synthesize results suggests that stocks with higher contrast 
in spawning stock biomass over time, standardized regardless of actual spawning stock size, 
were more likely to have time-varying productivity than stocks with low contrast. The likelihood 
of time-variation in productivity of a given stock was also found to be closely related to the 
autocorrelation of the recruitment time series. Such inter-regional and inter-stock comparisons of 
variation are vital in understanding the roles of local and global environmental change on fish 
productivity. 

Keywords 

Dynamic linear model, Kalman filter, Peterman Productivity Method, Ricker model, Stock-
recruit model, Time-varying recruitment 
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1. Introduction 

Commercial fisheries are an economically important industry globally, in the United 
States alone supporting 1.7 million jobs and generating over $250 billion USD in sales in 2020 
(NMFS, 2022). To support and maintain such a valuable industry, it is important for fisheries 
scientists and managers to understand the capacity of fish stocks to reproduce and replenish the 
populations while subject to fishing pressure and other stressors (Hilborn and Walters, 2013). 
Understanding the temporal behavior of fish stock dynamics and improving the statistical models 
that inform fisheries management is necessary, especially in the face of local and global 
environmental change. 

Recruitment is the largest source of variability in marine fish stocks (Sissenwine, 1974), 
and thus understanding recruitment is essential to understanding stock dynamics. Stock-
recruitment models explore the relationship between the spawning output of the fish stock and 
the number of recruits. Age-structured stock assessment models use the numbers-at-age from 
scientific surveys and fisheries landings in combination with age-specific parameters such as 
growth, selectivity, and maturity, to estimate the fish population size, spawning output, and 
recruitment. A stock-recruitment function is then needed to close the life cycle in order to project 
stock size as a function of fishing pressure. The recruitment model may be simply deviations 
from the mean, a segmented linear model (Barrowman and Myers, 2000), or one of the classic 
stock-recruitment models (Beverton and Holt, 1957; Ricker, 1954). Productivity, the capacity of 
fish stocks to increase their abundance and biomass is one of the parameters in stock-recruitment 
functions. We focus on the portion of this capacity attributable to reproduction, and define 
productivity as the density-independent expected number of recruits from an individual spawner 
or unit spawning biomass. Stock assessment models are frequently run with the assumption that 
productivity is constant, regardless of varying conditions over time. However, research has 
increasingly demonstrated that for many stocks, this may not be the case (Peterman et al., 2003; 
Collie et al., 2012; Minto et al., 2014; Szuwalski et al., 2015; Stock and Miller, 2021). The 
consequences of incorrectly assuming stationary recruitment productivity may be detrimental to 
the stock. For example, in cases where productivity has declined over time, assuming an average 
productivity value overestimates recruitment, resulting in biological reference points and 
expected yields too high to achieve (Tableau et al., 2019; Collie et al., 2021). 

Recognizing time-varying recruitment productivity is important for setting biomass and 
fishing mortality reference points, catch quotas, rebuilding targets, and other management 
actions. A dynamic Ricker model fit with a Kalman filter has been used to investigate time-
varying productivity for a number of stocks in Canada (Peterman et al., 2003), the United States 
(Tableau et al., 2019; Bell et al., 2023), other areas of the north Atlantic (Minto et al., 2014; 
Silvar-Viladomiu et al., 2023) and worldwide (Britten et al., 2016). The Kalman filter is a linear, 
state-space model that extracts the underlying signal in variable time series data by filtering 
observations at each time step based on the prediction from the previous time steps, error 
variances, and the new observation. The Kalman smoother provides smoothed predictions based 
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on both past and future time steps. Using a Kalman filter for stock-recruitment data has been 
demonstrated to improve predictions of recruitment and calculation of fisheries reference points 
(Tableau et al., 2019; Collie et al., 2021). In recognition of the seminal contributions of Prof. 
Randall Peterman and team in developing and applying this method of stock-recruitment 
analysis, Silvar-Viladomiu et al. (2022) named the time-varying recruitment parameter method 
“Peterman’s Productivity Method” (PPM). 

In the present study, we apply the dynamic Ricker model with the Kalman filter to stock 
assessment time series from stocks with age-structured assessments in five regions on the 
Atlantic and Pacific coasts of the United States to identify stocks with time-varying productivity. 
Several stocks in New England, the Mid-Atlantic (Tableau et al., 2019), and the California 
Current (Bell et al., 2023) have been studied previously. Tableau et al. (2019) and Bell et al. 
(2023) suggest that the Atlantic stocks are likely to have time-varying productivity, and the 
California stocks are more often time-invariant, possibly due to oceanographic differences on 
opposite coasts. We expand on previous research by analyzing all regions together and extending 
the range of study to include, in addition to the Atlantic and California regions, stocks off of 
Alaska. Notably, by investigating five regions in a single study, we will be able to (1) explore 
regional and stock-specific differences in temporal patterns of productivity previously 
unreported, (2) make regional comparisons on productivity time-variation and the ratio of 
process error to observation error, and (3) evaluate explanatory factors for time-varying vs. time-
invariant productivity. By pinpointing whether productivity changes are occurring pre- or post-
recruitment, these analyses will help target management interventions to the appropriate stage of 
the life cycle. 

2. Methods 

2.1 Stock assessment time series 

Commercial fish stocks with age-structured assessments were candidates for analysis 
with the dynamic Ricker model. Time series of spawning stock size (in units of kt spawning 
stock biomass or number of eggs/larvae depending on the stock) and recruitment (numbers at age 
of recruitment) were compiled directly from publicly available stock assessment reports and 
supporting material. In a few cases for which time series were not published with the stock 
assessment reports, the time series were acquired following personal communication with the 
stock assessment scientists. Effort was made to compile the longest time series possible for each 
stock for as long as age-structured assessments were conducted. Spawning stock and recruitment 
information from years before length or age data were available were not included in the present 
study. Eighty-five time series were compiled in this way, for 84 stocks (Table 1a-e). In cases 
where multiple models were reported in stock assessments, the author-preferred model was used. 
Pacific halibut is assessed and managed with an ensemble of multiple assessment models, with 
no author-preferred model as in other stock assessments with multiple possible models. Time 
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series from two  of the Pacific halibut models were included in the present study, Coast-wide 
Short and Areas-As-Fleet Short  (Stewart and Hicks, 2022), to compare results between time 
series for Pacific halibut and test if both time series accounted  for the same  underlying qualities  
of productivity in the Pacific halibut stock (Table 1d).  Pacific halibut was  grouped with other  
stocks in the Gulf of Alaska region.  
 
2.2 Dynamic Ricker  model  
 

A dynamic Ricker stock-recruitment model estimated with the state-space Kalman filter,  
was applied to all the compiled stock assessment time series following  Peterman’s  Productivity  
Method. Early applications of this method by Peterman et al. (2003)  and Dorner et  al. (2008)  
used a single-stock approach and  compared the Kalman-smoothed single-stock results post-
modeling. In the present  study, following more recent applications of PPM (e.g. Minto et al., 
2014; Tableau et al., 2019; Bell et al., 2023), stocks in each region were fit simultaneously in a  
multi-stock model format. Within the multi-stock format, the equations  in the state-space model  
for each individual stock include the linearized Ricker model of observations (Eq. 1), where  R  is 
the recruitment (numbers of recruits), and S is the  spawning stock size (by  kt weight of spawners  
or numbers of eggs/larvae, depending on the stock); when spawning stock was in units of  
eggs/larvae, the value was converted to millions to keep the magnitude of productivity on 
approximately the same scale for all the stocks.  
 

𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡+𝑟𝑟� = 𝑎𝑎 2
𝑒𝑒 �

𝑅𝑅
𝑡𝑡 − 𝑏𝑏𝑏𝑏𝑡𝑡 + 𝑣𝑣𝑡𝑡   𝑣𝑣𝑡𝑡 ~𝑁𝑁(0, 𝜎𝜎𝑣𝑣 )    Eq. 1 

𝑆𝑆𝑡𝑡 

 
Both R and S  are time-dependent (subscript  t), and  r  is the lag between when a fish is spawned  
and when it reaches  age at recruitment.  Productivity  is defined here as the density-independent  
coefficient  a in units of ln(R/S), and b  is a constant density-dependent coefficient. Productivity  
(a) is allowed to be time-dependent and modeled with a random walk (Eq. 2).  
 

𝑎𝑎    
𝑡𝑡+1 = 𝑎𝑎𝑡𝑡 + 𝑤𝑤𝑡𝑡 𝑤𝑤 2

𝑡𝑡 ~𝑁𝑁(0, 𝜎𝜎𝑤𝑤)    Eq. 2  
 
 Previous studies performing similar analyses have also tested allowing  the density-
dependent mortality  b term in Eq. 1 to vary with time instead of and in addition to time-varying  a  
(Britten et  al., 2016;  Szuwalski et al., 2019;  Silvar-Viladomiu et al., 2023). Researchers found 
that it was often difficult to tell whether variability in recruitment was  associated with  
productivity (a) or density-dependent mortality (b), and the patterns of variation were similar, 
simply  attributed to whichever parameter was  allowed to vary in the  given model (Szuwalski  et  
al., 2019;  Silvar-Viladomiu et al., 2023). Britten et al. (2016) reported results that combined the  
effects of a and b, but their supplementary figures  (Appendix 1) suggest that variability in 
recruitment was applied  either to  a  or b and not a  combination of both. Likewise, in other 
studies, models with time-varying  a and b  were rarely statistically better than models with only  
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one time-varying parameter (Szuwalski et al., 2019). Previous studies (Silvar-Viladomiu et al., 
2023), and preliminary fits in the present study found more support for models with time-varying 
a than b. We therefore chose to focus only on time-varying productivity (a) such that variation in 
density-independent productivity impacts recruitment at all spawning stock sizes, contrary to 
density-dependent recruit mortality, which has an impact that increases at high recruitment 
densities expected with higher spawning stock biomass (Peterman et al., 2000). 

Equations 1 and 2 are the observation and state equations of the state-space models and 
each have an error term. In the linearized Ricker stock-recruitment model, “v” accounts for 
observation error (or high-frequency true variability that does not propagate), and in the 
productivity random walk, “w” accounts for the process error, or the signal in the recruitment 
variability that is accounted for by the variation in the productivity time series. The variances of 
these error terms are defined as 𝜎𝜎𝑣𝑣2 and 𝜎𝜎𝑤𝑤2 . The ratio of the standard deviation of the process 
errors to the standard deviation of the measurement errors (𝜎𝜎𝑣𝑣/𝜎𝜎𝑤𝑤) is the signal-to-noise ratio 
(SNR). 

Simulation studies conducted as part of previous studies have confirmed the ability to 
estimate productivity from data simulated with realistic levels of variance (A. Tableau, 
unpublished data). However, it is challenging to estimate both the process-error (𝜎𝜎𝑤𝑤2 ) and 
observation-error variances (𝜎𝜎𝑣𝑣2) with the length of time series typically available for fish stocks. 
To avoid cases in which the Kalman filter resulted in all the variance being assigned to either 
noise or signal, as opposed to a mixture of the two, we generated more appropriate SNRs by 
simultaneously modeling all stocks in a given region. Within the multi-stock framework, the 
individual stock time series were constrained by the regional SNR parameter optimized and 
estimated in the model, following success of previous research using similar regional 
assumptions (Tableau et al., 2019; Bell et al., 2023). The SNR may be influenced by other 
factors besides region, such as stock size, life-history characteristics, or finer-scale 
environmental factors. However, the assumption that a regional SNR was appropriate for the 
present study was accepted because of the success of the method in previous studies, and because 
stocks in a given region are expected to be subject to similar large-scale environmental or 
anthropogenic conditions that affect variability in productivity, as well as similar fisheries 
dependent and independent data collection. For example, most of the stocks in each region are 
demersal, occupying similar habitat, captured within similar fisheries, and surveyed with similar 
methods. Importantly, by estimating region-specific SNRs we can compare this summary 
parameter across regions. 

In addition to the time-varying productivity model, each stock-recruitment dataset was 
also modeled with a standard Ricker model with time-invariant productivity. The results of this 
time-invariant productivity model were compared to those of the time-varying productivity 
model for each stock, and model selection determined which interpretation of the time series of 
productivity was more appropriate for each stock. A diagnostic comparison between time-
invariant productivity values and mean time-varying productivity values was run by plotting the 
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values against each other on top of a 1:1 line to see whether the time-varying model, constrained 
by the regional SNR, was producing reasonable estimates relative to the time-invariant model. 

Model selection consisted of a likelihood ratio test comparing the time-varying and the 
time-invariant models. The likelihood ratio has a χ2 distribution with one degree of freedom to 
account for the addition of the process-error variance in the time-varying model. A p-value < 
0.05 was interpreted as evidence that the time-varying model fit better for the given stock. The 
time-invariant model was selected in all other cases. 

Bell et al. (2023) tested whether the time-varying productivity time series would be 
different if estimated with a dynamic Ricker model or a dynamic Beverton-Holt model, and the 
analysis found that while the magnitude of the estimates could be different, the pattern of the 
time-varying productivity time-series was the same for both stock-recruitment functions. 
Because the present study is only focused on the patterns in the productivity, only the Ricker 
model was used. The analyses were performed using R statistical analysis software (v4.2.3, R 
Core Team, 2023) and the “dlm” package (Petris et al., 2009; Petris, 2010). 

2.3 Impact of embedded stock-recruitment model in stock assessment 

The stock assessment models used to generate the spawning stock and recruitment time 
series used in the present study estimate recruitment as deviations from the long-term average or 
as deviations from a stock-recruitment model. Often the stock-recruitment function provides 
initial estimates of recruitment that are then adjusted to the length and age data in the catch and 
survey observational time-series. Provided that the standard deviation of recruits (sometimes 
termed σr) is large enough, the final estimates of recruitment are unconstrained by the stock-
recruitment relationship within the stock assessment model. 

Small values of σr in the stock assessment model constrain the recruitment deviations to 
be very similar to predicted recruitment values from the stock-recruitment model. As the values 
of σr increase, the recruitment deviations become less and less constrained by the underlying 
stock-recruitment model. Therefore, σr could impact the estimated recruitment, and the time-
varying productivity time-series estimates from the dynamic Ricker model used in the present 
study (described above). To test this potential effect using one data-rich example, the stock 
assessment model for eastern Bering Sea walleye pollock, for which estimated recruitment is 
influenced by deviations from a mean level of recruitment as well as deviations from an 
embedded Ricker stock-recruitment model, was run with several different σr values (0.2 to 1.8). 
Typical σr values in the stock assessments investigated in the present study were between 0.4 and 
1.0, with a mean value of about 0.6. The output time series of these tests were modeled with the 
dynamic Ricker stock-recruitment model, and the output productivity estimates were compared 
to see if changing σr in the stock assessment model had a strong impact on the estimates of 
productivity from the dynamic Ricker model, which would indicate how strongly the variability 
in estimated recruitment is constrained with assessment assumptions. 
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2.4 Factors influencing the probability of time-variation 

To test which factors might make a stock more or less likely to be time-varying, we 
compared the stocks that were selected as having time-varying productivity to those that were 
selected as having time-invariant productivity using a biased-reduced generalized linear model 
(GLM) with a binomial error distribution implemented in the “brglm2” package in R (Kosmidis, 
2023). A biased reduced GLM was used because some combinations of explanatory factors 
resulted in complete separation of the binary response (Firth, 1993). Possible explanatory 
variables influencing the probability that productivity was time-varying (Eq. 3) included 
taxonomic order, total variance calculated from the time-varying model, three summaries of 
current exploitation status in terms of fishing mortality (F/Fmsy) and spawning stock size 
(S/SSBmsy) and the proportion of the entire time series that was overfished (PropOF; i.e. SSB 
was lower than SSBmsy, detailed below), an estimate of contrast in the spawning stock time series 
(detailed below), the length (i.e. number of years of data) of the time series (YOD), and age at 
maturity. Support for models with all possible combinations of covariates was compared with the 
Akaike information criterion (AIC) (Akaike, 1974). 

𝑦𝑦𝑖𝑖 ~𝐵𝐵𝐵𝐵𝐵𝐵(𝐵𝐵 = 1, 𝑝𝑝𝑖𝑖) Eq. 3 
𝑙𝑙𝑙𝑙𝑙𝑙𝐵𝐵𝑙𝑙(𝑝𝑝𝑖𝑖) = 𝛼𝛼 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 𝛽𝛽1𝑇𝑇𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑇𝑇𝑎𝑎𝑂𝑂𝑖𝑖 + 𝛽𝛽2(𝐹𝐹⁄𝐹𝐹𝐹𝐹𝐹𝐹𝑦𝑦)𝑖𝑖 + 𝛽𝛽3(𝑏𝑏𝑏𝑏𝐵𝐵/𝑏𝑏𝑏𝑏𝐵𝐵𝐹𝐹𝐹𝐹𝑦𝑦)𝑖𝑖 + 𝛽𝛽4𝑃𝑃𝑂𝑂𝑙𝑙𝑝𝑝𝑂𝑂𝐹𝐹𝑖𝑖 

+ 𝛽𝛽5𝐶𝐶𝑙𝑙𝐵𝐵𝑙𝑙𝑂𝑂𝑎𝑎𝐹𝐹𝑙𝑙𝑖𝑖 + 𝛽𝛽6𝑌𝑌𝑂𝑂𝑌𝑌𝑖𝑖 + 𝛽𝛽7𝑀𝑀𝑎𝑎𝑙𝑙𝑀𝑀𝑙𝑙𝑂𝑂𝑖𝑖 

Exploitation was summarized in three ways. First, current overfishing status was 
summarized as the ratio of the estimate of fishing mortality or exploitation rate (depending on 
the stock) in the terminal year of the stock assessment relative to the reference point (e.g. Fmsy 

and proxy values), as reported in the stock assessment to determine overfishing status. Second, 
current overfished status was summarized as the ratio of the estimate of SSB or spawning output 
(depending on the stock) in the terminal year of the stock assessment relative to the reference 
point in comparable units (e.g. SSBmsy and proxy values), as reported in the stock assessment to 
determine overfished status. Measures of terminal year overfished and overfishing status were 
included to test whether current status could be used as a convenient indicator to fisheries 
scientists and managers of likely time-variance in a given stock. Third, the proportion of the 
time-series overfished was summarized as the proportion of the spawning stock time series 
reported in the stock assessment used (Table 1a-e) that had stock sizes below the reference point 
in comparable units reported in the same stock assessment to determine overfished status. Ratios, 
as opposed to the reference points directly, were used in an attempt to standardize the summaries 
of exploitation across different stock assessment conventions in different regions. 

Contrast in the spawning stock data was calculated as another summary of stock history 
following methods by Rindorf et al. (2022). Contrast summarizes the spread of the spawning 
stock data, standardized across all stocks. The contrast term encompasses whether or not the 
stock ever reached particularly low or high spawning stock sizes. High contrast means that the 
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stock has experienced a full range of spawning stock sizes. As a covariate in the GLM,  contrast  
was calculated using 90th  percentiles  and 10th  percentiles of the spawning stock time series data 
for each stock (Eq. 4).  
 

𝐶𝐶𝑙𝑙𝐵𝐵𝑙𝑙𝑂𝑂𝑎𝑎𝐹𝐹𝑙𝑙  𝑙𝑙𝑙𝑙𝑙𝑙 90%
𝑒𝑒 �

𝑆𝑆
 = �     Eq. 4  

𝑆𝑆10% 

 
2.5  Quantifying temporal  patterns in productivity  
 

We used a weighted linear regression to quantify  patterns of  directional change  in the  
productivity time series that were selected as time-varying.  We conducted  weighted linear  
regressions of the productivity full time series, and then repeated the method on the last ten years  
and the last five  years to indicate recent trends in productivity to compare to the overall time  
series. Weights were equal to  the inverse of the variance on  each  a  estimate (1/𝜎𝜎2𝑎𝑎 ). If regression  
coefficients were significant  (p < 0.05), the sign of the coefficient was used to indicate whether  
the productivity had increased or decreased over the given time interval.   

Additionally, the mean and standard deviation of the normal distribution of  the difference 
in estimated  productivity  between  the beginning a nd the end of each stock time series were  also  
used to estimate the change in productivity  (Eq. 5).  
 

𝑌𝑌𝐵𝐵𝐷𝐷𝐷𝐷𝑂𝑂𝑂𝑂𝑂𝑂𝐵𝐵𝐷𝐷𝑂𝑂~𝑁𝑁(𝜇𝜇, 𝜎𝜎2)  𝜇𝜇 =  𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝜇𝜇𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡  𝜎𝜎 = �𝜎𝜎2𝑒𝑒𝑒𝑒 + 𝜎𝜎2𝑒𝑒 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡   Eq. 5  
 

If  ≥  80% of the joint distribution was > 0, i.e. the difference was positive between the  
current (with regard to the stock assessment used in the present study) productivity and the  
productivity at the start of the time series; this indicated that the productivity  is currently higher  
than at the start of the time series. Conversely, if  ≤  20% of the distribution was > 0, this indicated 
that the productivity is currently lower. If < 80% but >  20% of the distribution was > 0, it was  
determined that there was no clear positive or negative change in productivity since the  
beginning of the time series.  We performed the same method on the last five years  and the last  
ten  years of the timeseries.  
 
3. Results  
 
 The dynamic Ricker stock-recruitment model with the Kalman filter was applied to 85  
stock-recruitment time series of US commercial fish  stocks with age-structured stock 
assessments from five  regions (Table 1a-e).  
 
3.1 Impact of embedded stock-recruitment model  in stock assessment  
 

The temporal pattern of the productivity parameter estimated from assessment estimates  
of stock and recruitment  were similar across various values of  σr  in the assessment  for eastern  
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Bering Sea walleye pollock. At some time points, the scale of the productivity parameter 
changed slightly at lower values of σr, but the time series remained largely unchanged (Figure 1). 
These results indicated that even at the lower end of σr values at which the recruitment deviations 
are more constrained, information from the length and age data are informing the temporal 
pattern of estimates of recruitments, and patterns of time-varying productivity could be extracted 
with a dynamic Ricker stock-recruitment model applied to stock assessment output with a range 
of σr values, ranging both smaller and greater than the 1.0 σr value used in the eastern Bering Sea 
pollock stock assessment. 

3.2 Dynamic Ricker model 

The time-invariant productivity values and mean time-varying values of productivity 
were well correlated (Figure 2a), as were the estimates of the density-dependence term (Figure 
2b). The time-invariant model is estimating a value of productivity and density dependence 
comparable to the average productivity and constant density dependence from the time-varying 
model, such that by constraining the dynamic Ricker model with a regional SNR, we are not 
introducing unforeseen bias into the model estimates that would affect how productivity was 
interpreted for further stock assessment and management, e.g. calculating biological reference 
points. 

The multi-stock models yielded unique SNRs for each region (Figure 3), which 
constrained the single-stock model outputs for each region: 0.799 (New England), 0.762 (Mid-
Atlantic), 0.396 (California Current), 0.790 (Gulf of Alaska), and 0.957 (eastern Bering 
Sea/Aleutian Islands). When compared to the standard Ricker model with time-invariant 
productivity, the dynamic model with time-varying productivity was selected by the likelihood 
ratio test for 50 stocks, and the time-invariant model was selected for 34 stocks (35 time series 
including both Pacific halibut time series). By region, New England had 11 (85%) time-varying 
and 2 time-invariant stocks, the Mid-Atlantic had 10 (71%) time-varying and 4 time-invariant 
stocks, the California Current had 15 (48%) time-varying and 16 time-invariant stocks, the Gulf 
of Alaska had 6 (50%) time-varying and 6 time-invariant stocks (7 time-invariant time series 
including both Pacific halibut time series), and the eastern Bering Sea/Aleutian Islands had 8 
(57%) time-varying and 6 time-invariant stocks (Table 1a-e). Stock-recruitment relationships for 
all stocks are shown in Supplementary Figures S1a-e. 

Recruitment autocorrelation, calculated for each stock time series, indicated that time 
series that were selected for time-varying productivity more often than not had higher 
autocorrelation than those that were time-invariant (Figure 4). 

3.3 Factors influencing the probability of time-variation 

Using only complete cases (i.e. removing two stocks for which there were no estimates of 
F/Fmsy or SSB/SSBmsy), the full biased-reduced GLM model with all predictors, and all possible 
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combination models were investigated for GLM model selection. Whether a stock’s productivity 
was time-varying or time-invariant was best explained by any of nine possible GLMs (Table 2) 
with AIC values within two units of the lowest AIC model (Burnham and Anderson, 2002). The 
only significant covariate was contrast in two of the ten models, such that stocks with higher 
contrast in the spawning stock time series were significantly more likely (p < 0.05) to have time-
varying productivity than stocks with lower contrast (Figure 5). Investigating all combinations of 
covariates, contrast was significant in 5 models, including the two models within two AIC units 
of the lowest AIC value. 

3.4 Temporal patterns in productivity 

Time series of productivity estimated by the time-varying and time-invariant models are 
shown for all stocks in Supplementary Figures S2a-e, and a selection of stocks are highlighted in 
Figure 6. Patterns of productivity varied widely between stocks, but there were some recurring 
patterns that were observed, such as positive (e.g. Atlantic mackerel) and negative (e.g. SNE 
yellowtail flounder, DMV tautog), or cyclical frequency (e.g. decadal GOM haddock) trends 
with time (Figure 6). For comparison, time series of spawning stock size and recruitment used in 
the present study from the stock assessments are shown in Supplementary Figures S3a-e. 

Weighted regression applied to the productivity time series summarized well the trends in 
productivity that mirrored the observable temporal patterns in the time series (Figure 6). Some 
stocks appear to have decreased productivity at the end of the time series relative to the 
beginning, although a decreasing trend only persisted through recent years for a few stocks, 
particularly in the Mid-Atlantic and Gulf of Alaska (Figure 7). There were overall fewer cases of 
increasing trends in productivity across the entire time series, but there were some increases in 
more recent years across most regions (Figure 7). However, some stocks with time-varying 
productivity did not show any distinct positive or negative trend in the productivity over the 
whole time series, or in the most recent years (Figure 7). 

Sometimes a stock (e.g. Figure 6, CC dover sole) showed no distinct change in 
productivity across the time series or in recent years, and the productivity time series appears to 
have low temporal variation, but the time-varying model was still selected as the best model for 
the stock. Such cases suggest low-amplitude variability such that allowing productivity to vary 
with time still improves the model fit, even though the confidence interval is wide. 

Comparing the productivity estimates at the end of the time series to the beginning, or to 
the past five or ten years, using the analytical approach with mean and variance of the joint 
distribution also suggested some patterns of change in productivity, but the results were not as 
easily interpretable as those from the weighted linear regression. Results from this analytical 
comparison are presented in Supplementary Figure S4. 

4. Discussion 
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We analyzed time-variation in recruitment rates of 84 stocks from five regions around the 
United States. Consistent with previously reported results, our results demonstrate that applying 
the Kalman filter to the linearized Ricker stock-recruitment model is an effective way to 
determine time-variation in productivity, a parameter typically modeled as time-invariant. A test 
case of eastern Bering Sea walleye pollock (Gadus chalcogrammus) indicated that time-variation 
in productivity was insensitive to assumptions made about recruitment in the stock assessment 
model. This result held true, even with a stock-recruitment model embedded in the assessment 
model that output the time series, because the estimates of recruitment were largely 
unconstrained by the internal stock-recruitment relationship. For data-rich stocks such as eastern 
Bering Sea walleye pollock, this result reflects that recruitment estimates are largely determined 
from informative age and length composition data rather than the stock-recruitment relationship. 
It is important to note that while changing the standard deviation of recruitment (σr) in the stock 
assessment model did not change the temporal pattern of productivity, changing σr can alter the 
scale of recruitment and SSB estimates, which would result in different values of MSY-based 
reference points calculated from parameters in the stock-recruitment model. However, in our test 
case, the magnitude of productivity was not strongly impacted by changing the underlying 
Ricker model over a range of σr values. 

We used a likelihood-ratio test to classify stocks as time-varying or time-invariant. Our 
results highlight regional differences in the percentage of time-varying stocks in a region, and in 
the relative extent to which the signal from time-varying productivity is influencing recruitment 
variability (i.e. the SNRs). A higher percentage of both the New England and Mid-Atlantic 
stocks had time-varying productivity than the west coast and Alaska stocks, which may be a 
result of less risk-averse management strategies in the Atlantic relative to the Pacific, or of 
different Pacific region climate drivers relative to the Atlantic. Similarly, the SNR value for 
California Current was lower than that of the other four regions, suggesting that the low-
frequency productivity signal was less important in the California Current ecosystem. This 
difference could occur, either because total variability was lower than in other regions, or 
because the process variability was high frequency, which may suggest differences in the 
environmental drivers in the northeast Pacific and northwest Atlantic Oceans. The California 
Current has not experienced the same long-term rate of warming compared to the Atlantic (Lima 
and Wethey, 2012), which may be associated with less time-variance in productivity. Also, Bell 
et al. (2023) suggested that the productivity of species in the California Current may be less 
influenced by large-scale environmental processes such as El Nino because the species have 
evolved to live under these types of changing conditions. 

Additionally, we note that time-varying stocks generally had higher autocorrelation in 
their recruitment than time-invariant stocks. This simple diagnostic helps to distinguish stocks 
with high frequency or low frequency dynamics, and suggests that they may be subject to 
different frequencies of environmental forcing. 

The estimation of the dynamic Ricker model and the use of regionally constant SNRs is 
intended to identify time series behavior apart from high-frequency patterns. In practice, 
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however, the estimates of recruitment and stock size from assessments are not data and have 
estimation variances that are expected to be larger in the most recent years (Brooks and Deroba, 
2015). In theory, the time series of estimated variances of recruits and stock size could be used as 
a minimal estimate of observation error (𝑣𝑣𝑡𝑡 ), although this is complicated by the response 
variable being a ratio of two random variables. While we expect estimates of general patterns of 
productivity over the time series to be generally robust, interpretation of the productivity 
parameter in the last five to ten years of each time series should recognize higher observation 
variances in recent years. Thus, we consider our methodology for describing temporal patterns of 
productivity over various time spans appropriate as a descriptive procedure to summarize general 
patterns in the time-varying productivity time series. 

Of the 85 time series, 50 were selected as having time-varying productivity. Similar to 
the results reported by Britten et al. (2016), Tableau et al. (2019), and Bell et al. (2023), the 
Atlantic stocks were more likely to have time-varying productivity than the Pacific stocks. 
Generalized linear modelling indicated that time-varying productivity was more prevalent among 
stocks with higher contrast in the spawning stock time series. Stocks that, over the course of the 
time series, had experienced a full range of stock sizes, both high and low relative to the median, 
likely allowed better parametrization of the time-varying model because they had data at both the 
origin and the compensation maximum ends of the Ricker curve. From a stock assessment 
perspective, stocks with higher contrast are more likely to have estimable time-varying 
parameters that differ from the time-invariant parameters. Alternatively, stocks with low contrast 
may not be well fit with a Ricker model, in which case the time-varying model would not 
improve on the time-invariant model. Low spawning stock sizes may result from a combination 
of environmental and anthropogenic conditions, including overfishing. Stocks with low contrast 
in the present study often did not have low spawning stock sizes. Such low-contrast stocks may 
have been subject to different exploitation history that did not lead to extensive overfishing or 
stock crashes, which may reflect the management history of regional management councils. 
Stocks from the Pacific regions also had less contrast than stocks from the Atlantic regions. 
Because the time-varying vs. time-invariant stocks in the Pacific regions were not defined by a 
particular taxonomic or community group, this result suggests that a history of management in 
the Pacific that has kept stocks from dropping to low spawning stock sizes may play a role in the 
temporal variability of productivity in these stocks (Bell et al., 2023). 

Time series length was not a significant covariate in the GLM analysis explaining which 
stocks were time-varying. Shorter time series, such as the 29-year time series of DE/MD/VA 
tautog (Tautoga onitis) in the Mid-Atlantic (Figure 6), could still be selected as time-varying if 
the variation in productivity was strong enough. However, time series lengths in the present 
study ranged from 15 to 90 years (median 43), and sensitivity analysis of those selected as time-
varying indicated that when the time series were shortened, either from the beginning or the end, 
the shorter time series were more likely to be time-invariant than the time series that were longer. 
While the stock with the longest time series (Georges Bank haddock, Melanogrammus 
aeglefinus) had time-invariant productivity, it is still possible that in the future, as time series get 
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longer, it will become more necessary to account for time-variation, even for stocks that appear 
time-invariant at present. Additionally, there is certainly room for uncertainty in model selection 
for stocks that may be borderline, or have wide confidence intervals. An example of this is dover 
sole (Microstomus pacificus), which was selected as having time-varying productivity, although 
the magnitude of the variation was low (Figure 6). 

Of the 50 commercial fish stocks that were selected as having time-varying productivity, 
the estimated productivity time series displayed a range of stock-specific patterns that may not be 
accounted for in current model projections and calculation of biological reference points. 
Consistent with previous studies, stocks from the northwest Atlantic were much more likely to 
have declined in productivity over time compared to the Pacific stocks, which had much more 
neutral productivity trends, even for the stocks for which productivity was time-varying (Britten 
et al., 2016; Tableau et al., 2019; Bell et al., 2023). 

For stocks with positive productivity trends, future recruitment may be underestimated 
under an assumed average productivity model. The time series of productivity for Atlantic 
mackerel (Scomber scombrus) has an observably positive trend in productivity (Figure 6) that is 
significant according to weighted regression analysis (Figure 7). Despite the apparent increase in 
productivity with time, i.e. number of recruits per unit spawning biomass, both spawning stock 
size and recruitment appear to have decreased (NEFSC, 2021), suggesting that recruitment 
productivity alone is not enough to compensate for other factors involved in the decrease of 
stock size. Pre-recruit survival may be successful (i.e. increased productivity), while subsequent 
limits to survival occur post-recruitment, such as limited prey availability. Another notable case 
of productivity increase is Gulf of Maine haddock (Melanogrammus aeglefinus), which appears 
to follow a decadal trend (Figure 6) that is not clearly reflected in the recruitment time series 
(NEFSC, 2022a). On the other hand, sablefish (Anoplopoma fimbria) productivity did not 
increase over the entire time series, but did increase in recent years (Figures 6 and 7), which is 
consistent with recent increases in recruitment (Goethel et al., 2021). Tolimieri and Haltuch 
(2023) linked sablefish recruitment to sea level, and their model performed well even for recent 
years with increased recruitment. 

A more worrying productivity pattern is one for which productivity is decreasing with 
time, because in this case, assuming an average productivity would result in overestimates of 
future recruitment and subsequently reference points and harvest regulations too high to maintain 
the stock under current, lower productivity conditions (Tableau et al., 2019). Southern New 
England yellowtail flounder (Limanda ferruginea) had a comparatively steep declining trend in 
productivity for most years except for a sharp increase in recent years (Figure 6). SNE yellowtail 
flounder recruitment has also been linked to the Cold Pool Index in the region (Stock and Miller, 
2021; du Pontavice et al., 2022), and methods are being explored to incorporate this climate 
variable into the stock assessment (NEFSC, 2022b). Recruitment of other stocks have also been 
linked to regional climate variables (e.g. winter flounder, Bell et al., 2014, 2018), and 
incorporating these climate correlates into stock assessment models is one way to account for 
underlying time-variation in productivity in stock assessments (Stock and Miller, 2021; Tolimieri 
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and Haltuch, 2023). However, further study at the individual stock level is necessary to 
understand what environmental factors may be influencing the productivity of each stock, and 
the best method for incorporating these factors into assessment and management. 

Stocks for which the time-invariant productivity model was selected often had time series 
of spawning stock size and recruitment that were also fairly stable with time. For example, the 
time-invariant model was selected for walleye pollock in the eastern Bering Sea (Figure 6), 
although research has suggested that recruitment was affected by regime shifts in 1977 and 1989 
(Benson and Trites, 2002). Further research linked recruitment to temperature, with warmer 
springs being favorable for survival of age-0 EBS walleye pollock to summer, but warm 
temperatures in late summer and fall reducing zooplankton prey, overwinter survival, and 
subsequent age-1 recruitment (Hunt et al., 2011; Mueter et al., 2011; Spencer et al., 2016). 
However, while the spawning stock size and recruitment of EBS walleye pollock has been 
variable, it has not apparently experienced long-term trends over time (Ianelli et al., 2021), which 
is consistent with the behavior observed in the productivity time series in the present study. 

Alternatively, as in the case of Pacific cod (Gadus macrocephalus) in the Gulf of Alaska, 
spawning stock size and recruitment have been decreasing with time (Barbeaux et al., 2021). 
Pacific cod recruitment was affected by the 2014 to 2016 marine heatwave, which resulted in the 
loss of thermal spawning habitat (Laurel and Rogers, 2020). Despite the demonstrated effect of 
temperature on hatching success, productivity was also selected as time-invariant in the present 
study (Figure 6). In this case, and others like it, where productivity remains approximately 
constant, declines in stock size must be driven by other factors besides recruitment rate, such as 
declines in post-recruitment survival. Both EBS walleye pollock and GOA Pacific cod exhibited 
high-frequency variability in recruitment without clear trends, such that the time-invariant model 
was selected for these stocks. 

As the results of the present study demonstrate, time-varying productivity is more 
prevalent in commercial fish stocks than may be currently accounted for in stock assessment 
models that assume productivity to be a constant average over time. Additionally, accounting for 
known time-variation can improve model estimates, including estimates of recent recruitment 
and one-year-ahead forecasts, and subsequent calculation of reference points and implementation 
of fishing regulations (Tableau et al., 2019; Collie et al., 2021; Tolimieri and Haltuch, 2023). It is 
important to note that time-varying density-dependent mortality was not explored in the present 
study, and as such, more complex time-variation at higher spawning stock sizes may not be 
completely captured in our results for certain stocks. However, the results of the present study 
may serve as justification for incorporating dynamic models into current stock assessment 
protocols and using dynamic reference points. Stock-specific analyses will need to be conducted 
to fully understand the recruitment dynamics of different stocks in different regions under 
different environmental and anthropogenic conditions, but the present study represents a starting 
point for understanding general trends that may be applicable for further investigation. 
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803 9. Tables  
804 
805 Table 1:  The “Productivity”  column refers to whether a stock was found to have time-varying or  

time-invariant productivity parameters in the present study.  806 
807 
808 

809 
810 

811 
812 

21 

Table 1a:  New England (NE) stocks.  
Common Name  Scientific Name   Time Series Assessment   Productivity 

 Acadian redfish  Sebastes fasciatus  1960-2018  2020 Time-varying  
 American plaice  Hippoglossoides platessoides  1980-2020  2022 Invariant  

 Atlantic cod (Gulf of Maine)   Gadus morhua  1982-2018  2021 Time-varying  
Atlantic herring   Clupea harengus  1965-2020  2022 Time-varying  
Atlantic wolffish   Anarhichas lupus  1968-2020  2022 Time-varying  
Haddock (Georges Bank)   Melanogrammus aeglefinus  1931-2020  2022 Invariant  
Haddock (Gulf of Maine)   Melanogrammus aeglefinus  1977-2020  2022 Time-varying  

 Pollock  Pollachius virens  1970-2020  2022 Time-varying  
White hake   Urophycis tenuis  1963-2020  2022 Time-varying  

 Winter flounder (Georges 
Bank)    Pseudopleuronectes americanus  1982-2019  2020 Time-varying  

 Winter flounder (S. New 
England)   Pseudopleuronectes americanus  1981-2020  2022 Time-varying  

 Yellowtail flounder (Gulf of 
Maine)   Limanda ferruginea  1985-2021  2022 Time-varying  

 Yellowtail flounder (S. New 
England)   Limanda ferruginea  1973-2020  2022 Time-varying  

 
Table 1b:  Mid-Atlantic (MDA) stocks  

Common Name  Scientific Name   Time Series Assessment   Productivity 
Atlantic mackerel   Scomber scombrus  1968-2018  2021 Time-varying  
Atlantic menhaden   Brevoortia tyrannus  1955-2021  2022 Time-varying  

 Black sea bass Cetropristis striata   1989-2018  2021 Invariant  
Bluefish   Pomatomus saltatrix  1985-2019  2021 Invariant  
Butterfish   Peprilus triacanthus  1989-2019  2020 Time-varying  
Golden tilefish   Lopholatilus chamaeleonticeps  1971-2019  2021 Time-varying  
Scup   Stenotomus chrysops  1984-2019  2021 Time-varying  

 Striped bass  Morone saxatilis  1982-2016  2018 Invariant  
Summer flounder   Paralichthys dentatus  1982-2019  2021 Invariant  

 Tautog (DE/MD/VA)  Tautoga onitis  1990-2019  2021 Time-varying  
Tautog (Long Island Sound)   Tautoga onitis  1984-2019  2021 Time-varying  
Tautog (MA/RI)   Tautoga onitis  1982-2019  2021 Time-varying  
Tautog (NJ/NY Bight)   Tautoga onitis  1989-2019  2021 Time-varying  

 Weakfish  Cynoscion regalis  1982-2016  2019 Time-varying  
 
Table 1c:  California Current (CC) stocks  

Common Name  Scientific Name   Time Series Assessment   Productivity 
 Arrowtooth flounder Atheresthes stomas   1965-2016  2017 Time-varying  

 Aurora rockfish  Sebastes aurora  1978-2012  2013 Invariant  
 Black rockfish   Sebastes melanops  1975-2014  2015 Time-varying  

 Blackspotted/rougheye 
rockfish   S. melanostictus / S. aleutianus  1980-2012  2013 Invariant  

Blue/deacon (CA)   Sebastes diaconus  1960-2016  2017 Time-varying  
Blue/deacon (OR)   Sebastes diaconus  1970-2016  2017 Invariant  

 Bocaccio   Sebastes paucispinus  1954-2016  2017 Time-varying  



 
 

Cabezon (N. CA)   Scopaenichthys marmoratus  1962-2018  2019 Time-varying  
Cabezon (OR)   Scopaenichthys marmoratus  1980-2018  2019 Invariant  
Cabezon (S. CA)   Scopaenichthys marmoratus  1970-2018  2019 Invariant  
Canary rockfish   Sebastes pinniger  1968-2014  2015 Time-varying  

 Chilipepper rockfish  Sebastes goodei  1965-2014  2015 Invariant  
 Darkblotched rockfish Sebastes crameri   1960-2016  2017 Invariant  

Dover sole   Microstomus pacificus  1975-2020  2021 Time-varying  
 Greenstriped rockfish  Sebastes elongatus  1970-2008  2009 Invariant  

Kelp greenling   Hexagrammos decagrammus  1980-2014  2015 Time-varying  
Lingcod (N.)    Opiodon elongatus  1960-2020  2021 Time-varying  
Lingcod (S.)    Opiodon elongatus  1972-2020  2021 Invariant  
Longspine thornyhead   Sebastes altivelus  1997-2012  2013 Invariant  
Pacific hake   Merluccius productus  1975-2020  2021 Invariant  

 Pacific ocean perch  Sebastes alutus  1975-2016  2017 Time-varying  
 Petrale sole  Eopsetta jordani  1959-2018  2019 Invariant  

Quillback rockfish (CA)   Sebastes maliger  1991-2020  2021 Time-varying  
Quillback rockfish (OR)   Sebastes maliger  1980-2020  2021 Invariant  

 Sablefish   Anoplopoma fimbria  1975-2020  2021 Invariant  
Sanddab    Citharichthys sordidus  1977-2012  2013 Time-varying  

 Scorpionfish   Scorpaena guttata  1965-2016  2017 Time-varying  
 Splitnose rockfish  Sebastes diploproa  1960-2008  2009 Time-varying  

 Widow rockfish  Sebastes entomelas  1970-2018  2019 Invariant  
Yelloweye rockfish   Sebastes ruberrimus   1980-2016  2017 Time-varying  

 Yellowtail rockfish (N.)  Sebastes flavidus  1970-2016  2017 Invariant  
  

 Table 1d:  Gulf of Alaska (GOA) stocks, including two time series representing Pacific halibut  
Common Name  Scientific Name   Time Series Assessment   Productivity 

 Arrowtooth flounder Atheresthes stomas   1977-2020  2021 Time-varying  
 Blackspotted/rougheye 

rockfish   S. melanostictus / S. aleutianus  1977-2018  2021 Invariant  

Dusky rockfish     Sebastes sp. cf. ciliatus  1977-2017  2020 Invariant  
Flathead sole   Hippoglossoides elassodon  1978-2012  2017 Invariant  

 Northern rockfish  Sebastes polyspinus  1977-2018  2020 Time-varying  
 Pacific cod  Gadus macrocephalus  1977-2020  2021 Invariant  

Pacific halibut (AAF Short 
 model)   Hippoglossus stenolepis  1992-2017  2022 Invariant  

Pacific halibut (Coast-wide  
 short model)   Hippoglossus stenolepis  1992-2017  2023 Invariant  

 Pacific ocean perch  Sebastes alutus  1961-2019  2021 Time-varying  
 Rex sole  Glyptocephalus zachirus  1982-2020  2021 Time-varying  

Rock sole (N.)   Lepidopsetta bilineata  1977-2020  2021 Invariant  
Rock sole (S.)   Lepidopsetta bilineata  1977-2020  2021 Time-varying  

 Walleye pollock  Gadus chalcogrammus  1970-2020  2021 Time-varying  
  

 
     

813 
814 

815 
816 Table 1e:  Eastern  Bering Sea/Aleutian  Islands (BSAI) stocks  

Common Name Scientific Name Time Series Assessment Productivity 

22 

Alaska plaice   Pleuronectes quadrituberculatus  1975-2014  2021 Time-varying  
 Arrowtooth flounder Atheresthes stomas   1976-2019  2020 Time-varying  

Atka mackerel   Pleurogrammus monopterygius  1977-2020  2021 Invariant  
 Blackspotted/rougheye 

rockfish   S. melanostictus / S. aleutianus  1977-2014  2020 Time-varying  

Flathead sole   Hippoglossoides elassodon  1964-2016  2020 Time-varying  
 Greenland turbot  Reinhardtius hippoglossoides  1945-2019  2020 Time-varying  

Kamchatka flounder   Atheresthes evernanni  1991-2018  2020 Time-varying  



 

 Northern rockfish  Sebastes polyspinus  1977-2015  2021 Invariant  
 Pacific cod (Aleutian 

Islands)   Gadus macrocephalus  1991-2020  2021 Invariant  

Pacific cod (Bering Sea)   Gadus macrocephalus  1977-2020  2021 Invariant  
 Pacific ocean perch  Sebastes alutus  1960-2014  2020 Time-varying  

Sablefish   Anoplopoma fimbria  1960-2018  2021 Time-varying  
 Walleye pollock (Aleutian 

Islands)   Gadus chalcogrammus  1978-2017  2020 Invariant  

 Walleye pollock (Bering 
 Sea)  Gadus chalcogrammus  1964-2020  2021 Invariant  

 
 
 
 
 
 

 
 
 
 
 
 
 
 

817 
818 
819 
820 
821 
822 
823 Table 2: Biased reduced GLMs in the present study  were  compared with the AIC values. 

Reported here is the full model including all fixed effects, and models within 2 units of the  
lowest AIC model, assumed to be functionally equivalent in best explaining the variability in the  
response variable (Burnham and Anderson, 2002). Significant covariates in each model  are  
indicated in bold italics. The sign of the parameter estimates for each  covariate are indicated with  
the sign (plus/minus) preceding the covariate.  
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  Fixed Effects AIC  r2  Delta AIC  
Full 

 Model 
 ± Order −   TotalVar + F/Fmsy +  SSB/SSBmsy + 

 PropOF + Contrast + YOD + MatAge 
 122.67  0.154  12.54 

Null 
 Model 

 Intercept Only  112.53  0.000  2.40 

 + Contrast −  TotalVar  110.13  0.071  0.00 
 + Contrast −  TotalVar  + YOD  110.53  0.089  0.40 

 Lowest 
 AIC 

 Models 
 within 2 

 units 

 + Contrast  +  SSB/SSBmsy − TotalV
 + Contrast 
 + Contrast  −   F/Fmsy −  TotalVar 

 + Contrast + SSB/SSBmsy − TotalV

 ar 

 ar + YOD 

 111.12 
 111.39 
 111.58 
 111.62 

 0.082 
 0.034 
 0.077 
 0.098 

 0.99 
 1.26 
 1.45 
 1.49 

  + Contrast + Order  112.11  0.137  1.98 
 + Contrast − PropOF −  TotalVar  112.13  0.071  2.00 

 + Contrast +  MatAge − TotalVar  112.13  0.071  2.00 
 



 
 

 
 

  
 
 
 
 
 

  

  
 
 
 

  
  

838 10. Figures  
 839 

840 
841 Figure 1:  Productivity  (a) time series estimated by the dynamic Ricker model with the Kalman  

filter applied to stock assessment model outputs of eastern Bering Sea walleye pollock stock-
recruitment time series  calculated with different values of  σr  influencing the recruitment 
deviations from a mean  recruitment level and  fit with an internal Ricker stock-recruitment 
relationship.   
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Figure 2:  Diagnostic plot of coefficients on a log  scale estimated by the time-invariant  a  model  
relative to the mean values from the time-varying model  a  constrained by a regional SNR, 
plotted on top of the 1:1 line. Each point corresponds to one stock.  
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853 
854 Figure 3:  Regional SNRs and confidence intervals estimated by the multi-stock model plotted 

relative to each other  (a.) and in relation to the SNRs estimated by the single-stock models for  
each region initially, unconstrained by a prescribed SNR (b.), plotted on a log scale because of  
some extreme unrealistic SNR values estimated for the single-stock models unconstrained by  
regional SNRs.  
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Figure 4:  Autocorrelation in the recruitment time  series for  each time-invariant and time-varying  
productivity stock. Box plots indicate the medians, first and third quartiles, and whiskers  
extending to the last values ≤1.5 times the interquartile range. Mean values are indicated by  
single points.  
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Figure 5: Partial effect of contrast on whether a stock was selected as having time-varying or 
time-invariant productivity. Results are shown for the two lowest AIC models (within 2 units) 
for which contrast was a significant predictor. Points indicate the contrast in the spawning stock 
time series for each stock, and colors indicate region. 
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Figure 6: Time series of estimated productivity (a) in units of log(R/S), for nine highlight cases 
from the total stock list. The selected model output is shown in bold line (time-varying for all 
except GOA Pacific Cod and Bering Sea Walleye Pollock). 
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Figure 7: Summary of productivity trends estimated with weighted regression across the full 
time series (col. 1), ten years prior to current (col. 2), and five years prior to current (col. 3). Red 
squares indicate that productivity has increased, and blue squares indicate that productivity has 
decreased. White squares indicate that the regression coefficient was insignificant, i.e. 
productivity has not followed a detectable trend in the given time interval. 
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Supplementary Figure S1a-e 

Figure S1a: Stock-recruitment values from stock assessment reports (points), and the estimated Ricker curves based on the average 
productivity estimated by the dynamic Ricker model with the Kalman filter. Solid lines indicate that the productivity was selected as time-
varying, and thus the average is not the best fit of the data, and dashed lines indicate that the productivity was selected as time-invariant. 
Units are SSB (kt) and recruits (millions). 



 

 
 

               
                 

                     
               

  
 
 
 
 
 

Figure S1b: Stock-recruitment values from stock assessment reports (points), and the estimated Ricker curves based on the average 
productivity estimated by the dynamic Ricker model with the Kalman filter. Solid lines indicate that the productivity was selected as time-
varying, and thus the average is not the best fit of the data, and dashed lines indicate that the productivity was selected as time-invariant. 
Units are SSB (kt) and recruits (millions), except for Atlantic menhaden, which has units of spawning output (trillion eggs) and recruits 
(billions). 



 
 

                
                 

                     
              

   

Figure S1c: Stock-recruitment values from stock assessment reports (points), and the estimated Ricker curves based on the average 
productivity estimated by the dynamic Ricker model with the Kalman filter. Solid lines indicate that the productivity was selected as time-
varying, and thus the average is not the best fit of the data, and dashed lines indicate that the productivity was selected as time-invariant. 
Units are SSB (kt) and recruits (millions), except for 13 rockfish species with units of spawning output (millions/billions of eggs/larvae; see 
Figure S3c). 



 
 

               
                 

                     
      

 
 
 
 
 

Figure S1d: Stock-recruitment values from stock assessment reports (points), and the estimated Ricker curves based on the average 
productivity estimated by the dynamic Ricker model with the Kalman filter. Solid lines indicate that the productivity was selected as time-
varying, and thus the average is not the best fit of the data, and dashed lines indicate that the productivity was selected as time-invariant. 
Units are SSB (kt) and recruits (millions). 



 
 

                
                 

                     
      

 
 
 
 
 
 
 

Figure S1e: Stock-recruitment values from stock assessment reports (points), and the estimated Ricker curves based on the average 
productivity estimated by the dynamic Ricker model with the Kalman filter. Solid lines indicate that the productivity was selected as time-
varying, and thus the average is not the best fit of the data, and dashed lines indicate that the productivity was selected as time-invariant. 
Units are SSB (kt) and recruits (millions). 



 
 

 
 

              
                

               
 

Supplementary Figure S2a-e 

Figure S2a: Time series of productivity (a) in units of log(recruits/spawner) estimated by the dynamic Ricker model with the Kalman filter. 
Stocks selected as having time-varying productivity are shown with bold productivity time series, and stocks selected as having time-
invariant productivity are shown with bold horizontal line indicating average productivity across the estimated time series. 



 
 

             
                

               
 
 
 
 
 
 

Figure S2b: Time series of productivity (a) in units of log(recruits/spawner) estimated by the dynamic Ricker model with the Kalman filter. 
Stocks selected as having time-varying productivity are shown with bold productivity time series, and stocks selected as having time-
invariant productivity are shown with bold horizontal line indicating average productivity across the estimated time series. 



 
 

              
                

               
 

Figure S2c: Time series of productivity (a) in units of log(recruits/spawner) estimated by the dynamic Ricker model with the Kalman filter. 
Stocks selected as having time-varying productivity are shown with bold productivity time series, and stocks selected as having time-
invariant productivity are shown with bold horizontal line indicating average productivity across the estimated time series. 



 
 

             
                

               
 
 
 
 
 

Figure S2d: Time series of productivity (a) in units of log(recruits/spawner) estimated by the dynamic Ricker model with the Kalman filter. 
Stocks selected as having time-varying productivity are shown with bold productivity time series, and stocks selected as having time-
invariant productivity are shown with bold horizontal line indicating average productivity across the estimated time series. 



 
 

              
                

               
 
 
 
 
 
 
 
 

Figure S2e: Time series of productivity (a) in units of log(recruits/spawner) estimated by the dynamic Ricker model with the Kalman filter. 
Stocks selected as having time-varying productivity are shown with bold productivity time series, and stocks selected as having time-
invariant productivity are shown with bold horizontal line indicating average productivity across the estimated time series. 



 
 

 

 
 

             
 
 
 
 
 
 
 

Supplementary Figure S3a-e 

1. New England 

Figure S3a: Time series of spawning stock biomass (solid line) and recruitment (dashed line) from stock assessment reports. 



 

 
 

               
 

 
 
 
 
 
 
 
 
 
 
 
 

2. Mid-Atlantic 

Figure S3b: Time series of spawning stock biomass or spawning output (solid line) and recruitment (dashed line) from stock assessment 
reports. 



 

 
 

               
 

 
 
 
 
 

3. California Current 

Figure S3c: Time series of spawning stock biomass or spawning output (solid line) and recruitment (dashed line) from stock assessment 
reports. 



 

 
 

             
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Gulf of Alaska 

Figure S3d: Time series of spawning stock biomass (solid line) and recruitment (dashed line) from stock assessment reports. 



 

 
 

             
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Eastern Bering Sea/Aleutian Islands 

Figure S3e: Time series of spawning stock biomass (solid line) and recruitment (dashed line) from stock assessment reports. 



 
 

        
            

             
           

        
         
          

         
 

 
 

Supplementary Figure S4 

Figure S4: Summary of the difference in current mean stock productivity 
relative to the mean estimated at the beginning of the time series (col. 1), 
ten years prior to current (col. 2), and five years prior to current (col. 3). 
Red squares indicate that productivity is currently higher than it was at the 
beginning of the given time period (i.e. increased), and blue squares 
indicate that productivity is currently lower (i.e. decreased). White squares 
indicate that the productivity has not changed notably since the beginning 
of the given time period, relative to the standard error of the productivity 
estimate. 
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