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Abstract

Several previous studies of marine fish stocks have demonstrated time-varying recruitment
productivity and indicated that including time-varying parameters can track process variation in
recruitment. Few studies have synthesized signal-to-noise ratios and underlying reasons for time-
variation across stocks and regions. Using Peterman’s Productivity Method (PPM), we provide a
broad synthesis of time-varying density-independent productivity in 84 stocks across five regions
of the United States. Of all stocks investigated, 50 were found to have time-varying productivity,
challenging assumptions on the stationarity of recruitment parameters and dependent reference
points. Our results demonstrate the power of PPM for synthesizing the form and pattern of
recruitment time-variation among regions, including general summaries of directional change
over time. Furthermore, our results show regional differences in time-varying patterns,
particularly the signal-to-noise ratio (SNR) of low- to high-frequency variation. The SNR was
lower in the California Current region than in two Atlantic regions and two Alaska regions.
Generalized linear modeling used to synthesize results suggests that stocks with higher contrast
in spawning stock biomass over time, standardized regardless of actual spawning stock size,
were more likely to have time-varying productivity than stocks with low contrast. The likelihood
of time-variation in productivity of a given stock was also found to be closely related to the
autocorrelation of the recruitment time series. Such inter-regional and inter-stock comparisons of
variation are vital in understanding the roles of local and global environmental change on fish
productivity.

Keywords

Dynamic linear model, Kalman filter, Peterman Productivity Method, Ricker model, Stock-
recruit model, Time-varying recruitment
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1. Introduction

Commercial fisheries are an economically important industry globally, in the United
States alone supporting 1.7 million jobs and generating over $250 billion USD in sales in 2020
(NMEFS, 2022). To support and maintain such a valuable industry, it is important for fisheries
scientists and managers to understand the capacity of fish stocks to reproduce and replenish the
populations while subject to fishing pressure and other stressors (Hilborn and Walters, 2013).
Understanding the temporal behavior of fish stock dynamics and improving the statistical models
that inform fisheries management is necessary, especially in the face of local and global
environmental change.

Recruitment is the largest source of variability in marine fish stocks (Sissenwine, 1974),
and thus understanding recruitment is essential to understanding stock dynamics. Stock-
recruitment models explore the relationship between the spawning output of the fish stock and
the number of recruits. Age-structured stock assessment models use the numbers-at-age from
scientific surveys and fisheries landings in combination with age-specific parameters such as
growth, selectivity, and maturity, to estimate the fish population size, spawning output, and
recruitment. A stock-recruitment function is then needed to close the life cycle in order to project
stock size as a function of fishing pressure. The recruitment model may be simply deviations
from the mean, a segmented linear model (Barrowman and Myers, 2000), or one of the classic
stock-recruitment models (Beverton and Holt, 1957; Ricker, 1954). Productivity, the capacity of
fish stocks to increase their abundance and biomass is one of the parameters in stock-recruitment
functions. We focus on the portion of this capacity attributable to reproduction, and define
productivity as the density-independent expected number of recruits from an individual spawner
or unit spawning biomass. Stock assessment models are frequently run with the assumption that
productivity is constant, regardless of varying conditions over time. However, research has
increasingly demonstrated that for many stocks, this may not be the case (Peterman et al., 2003;
Collie et al., 2012; Minto et al., 2014; Szuwalski et al., 2015; Stock and Miller, 2021). The
consequences of incorrectly assuming stationary recruitment productivity may be detrimental to
the stock. For example, in cases where productivity has declined over time, assuming an average
productivity value overestimates recruitment, resulting in biological reference points and
expected yields too high to achieve (Tableau et al., 2019; Collie et al., 2021).

Recognizing time-varying recruitment productivity is important for setting biomass and
fishing mortality reference points, catch quotas, rebuilding targets, and other management
actions. A dynamic Ricker model fit with a Kalman filter has been used to investigate time-
varying productivity for a number of stocks in Canada (Peterman et al., 2003), the United States
(Tableau et al., 2019; Bell et al., 2023), other areas of the north Atlantic (Minto et al., 2014;
Silvar-Viladomiu et al., 2023) and worldwide (Britten et al., 2016). The Kalman filter is a linear,
state-space model that extracts the underlying signal in variable time series data by filtering
observations at each time step based on the prediction from the previous time steps, error
variances, and the new observation. The Kalman smoother provides smoothed predictions based
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on both past and future time steps. Using a Kalman filter for stock-recruitment data has been
demonstrated to improve predictions of recruitment and calculation of fisheries reference points
(Tableau et al., 2019; Collie et al., 2021). In recognition of the seminal contributions of Prof.
Randall Peterman and team in developing and applying this method of stock-recruitment
analysis, Silvar-Viladomiu et al. (2022) named the time-varying recruitment parameter method
“Peterman’s Productivity Method” (PPM).

In the present study, we apply the dynamic Ricker model with the Kalman filter to stock
assessment time series from stocks with age-structured assessments in five regions on the
Atlantic and Pacific coasts of the United States to identify stocks with time-varying productivity.
Several stocks in New England, the Mid-Atlantic (Tableau et al., 2019), and the California
Current (Bell et al., 2023) have been studied previously. Tableau et al. (2019) and Bell et al.
(2023) suggest that the Atlantic stocks are likely to have time-varying productivity, and the
California stocks are more often time-invariant, possibly due to oceanographic differences on
opposite coasts. We expand on previous research by analyzing all regions together and extending
the range of study to include, in addition to the Atlantic and California regions, stocks off of
Alaska. Notably, by investigating five regions in a single study, we will be able to (1) explore
regional and stock-specific differences in temporal patterns of productivity previously
unreported, (2) make regional comparisons on productivity time-variation and the ratio of
process error to observation error, and (3) evaluate explanatory factors for time-varying vs. time-
invariant productivity. By pinpointing whether productivity changes are occurring pre- or post-
recruitment, these analyses will help target management interventions to the appropriate stage of
the life cycle.

2. Methods
2.1 Stock assessment time series

Commercial fish stocks with age-structured assessments were candidates for analysis
with the dynamic Ricker model. Time series of spawning stock size (in units of kt spawning
stock biomass or number of eggs/larvae depending on the stock) and recruitment (numbers at age
of recruitment) were compiled directly from publicly available stock assessment reports and
supporting material. In a few cases for which time series were not published with the stock
assessment reports, the time series were acquired following personal communication with the
stock assessment scientists. Effort was made to compile the longest time series possible for each
stock for as long as age-structured assessments were conducted. Spawning stock and recruitment
information from years before length or age data were available were not included in the present
study. Eighty-five time series were compiled in this way, for 84 stocks (Table la-¢). In cases
where multiple models were reported in stock assessments, the author-preferred model was used.
Pacific halibut is assessed and managed with an ensemble of multiple assessment models, with
no author-preferred model as in other stock assessments with multiple possible models. Time



206  series from two of the Pacific halibut models were included in the present study, Coast-wide
207  Short and Areas-As-Fleet Short (Stewart and Hicks, 2022), to compare results between time
208  series for Pacific halibut and test if both time series accounted for the same underlying qualities
209  of productivity in the Pacific halibut stock (Table 1d). Pacific halibut was grouped with other
210  stocks in the Gulf of Alaska region.

211

212 2.2 Dynamic Ricker model

213

214 A dynamic Ricker stock-recruitment model estimated with the state-space Kalman filter,

215  was applied to all the compiled stock assessment time series following Peterman’s Productivity
216  Method. Early applications of this method by Peterman et al. (2003) and Dorner et al. (2008)
217  used a single-stock approach and compared the Kalman-smoothed single-stock results post-

218  modeling. In the present study, following more recent applications of PPM (e.g. Minto et al.,
219  2014; Tableau et al., 2019; Bell et al., 2023), stocks in each region were fit simultaneously in a
220  multi-stock model format. Within the multi-stock format, the equations in the state-space model
221  for each individual stock include the linearized Ricker model of observations (Eq. 1), where R is
222 the recruitment (numbers of recruits), and S is the spawning stock size (by kt weight of spawners
223 or numbers of eggs/larvae, depending on the stock); when spawning stock was in units of

224 eggs/larvae, the value was converted to millions to keep the magnitude of productivity on

225  approximately the same scale for all the stocks.

226
227 log, (R;T) = a, — bS, + v, v,~N(0, 52) Eq. 1
228

229  Both R and § are time-dependent (subscript ), and 7 is the lag between when a fish 1s spawned
230  and when it reaches age at recruitment. Productivity is defined here as the density-independent
231  coefficient a in units of In(R/S), and b is a constant density-dependent coefficient. Productivity
232 (a)is allowed to be time-dependent and modeled with a random walk (Eq. 2).

233

234 Arpq = ap + W, w~N(0,02) Eq. 2
235
236 Previous studies performing similar analyses have also tested allowing the density-

237  dependent mortality b term in Eq. 1 to vary with time instead of and in addition to time-varying a
238  (Britten et al., 2016; Szuwalski et al., 2019; Silvar-Viladomiu et al., 2023). Researchers found
239  that it was often difficult to tell whether variability in recruitment was associated with

240  productivity (@) or density-dependent mortality (b), and the patterns of variation were similar,
241  simply attributed to whichever parameter was allowed to vary in the given model (Szuwalski et
242 al., 2019; Silvar-Viladomiu et al., 2023). Britten et al. (2016) reported results that combined the
243 effects of a and b, but their supplementary figures (Appendix 1) suggest that variability in

244 recruitment was applied either to a or b and not a combination of both. Likewise, in other

245  studies, models with time-varying a and b were rarely statistically better than models with only

6
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one time-varying parameter (Szuwalski et al., 2019). Previous studies (Silvar-Viladomiu et al.,
2023), and preliminary fits in the present study found more support for models with time-varying
a than b. We therefore chose to focus only on time-varying productivity (a) such that variation in
density-independent productivity impacts recruitment at all spawning stock sizes, contrary to
density-dependent recruit mortality, which has an impact that increases at high recruitment
densities expected with higher spawning stock biomass (Peterman et al., 2000).

Equations 1 and 2 are the observation and state equations of the state-space models and
each have an error term. In the linearized Ricker stock-recruitment model, “v” accounts for
observation error (or high-frequency true variability that does not propagate), and in the
productivity random walk, “w” accounts for the process error, or the signal in the recruitment
variability that is accounted for by the variation in the productivity time series. The variances of
these error terms are defined as 02 and 6. The ratio of the standard deviation of the process
errors to the standard deviation of the measurement errors (o,,/a,,) is the signal-to-noise ratio
(SNR).

Simulation studies conducted as part of previous studies have confirmed the ability to
estimate productivity from data simulated with realistic levels of variance (A. Tableau,
unpublished data). However, it is challenging to estimate both the process-error (¢;2) and
observation-error variances (0;2) with the length of time series typically available for fish stocks.
To avoid cases in which the Kalman filter resulted in all the variance being assigned to either
noise or signal, as opposed to a mixture of the two, we generated more appropriate SNRs by
simultaneously modeling all stocks in a given region. Within the multi-stock framework, the
individual stock time series were constrained by the regional SNR parameter optimized and
estimated in the model, following success of previous research using similar regional
assumptions (Tableau et al., 2019; Bell et al., 2023). The SNR may be influenced by other
factors besides region, such as stock size, life-history characteristics, or finer-scale
environmental factors. However, the assumption that a regional SNR was appropriate for the
present study was accepted because of the success of the method in previous studies, and because
stocks in a given region are expected to be subject to similar large-scale environmental or
anthropogenic conditions that affect variability in productivity, as well as similar fisheries
dependent and independent data collection. For example, most of the stocks in each region are
demersal, occupying similar habitat, captured within similar fisheries, and surveyed with similar
methods. Importantly, by estimating region-specific SNRs we can compare this summary
parameter across regions.

In addition to the time-varying productivity model, each stock-recruitment dataset was
also modeled with a standard Ricker model with time-invariant productivity. The results of this
time-invariant productivity model were compared to those of the time-varying productivity
model for each stock, and model selection determined which interpretation of the time series of
productivity was more appropriate for each stock. A diagnostic comparison between time-
invariant productivity values and mean time-varying productivity values was run by plotting the
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values against each other on top of a 1:1 line to see whether the time-varying model, constrained
by the regional SNR, was producing reasonable estimates relative to the time-invariant model.

Model selection consisted of a likelihood ratio test comparing the time-varying and the
time-invariant models. The likelihood ratio has a y? distribution with one degree of freedom to
account for the addition of the process-error variance in the time-varying model. A p-value <
0.05 was interpreted as evidence that the time-varying model fit better for the given stock. The
time-invariant model was selected in all other cases.

Bell et al. (2023) tested whether the time-varying productivity time series would be
different if estimated with a dynamic Ricker model or a dynamic Beverton-Holt model, and the
analysis found that while the magnitude of the estimates could be different, the pattern of the
time-varying productivity time-series was the same for both stock-recruitment functions.
Because the present study is only focused on the patterns in the productivity, only the Ricker
model was used. The analyses were performed using R statistical analysis software (v4.2.3, R
Core Team, 2023) and the “dlm” package (Petris et al., 2009; Petris, 2010).

2.3 Impact of embedded stock-recruitment model in stock assessment

The stock assessment models used to generate the spawning stock and recruitment time
series used in the present study estimate recruitment as deviations from the long-term average or
as deviations from a stock-recruitment model. Often the stock-recruitment function provides
initial estimates of recruitment that are then adjusted to the length and age data in the catch and
survey observational time-series. Provided that the standard deviation of recruits (sometimes
termed o) is large enough, the final estimates of recruitment are unconstrained by the stock-
recruitment relationship within the stock assessment model.

Small values of g, in the stock assessment model constrain the recruitment deviations to
be very similar to predicted recruitment values from the stock-recruitment model. As the values
of o, increase, the recruitment deviations become less and less constrained by the underlying
stock-recruitment model. Therefore, o, could impact the estimated recruitment, and the time-
varying productivity time-series estimates from the dynamic Ricker model used in the present
study (described above). To test this potential effect using one data-rich example, the stock
assessment model for eastern Bering Sea walleye pollock, for which estimated recruitment is
influenced by deviations from a mean level of recruitment as well as deviations from an
embedded Ricker stock-recruitment model, was run with several different o, values (0.2 to 1.8).
Typical o, values in the stock assessments investigated in the present study were between 0.4 and
1.0, with a mean value of about 0.6. The output time series of these tests were modeled with the
dynamic Ricker stock-recruitment model, and the output productivity estimates were compared
to see if changing o, in the stock assessment model had a strong impact on the estimates of
productivity from the dynamic Ricker model, which would indicate how strongly the variability
in estimated recruitment is constrained with assessment assumptions.
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2.4 Factors influencing the probability of time-variation

To test which factors might make a stock more or less likely to be time-varying, we
compared the stocks that were selected as having time-varying productivity to those that were
selected as having time-invariant productivity using a biased-reduced generalized linear model
(GLM) with a binomial error distribution implemented in the “brglm2” package in R (Kosmidis,
2023). A biased reduced GLM was used because some combinations of explanatory factors
resulted in complete separation of the binary response (Firth, 1993). Possible explanatory
variables influencing the probability that productivity was time-varying (Eq. 3) included
taxonomic order, total variance calculated from the time-varying model, three summaries of
current exploitation status in terms of fishing mortality (F/Fusy) and spawning stock size
(S/SSBmsy) and the proportion of the entire time series that was overfished (PropOF; i.e. SSB
was lower than SSBisy, detailed below), an estimate of contrast in the spawning stock time series
(detailed below), the length (i.e. number of years of data) of the time series (YOD), and age at
maturity. Support for models with all possible combinations of covariates was compared with the
Akaike information criterion (AIC) (Akaike, 1974).

yi~Bin(n = 1,p;) Eq.3
logit(p;) = a + Order; + By TotalVar; + B,(F/Fmsy); + f3(SSB/SSBmsy); + B,PropOF;
+ BsContrast; + f¢YOD; + ,MatAge;

Exploitation was summarized in three ways. First, current overfishing status was
summarized as the ratio of the estimate of fishing mortality or exploitation rate (depending on
the stock) in the terminal year of the stock assessment relative to the reference point (e.g. Fmsy
and proxy values), as reported in the stock assessment to determine overfishing status. Second,
current overfished status was summarized as the ratio of the estimate of SSB or spawning output
(depending on the stock) in the terminal year of the stock assessment relative to the reference
point in comparable units (e.g. SSBumsy and proxy values), as reported in the stock assessment to
determine overfished status. Measures of terminal year overfished and overfishing status were
included to test whether current status could be used as a convenient indicator to fisheries
scientists and managers of likely time-variance in a given stock. Third, the proportion of the
time-series overfished was summarized as the proportion of the spawning stock time series
reported in the stock assessment used (Table 1a-e) that had stock sizes below the reference point
in comparable units reported in the same stock assessment to determine overfished status. Ratios,
as opposed to the reference points directly, were used in an attempt to standardize the summaries
of exploitation across different stock assessment conventions in different regions.

Contrast in the spawning stock data was calculated as another summary of stock history
following methods by Rindorf et al. (2022). Contrast summarizes the spread of the spawning
stock data, standardized across all stocks. The contrast term encompasses whether or not the
stock ever reached particularly low or high spawning stock sizes. High contrast means that the
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stock has experienced a full range of spawning stock sizes. As a covariate in the GLM, contrast
was calculated using 90™ percentiles and 10™ percentiles of the spawning stock time series data
for each stock (Eq. 4).

590%)

Contrast = log, (5100/
0

Eqg. 4

2.5 Quantifying temporal patterns in productivity

We used a weighted linear regression to quantify patterns of directional change in the
productivity time series that were selected as time-varying. We conducted weighted linear
regressions of the productivity full time series, and then repeated the method on the last ten years
and the last five years to indicate recent trends in productivity to compare to the overall time
series. Weights were equal to the inverse of the variance on each a estimate (1/02). If regression
coefficients were significant (p < 0.05), the sign of the coefficient was used to indicate whether
the productivity had increased or decreased over the given time interval.

Additionally, the mean and standard deviation of the normal distribution of the difference
in estimated productivity between the beginning and the end of each stock time series were also
used to estimate the change in productivity (Eq. 5).

Difference~N(y, 02) U= HUena — Ustart 0= O_eznd + asztart Eq. 5

If > 80% of the joint distribution was > 0, i.e. the difference was positive between the
current (with regard to the stock assessment used in the present study) productivity and the
productivity at the start of the time series; this indicated that the productivity is currently higher
than at the start of the time series. Conversely, if < 20% of the distribution was > 0, this indicated
that the productivity is currently lower. If < 80% but > 20% of the distribution was > 0, it was
determined that there was no clear positive or negative change in productivity since the
beginning of the time series. We performed the same method on the last five years and the last
ten years of the timeseries.

3. Results

The dynamic Ricker stock-recruitment model with the Kalman filter was applied to 85
stock-recruitment time series of US commercial fish stocks with age-structured stock
assessments from five regions (Table 1a-e).

3.1 Impact of embedded stock-recruitment model in stock assessment

The temporal pattern of the productivity parameter estimated from assessment estimates
of stock and recruitment were similar across various values of g, in the assessment for eastern

10
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Bering Sea walleye pollock. At some time points, the scale of the productivity parameter
changed slightly at lower values of g,, but the time series remained largely unchanged (Figure 1).
These results indicated that even at the lower end of o, values at which the recruitment deviations
are more constrained, information from the length and age data are informing the temporal
pattern of estimates of recruitments, and patterns of time-varying productivity could be extracted
with a dynamic Ricker stock-recruitment model applied to stock assessment output with a range
of o, values, ranging both smaller and greater than the 1.0 o, value used in the eastern Bering Sea
pollock stock assessment.

3.2 Dynamic Ricker model

The time-invariant productivity values and mean time-varying values of productivity
were well correlated (Figure 2a), as were the estimates of the density-dependence term (Figure
2b). The time-invariant model is estimating a value of productivity and density dependence
comparable to the average productivity and constant density dependence from the time-varying
model, such that by constraining the dynamic Ricker model with a regional SNR, we are not
introducing unforeseen bias into the model estimates that would affect how productivity was
interpreted for further stock assessment and management, e.g. calculating biological reference
points.

The multi-stock models yielded unique SNRs for each region (Figure 3), which
constrained the single-stock model outputs for each region: 0.799 (New England), 0.762 (Mid-
Atlantic), 0.396 (California Current), 0.790 (Gulf of Alaska), and 0.957 (eastern Bering
Sea/Aleutian Islands). When compared to the standard Ricker model with time-invariant
productivity, the dynamic model with time-varying productivity was selected by the likelihood
ratio test for 50 stocks, and the time-invariant model was selected for 34 stocks (35 time series
including both Pacific halibut time series). By region, New England had 11 (85%) time-varying
and 2 time-invariant stocks, the Mid-Atlantic had 10 (71%) time-varying and 4 time-invariant
stocks, the California Current had 15 (48%) time-varying and 16 time-invariant stocks, the Gulf
of Alaska had 6 (50%) time-varying and 6 time-invariant stocks (7 time-invariant time series
including both Pacific halibut time series), and the eastern Bering Sea/Aleutian Islands had 8
(57%) time-varying and 6 time-invariant stocks (Table 1a-e). Stock-recruitment relationships for
all stocks are shown in Supplementary Figures Sla-e.

Recruitment autocorrelation, calculated for each stock time series, indicated that time
series that were selected for time-varying productivity more often than not had higher
autocorrelation than those that were time-invariant (Figure 4).

3.3 Factors influencing the probability of time-variation

Using only complete cases (i.e. removing two stocks for which there were no estimates of
F/Fmsy or SSB/SSBusy), the full biased-reduced GLM model with all predictors, and all possible

11
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combination models were investigated for GLM model selection. Whether a stock’s productivity
was time-varying or time-invariant was best explained by any of nine possible GLMs (Table 2)
with AIC values within two units of the lowest AIC model (Burnham and Anderson, 2002). The
only significant covariate was contrast in two of the ten models, such that stocks with higher
contrast in the spawning stock time series were significantly more likely (p < 0.05) to have time-
varying productivity than stocks with lower contrast (Figure 5). Investigating all combinations of
covariates, contrast was significant in 5 models, including the two models within two AIC units
of the lowest AIC value.

3.4 Temporal patterns in productivity

Time series of productivity estimated by the time-varying and time-invariant models are
shown for all stocks in Supplementary Figures S2a-e, and a selection of stocks are highlighted in
Figure 6. Patterns of productivity varied widely between stocks, but there were some recurring
patterns that were observed, such as positive (e.g. Atlantic mackerel) and negative (e.g. SNE
yellowtail flounder, DMV tautog), or cyclical frequency (e.g. decadal GOM haddock) trends
with time (Figure 6). For comparison, time series of spawning stock size and recruitment used in
the present study from the stock assessments are shown in Supplementary Figures S3a-e.

Weighted regression applied to the productivity time series summarized well the trends in
productivity that mirrored the observable temporal patterns in the time series (Figure 6). Some
stocks appear to have decreased productivity at the end of the time series relative to the
beginning, although a decreasing trend only persisted through recent years for a few stocks,
particularly in the Mid-Atlantic and Gulf of Alaska (Figure 7). There were overall fewer cases of
increasing trends in productivity across the entire time series, but there were some increases in
more recent years across most regions (Figure 7). However, some stocks with time-varying
productivity did not show any distinct positive or negative trend in the productivity over the
whole time series, or in the most recent years (Figure 7).

Sometimes a stock (e.g. Figure 6, CC dover sole) showed no distinct change in
productivity across the time series or in recent years, and the productivity time series appears to
have low temporal variation, but the time-varying model was still selected as the best model for
the stock. Such cases suggest low-amplitude variability such that allowing productivity to vary
with time still improves the model fit, even though the confidence interval is wide.

Comparing the productivity estimates at the end of the time series to the beginning, or to
the past five or ten years, using the analytical approach with mean and variance of the joint
distribution also suggested some patterns of change in productivity, but the results were not as
easily interpretable as those from the weighted linear regression. Results from this analytical
comparison are presented in Supplementary Figure S4.

4. Discussion
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We analyzed time-variation in recruitment rates of 84 stocks from five regions around the
United States. Consistent with previously reported results, our results demonstrate that applying
the Kalman filter to the linearized Ricker stock-recruitment model is an effective way to
determine time-variation in productivity, a parameter typically modeled as time-invariant. A test
case of eastern Bering Sea walleye pollock (Gadus chalcogrammus) indicated that time-variation
in productivity was insensitive to assumptions made about recruitment in the stock assessment
model. This result held true, even with a stock-recruitment model embedded in the assessment
model that output the time series, because the estimates of recruitment were largely
unconstrained by the internal stock-recruitment relationship. For data-rich stocks such as eastern
Bering Sea walleye pollock, this result reflects that recruitment estimates are largely determined
from informative age and length composition data rather than the stock-recruitment relationship.
It is important to note that while changing the standard deviation of recruitment (o) in the stock
assessment model did not change the temporal pattern of productivity, changing o, can alter the
scale of recruitment and SSB estimates, which would result in different values of MSY-based
reference points calculated from parameters in the stock-recruitment model. However, in our test
case, the magnitude of productivity was not strongly impacted by changing the underlying
Ricker model over a range of o, values.

We used a likelihood-ratio test to classify stocks as time-varying or time-invariant. Our
results highlight regional differences in the percentage of time-varying stocks in a region, and in
the relative extent to which the signal from time-varying productivity is influencing recruitment
variability (i.e. the SNRs). A higher percentage of both the New England and Mid-Atlantic
stocks had time-varying productivity than the west coast and Alaska stocks, which may be a
result of less risk-averse management strategies in the Atlantic relative to the Pacific, or of
different Pacific region climate drivers relative to the Atlantic. Similarly, the SNR value for
California Current was lower than that of the other four regions, suggesting that the low-
frequency productivity signal was less important in the California Current ecosystem. This
difference could occur, either because total variability was lower than in other regions, or
because the process variability was high frequency, which may suggest differences in the
environmental drivers in the northeast Pacific and northwest Atlantic Oceans. The California
Current has not experienced the same long-term rate of warming compared to the Atlantic (Lima
and Wethey, 2012), which may be associated with less time-variance in productivity. Also, Bell
et al. (2023) suggested that the productivity of species in the California Current may be less
influenced by large-scale environmental processes such as El Nino because the species have
evolved to live under these types of changing conditions.

Additionally, we note that time-varying stocks generally had higher autocorrelation in
their recruitment than time-invariant stocks. This simple diagnostic helps to distinguish stocks
with high frequency or low frequency dynamics, and suggests that they may be subject to
different frequencies of environmental forcing.

The estimation of the dynamic Ricker model and the use of regionally constant SNRs is
intended to identify time series behavior apart from high-frequency patterns. In practice,
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however, the estimates of recruitment and stock size from assessments are not data and have
estimation variances that are expected to be larger in the most recent years (Brooks and Deroba,
2015). In theory, the time series of estimated variances of recruits and stock size could be used as
a minimal estimate of observation error (v;), although this is complicated by the response
variable being a ratio of two random variables. While we expect estimates of general patterns of
productivity over the time series to be generally robust, interpretation of the productivity
parameter in the last five to ten years of each time series should recognize higher observation
variances in recent years. Thus, we consider our methodology for describing temporal patterns of
productivity over various time spans appropriate as a descriptive procedure to summarize general
patterns in the time-varying productivity time series.

Of the 85 time series, 50 were selected as having time-varying productivity. Similar to
the results reported by Britten et al. (2016), Tableau et al. (2019), and Bell et al. (2023), the
Atlantic stocks were more likely to have time-varying productivity than the Pacific stocks.
Generalized linear modelling indicated that time-varying productivity was more prevalent among
stocks with higher contrast in the spawning stock time series. Stocks that, over the course of the
time series, had experienced a full range of stock sizes, both high and low relative to the median,
likely allowed better parametrization of the time-varying model because they had data at both the
origin and the compensation maximum ends of the Ricker curve. From a stock assessment
perspective, stocks with higher contrast are more likely to have estimable time-varying
parameters that differ from the time-invariant parameters. Alternatively, stocks with low contrast
may not be well fit with a Ricker model, in which case the time-varying model would not
improve on the time-invariant model. Low spawning stock sizes may result from a combination
of environmental and anthropogenic conditions, including overfishing. Stocks with low contrast
in the present study often did not have low spawning stock sizes. Such low-contrast stocks may
have been subject to different exploitation history that did not lead to extensive overfishing or
stock crashes, which may reflect the management history of regional management councils.
Stocks from the Pacific regions also had less contrast than stocks from the Atlantic regions.
Because the time-varying vs. time-invariant stocks in the Pacific regions were not defined by a
particular taxonomic or community group, this result suggests that a history of management in
the Pacific that has kept stocks from dropping to low spawning stock sizes may play a role in the
temporal variability of productivity in these stocks (Bell et al., 2023).

Time series length was not a significant covariate in the GLM analysis explaining which
stocks were time-varying. Shorter time series, such as the 29-year time series of DE/MD/VA
tautog (Tautoga onitis) in the Mid-Atlantic (Figure 6), could still be selected as time-varying if
the variation in productivity was strong enough. However, time series lengths in the present
study ranged from 15 to 90 years (median 43), and sensitivity analysis of those selected as time-
varying indicated that when the time series were shortened, either from the beginning or the end,
the shorter time series were more likely to be time-invariant than the time series that were longer.
While the stock with the longest time series (Georges Bank haddock, Melanogrammus
aeglefinus) had time-invariant productivity, it is still possible that in the future, as time series get
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longer, it will become more necessary to account for time-variation, even for stocks that appear
time-invariant at present. Additionally, there is certainly room for uncertainty in model selection
for stocks that may be borderline, or have wide confidence intervals. An example of this is dover
sole (Microstomus pacificus), which was selected as having time-varying productivity, although
the magnitude of the variation was low (Figure 6).

Of the 50 commercial fish stocks that were selected as having time-varying productivity,
the estimated productivity time series displayed a range of stock-specific patterns that may not be
accounted for in current model projections and calculation of biological reference points.
Consistent with previous studies, stocks from the northwest Atlantic were much more likely to
have declined in productivity over time compared to the Pacific stocks, which had much more
neutral productivity trends, even for the stocks for which productivity was time-varying (Britten
et al., 2016; Tableau et al., 2019; Bell et al., 2023).

For stocks with positive productivity trends, future recruitment may be underestimated
under an assumed average productivity model. The time series of productivity for Atlantic
mackerel (Scomber scombrus) has an observably positive trend in productivity (Figure 6) that is
significant according to weighted regression analysis (Figure 7). Despite the apparent increase in
productivity with time, i.e. number of recruits per unit spawning biomass, both spawning stock
size and recruitment appear to have decreased (NEFSC, 2021), suggesting that recruitment
productivity alone is not enough to compensate for other factors involved in the decrease of
stock size. Pre-recruit survival may be successful (i.e. increased productivity), while subsequent
limits to survival occur post-recruitment, such as limited prey availability. Another notable case
of productivity increase is Gulf of Maine haddock (Melanogrammus aeglefinus), which appears
to follow a decadal trend (Figure 6) that is not clearly reflected in the recruitment time series
(NEFSC, 2022a). On the other hand, sablefish (4noplopoma fimbria) productivity did not
increase over the entire time series, but did increase in recent years (Figures 6 and 7), which is
consistent with recent increases in recruitment (Goethel et al., 2021). Tolimieri and Haltuch
(2023) linked sablefish recruitment to sea level, and their model performed well even for recent
years with increased recruitment.

A more worrying productivity pattern is one for which productivity is decreasing with
time, because in this case, assuming an average productivity would result in overestimates of
future recruitment and subsequently reference points and harvest regulations too high to maintain
the stock under current, lower productivity conditions (Tableau et al., 2019). Southern New
England yellowtail flounder (Limanda ferruginea) had a comparatively steep declining trend in
productivity for most years except for a sharp increase in recent years (Figure 6). SNE yellowtail
flounder recruitment has also been linked to the Cold Pool Index in the region (Stock and Miller,
2021; du Pontavice et al., 2022), and methods are being explored to incorporate this climate
variable into the stock assessment (NEFSC, 2022b). Recruitment of other stocks have also been
linked to regional climate variables (e.g. winter flounder, Bell et al., 2014, 2018), and
incorporating these climate correlates into stock assessment models is one way to account for
underlying time-variation in productivity in stock assessments (Stock and Miller, 2021; Tolimieri
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and Haltuch, 2023). However, further study at the individual stock level is necessary to
understand what environmental factors may be influencing the productivity of each stock, and
the best method for incorporating these factors into assessment and management.

Stocks for which the time-invariant productivity model was selected often had time series
of spawning stock size and recruitment that were also fairly stable with time. For example, the
time-invariant model was selected for walleye pollock in the eastern Bering Sea (Figure 6),
although research has suggested that recruitment was affected by regime shifts in 1977 and 1989
(Benson and Trites, 2002). Further research linked recruitment to temperature, with warmer
springs being favorable for survival of age-0 EBS walleye pollock to summer, but warm
temperatures in late summer and fall reducing zooplankton prey, overwinter survival, and
subsequent age-1 recruitment (Hunt et al., 2011; Mueter et al., 2011; Spencer et al., 2016).
However, while the spawning stock size and recruitment of EBS walleye pollock has been
variable, it has not apparently experienced long-term trends over time (lanelli et al., 2021), which
is consistent with the behavior observed in the productivity time series in the present study.

Alternatively, as in the case of Pacific cod (Gadus macrocephalus) in the Gulf of Alaska,
spawning stock size and recruitment have been decreasing with time (Barbeaux et al., 2021).
Pacific cod recruitment was affected by the 2014 to 2016 marine heatwave, which resulted in the
loss of thermal spawning habitat (Laurel and Rogers, 2020). Despite the demonstrated effect of
temperature on hatching success, productivity was also selected as time-invariant in the present
study (Figure 6). In this case, and others like it, where productivity remains approximately
constant, declines in stock size must be driven by other factors besides recruitment rate, such as
declines in post-recruitment survival. Both EBS walleye pollock and GOA Pacific cod exhibited
high-frequency variability in recruitment without clear trends, such that the time-invariant model
was selected for these stocks.

As the results of the present study demonstrate, time-varying productivity is more
prevalent in commercial fish stocks than may be currently accounted for in stock assessment
models that assume productivity to be a constant average over time. Additionally, accounting for
known time-variation can improve model estimates, including estimates of recent recruitment
and one-year-ahead forecasts, and subsequent calculation of reference points and implementation
of fishing regulations (Tableau et al., 2019; Collie et al., 2021; Tolimieri and Haltuch, 2023). It is
important to note that time-varying density-dependent mortality was not explored in the present
study, and as such, more complex time-variation at higher spawning stock sizes may not be
completely captured in our results for certain stocks. However, the results of the present study
may serve as justification for incorporating dynamic models into current stock assessment
protocols and using dynamic reference points. Stock-specific analyses will need to be conducted
to fully understand the recruitment dynamics of different stocks in different regions under
different environmental and anthropogenic conditions, but the present study represents a starting
point for understanding general trends that may be applicable for further investigation.
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9. Tables

Table 1: The “Productivity” column refers to whether a stock was found to have time-varying or
time-invariant productivity parameters in the present study.

Table 1a: New England (NE) stocks.

Common Name Scientific Name Time Series Assessment  Productivity
Acadian redfish Sebastes fasciatus 1960-2018 2020 Time-varying
American plaice Hippoglossoides platessoides 1980-2020 2022 Invariant
Atlantic cod (Gulf of Maine)  Gadus morhua 1982-2018 2021 Time-varying
Atlantic herring Clupea harengus 1965-2020 2022 Time-varying
Atlantic wolffish Anarhichas lupus 1968-2020 2022 Time-varying
Haddock (Georges Bank) Melanogrammus aeglefinus 1931-2020 2022 Invariant
Haddock (Gulf of Maine) Melanogrammus aeglefinus 1977-2020 2022 Time-varying
Pollock Pollachius virens 1970-2020 2022 Time-varying
White hake Urophycis tenuis 1963-2020 2022 Time-varying
er];tzrrﬂil)ounder (Georges Pseudopleuronectes americanus 1982-2019 2020 Time-varying
ngﬁ;gggl der (. New Pseudopleuronectes americanus 1981-2020 2022 Time-varying
Yel;;[):i:il)l flounder (Guif of Limanda ferruginea 1985-2021 2022 Time-varying
Yelé‘;‘;’lt::ll df)l"““der (S New 1 imanda ferruginea 1973-2020 2022 Time-varying

Table 1b: Mid-Atlantic (MDA) stocks

Common Name Scientific Name Time Series Assessment  Productivity
Atlantic mackerel Scomber scombrus 1968-2018 2021 Time-varying
Atlantic menhaden Brevoortia tyrannus 1955-2021 2022 Time-varying
Black sea bass Cetropristis striata 1989-2018 2021 Invariant
Bluefish Pomatomus saltatrix 1985-2019 2021 Invariant
Butterfish Peprilus triacanthus 1989-2019 2020 Time-varying
Golden tilefish Lopholatilus chamaeleonticeps 1971-2019 2021 Time-varying
Scup Stenotomus chrysops 1984-2019 2021 Time-varying
Striped bass Morone saxatilis 1982-2016 2018 Invariant
Summer flounder Paralichthys dentatus 1982-2019 2021 Invariant
Tautog (DE/MD/VA) Tautoga onitis 1990-2019 2021 Time-varying
Tautog (Long Island Sound)  Tautoga onitis 1984-2019 2021 Time-varying
Tautog (MA/RI) Tautoga onitis 1982-2019 2021 Time-varying
Tautog (NJ/NY Bight) Tautoga onitis 1989-2019 2021 Time-varying
Weakfish Cynoscion regalis 1982-2016 2019 Time-varying

Table 1c: California Current (CC) stocks

Common Name Scientific Name Time Series Assessment  Productivity
Arrowtooth flounder Atheresthes stomas 1965-2016 2017 Time-varying
Aurora rockfish Sebastes aurora 1978-2012 2013 Invariant
Black rockfish Sebastes melanops 1975-2014 2015 Time-varying
Blackspotted/rougheye S. melanostictus / S. aleutianus 1980-2012 2013 Invariant

rockfish
Blue/deacon (CA) Sebastes diaconus 1960-2016 2017 Time-varying
Blue/deacon (OR) Sebastes diaconus 1970-2016 2017 Invariant
Bocaccio Sebastes paucispinus 1954-2016 2017 Time-varying
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813
814

815
816

Cabezon (N. CA)
Cabezon (OR)

Cabezon (S. CA)
Canary rockfish
Chilipepper rockfish
Darkblotched rockfish
Dover sole
Greenstriped rockfish
Kelp greenling
Lingcod (N.)

Lingcod (S.)

Longspine thornyhead
Pacific hake

Pacific ocean perch
Petrale sole

Quillback rockfish (CA)
Quillback rockfish (OR)
Sablefish

Sanddab

Scorpionfish

Splitnose rockfish
Widow rockfish
Yelloweye rockfish
Yellowtail rockfish (N.)

Scopaenichthys marmoratus
Scopaenichthys marmoratus
Scopaenichthys marmoratus
Sebastes pinniger

Sebastes goodei

Sebastes crameri
Microstomus pacificus
Sebastes elongatus
Hexagrammos decagrammus
Opiodon elongatus
Opiodon elongatus
Sebastes altivelus
Merluccius productus
Sebastes alutus

Eopsetta jordani

Sebastes maliger

Sebastes maliger
Anoplopoma fimbria
Citharichthys sordidus
Scorpaena guttata

Sebastes diploproa

Sebastes entomelas
Sebastes ruberrimus
Sebastes flavidus

1962-2018
1980-2018
1970-2018
1968-2014
1965-2014
1960-2016
1975-2020
1970-2008
1980-2014
1960-2020
1972-2020
1997-2012
1975-2020
1975-2016
1959-2018
1991-2020
1980-2020
1975-2020
1977-2012
1965-2016
1960-2008
1970-2018
1980-2016
1970-2016

2019
2019
2019
2015
2015
2017
2021
2009
2015
2021
2021
2013
2021
2017
2019
2021
2021
2021
2013
2017
2009
2019
2017
2017

Time-varying
Invariant
Invariant

Time-varying
Invariant
Invariant

Time-varying
Invariant

Time-varying

Time-varying
Invariant
Invariant
Invariant

Time-varying
Invariant

Time-varying
Invariant
Invariant

Time-varying

Time-varying

Time-varying
Invariant

Time-varying
Invariant

Table 1d: Gulf of Alaska (GOA) stocks, including two time series representing Pacific halibut

Common Name Scientific Name Time Series Assessment  Productivity
Arrowtooth flounder Atheresthes stomas 1977-2020 2021 Time-varying
Blackspotted/rougheye S. melanostictus / S. aleutianus 1977-2018 2021 Invariant

rockfish
Dusky rockfish Sebastes sp. cf. ciliatus 1977-2017 2020 Invariant
Flathead sole Hippoglossoides elassodon 1978-2012 2017 Invariant
Northern rockfish Sebastes polyspinus 1977-2018 2020 Time-varying
Pacific cod Gadus macrocephalus 1977-2020 2021 Invariant
Pacrlrﬂ)cd};la)hbut (AAF Short Hippoglossus stenolepis 1992-2017 2022 Invariant
Pacific halibut (Coast-wide . . .

short model) Hippoglossus stenolepis 1992-2017 2023 Invariant
Pacific ocean perch Sebastes alutus 1961-2019 2021 Time-varying
Rex sole Glyptocephalus zachirus 1982-2020 2021 Time-varying
Rock sole (N.) Lepidopsetta bilineata 1977-2020 2021 Invariant
Rock sole (S.) Lepidopsetta bilineata 1977-2020 2021 Time-varying
Walleye pollock Gadus chalcogrammus 1970-2020 2021 Time-varying

Table 1e: Eastern Bering Sea/Aleutian Islands (BSAI) stocks

Common Name Scientific Name Time Series Assessment  Productivity
Alaska plaice Pleuronectes quadrituberculatus 1975-2014 2021 Time-varying
Arrowtooth flounder Atheresthes stomas 1976-2019 2020 Time-varying
Atka mackerel Pleurogrammus monopterygius 1977-2020 2021 Invariant
Bla:(islf g;rthe d/rougheye S. melanostictus / S. aleutianus 1977-2014 2020 Time-varying
Flathead sole Hippoglossoides elassodon 1964-2016 2020 Time-varying
Greenland turbot Reinhardtius hippoglossoides 1945-2019 2020 Time-varying
Kamchatka flounder Atheresthes evernanni 1991-2018 2020 Time-varying
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818
819
820
821
822
823
824
825
826
827
828

829
830
831
832
833
834
835
836
837

Northern rockfish

Pacific cod (Aleutian
Islands)

Pacific cod (Bering Sea)

Pacific ocean perch

Sebastes polyspinus
Gadus macrocephalus

Gadus macrocephalus
Sebastes alutus

Sablefish Anoplopoma fimbria
Walleye pollock (Aleutian Gadus chalcogrammus
Islands)

Walleye pollock (Bering

Sea)

Gadus chalcogrammus

1977-2015
1991-2020

1977-2020
1960-2014
1960-2018

1978-2017

1964-2020

2021
2021

2021
2020
2021

2020

2021

Invariant
Invariant

Invariant
Time-varying
Time-varying

Invariant

Invariant

Table 2: Biased reduced GLMs in the present study were compared with the AIC values.
Reported here is the full model including all fixed effects, and models within 2 units of the
lowest AIC model, assumed to be functionally equivalent in best explaining the variability in the

response variable (Burnham and Anderson, 2002). Significant covariates in each model are
indicated in bold italics. The sign of the parameter estimates for each covariate are indicated with
the sign (plus/minus) preceding the covariate.

Fixed Effects AIC r2 Delta AIC
Full + Order — TotalVar + F/Fusy + SSB/SSBumsy +
Model PropOF + Contrast + YOD + MatAge 122.67 0.154 12.54
Null | Intercept Only 112.53 0.000 2.40
Model

+ Contrast — TotalVar 110.13 0.071 0.00

+ Contrast — TotalVar + YOD 110.53 0.089 0.40
Lowest | 4 Contrast + SSB/SSBumsy — TotalVar 111.12 0.082 0.99
f/{“ﬁl |+ Contrast 11139 | 0.034 126
it | + Contrast — F/Fusy — Total Var 111.58 0.077 1.45
units + Contrast + SSB/SSBsy — TotalVar + YOD 111.62 0.098 1.49

+ Contrast + Order 112.11 0.137 1.98

+ Contrast — PropOF — TotalVar 112.13 0.071 2.00

+ Contrast + MatAge — TotalVar 112.13 0.071 2.00
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841  Figure 1: Productivity (a) time series estimated by the dynamic Ricker model with the Kalman
842 filter applied to stock assessment model outputs of eastern Bering Sea walleye pollock stock-
843  recruitment time series calculated with different values of o, influencing the recruitment

844  deviations from a mean recruitment level and fit with an internal Ricker stock-recruitment
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848  Figure 2: Diagnostic plot of coefficients on a log scale estimated by the time-invariant @ model

849  relative to the mean values from the time-varying model a constrained by a regional SNR,
850  plotted on top of the 1:1 line. Each point corresponds to one stock.
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857  some extreme unrealistic SNR values estimated for the single-stock models unconstrained by
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861  Figure 4: Autocorrelation in the recruitment time series for each time-invariant and time-varying
862  productivity stock. Box plots indicate the medians, first and third quartiles, and whiskers

863  extending to the last values <1.5 times the interquartile range. Mean values are indicated by

864  single points.

865

866

25



867
868

869
870
871
872

1.004 O O P LG @d (@

2
5
= 50.75- .
B> Region
(3 I <)
S £ 1. NE
e
0 050 2. MDA
:|§ F,, " . 3. CC
§.§ [ ] 4. GOA
T 5. BSAI
2 20.25-
o —

0=

0.00+ QP P B¢ o go°
00 05 10 15 20 25 30 35
Contrast in Spawning Stock Time Series
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Figure 7: Summary of productivity trends estimated with weighted regression across the full
time series (col. 1), ten years prior to current (col. 2), and five years prior to current (col. 3). Red
squares indicate that productivity has increased, and blue squares indicate that productivity has
decreased. White squares indicate that the regression coefficient was insignificant, i.e.
productivity has not followed a detectable trend in the given time interval.
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Supplementary Figure Sla-e

1. New England: SNR = 0.799
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Figure S1a: Stock-recruitment values from stock assessment reports (points), and the estimated Ricker curves based on the average
productivity estimated by the dynamic Ricker model with the Kalman filter. Solid lines indicate that the productivity was selected as time-
varying, and thus the average is not the best fit of the data, and dashed lines indicate that the productivity was selected as time-invariant.

Units are SSB (kt) and recruits (millions).



2. Mid-Atlantic: SNR = 0.762
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Figure S1b: Stock-recruitment values from stock assessment reports (points), and the estimated Ricker curves based on the average
productivity estimated by the dynamic Ricker model with the Kalman filter. Solid lines indicate that the productivity was selected as time-
varying, and thus the average is not the best fit of the data, and dashed lines indicate that the productivity was selected as time-invariant.
Units are SSB (kt) and recruits (millions), except for Atlantic menhaden, which has units of spawning output (trillion eggs) and recruits

(billions).



3. California Current: SNR = 0.396

Arrowtooth flounder (CC) Auraora rockfish (CC) Black rockfish (CC) “kspottedirougheye rockfish (1 Jluefdeacon rockfish CA(CC) Jlueldeacon rockfish OR (CC Bocaccio (CC)
- - I - - Ll - .
150 St . - s 201 . - 2.0 r
15 - 4 7.5 . .
LT £ - i 40
1001 . L 15 15 .. .
. . 1.0 T 3 H 504 . . e__ g™
- " ; ‘. 5] 101 . : : . 0] L ¥ 20 .,
50 e - ..' 05 ; .? d\ . i . 254 . % ) ,,' h.. 2 . . . . o,
Y I ' - 1 057, ’ﬁf"‘_ N tert 087 . . /;;:1:_._';
& KA AR ' KA s EA———— 1 A —— L} KA} Pt ook x X2
0 20 40 G0 80 0 1 2 3 4 5 0o 05 10 185 20 ] 2 4 5] ] 500 1000 1500 0 100 200 300 400 0 2500 5000 750010000
Cabezon OR (CC) Cabezon SCA (CC) Canary rockfish (CC) Chilipepper rockfish (CC) Darkblotched rockfish (CC) Dover sole (CC)
. . 061 ] L . . . .
0.20 i} 200 200 -
[ ] FRl
0154 * 0.4 N 150 1 . 107 -l
' . . 2001
0109 3 L g . .. 7
¢ 0.24 - L] 5 L] ‘e
0.051: ¥ ' - 50 .8 P 2 A ]
Bl I - |, . * g - . —.t--.; * R Ty -
! B P o - . L
0.004" me oo 004" tmeo-ooo-o-o---- 04 047 ', V‘-‘.. 04 k'h oA
0 1 2 3 0o 05 10 15 20 0o 05 10 15 20 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 0 50 100 150 200 250
Greenstriped rockfish (CC) Kelp greenling (CC) Lingcod W (CC) Lingcod 5 (CC) Longspine thornyhead (CC) Pacific hake (CC) Pacific Ocean perch (CC)
60 . . . 5 . . . . 120 1 .
I 15000+
0 3 40 . 4 . 2001 e . * g Selected
= 1 L] 1 P
= L. 0 ... 11 . . . 5. , 10000 . . Model
bt et 20 . e ] e s e 1004 . . . -+ Invariant
r 204 . . . .- * oy a-t-- - ] - \O\‘ 5000 . - .
e 104 ‘ud'y ¢ 1 . / o o . . 307 . — Time-Varing
S iy v oK / DA UL N T
017 - - - 01 - o 7 - - - 01 - - - 01+ T'.b_“_?'_ 017 - - . - -
0 2000 4000 6000 0 5 10 15 20 ] 5 10 15 20 ] 10 20 30 0 500 10001500 2000 0 10002000300040005000
Petrale sole (CC) Quillback rockfish OR (CC) Sablefish (CC) Sanddab (CC) Scorpionfish (CC) Splitnose rockfish (CC)
404 - - - - - 1
. 7e 60 . 600
30 0.075 . 0.10 * .
LN 1 _ N - i -
20 :._'%. + . 0050 . 40 . . . 400 .
it Y e . * 0051 . . # * 4 s
104 ,\ "V 0.0251 . — : 20 .: o . s 200 :: A
‘ -7 Yimapnew st
0r 0.0001 0.0017 - gl bl Rl 0
0 5 10 15 0 5 10 15 20 0 5 10 15 20 ] 50 100 150 200 ] 3 i} 9 0 1 2 3 4 0 3000 6000 9000 12000
~ Widow rockfish (CC) Yelloweye rockfish (CC) Yellowtail rockfish N (CC)
2501 . . .
041 . - ] e *
200 1 3 Soe, vt
150 - S et
- ‘. _"'—..
100 S8 T eVS
<0 25 // . . S
01t ol . .
o o 5000 10000

Spawning Stock

Figure S1c: Stock-recruitment values from stock assessment reports (points), and the estimated Ricker curves based on the average
productivity estimated by the dynamic Ricker model with the Kalman filter. Solid lines indicate that the productivity was selected as time-
varying, and thus the average is not the best fit of the data, and dashed lines indicate that the productivity was selected as time-invariant.
Units are SSB (kt) and recruits (millions), except for 13 rockfish species with units of spawning output (millions/billions of eggs/larvae; see
Figure S3c).



Recruits

4. Gulf of Alaska: SNR = 0.790
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Figure S1d: Stock-recruitment values from stock assessment reports (points), and the estimated Ricker curves based on the average
productivity estimated by the dynamic Ricker model with the Kalman filter. Solid lines indicate that the productivity was selected as time-
varying, and thus the average is not the best fit of the data, and dashed lines indicate that the productivity was selected as time-invariant.

Units are SSB (kt) and recruits (millions).



5. Eastern Bering Sea/Aleutian Islands: SNR = 0.957
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Figure S1e: Stock-recruitment values from stock assessment reports (points), and the estimated Ricker curves based on the average
productivity estimated by the dynamic Ricker model with the Kalman filter. Solid lines indicate that the productivity was selected as time-
varying, and thus the average is not the best fit of the data, and dashed lines indicate that the productivity was selected as time-invariant.
Units are SSB (kt) and recruits (millions).



Supplementary Figure S2a-e

1. New England: SNR = 0.799
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Figure S2a: Time series of productivity (a) in units of log(recruits/spawner) estimated by the dynamic Ricker model with the Kalman filter.
Stocks selected as having time-varying productivity are shown with bold productivity time series, and stocks selected as having time-

invariant productivity are shown with bold horizontal line indicating average productivity across the estimated time series.



2. Mid-Atlantic: SNR = 0.762
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Figure S2b: Time series of productivity (a) in units of log(recruits/spawner) estimated by the dynamic Ricker model with the Kalman filter.
Stocks selected as having time-varying productivity are shown with bold productivity time series, and stocks selected as having time-
invariant productivity are shown with bold horizontal line indicating average productivity across the estimated time series.



3. California Current: SNR = 0.396
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Stocks selected as having time-varying productivity are shown with bold productivity time series, and stocks selected as having time-
invariant productivity are shown with bold horizontal line indicating average productivity across the estimated time series.
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5. Eastern Bering Sea/Aleutian Islands: SNR = 0.957
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Figure S2e: Time series of productivity (a) in units of log(recruits/spawner) estimated by the dynamic Ricker model with the Kalman filter.
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Supplementary Figure S3a-e
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Figure S3a: Time series of spawning stock biomass (solid line) and recruitment (dashed line) from stock assessment reports.



2. Mid-Atlantic
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Figure S3b: Time series of spawning stock biomass or spawning output (solid line) and recruitment (dashed line) from stock assessment
reports.
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Figure S3c: Time series of spawning stock biomass or spawning output (solid line) and recruitment (dashed line) from stock assessment
reports.
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4. Gulf of Alaska
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Figure S3d: Time series of spawning stock biomass (solid line) and recruitment (dashed line) from stock assessment reports.
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5. Eastern Bering Sea/Aleutian Islands
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Figure S3e: Time series of spawning stock biomass (solid line) and recruitment (dashed line) from stock assessment reports.
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Supplementary Figure S4

Figure S4: Summary of the difference in current mean stock productivity
relative to the mean estimated at the beginning of the time series (col. 1),
ten years prior to current (col. 2), and five years prior to current (col. 3).
Red squares indicate that productivity is currently higher than it was at the
beginning of the given time period (i.e. increased), and blue squares
indicate that productivity is currently lower (i.e. decreased). White squares
indicate that the productivity has not changed notably since the beginning
of the given time period, relative to the standard error of the productivity
estimate.
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