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Metrics to Integrate with Existing Video Surveys
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Abstract—Baited underwater video sampling is a common
method to monitor fish populations, yet the data requirements
associated with imagery leads to bottlenecks in productivity.
Image analysis that incorporates automated methods through
deep-learning models could provide solutions. These models have
the potential to improve efficiency, and decrease the cost of
producing information on fish populations and habitats. In order
to reduce human intervention, these models must produce precise,
accurate results. While methods for gauging model performance
through metrics such as mean-average-precision are helpful
during the model training process, evaluating the performance on
years of survey data requires a different approach. An otolith age-
reader comparison method has been adapted to compare
automated counts to true counts. The metrics produced in this
analysis are then compared across a span of the model confidence
levels in order to find the optimal settings per species to filter
output and improve processing speed. For most species, increasing
annotations for model training results in better performance,
however issues persist with occlusion, turbidity, schooling species,
and cryptic/conspecific appearances. With focus on Red Snapper
(Lutjanus campechanus), this process of evaluation was carried out
with multiple years of video data to test for fidelity based on
location, time, and environmental conditions. Identifying common
failures and adapting active learning algorithms can lead to
targeted training for more efficient models in the future. These
quality assessment and quality control methods of evaluation
provide a framework for tracking performance drift and
integrating automated methods properly with existing surveys and
manual video count protocols.
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I. INTRODUCTION

Fishery management necessitates the collection of
information on fish species abundances, ages, weights, lengths,
fecundity, mortality, trophic interactions, and habitat health [1].
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Active management is consistently becoming more important as
populations are impacted by multiple stressors such as fishing,
climate change, habitat reduction, and decreases in water quality
associated with anthropogenic sources. Camera based
monitoring has become a common method to gain information
in habitats that are difficult to sample, and with species where
hook-bias might impact observation [2]. Optic sampling with
BRUVs (Baited Remote Underwater Videos) is less invasive,
and also collects habitat imagery to supplement ecosystem-
based management practices. The drawback of this type of
sampling is that the large amount of data leads to bottlenecks in
productivity due to storage and manual processing time
expenditures. Large-scale combined camera sampling efforts—
like that of NOAA’s Gulf Fishery Independent Survey of
Habitat and Ecosystem Resources (GFISHER) [3], which
incorporates data from over 1,000 hours of video collected from
nearly 2,000 camera deployments across the Gulf of Mexico
(GoM) shelf from Brownsville, Texas to the Florida Keys—
results in hundreds of terabytes of data and thousands of hours
of manual scrutiny at high expense (West Gulf of Mexico —
WGoM; East Gulf of Mexico — EgoM).

To increase efficiency in post processing of marine video
sampling, scientists have begun utilizing the advancements in
computing through graphics processing unit (GPU) technology
and artificial intelligence/machine learning (AI/ML) tools [4].
Advantages to this approach are that computing pipelines can
run continuously, can reduce inter/intra observer human biases,
and can leverage an ability for pattern recognition that may
exceed our own. Further, the detection and classification of fish
in each frame of video provides a means to generate many
different types of metrics and statistical analyses. Therefore,
these models are characteristically versatile for integrating with
different surveys that historically include different methods of
data interpretation such as counts of fish species that are



averaged across a video (MeanN) [5], the maximum count of a
fish species seen in a single frame of a video (MaxN, the
compared count for this study) [6,7], proportions of a video that
a fish is present within (temporal comparisons) [8], or just
simply the presence/absence of a species.

Detection and classification model performance are most
commonly gauged by mean-average-precision (mAP). These
mAP scores are a frame-based precision metric produced from
a selected fraction of the training library, rather than precision
across a large set of full-length, high resolution, and high frame-
rate videos; and so, a high mAP score may not be truly reflective
of'a model’s actual capacity to produce accurate count estimates
for novel unlabeled video in natural conditions (i.e., annual
survey collection). In-situ sampling faces challenges in fish
tracking that occur due to fish occlusion, fish behavior, fish
density, cryptic appearance, and variable water quality
[9,10,11,12]. Moreover, a recent review reveals the need for
standard metrics of accuracy between models that are applied in
different sectors of fisheries management and research [13].

II. RELATED WORK

Previous efforts [14] focused on the development of the
Southeast Fisheries Science Center’s (SEFSC) automated reef
fish detection and classification models using a cascade-faster
regional neural network algorithm [15], and annotation software
created through cooperative effort by NOAA’s Automated
Image Analysis Strategic Initiative (full description of model
architecture and current models available open-source at
github.com/VIAME). These fish tracking models apply a single
identification class and associated confidence threshold (CT) to
the set of connected detection frames of individuals that pass
through the field-of-view. Automated counts at the model CTs
0f0.1,0.2,0.3,0.4,0.5,0.6,0.7, 0.8, 0.9, and 0.95 were used to
filter model output. This CT is calculated as:

z:’:ﬂ Sish _conf (1) . ZLO fish _conf (t)*class _conf (t,c) ( 1 )
n
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Variables are given as ¢ = the class ID; n = total number of
unique localizations along the frames of each track; fish _conf(t)
= fish detection value for a particular state in track time #
class_conf{t,c) = classifier confidence value for class c at time ¢;
b = posterior probability that a track is definitely a fish [default
= 0.1]. Fig. 1. exhibits common imagery from the GFISHER
video survey overlaid with automated annotations.
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Fig. 1. Example of automated detections of Lutjanus campechanus obtained
on the NOAA GFISHER / Reef Fish Video Survey

The model outputs were analyzed through an adaption of
methods used to compare accuracy of human otolith age
estimation across readers [16]. Analogously, a human fish
counter can be compared to a computational fish counter across
a wide variety of precision and accuracy metrics. The metrics
produced in this analysis are the percent agreement of survey
videos that models counts match human reader counts exactly,
the ratio of videos where a fish was falsely identified by the
model (false +), the ratio of videos where a fish was detected
manually but not by the model (false -), the coefficient of
variation between the human reader and the model counts
(CV%), the linear regression of human counts vs. manual
counts, and the percent of stations that have model counts within
both one and two fish of the manual counts. In the previous
analysis, a portion of a single survey (280 stations from the
WGoM, >89.5° W, in 2021) was evaluated with these metrics
using three different models in order to determine which model
was the top performer per species, which species the models
worked best to classify and count, and how increases in training
data can lead to increases in performance. The optimal model
CT is chosen based upon maximum percent agreement,
minimum false positive detections, and minimum CV%. The
linear regression and the percent of stations within one and two
fish is calculated at this optimal CT. One goal of these efforts
was also to establish a QA/QC (Quality Assessment/Quality
Control) processes that integrates with current assessment
models and can track performance drift over time, which is
critical for a long-term standardized survey.

The most observed species across stations, Red Snapper
(Lutjanus campechanus), is also the species with the most
annotations in the training library (>206.5k individual frame
localizations). While the model still may not have enough
information to achieve full reliability, simply increasing the
number of annotations past this point does not improve
performance drastically, thus other factors are likely influencing
accuracy and precision of the model. By comparing the
performance of the model on Red Snapper across this larger
dataset, which also spans a greater time than was previously
tested, it may be possible to discern factors that have a larger



influence on model performance, and thus direct future model
training towards imagery where improvements must be made.
This approach, combined with the active learning algorithm
advances being developed in tandem with these models [16,17],
could be a means to more efficiently improve precision. Efforts
such as this will also improve efficiency by focusing effort on
only the most useful annotations.

III. METHODS

To further test limits of model reliability across time and
space, the aforementioned analysis has been repeated using
multiple sets of survey videos from the full sampling area in the
GoM from multiple years (2019 & 2021). Stations that recorded
over 100 of a single species for manual counts were removed
from the analysis (an arbitrary limit deemed out of the realm of
model performance, selected beyond a point where model
counts do not match any manual counts). The multiple-year
comparison brings the sample size for testing the model from the
original 280 stations to 1,219 stations. In this larger dataset there
are several factors of interest that can be examined for variable
performance, including the regional location of video (EGoM
vs. WGoM), the survey the video was collected from (different
vessels or slight changes in sampling locations, species
assemblages, and gear), the designated complexity of the habitat
(based upon max relief, biotic, and abiotic factors), the
designated category of habitat (based upon substrates and reef
types), the total number of fish counted per video (sum of all
MaxN counts of all species in a video), the total number of
species observed (diversity), and by the relative visibility of the
video (overall clarity and ability to see the horizon). Each of the
considered factors is filtered into categories for comparisons that
yield relatively similar sample sizes based upon the distribution
of observations across video stations. For example, breakdown
by region results in comparison of 558 stations from the WGoM
and 661 from the EGoM. If certain factors show limited
performance, then those categories of videos will be focused on
for annotation towards future iterations of training.

IV. RESULTS

The pooled 2019 & 2021 model performance at optimal CTs
for Red Snapper in relation to the total fish counts and total
number of observed species is displayed in Fig. 2, while relation
to habitat and water quality is presented in Fig. 3. Stations with
no fish are omitted from this analysis as agreement of zeros
between manual counts and automated counts would cause
inflated percent agreement values; however evaluation of all
stations with total MaxN counts of 0 showed that false positives
still occur up to the 95% threshold. In other words, fish are
detected when none are present.
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Fig. 2. Model performance for Red Snapper in terms of % agreement ( solid blue
bars, left axis) and false positive ratios (thin orange-hashed bars, right axis) when
comparing effect of fish density and diversity across pooled stations from 2019
and 2021

The highest percent agreement was achieved when
evaluating stations with less than 10 fish present, consistent with
previous results from the 2021 WGoM dataset. High ratios of
false positives are present beyond the third fish count bin (>40
fish). Higher agreement is achieved when four species of fish or
less are observed in a video, yet accuracy is best when Red
Snapper is not the only species present on screen.
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Fig. 3. Model performance in terms of % agreement (solid blue bars, left axis)
and false positive ratios (thin orange-hashed bars, right axis) when comparing
effects of regional location, habitat types, and water quality (visibility)

Model performance is doubled in terms of percent agreement
in the WGoM, but high rates of false positives were evident
across both regions. When breaking the full sampling universe
down by habitat type there is an obvious difference between
levels of false positives on low complexity stations (537 videos
at complexities of one and two on a scale to eight), and high
complexity stations (632 videos at complexity >2), although
agreement is relatively similar. This habitat complexity score is
based on the sum of the determined structural complexity (a
score of one to five based on maximum habitat relief) and the
determined biotic complexity (a score of one to five based on
habitat and epifauna coverage). The more complicated habitat
types (Mixed, Fragmented Bottom, and Boulder Fields) yielded
higher rates of false positives than the less complex types (low
relief, and non-visible). Other habitat categories were tested but
were either under-represented in sample size, and/or the models
yielded lower agreement than those displayed in Fig. 3.

Performance was best on stations where the habitat was
categorized as non-visible. This pattern was again evident
against the scores of relative visibility, where there is a trend
towards increased performance at the stations with the least
visibility (Vis8 / Vis9), which display the lowest rates of false
positives.

Optimal CTs of performance are consistently between 0.6
and 0.8 range as tradeoffs occur (Fig. 4) between maximum
agreement and minimum false positives. This is the
recommended range when using this iteration of the SEFSC
model pack for novel video applications. This range is generally
optimal for most species detected, however this paper is meant
specifically to describe fine-tuning for Red Snapper detection.
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Fig. 4. Example of the full span detection/classification analysis across all model
confidence thresholds for the regional comparison of performance (ACV =
CV%)

V. DISCUSSION

Many of the results showed expected trends towards
increased difficulty of detection and classification with higher
fish densities and diversity (Fig. 2), and with increasingly
complex habitats (Fig. 3). Often this is a compounding issue
because complex habitats generally yield the highest fish
densities and diversity. This includes increased diversity within
families leading to more instances of species with very similar
morphologies. One unexpected outcome was that, while models
had the highest agreement on the stations in the highest visibility
category (Vis3), the rate of false positives decreased with
decreased visibility (Fig. 3), leading to a trend of better CV% at
low visibility. It is possible that higher turbidity provides a more
constant background, and that clearer water allows more
visibility of individuals and more complex habitat, leading to
increased false positive detections. These results coincide with
the higher performance in the more turbid WGoM, but it should
also be noted that the models were also trained with more video
data from the WGoM.



Image analysis on the combined survey data results in
reliability of exact counts up to three Red Snapper on a frame at
a time at the optimal confidence threshold of 0.7 (Fig. 5). This
is a substantial decrease from the limit of nine Red Snapper that
was determined for the 2021 WGoM video set. The red, open
circles of Fig. 5 correspond to a one-sample t-test indicating that
the mean of the manual counts (y-axis) are not equal to the
corresponding mean of automated counts (x-axis), or if the
difference in counts equals zero. Vertical bars represent the
range of counts when the p-value is set to 0.05 for the one sample
t-test. The dashed line corresponds to the theoretical ideal of a
one-to-one relationship between automated counts and manual
counts, and deviation from this line represents loss of reliability
[19]. The linear regression is calculated as y=1.8x-1.2, (y =
manual counts, x = automated counts; R°=0.67). Correlation
decreases at higher counts.

Similarly, models produced by Connelly et al. [11] for fish
tracking had a limit of reliable fish counts up to three fish, but
described mathematical corrections to allow for better
estimations of higher fish counts. Fortunately, nearly 70% of all
combined stations had counts of three Red Snapper or less.
Agreement of exact counts only occurs at 32% of the combined
stations, but 68% of counts were within one fish, and 77% of
counts were within two fish of manual counts. Another
characteristic of the model, as shown by the linear regression of
all stations combined, is that fish are undercounted at optimal
CTs, and are therefore providing conservative estimates of
relative abundance. Despite the tendency to undercount, false
negative detections are much less common than false positive
detections until the highest CTs. In fact, Red Snapper shows one
of the highest false positive rates of any species, possibly due to
over-selection bias caused by the long-tail distribution of the
training library [20,21].
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Fig. 5. Relationship between automated counts and manual counts for Red
Snapper across all stations from 2019 and 2021 surveys (withholding any
stations with counts >100 for any species).

VI. CONCLUSION

This broad-scale approach does not inform the model
user/trainer on exactly which frames or videos to include in
future training, but it allows the user to choose which dataset to
apply active learning to, at a better resolution for that purpose.

These active learning algorithms will be applied to data in an
iterative process in order to determine exactly which frames can
be beneficial for model performance. The active learning
methods can be carried out at different scales for optimizing
performance (e.g. a single station video, a selected region, or
full years of survey data).

Improvements are needed in both the tracking model itself
and the distribution of annotations to other species in the
training library in order to reduce over-selection and false
positive detections of Red Snapper that are the product of
misidentifications of other fish species. Further efforts are
being made using one-shot [20] and class-aware loss functions
[21] to address the imbalance of the training library. Other
future work involves integrating domain-shift adaptation
algorithms that can be used to deal with changing
environmental conditions, backgrounds, and species
assemblages [22]. This process should also be repeated for
other important commercial and recreationally fished species to
see if the same trends hold true, or if each species requires a
case-by-case approach to achieve the largest increases in
performance. Sample sizes for comparison will increase with
each year, and further factors should be considered (e.g., water
transmissivity, maximum relief, or the presence of other species
most commonly misclassified as Red Snapper). Moreover
many of these effects are likely compounding and may require
a multi-variate analytical approach, such as a GLM (General
Linear Model) or GAM (General Additive Model), for even
stronger targeting of beneficial imagery. For now the model
capability is only strong enough to assist humans in evaluating
imagery with low levels of complexity, fish density, and
diversity; however, this automation should still be considered a
powerful tool, because these types of videos constitute a large
fraction of the sampling datasets each year.
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