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Abstract—Baited underwater video sampling is a common 

method to monitor fish populations, yet the data requirements 
associated with imagery leads to bottlenecks in productivity. 
Image analysis that incorporates automated methods through 
deep-learning models could provide solutions. These models have 
the potential to improve efficiency, and decrease the cost of 
producing information on fish populations and habitats. In order 
to reduce human intervention, these models must produce precise, 
accurate results. While methods for gauging model performance 
through metrics such as mean-average-precision are helpful 
during the model training process, evaluating the performance on 
years of survey data requires a different approach. An otolith age-
reader comparison method has been adapted to compare 
automated counts to true counts. The metrics produced in this 
analysis are then compared across a span of the model confidence 
levels in order to find the optimal settings per species to filter 
output and improve processing speed. For most species, increasing 
annotations for model training results in better performance, 
however issues persist with occlusion, turbidity, schooling species, 
and cryptic/conspecific appearances. With focus on Red Snapper 
(Lutjanus campechanus), this process of evaluation was carried out 
with multiple years of video data to test for fidelity based on 
location, time, and environmental conditions. Identifying common 
failures and adapting active learning algorithms can lead to 
targeted training for more efficient models in the future. These 
quality assessment and quality control methods of evaluation 
provide a framework for tracking performance drift and 
integrating automated methods properly with existing surveys and 
manual video count protocols.  
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I. INTRODUCTION 
Fishery management necessitates the collection of 

information on fish species abundances, ages, weights, lengths, 
fecundity, mortality, trophic interactions, and habitat health [1]. 

Active management is consistently becoming more important as 
populations are impacted by multiple stressors such as fishing, 
climate change, habitat reduction, and decreases in water quality 
associated with anthropogenic sources. Camera based 
monitoring has become a common method to gain information 
in habitats that are difficult to sample, and with species where 
hook-bias might impact observation [2]. Optic sampling with 
BRUVs (Baited Remote Underwater Videos) is less invasive, 
and also collects habitat imagery to supplement ecosystem-
based management practices. The drawback of this type of 
sampling is that the large amount of data leads to bottlenecks in 
productivity due to storage and manual processing time 
expenditures. Large-scale combined camera sampling efforts—
like that of NOAA’s Gulf Fishery Independent Survey of 
Habitat and Ecosystem Resources (GFISHER) [3], which 
incorporates data from over 1,000 hours of video collected from 
nearly 2,000 camera deployments across the Gulf of Mexico 
(GoM) shelf from Brownsville, Texas to the Florida Keys—
results in hundreds of terabytes of data and thousands of hours 
of manual scrutiny at high expense (West Gulf of Mexico – 
WGoM; East Gulf of Mexico – EgoM). 

To increase efficiency in post processing of marine video 
sampling, scientists have begun utilizing the advancements in 
computing through graphics processing unit (GPU) technology 
and artificial intelligence/machine learning (AI/ML) tools [4]. 
Advantages to this approach are that computing pipelines can 
run continuously, can reduce inter/intra observer human biases, 
and can leverage an ability for pattern recognition that may 
exceed our own. Further, the detection and classification of fish 
in each frame of video provides a means to generate many 
different types of metrics and statistical analyses. Therefore, 
these models are characteristically versatile for integrating with 
different surveys that historically include different methods of 
data interpretation such as counts of fish species that are 



averaged across a video (MeanN) [5], the maximum count of a 
fish species seen in a single frame of a video (MaxN, the 
compared count for this study) [6,7], proportions of a video that 
a fish is present within (temporal comparisons) [8], or just 
simply the presence/absence of a species. 

Detection and classification model performance are most 
commonly gauged by mean-average-precision (mAP). These 
mAP scores are a frame-based precision metric produced from 
a selected fraction of the training library, rather than precision 
across a large set of full-length, high resolution, and high frame-
rate videos; and so, a high mAP score may not be truly reflective 
of a model’s actual capacity to produce accurate count estimates 
for novel unlabeled video in natural conditions (i.e., annual 
survey collection). In-situ sampling faces challenges in fish 
tracking that occur due to fish occlusion, fish behavior, fish 
density, cryptic appearance, and variable water quality 
[9,10,11,12]. Moreover, a recent review reveals the need for 
standard metrics of accuracy between models that are applied in 
different sectors of fisheries management and research [13]. 

II. RELATED WORK 
Previous efforts [14] focused on the development of the 

Southeast Fisheries Science Center’s (SEFSC) automated reef 
fish detection and classification models using a cascade-faster 
regional neural network algorithm [15], and annotation software 
created through cooperative effort by NOAA’s Automated 
Image Analysis Strategic Initiative (full description of model 
architecture and current models available open-source at 
github.com/VIAME). These fish tracking models apply a single 
identification class and associated confidence threshold (CT) to 
the set of connected detection frames of individuals that pass 
through the field-of-view. Automated counts at the model CTs 
of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95 were used to 
filter model output. This CT is calculated as: 

   n nfish _ (conf t)  fish _ (conf t)*class _ (conf t,c)
score (c) =  ∑ ∑+ − t=0 0 t=

         (1) 
t b (1.0 b)* *

 n  ∑ n

  t=0
fish _ conf ( )t

Variables are given as c = the class ID; n = total number of 
unique localizations along the frames of each track; fish_conf(t) 
= fish detection value for a particular state in track time t; 
class_conf(t,c) = classifier confidence value for class c at time t; 
b = posterior probability that a track is definitely a fish [default 
= 0.1]. Fig. 1. exhibits common imagery from the GFISHER 
video survey overlaid with automated annotations. 
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Fig. 1. Example of automated detections of Lutjanus campechanus obtained 
on the NOAA GFISHER / Reef Fish Video Survey 
 

The model outputs were analyzed through an adaption of 
methods used to compare accuracy of human otolith age 
estimation across readers [16]. Analogously, a human fish 
counter can be compared to a computational fish counter across 
a wide variety of precision and accuracy metrics. The metrics 
produced in this analysis are the percent agreement of survey 
videos that models counts match human reader counts exactly, 
the ratio of videos where a fish was falsely identified by the 
model (false +), the ratio of videos where a fish was detected 
manually but not by the model (false -), the coefficient of 
variation between the human reader and the model counts 
(CV%), the linear regression of human counts vs. manual 
counts, and the percent of stations that have model counts within 
both one and two fish of the manual counts. In the previous 
analysis, a portion of a single survey (280 stations from the 
WGoM, >89.5o W, in 2021) was evaluated with these metrics 
using three different models in order to determine which model 
was the top performer per species, which species the models 
worked best to classify and count, and how increases in training 
data can lead to increases in performance. The optimal model 
CT is chosen based upon maximum percent agreement, 
minimum false positive detections, and minimum CV%. The 
linear regression and the percent of stations within one and two 
fish is calculated at this optimal CT. One goal of these efforts 
was also to establish a QA/QC (Quality Assessment/Quality 
Control) processes that integrates with current assessment 
models and can track performance drift over time, which is 
critical for a long-term standardized survey. 

 The most observed species across stations, Red Snapper 
(Lutjanus campechanus), is also the species with the most 
annotations in the training library (>206.5k individual frame 
localizations). While the model still may not have enough 
information to achieve full reliability, simply increasing the 
number of annotations past this point does not improve 
performance drastically, thus other factors are likely influencing 
accuracy and precision of the model. By comparing the 
performance of the model on Red Snapper across this larger 
dataset, which also spans a greater time than was previously 
tested, it may be possible to discern factors that have a larger 



influence on model performance, and thus direct future model 
training towards imagery where improvements must be made. 
This approach, combined with the active learning algorithm 
advances being developed in tandem with these models [16,17], 
could be a means to more efficiently improve precision. Efforts 
such as this will also improve efficiency by focusing effort on 
only the most useful annotations. 

III. METHODS 
To further test limits of model reliability across time and 

space, the aforementioned analysis has been repeated using 
multiple sets of survey videos from the full sampling area in the 
GoM from multiple years (2019 & 2021). Stations that recorded 
over 100 of a single species for manual counts were removed 
from the analysis (an arbitrary limit deemed out of the realm of 
model performance, selected beyond a point where model 
counts do not match any manual counts). The multiple-year 
comparison brings the sample size for testing the model from the 
original 280 stations to 1,219 stations. In this larger dataset there 
are several factors of interest that can be examined for variable 
performance, including the regional location of video (EGoM 
vs. WGoM), the survey the video was collected from (different 
vessels or slight changes in sampling locations, species 
assemblages, and gear), the designated complexity of the habitat 
(based upon max relief, biotic, and abiotic factors), the 
designated category of habitat (based upon substrates and reef 
types), the total number of fish counted per video (sum of all 
MaxN counts of all species in a video), the total number of 
species observed (diversity), and by the relative visibility of the 
video (overall clarity and ability to see the horizon). Each of the 
considered factors is filtered into categories for comparisons that 
yield relatively similar sample sizes based upon the distribution 
of observations across video stations. For example, breakdown 
by region results in comparison of 558 stations from the WGoM 
and 661 from the EGoM. If certain factors show limited 
performance, then those categories of videos will be focused on 
for annotation towards future iterations of training. 

IV. RESULTS 
The pooled 2019 & 2021 model performance at optimal CTs 

for Red Snapper in relation to the total fish counts and total 
number of observed species is displayed in Fig. 2, while relation 
to habitat and water quality is presented in Fig. 3. Stations with 
no fish are omitted from this analysis as agreement of zeros 
between manual counts and automated counts would cause 
inflated percent agreement values; however evaluation of all 
stations with total MaxN counts of 0 showed that false positives 
still occur up to the 95% threshold.  In other words, fish are 
detected when none are present. 

 
Fig. 2. Model performance for Red Snapper in terms of % agreement ( solid blue 
bars, left axis) and false positive ratios (thin orange-hashed bars, right axis) when 
comparing effect of fish density and diversity across pooled stations from 2019 
and 2021 

 The highest percent agreement was achieved when 
evaluating stations with less than 10 fish present, consistent with 
previous results from the 2021 WGoM dataset. High ratios of 
false positives are present beyond the third fish count bin (>40 
fish). Higher agreement is achieved when four species of fish or 
less are observed in a video, yet accuracy is best when Red 
Snapper is not the only species present on screen. 



 
Fig. 3. Model performance in terms of % agreement (solid blue bars, left axis) 
and false positive ratios (thin orange-hashed bars, right axis) when comparing 
effects of regional location, habitat types, and water quality (visibility) 

Model performance is doubled in terms of percent agreement 
in the WGoM, but high rates of false positives were evident 
across both regions. When breaking the full sampling universe 
down by habitat type there is an obvious difference between 
levels of false positives on low complexity stations (537 videos 
at complexities of one and two on a scale to eight), and high 
complexity stations (632 videos at complexity >2), although 
agreement is relatively similar. This habitat complexity score is 
based on the sum of the determined structural complexity (a 
score of one to five based on maximum habitat relief) and the 
determined biotic complexity (a score of one to five based on 
habitat and epifauna coverage). The more complicated habitat 
types (Mixed, Fragmented Bottom, and Boulder Fields) yielded 
higher rates of false positives than the less complex types (low 
relief, and non-visible). Other habitat categories were tested but 
were either under-represented in sample size, and/or the models 
yielded lower agreement than those displayed in Fig. 3. 

Performance was best on stations where the habitat was 
categorized as non-visible. This pattern was again evident 
against the scores of relative visibility, where there is a trend 
towards increased performance at the stations with the least 
visibility (Vis8 / Vis9), which display the lowest  rates of false 
positives. 

 Optimal CTs of performance are consistently between 0.6 
and 0.8 range as tradeoffs occur (Fig. 4) between maximum 
agreement and minimum false positives. This is the 
recommended range when using this iteration of the SEFSC 
model pack for novel video applications. This range is generally 
optimal for most species detected, however this paper is meant 
specifically to describe fine-tuning for Red Snapper detection. 

 
Fig. 4. Example of the full span detection/classification analysis across all model 
confidence thresholds for the regional comparison of performance (ACV = 
CV%) 

V. DISCUSSION 
Many of the results showed expected trends towards 

increased difficulty of detection and classification with higher 
fish densities and diversity (Fig. 2), and with increasingly 
complex habitats (Fig. 3). Often this is a compounding issue 
because complex habitats generally yield the highest fish 
densities and diversity. This includes increased diversity within 
families leading to more instances of species with very similar 
morphologies. One unexpected outcome was that, while models 
had the highest agreement on the stations in the highest visibility 
category (Vis3), the rate of false positives decreased with 
decreased visibility (Fig. 3), leading to a trend of better CV% at 
low visibility. It is possible that higher turbidity provides a more 
constant background, and that clearer water allows more 
visibility of individuals and more complex habitat, leading to 
increased false positive detections. These results coincide with 
the higher performance in the more turbid WGoM, but it should 
also be noted that the models were also trained with more video 
data from the WGoM.  



Image analysis on the combined survey data results in 
reliability of exact counts up to three Red Snapper on a frame at 
a time at the optimal confidence threshold of 0.7 (Fig. 5). This 
is a substantial decrease from the limit of nine Red Snapper that 
was determined for the 2021 WGoM video set. The red, open 
circles of Fig. 5 correspond to a one-sample t-test indicating that 
the mean of the manual counts (y-axis) are not equal to the 
corresponding mean of automated counts (x-axis), or if the 
difference in counts equals zero. Vertical bars represent the 
range of counts when the p-value is set to 0.05 for the one sample 
t-test. The dashed line corresponds to the theoretical ideal of a 
one-to-one relationship between automated counts and manual 
counts, and deviation from this line represents loss of reliability 
[19]. The linear regression is calculated as y=1.8x-1.2, (y = 
manual counts, x = automated counts; R2=0.67). Correlation 
decreases at higher counts. 

 Similarly, models produced by Connelly et al. [11] for fish 
tracking had a limit of reliable fish counts up to three fish, but 
described mathematical corrections to allow for better 
estimations of higher fish counts. Fortunately, nearly 70% of all 
combined stations had counts of three Red Snapper or less. 
Agreement of exact counts only occurs at 32% of the combined 
stations, but 68% of counts were within one fish, and 77% of 
counts were within two fish of manual counts. Another 
characteristic of the model, as shown by the linear regression of 
all stations combined, is that fish are undercounted at optimal 
CTs, and are therefore providing conservative estimates of 
relative abundance. Despite the tendency to undercount, false 
negative detections are much less common than false positive 
detections until the highest CTs. In fact, Red Snapper shows one 
of the highest false positive rates of any species, possibly due to 
over-selection bias caused by the long-tail distribution of the 
training library [20,21]. 

 
Fig. 5. Relationship between automated counts and manual counts for Red 
Snapper across all stations from 2019 and 2021 surveys (withholding any 
stations with counts >100 for any species).  

VI. CONCLUSION 
This broad-scale approach does not inform the model 

user/trainer on exactly which frames or videos to include in 
future training, but it allows the user to choose which dataset to 
apply active learning to, at a better resolution for that purpose. 

These active learning algorithms will be applied to data in an 
iterative process in order to determine exactly which frames can 
be beneficial for model performance. The active learning 
methods can be carried out at different scales for optimizing 
performance (e.g. a single station video, a selected region, or 
full years of survey data).  

Improvements are needed in both the tracking model itself 
and the distribution of annotations to other species in the 
training library in order to reduce over-selection and false 
positive detections of Red Snapper that are the product of 
misidentifications of other fish species. Further efforts are 
being made using one-shot [20] and class-aware loss functions 
[21] to address the imbalance of the training library. Other 
future work involves integrating domain-shift adaptation 
algorithms that can be used to deal with changing 
environmental conditions, backgrounds, and species 
assemblages [22]. This process should also be repeated for 
other important commercial and recreationally fished species to 
see if the same trends hold true, or if each species requires a 
case-by-case approach to achieve the largest increases in 
performance. Sample sizes for comparison will increase with 
each year, and further factors should be considered (e.g., water 
transmissivity, maximum relief, or the presence of other species 
most commonly misclassified as Red Snapper). Moreover 
many of these effects are likely compounding and may require 
a multi-variate analytical approach, such as a GLM (General 
Linear Model) or GAM (General Additive Model), for even 
stronger targeting of beneficial imagery. For now the model 
capability is only strong enough to assist humans in evaluating 
imagery with low levels of complexity, fish density, and 
diversity; however, this automation should still be considered a 
powerful tool, because these types of videos constitute a large 
fraction of the sampling datasets each year. 
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