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Abstract. Snowpacks modulate water storage over extended
land regions and at the same time play a central role in the
surface albedo feedback, impacting the climate system en-
ergy balance. Despite the complexity of snow processes and
their importance for both land hydrology and global climate,
several state-of-the-art land surface models and Earth Sys-
tem Models still employ relatively simple descriptions of
the snowpack dynamics. In this study we present a newly-
developed snow scheme tailored to the Geophysical Fluid
Dynamics Laboratory (GFDL) land model version 4.1. This
new snowpack model, named GLASS (Global LAnd–Snow
Scheme), includes a refined and dynamical vertical-layering
snow structure that allows us to track the temporal evolu-
tion of snow grain properties in each snow layer, while at the
same time limiting the model computational expense, as is
necessary for a model suited to global-scale climate simula-
tions. In GLASS, the evolution of snow grain size and shape
is explicitly resolved, with implications for predicted bulk
snow properties, as they directly impact snow depth, snow
thermal conductivity, and optical properties. Here we de-
scribe the physical processes in GLASS and their implemen-
tation, as well as the interactions with other surface processes
and the land–atmosphere coupling in the GFDL Earth Sys-
tem Model. The performance of GLASS is tested over 10 ex-
perimental sites, where in situ observations allow for a com-
prehensive model evaluation. We find that when compared
to the current GFDL snow model, GLASS improves predic-
tions of seasonal snow water equivalent, primarily as a con-
sequence of improved snow albedo. The simulated soil tem-

perature under the snowpack also improves by about 1.5 K
on average across the sites, while a negative bias of about
1 K in snow surface temperature is observed.

1 Introduction

Snow is a fundamental component of the global water and
energy balance. Over extended regions on Earth, a significant
fraction of the water budget is stored over land as snow, so
soil moisture, runoff, and water availability for ecosystems
and human communities are directly impacted by changes
in snow (Cohen and Rind, 1991; Xu and Dirmeyer, 2013).
Snow cover also plays an important role in the energy bal-
ance at the surface (Qu and Hall, 2014; Thackeray et al.,
2018). Compared to other natural surfaces, snow is charac-
terized by the highest reflectivity in the visible range and by
exceptionally low heat conductivity. Because of these proper-
ties, snow has been shown to significantly affect near-surface
temperatures (Armstrong and Brun, 2008; Betts et al., 2014)
and to play a primary role in modulating the warming rate
of arctic regions (Stieglitz et al., 2003) and permafrost extent
(Burke et al., 2013). Thus, the presence of snow fundamen-
tally alters the near-surface temperature and in turn the en-
ergy partitioning between the land surface, subsurface, and
atmosphere (Henderson et al., 2018). Numerical simulations
of snowpacks are used in many scientific applications, rang-
ing from watershed-scale hydrology and flood forecasting
(Nester et al., 2012; Blöschl, 1999) to centuries-long, global
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simulations of the climate system (Kapnick and Delworth,
2013). Given the profound implications of snow for land–
atmosphere interactions over extended regions of the Earth,
it is paramount that land surface models adequately describe
the coupling between snow and soil, vegetation, and the at-
mosphere.

Fully understanding the implications of snow for land hy-
drology and the climate system requires a detailed represen-
tation of its physical properties in numerical models. The
complexity of snow schemes used in land surface model-
ing varies greatly and has been previously classified in three
complexity levels (Boone and Etchevers, 2001; Vionnet et
al., 2012). The first class includes the simplest snow models,
which consist of either a single snow layer or a composite
snow–soil medium. Traditionally these computationally in-
expensive snow models have been employed in numerical
weather prediction and global climate models. The second
class, intermediate-complexity models, addresses several de-
ficiencies in the former class of models by including at least
a coarse vertical discretization of the snowpack and by ex-
plicitly modeling the liquid-phase water and variations in
snow density. Intermediate-detail snowpack models include
the European Centre for Medium Range Weather Forecasts
(ECMWF) snow scheme (Dutra et al., 2010; Arduini et al.,
2019), the Community Land Model (CLM) 4.5 (Oleson et
al., 2013), the Canadian Land Surface Scheme (CLASS),
the Joint UK Land Environment Simulator (JULES; Best
et al., 2011), Snow17 (Anderson, 1976), and WEB-DHM-S
(Shrestha et al., 2010).

Finally, the third class consists of detailed snowpack mod-
els: these are characterized by a much-finer vertical layering
of the snow, which can evolve dynamically with snowfall and
snowmelt. Snow microphysical properties are tracked in each
snow layer, thus allowing for a more realistic description of
physical processes. Such highly detailed snowpack models
include SNOWPACK (Bartelt and Lehning, 2002; Lehning
et al., 2002b, a), SNTHERM89 (Jordan, 1991), and CRO-
CUS (Brun et al., 1992, 1997; Vionnet et al., 2012). Some
models explicitly resolve the propagation of shortwave ra-
diation within the snow layers, for example, the Snow, Ice,
and Aerosol Radiative Model (SNICAR; Flanner and Zen-
der, 2005, and Flanner et al., 2007); the Two-stream Ana-
lytical Radiative TransfEr in Snow (TARTES; Libois et al.,
2013); and Glacier Energy and Mass Balance (GEMB; Gard-
ner et al., 2023). Since higher-detail snow schemes tend to be
computationally expensive, applications of snow models tar-
geting long, global-scale numerical simulations of the Earth
system must strike a balance between physical detail and
computational demands. Despite the need for this tradeoff,
it has been recognized that a number of physical processes
impacting the evolution of the snowpack should be resolved
in land surface models, as they can be relevant for large-
scale hydrological studies and for coupled climate simula-
tions. These include the effect of thermal insulation (Cook et
al., 2008; Lawrence and Slater, 2010) and the effect of snow

microphysics on albedo (Flanner and Zender, 2006; Vionnet
et al., 2012; He et al., 2017).

The increasing fidelity of snow processes using detailed
snow schemes has been shown to benefit both climate stud-
ies (Dutra et al., 2010; Decharme et al., 2016) and numeri-
cal weather prediction applications (Arduini et al., 2019), as
snow not only impacts the hydrological response but also in-
teracts with the atmosphere through surface temperature and
reflectivity.

The snow scheme currently implemented in the Geophys-
ical Fluid Dynamics Laboratory (GFDL) land model (LM)
4.1 (Shevliakova et al., 2024) can be considered a scheme of
intermediate complexity: the snowpack is characterized by a
fixed number of vertical layers (routinely set to five), each
characterized by its temperature and ice and liquid-water
content. However, the density of the snow is set to a constant
value (currently, 250 kgm−3), so the model provides limited
information on snow depth. As a consequence, snow heat
conductance is also a constant, which can lead to challenges
in determining the vertical temperature profile of snow and
soil. Finally, no description of snow microphysics is present,
so the dependence of physical processes on the snow mi-
crostructure (e.g., the evolution of snow optical properties
with age and snow compaction) is not accounted for. How-
ever, this parsimonious snowpack model has been success-
fully employed to simulate snow cover at the global scale
(Kapnick and Delworth, 2013).

The focus of this work is to present the Global LAnd Snow
Scheme (GLASS), a novel snow model developed for LM
4.1. The primary objective of the development of GLASS
is to increase the realism of the snow processes in LM 4.1,
while at the same time limiting the computational burden of
the model so that it can be effectively employed in global
Earth system simulations. Key physical processes that were
absent in LM 4.1 have been adapted in GLASS from existing
parameterizations used in detailed snow schemes. In particu-
lar, GLASS now includes the treatment of snow compaction,
wind drift effect, and snow aging and accounts for the effects
of these processes on snow thermal and optical properties.
The evolution of snow properties with snow aging accounts
for both dry and wet metamorphism. In GLASS these pro-
cesses affect not only the growth of snow grains but also the
evolution of their shape. This information is in turn employed
to evaluate snow albedo, which in GLASS depends explic-
itly on both the optical size and optical shape of snow grains.
While increasing the fidelity of the snow physical processes,
GLASS builds on the existing implicit solution scheme for
the fluxes between land and atmosphere, which is numeri-
cally stable and efficient for the time step (30 min) routinely
used in global-scale coupled land–atmosphere simulations.
To avoid an excessive increase in the computational demands
of the new snow model, the energy balance at the land sur-
face is linearized in LM 4.1. This approach leads to a trade-
off between computational cost and physical realism, as an
iterative solution of the energy balance would lead to a con-
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siderable increase in computational expense. GLASS is char-
acterized by a dynamic snow vertical-layering structure that
allows the efficient tracking of the evolution of snow proper-
ties with age, as is currently done by a few high-detail snow
schemes such as CROCUS (Brun et al., 1992; Vionnet et al.,
2012). A re-layering scheme is used to determine the opti-
mal vertical discretization of the snowpack so as to obtain a
proper tradeoff between model detail and computational ex-
pense.

After presenting the features of GLASS, we test its perfor-
mance over a set of sites widely used as benchmark, includ-
ing in previous snow model intercomparison efforts (Krinner
et al., 2018). The dataset used here spans a wide range of cli-
mate and terrain conditions so as to characterize the behavior
of the model. The evolution of snowpack in vegetated areas
constitutes a major source of uncertainty, which carries po-
tentially large implications for constraining the snow albedo
feedback over the Northern Hemisphere. We contribute to
this challenge by evaluating GLASS at three forested sites
that are part of the ESM-SnowMIP project. The remainder
of the paper is organized as follows: Sect. 2 describes in de-
tail the model physics and implementation in LM 4.1, in-
cluding the existing treatment of snow processes. GLASS
is presented in detail in Sect. 3. Section 4 describes the ex-
perimental setup used in our study as well as the data used
as model input and atmospheric forcing and the snow data
used for model validation. Results and discussion follow in
Sects. 5 and 6, while model limitations and considerations
for future research directions are discussed in Sect. 6. Con-
clusions from this study are featured in Sect. 7.

2 Overview of land and snow processes represented in
the GFDL land model

2.1 Land model overview

The land component of GFDL ESM 4.1 (Dunne et al., 2020;
Shevliakova et al., 2024), hereafter called LM 4.1, provides
a detailed description of the key processes involved in the
mass and energy exchanges between land and atmosphere.
In LM 4.1, the land domain is discretized in a number of
grid cells. To represent the effects of heterogeneity of land–
atmosphere interactions and terrestrial biogeochemical pro-
cesses, the model employs a mosaic approach where each
grid cell can be further split into a set of sub-grid tiles: frac-
tions of the grid cell with distinct physical and biogeochem-
ical properties. LM 4.1 resolves the land–atmosphere ex-
changes of energy, water, and tracers separately for each of
the tiles. The evolution of the relevant terrestrial properties
– the state of vegetation, albedo, soil moisture and tempera-
ture, snow cover, etc. – is also simulated separately for each
of the tiles, while allowing for interaction due to land use
transitions and other processes that can dynamically change
the tiling structure. Such an approach captures the effects

that land use has on land–atmosphere physical interactions,
as well as on the terrestrial carbon cycle (Shevliakova et al.,
2009; Malyshev et al., 2015; Chaney et al., 2018; Zorzetto et
al., 2023). Vegetation in the model is dynamic, represented
by a set of cohorts with each cohort being a set of plants with
similar characteristics, i.e., species, size, and age. Cohorts
change as the vegetation assimilates carbon (and undergoes
other processes such as mortality and reproduction) and orga-
nize themselves in a number of layers, according to the per-
fect plasticity approximation (PPA) approach (Strigul et al.,
2008; Weng et al., 2015; Martínez Cano et al., 2020). In the
present application, we employ a configuration of the model
where we focus on a single tile that corresponds to each of
the sites where point-scale observations were obtained. The
time step used in the model for physical processes related
to snow, soil, and land–atmosphere interactions is 30 min. In
GFDL LM 4.1, the sensible heat (Hg) and evaporation (Eg)
fluxes are computed using the bulk formulae driven by the
gradient in temperature and specific humidity between atmo-
sphere (Ta, qa) and the near-surface canopy air layer (Tc, qc),

Hg = ρaircpCDU(Tc− Ta) (1)

Eg = ρairCDU(qc− qa), (2)

where U is the wind above the constant flux layer and CD
is the stability-dependent drag coefficient computed from the
Monin–Obukhov similarity theory (Garratt, 1994; Foken and
Napo, 2008), cp is the specific heat of air, and ρair is the
air density. Within the vegetation canopy, the aerodynamic
resistance is computed assuming an exponential wind ve-
locity profile following the approach by Bonan (1996). In
the present work, we use the same formulation for turbulent
fluxes in all model configurations described below.

2.2 Snow scheme in LM 4.1

The existing snow module part of GFDL LM 4.1 (named
current model, LM-CM, or CM throughout this work) can
be classified as an intermediate-complexity snow scheme ac-
cording to the definition by Boone and Etchevers (2001).
Fluxes of water and heat in the snowpack and soil con-
tinuum are based on the model by Milly et al. (2014). If
snow is present on the ground, the snowpack is composed
of a fixed number of levels, routinely set to five. Each snow
layer is characterized by its temperature and by its liquid and
ice mass content. No description of snow microphysics is
present, so key snow properties (in particular, snow density
and heat conductance) are assumed to be constant. Light does
not penetrate the snowpack: shortwave radiation contributes
to the surface energy balance, and the resulting net heat flux
constitutes the upper-boundary condition for resolving the
heat diffusion through the snow layers and the underlying
soil. The snow albedo is computed with an empirical for-
mulation based on the bidirectional reflectance distribution
function (BRDF) described in Appendix C. This model does
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not explicitly account for the effects of snow grain size or for
the presence of light absorbing particles within the snow but
rather yields typical reflectivity values for snow-covered sur-
faces. The effect of snow metamorphism on its optical prop-
erties is mimicked by introducing a dependence of the BRDF
model parameters on the temperature of the uppermost snow
layer, with warm snow being characterized by reduced re-
flectivity.

3 The Global LAnd–Snow Scheme (GLASS) in LM 4.1

GLASS was developed building upon the existing LM-CM
snow scheme with the objective of including representations
of important snow physical processes in the model. For each
LM 4.1 model tile, GLASS is a 1D snow model coupled
to the soil and multilayer canopy scheme parts of LM 4.1.
GLASS simulates the evolution of the snowpack and the ex-
changes of water and energy with the lower atmosphere and
the underlying soil. The vertical discretization of the snow-
pack is dynamic, with the number and thickness of snow lay-
ers being determined by both history (e.g., new snow lay-
ers being added on top of the snowpack due to precipitation
events) and computational considerations, so snow layers can
split and merge, tending toward an optimal vertical profile.
In GLASS, each snow horizontal layer is characterized by a
number of physical properties. A schematic representation of
the snow vertical structure in GLASS is shown in Fig. 1. En-
ergy and mass fluxes at the upper boundary of this medium
are determined by liquid and solid precipitation (possibly
percolating through canopy layers if vegetation is present),
evaporation, or sublimation, and the net heat flux into or out
of the snowpack is determined by solving the energy bal-
ance at the surface. Shortwave radiation can penetrate the
snowpack depending on its thickness and optical properties,
as discussed below. At the bottom of the snow column, the
boundary condition is given by the flux of heat and water into
the underlying soil layers or by runoff.

3.1 Representation of snow at the ground and its
vertical discretization

A fine vertical discretization of the snowpack is key to re-
solving the vertical variation in snow physical properties that
affects the overall snowpack mass and energy balance. In
GLASS, this requirement is met by employing a vertical
structure that can change dynamically, designed to strike a
tradeoff between the desire for physical detail and the need
to limit the computational requirements of a model used for
global-scale simulations. The snowpack, if present, is com-
posed of a variable number nL of horizontal layers, numbered
from the top of the snowpack to the bottom (k = 1, . . .,nL).
Each snow layer is characterized by a set of physical prop-
erties that evolve dynamically. These are the layer’s liquid
(wl,k) and ice (ws,k) contents, its thickness 1zk , tempera-

Table 1. List of physical variables characterizing the kth snow layer.

Name Variable Units Prognostic Size

1zk Thickness m Yes 1
wl,k Liquid content kgm−2 Yes 1
ws,k Ice content kgm−2 Yes 1
Tk Temperature K Yes 1
dopt,k Optical diameter m Yes 1
δk Snow dendriticy Dimensionless Yes 1
sp,k Snow sphericity Dimensionless Yes 1
Hsn,k Heat content Jm−2 Derived 1
λk Heat conductance Jm−2 K−1 Derived 1
ck Heat capacity Wm−1 K−1 Derived 1
ρk Snow density kgm−3 Derived 1
agek Snow age d Yes 1

ture Tk , heat capacity ck , and heat conductance λk . In each
layer, we assume that ice and liquid-water components of the
snowpack have the same bulk temperature, which can thus
be determined by a single heat conservation equation. Addi-
tionally, the physical properties of snow grains in each layer
are described by three prognostic variables: the snow grain
dendriticy δk , sphericity sp,k , and optical diameter dopt,k . To-
gether, these three prognostic variables identify the optical
size and shape of snow grains and are used for albedo calcu-
lations. A complete description of the physical properties of
each snow layer is provided in Table 1.

In GLASS, the thickness of the snow layers is adaptive to
the snow depth and the thermal regime within the snowpack.
To accurately represent the snow thermal conductivity, the
layers are generally thinner in the region of high thermal vari-
ability in gradients (e.g., near the surface, which is subject to
high-frequency variation in fluxes, or in the vicinity of the
soil surface) and thicker in the middle of the snowpack. The
number and thickness of layers is dynamic. Snowfall events
of large-enough magnitude can lead to the creation of 1nL
new layers on top of existing snow or bare soil. Similarly to
(Vionnet et al., 2012), 1nL is given by

1nL =max[max(3− nL,1), min(5,dafall ·1zfalle)] , (3)

where 1zfall is the depth of newly fallen snow [m] and
afall = 100 m−1. Equation (3) ensures that after snowfall, the
number of snow layers nL+1nL is at least three. The num-
ber of newly created layers 1nL originating from the snow
falling in a single time step can be up to five, depending on
the magnitude of the precipitation event. In the case of a weak
precipitation event, instead of creating new layers according
to Eq. (3), the precipitating snow mass is added to the exist-
ing snowpack’s uppermost layer, if any (this happens if the
newly deposited snow depth is up to half the depth of the
uppermost existing snow layer). In this case, we denote the
part of the solid precipitation rate fs that contributes to the
existing top snow layer fs1 so that fs1 = fs in the case of
weak snowfall that does not lead to the creation of new snow
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Figure 1. A schematic representation of the fluxes of energy and water included in the GLASS snow model. The dashed red and green
rectangles indicate the energy flux terms contributing to the surface energy balance and the shortwave radiative balance at the surface,
respectively. Exchange terms include net longwave (RLg) and net shortwave (RSg) radiation (with downward and upward radiation denoted
by RSd and RSu, respectively), as well as sensible heat flux (Hg), latent heat of sublimation (LgEg), and the melting rate at the ground (Mg).
Solid (fs) and liquid (fl) precipitation rates are also represented. Heat fluxes between layers (Hk) and heat sources due to shortwave radiation
absorption (Sk) within the snowpack are also represented, as is the snowpack contribution to runoff (Rsn,l) and liquid-water infiltration into
soil (Isn,l). Fluxes of liquid water (blue arrows) and ice (pink arrows) are also featured, with qk for liquid flow between the snowpack layers
k and k+ 1. Note that fluxes of heat advected by solid and liquid precipitation, vertical liquid-water flow within the snowpack, infiltration,
and runoff are all represented in the model, although for simplicity they are not explicitly represented in this figure.

layers and fs1 = 0 otherwise. In addition to snowfall, other
physical processes (e.g., sublimation, snow compaction, and
snowmelt) can modify the thickness of existing snow layers.
To avoid dealing with a snowpack composed of an exces-
sive number of thin layers, GLASS performs a re-layering of
the snowpack at each time step, with the objective of avoid-
ing excessive costs in computation time and memory as well
as potential numerical instabilities originating from dealing
with very small snow layers resulting from snowmelt or sub-
limation.

The model optimizes the vertical layering of the snowpack
by comparing the current layers with an optimal vertical dis-
tribution of snow layers defined for the current snow depth
value. The optimal distribution of layers is designed with the
objective of maintaining relatively thin layers close to the
surface, in order to better resolve heat diffusion and snow-
pack properties, and coarser layers at depth so as to limit the
overall number of layers. This is achieved by first specify-
ing the optimal thickness of the top and bottom layers. Be-
low the first specified top layer, the optimal layers increase
in thickness with a given constant ratio (set to 1.5 in the cur-
rent model configuration) until they reach a specified maxi-
mum thickness (1 m in the default configuration used here).
These parameter values were selected in order to restrain the
number of layers for computing efficiency, while allowing

for relatively thin layers close to the surface so as to better
represent the vertical heterogeneity of snow properties and
the temperature gradient close to the snow surface. There is
no maximum number of snow layers set in the model.

At each model time step, the current snowpack verti-
cal structure is compared with the optimal one, and differ-
ences are minimized through merging and splitting of exist-
ing snow layers. To merge or split the layer k, GLASS ex-
amines a penalty function PL that, given boundaries of the
layers zk , k = 0. . .nL, returns a value indicating how far the
current distribution is from the optimal configuration:

PL =
nL−1∑
i=0

(zi+1− zi −DL(zi))
2, (4)

where DL(z) is the optimal layer thickness at depth z given
the current snow depth. The model loops through the existing
snow layers and for each layer compares the current value of
PL with the corresponding metric evaluated after merging
the current layer with the next. If after the merging of the
layers the new value of the error metric is lower, the two lay-
ers are merged, unless the layers are not otherwise prohibited
from merging because they have significantly different phys-
ical properties. Similarly, in a second loop GLASS attempts
to split each layer by comparing the metric PL with that rela-
tive to a new profile obtained by splitting a layer in two. Any
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time this comparison leads to a decrease in the metric PL,
the layer is split in two before examining the next. Two lay-
ers can be merged only if their physical properties are not too
dissimilar. In the current application, we allow the merging of
layers k and k+1 only if their differences in grain sphericity,
optical diameter, and snow density are below given thresh-
olds (namely, |sp,k − sp,k+1|< 0.2, |dopt,k − dopt,k+1|< 1×
10−4 m, and |ρk − ρk+1|< 30 kgm−3). Thus, in the process
of merging snow layers for computational purposes, the ver-
tical heterogeneity of snow physical properties is taken into
account and is preserved to some extent. At each time step,
the vertical-layering profile of the snow is compared to this
theoretical optimal profile. The distance of each layer from
the optical thickness at that depth is compared to that of the
profiles obtained from splitting and merging each layer with
its neighbors. If such operations lead to a vertical profile that
is closer to the optimal one, the split or merge operation is
performed on the snow layers. While there is no upper limit
on the number of layers, this approach allows us to control
the evolution of the snow vertical profile.

3.2 Energy balance at the surface

Figure 1 provides a schematic representation of the physical
processes included in the snow model. The energy balance at
the surface is coupled with that of the snow or soil underneath
and the vegetation layers and canopy air above, and it can be
expressed [Wm−2] as

R∗sg+Rlg−Hg−LgEg−G−LfMg = 0, (5)

where Rlg is the longwave net radiative flux at the surface, Lf
is the latent heat of water fusion, Lg the latent heat of evap-
oration or sublimation, Eg the rate of evaporation or subli-
mation, G the heat flux into or out of the ground, and Mg
the melting rate of water at the surface (if > 0, otherwise
it is the freezing rate). In the presence of deep-enough snow-
packs (snow depth hs > hsw,min = 0.02 m by default), the net
shortwave radiation Rsg is absorbed within the snowpack in-
stead of contributing to the surface energy balance and thus
R∗sg = 0. In the case of thinner snowpacks, R∗sg = Rsg. Sim-
ilarly, the latent heat carried by precipitation is accounted
for in the energy balance of the underlying snowpack or soil
where precipitation accumulates. Equation (5) is solved to-
gether with the equations of mass and energy balance of
canopy air, the energy balance of any vegetation canopy lay-
ers, and the mass balance of any liquid or solid water inter-
cepted by canopy layers.

In order to run efficiently in long, global-scale simulations,
the solution of this system of equations must avoid excessive
computational costs and be numerically stable for relatively
large time steps (the present application uses a 30 min time
step, which corresponds to the physics time step in a typical
GFDL atmospheric model configuration). To avoid numeri-
cal instabilities, the system is solved using a fully implicit
scheme. This is done by linearizing the system of equations

around the current value of its prognostic variables. These
are the temperatures of the ground, vegetation canopies, and
canopy air; mass of liquid or frozen water intercepted by the
canopies; and the specific humidity of canopy air. The so-
lution of this system of equations conserves energy and wa-
ter mass as required by long Earth-system simulations. How-
ever, the rate Mg of water melting or freezing at the surface
of the snowpack (if present) or at the ground surface (if snow
is absent) imposes a significant non-linearity on Eq. (5) since
this term is constrained by the amount of liquid or frozen
water that can undergo phase change in the snowpack or in
the upper soil layer. In this case, following the procedure by
Milly et al. (2014), the single nonlinear Eq. (5) is solved in
order to obtain the change in temperature at the surface of
the ground (or if the snowpack is present, the temperature at
the top of the snowpack), Tg, which in turn is used to obtain
the tendencies of all other prognostic variables of the prob-
lem from the linearized system. The solution of Eq. (5) uses
the current liquid or solid mass available (in the snowpack if
present or in the uppermost soil level otherwise) to provide a
constraint for the change in phase rate Mg. The new temper-
ature Tg+1Tg obtained by the solution of Eq. (5) will then
be propagated downward through the snowpack by solving
the vertical heat diffusion process implicitly.

3.3 Snowpack mass balance

In GLASS, the evolution of the snowpack is computed by
solving the energy and mass conservation equations for
each snow layer. The model representation of all physical
processes is energy and mass conserving, as required for
century-long simulations. The mass balance of total (liquid
and frozen) water for the entire snowpack reads

dWsn

dt
= fl+ fs−Eg− Isn,l−Rsn,l, (6)

where Wsn =Wsn,l+Wsn,s [kgm−2] is the total water con-
tent of the snowpack (i.e., the snow water equivalent), with
Wsn,s =

∑nL
k=1ws,k andWsn,l =

∑nL
k=1wl,k . The flux terms on

the right-hand side of Eq. (6) [kgm−2 s−1] represent the liq-
uid (fl) and solid (fs) effective precipitation rates (i.e., net of
any canopy interception), the snow sublimation rate (Eg), the
liquid-water flux to the underlying soil (Isn,l), and the contri-
bution to the grid cell runoff from the snowpack (Rsn,l). If
snow is present on the ground, only sublimation occurs in
GLASS. The mass balance in Eq. (6) is solved by adding
any new snow layers created by fresh snowfall according to
Eq. (3) and by solving the balance of liquid and frozen water
for each snow layer. The liquid mass balance for snow layer
k reads

dwl,k

dt
= ql,k−1− ql,k +Mk, (7)

where Mk is the total melt (or freeze) rate in layer k, ql,k−1
is the flow rate from layer k− 1 to layer k, and ql,k is that
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from layer k to k+ 1. The boundary conditions for Eq. (7)
are q0 = fl at the top of the snowpack and qnL = Isn,l at the
bottom of the snowpack. For the solid mass balance in layer
k, we have

dws,k

dt
=−Mk +Egk + fsk , (8)

where Egk = Eg if k = 1, else Egk = 0, and fsk = fs1 if
k = 1, else fsk = 0. Here fs1 is the fraction of effective solid
precipitation that does not create new snow layers according
to Eq. (3). Note that in GLASS the total snowmeltMk is com-
puted in two steps: first, when solving the surface energy bal-
ance implicitly, an estimate of the total melt is obtained and
the corresponding latent energy flux contributes to the energy
balance at the snow surface. Then, when solving the vertical
water flow and surface energy balance through the snowpack,
additional melting or freezing can occur in order to satisfy
thermodynamic constraints (i.e., the thermodynamic equilib-
rium of each layer is computed, which can lead to additional
melting or freezing occurring).

3.4 Snowpack energy balance

The vertical energy balance in the snowpack is expressed as

∂Hsn

∂t
=
∂qh

∂z
+ Sz, (9)

with Hsn being the energy content of the snow, Sz the local
source term due to shortwave radiation absorbed within the
snowpack, and qh the vertical heat flux given by

qh =−λ
∂T

∂z
+ clql(Tl− TF), (10)

where Tl is the temperature of the vertical water flow of rate
ql, T (z) is the local snow temperature and depth z, TF is the
freezing temperature of water, λ is the snow thermal conduc-
tivity, and cl the specific heat of liquid water. The bound-
ary condition at the top of the snow (z= 0) is given by the
net heat flux at the surface from Eq. (5) and by the effec-
tive liquid precipitation rate ql|z=0 = fl and its temperature
Tl|z=0 = Tpr,l.

The bottom-boundary condition (at z= zb) between snow
and soil reads

−λ

(
∂T

∂z

)∣∣∣∣
z=zb,soil

= λ

(
∂T

∂z

)∣∣∣∣
z=zb,snow

+ cl
(
Tl|z=zb − TF

)
Isn,l

(11)

and additionally T |z=zb,snow = T |z=zb,soil.

3.5 Numerical solution for the energy balance of the
snowpack

Following the approach already used in LM 4.1 (Milly et al.,
2014), we solve the energy conservation within the snowpack

by separating “dry” processes (heat conduction and sublima-
tion from the top layer) from “wet” processes, i.e., those re-
lated to the vertical flux of liquid water. The heat content of
a snow layer is defined with respect to ice at freezing tem-
perature – i.e., for snow layer k, the heat content is defined
as

Hsn,k = (clwl,k + csws,k)(Tk − TF)+Lfwl,k, (12)

where cs and cl are the specific heats of solid and liquid wa-
ter, respectively [Jkg−1 K−1], and Lf is the latent heat of fu-
sion of water at freezing point [Jkg−1]. The vertical heat dif-
fusion equation is solved by discretizing the equation over
the vertical layer structure of the snowpack.

For layer k we have

ck
∂Tk

∂t
=Hk−1(Tk−1,Tk)−Hk(Tk,Tk+1)+ Sk, (13)

where ck = clwl,k + csws,k , Hk is the downward heat flux
through the bottom of the layer k to layer k+ 1, and Sk rep-
resents the heat source term in layer k from the absorption of
solar radiation. We linearize fluxes around their values at the
beginning of the time step:

Hk =H0,k +
∂Hk

∂Tk
1Tk +

∂Hk

∂Tk+1
1Tk+1

=H0,k +3k1Tk −3k1Tk+1,

(14)

where 3k is the heat conductance between the snow layers,
defined next.

3.6 Heat conductance between snow layers

For two consecutive snow layers, k and k+ 1, each with its
own thickness (1zk) and heat conductivity (λk), the resis-
tance to the downward heat flux between layers can be ex-
pressed as

1
3k
=
1zk

2λk
+
1zk+1

2λk+1
=

1
2
λk1zk+1+ λk+11zk

λkλk+1
. (15)

The downward heat flux from layer k to k+ 1 is therefore
Hk =3k(Tk−Tk+1). The thermal conductivity of the snow-
pack λk [Wm−1 K−1] is parameterized as a function of snow
density ρk in each layer [kgm−3] using the parameterization
proposed by Calonne et al. (2011) and Sun et al. (1999) and
used, e.g., in Arduini et al. (2019). In this formulation, the
total snow thermal conductivity is the sum of two terms. The
first is a quadratic function of density representing the ac-
tual snow thermal conductivity (Calonne et al., 2011), while
a second term accounts for the additional heat advected by
water vapor (Sun et al., 1999):

λk = λc,k + λwv,k

=
(
a1ρ

2
k − a2ρk + a3

)
+
P0

Pa

(
b1−

b2

Tk − b3

)
,

(16)
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where a1 = 2.5× 10−6 Wm5 K−1 kg−2, a2 =

1.23× 10−4 Wm2 K−1 kg−1, a3 = 0.024 Wm−1 K−1,
b1 =−0.06023 W m−1 K−1, b2 = 2.5425 Wm−1, and
b3 = 289.99 K. Pa is the near-surface atmospheric pressure
and P0 = 1000 hPa. In this application, we use Eq. (16)
for λk as it accounts for the effects of water vapor. As an
alternative, we also implemented the snow heat conductance
formulation proposed by Yen (1981) used, e.g., in Lafaysse
et al. (2017). In this case the effective snow heat conductance
is expressed as

λk =max

{
aλ

(
ρk

ρw

)1.88

;λmin

}
, (17)

with aλ = 2.22 (Wm−1 K−1) and λmin = 4× 10−2

(Wm−1 K−1), which are made to match the pure ice
heat conductance λi with an appropriate choice of aλ.

3.7 Snow sublimation

The rate of sublimation is computed by solving the nonlin-
ear equation for the surface energy balance, Eq. (5). In the
case where a snowpack is present, we assume that the en-
tire water vapor flux comes from sublimation, even if liquid
water is present in the snowpack. While this is a simplified
assumption, we note that the amount of liquid water present
in the snow layers is limited, as we will discuss in Sect. 3.10.
The sublimating ice is lost from the uppermost snow layer.
In the model, the heat diffusion through the snowpack and
sublimation are resolved separately in two consecutive steps.
However, since in reality the two phenomena occur simulta-
neously, the change in heat content of the top snow layer as-
sociated with sublimating snow must account for the simul-
taneous change in the layer’s temperature due to vertical dif-
fusion of heat. Therefore, this nonlinear interaction between
heat diffusion and heat flux due to sublimating snow is ac-
counted for in GLASS by correcting the layer’s temperature
to ensure that energy is conserved when both processes are
considered as occurring simultaneously. The change in the
snowpack energy content is given by two contributions due
to mass lost from the uppermost layer and by its change in
temperature due to vertical heat diffusion. Due to the implicit
numerical scheme used, evaporation and sublimation are lin-
earized around the current temperature value, and their value
depends on the surface temperature tendency. To ensure en-
ergy conservation, a temperature correction 1∗ET1 must be
applied to the uppermost snowpack layer since evaporation
is computed before the temperature is updated for the cur-
rent model time step. This is given by[
clwl,1+ cs(ws,1+1ws,1)

](
T1+1T1+1

∗ET1
)

−
(
clwl,1+ csws,1

)
T1 =(

clwl,1+ csws,1
)
1T1+ cs1ws,1T1,

(18)

where the left-hand side is the change in energy content of
the uppermost snow layer, and the two terms on the right-

hand side are the change in energy content of the layer due
to temperature vertical diffusion and due to sublimation. In
Eq. (18), 1T1 is the change in temperature in the top snow
layer obtained by solving the vertical heat conduction equa-
tion, and 1ws,1 = Eg1t is the change in mass of the top
snow layer due to sublimation. From Eq. (18) we can solve
for 1∗ET1:

1∗ET1 =
cs1ws,1

clwl,1+ cs
(
ws,1+1ws,1

)1T1. (19)

3.8 Implicit change in phase

Melting imposes an upper limit on the temperature profile in
the snowpack since snow temperature should not exceed the
melting point. If the solution of the heat equation produces a
temperature higher than the freezing temperature (i.e., Tk >
TF for some snow layer k), then the excess energy required to
increase the layer temperature by the amount 1T∗,k = Tk −
TF is instead used to melt a snow mass equal to

1ws,k =min

{
ws,k,

(
csws,k + clwl,k

)
1T∗,k

Lf

}
, (20)

where Lf = 334 Jkg−1 is the latent heat of fusion of ice, and
the expression in the numerator is the specific heat of layer
k. For mass conservation, 1wl,k =−1ws,k . Therefore, the
heat required for the phase change is Fm,k = Lf1ws,k < 0.
The new equilibrium temperature TF+1T

(u)
k of the snow

layer is then computed by evaluating the energy conservation
equation for layer k:(
csws,k + clwl,k

)
1T∗,k +wl,kLf =(

cs
(
ws,k +1ws,k

)
+ cl

(
wl,k −1ws,k

))
1T

(u)
k (21)

+
(
wl,k −1ws,k

)
Lf,

which can be solved for the new snow layer equilibrium tem-
perature. Similarly, in the case of Tk < TF, if wl,k > 0, addi-
tional energy is provided to the layer by freezing the avail-
able liquid water. Again, the amount of energy is limited
by the amount of liquid water available for freezing. The
temperature of the meltwater is then TF, while for ice it is
Tk < 0. Thus, in the case of freezing we have 1T (u)k < 0 and
Fm,k = Lf1wl,k > 0. In the following, we justify our choice
of numerical method to solve the snowmelt. The implicit nu-
merical solution of heat conduction through the snowpack
must occur in two steps: first, the heat fluxes through the
snow as well as their tendencies are calculated, and only in a
second step is the temperature profile updated layer by layer.
It is therefore possible that when updating the temperature
profile, snow layers that were fully frozen become warmer
than freezing, and similarly, snow layers that contain water
in liquid phase can experience temperatures below freezing.
When this happens, the resulting change in phase is com-
puted according to Eqs. (20) and (21). However, solving the
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phase change according to this procedure, which in the fol-
lowing we call implicit melt or IM, can be problematic in the
presence of large time steps, which can produce apprecia-
ble temperature increments within the snowpack. In GLASS
we use an alternative approach called explicit melt or EM.
When solving the nonlinear surface energy balance for the
ground temperature balance, we simultaneously compute an
estimate for the melt term (Mg) as discussed in Sect. 3.2. By
adopting this approach, when we solve the vertical heat dif-
fusion, the heat fluxes we obtain are already consistent with
this tentative melt estimate. In the second heat diffusion step,
the vertical temperature profile is again updated as in the case
of IM, and similarly, additional changes in phase can occur
based on the phase and temperature of the existing snow lay-
ers. However, since in this approach the tentative meltMg has
already been evaluated, these additional melting or freezing
correction terms are generally smaller, and therefore we ex-
pect the numerical solution to be less dependent on the time
step. Since Earth system models generally run for relatively
large time steps (30 min in our land model), in the following
we investigate the behavior of the IM and EM approaches
for different time steps in order to test their suitability for our
application.

3.9 Snowfall and snowpack solid water balance

In the case of snowfall, if (i) there is already snow on the
ground and (ii) the new depth 1zfall is smaller than a thresh-
old (set to half the depth of the uppermost snow layer before
the frozen precipitation event), then the new snow is added
to the existing layer and no additional layers are created. The
density of fresh snow is used to compute1zfall, and this snow
depth is added to the thickness of the existing layer, so the re-
sulting density of the merged layer will be a weighted aver-
age of the of new and existing snow (note, snow density ρk is
a derived model variable, and it is computed as ws,k/1zk). If
instead there is no initial snow on the ground or if the amount
of new snow is larger than the set threshold, a number of
fresh snow layers are created as discussed in Sect. 3.1. The
properties assigned to the freshly fallen snow are computed
following Vionnet et al. (2012): the density ρfall of new snow
is

ρfall = aρ + bρ(Ta− TF)+ cρU
1/2
, (22)

a three-parameter expression in which fresh-snow den-
sity is expressed as a function of the mean wind veloc-
ity (U ) and the atmospheric temperature (Ta), with TF =

273.15 K the freezing point of water. Parameters used
in Eq. (22) are aρ = 109 kgm−3, bρ = 6 kgm−3 K−1, and
cρ = 26 kgm−7/2 s−1/2, setting a minimum snow density of
50 kgm−3. The temperature of the fresh snow is equal to that
of precipitation, which in the current model configuration is
set equal to the temperature of the lower atmosphere. The
optical diameter of fresh snow is set to the constant value of
dopt,fall = 10−4 [m], as recommended by Carmagnola et al.

(2014). The (dimensionless) sphericity of fresh snow is com-
puted as was done by Vionnet et al. (2012):

sfall =min
[
max

(
0.08U + 0.38, 0.5

)
, 0.9

]
, (23)

where U is the mean wind speed [ms−1]. Once the density is
known, the newly fallen snow depth can be computed from
the snowfall rate as 1zfall = fs ·1t/ρfall.

3.10 Rainfall and the snowpack liquid balance

After updating the snow temperature profile and performing
the solid mass balance, the mass balance for the liquid phase
is performed. In this stage, the liquid-water balance is evalu-
ated sequentially for all snow layers from the top of the snow-
pack down, coupled with energy conservation to determine
any changes in water phase and temperature originating from
the vertical water flow. For the top layer, liquid precipitation
is added to the layer. Then, the new thermal equilibrium of
the snow layer is computed, determining the new layer tem-
perature and the new mass of liquid and solid water. Finally,
the new solid-phase properties are used to determine the pore
space available for liquid water within the ice matrix of the
layer. As was done by Vionnet et al. (2012), the maximum
water-holding capacity in each layer Wliq,max,k is set to

Wliq,max,k = 0.05ρw1zk

(
1−

ρs,k

ρi

)
, (24)

with ρs,k the density of the snow layer (solid phase only),
ρi = 917 kgm−3 the density of ice, and ρw the density of liq-
uid water.

3.11 Snow metamorphism

The snow microstructure in each snow layer k is character-
ized by three parameters (the layer index k will be omitted
in the rest of this section for simplicity): snow optical di-
ameter dopt, snow dendricity δ, and snow sphericity sp. The
optical diameter dopt represents the diameter of a monodis-
perse set of spheres with the same surface-to-mass ratio, or
surface specific area (SSA). SSA can be obtained from dopt
as SSA= 6/(dopt ·ρi). We choose to use dopt as a prognostic
variable because, as pointed out by Carmagnola et al. (2014),
it can be directly used to parameterize snow albedo. How-
ever, the optical shape of snow grains can also have signif-
icant impact on the optical properties of the medium (He et
al., 2017; Robledano et al., 2023). The evolution of snow mi-
crophysical properties here is obtained as a combination of
the parameterizations proposed by Brun et al. (1992), Car-
magnola et al. (2014), and Flanner and Zender (2006). In
GLASS, all three snow grain properties (grain dendriticy,
grain sphericity, and optical diameter) are prognostic vari-
ables.

The parameterization of Flanner and Zender (2006), called
F06 in the following, is used to model the effects of dry-snow
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metamorphism on dopt. In this formulation, the time evolu-
tion of the snow optical diameter is computed as a function
of snowpack temperature, vertical temperature gradient, and
snow density. A parametric equation is used to predict the
rate of change in snow effective radius,

dr
dt
=

(
dr
dt

)∣∣∣∣
t=0

(
τ

r − r0+ τ

)1/κ

, (25)

where
( dr

dt

)∣∣
t=0, τ , and κ are parameters derived from a

lookup table (here made available in Zorzetto et al., 2024) as
functions of snow density, temperature, and temperature gra-
dient. This parameterization was developed by Flanner and
Zender (2006) using a physically based model describing the
evolution of snow-specific surface area due to dry aging. The
optical diameter of fresh snow is taken to be that correspond-
ing to an SSA of 60 m2 kg−1. This equation predicts an ef-
fective radius in µm, which is then converted to the optical
diameter dopt [m] used in GLASS. For wet snowpacks, the
additional size increase in snow grains due to wet metamor-
phism is described using the model put forward by Brun et
al. (1992), in which grain size evolution is given by

dr
dt
=

1018C1θ
3
B

4πr0
, (26)

where C1 = 4.22×10−13 and θB = wl/(ws+wl) is the snow
liquid fraction. Brun et al.’s equation here is expressed in
terms of snow grain radius [µm], which in our model is then
converted to snow optical diameter [m]. In addition to the op-
tical diameter, the snowpack layers are characterized by two
additional parameters describing the shape of snow grains:
dendricity δ and sphericity sp. These are both dimensionless
quantities ranging from 0 to 1. Fresh-fallen snow is assumed
to be in a dendritic state, with a dendricity value decreas-
ing over time due to the combined effects of wind drift and
metamorphism. When the dendricity parameter approaches
zero, the snow reaches a non-dendritic state. Similarly, sp = 1
indicates perfectly spherical particles and sp = 0 completely
non-spherical particles, i.e., faceted snow crystals.

The evolution of sp and δ due to wet- and dry-snow meta-
morphism is described according to the model by Brun et al.
(1992). In the case of wet-snow metamorphism, we have

dδ
dt
=−

1
16
θ3 (27)

dsp
dt
=

1
16
θ3, (28)

with θ = 100 ·wl/(wl+ws) the percent liquid fraction. For
dry metamorphism, the evolution equations for sp and δ are,
in the case of a mild temperature gradient (G= |dT/dz| ≤

5 Km−1),

dsp
dt
= 109 e−6000/T (29)

dδ
dt
=−2× 108e−6000/T . (30)

While in the case of an intermediate or steep temperature
gradient (G= |dT/dz|> 5 Km−1), they are

dsp
dt
=−2× 108e−6000/TG0.4 (31)

dδ
dt
=−2× 108e−6000/TG0.4. (32)

These equations hold for the case of dendritic snow. When
the snow reaches a non-dendritic state, dendricity remains
zero while sphericity continue evolving in time, and snow
effective radius also evolves according to Eqs. (25) and (26).
Note that in the case of weak temperature gradients, the time
evolution of dendricity and sphericity have opposite signs: as
the snow ages, the dendricity decreases, while snow grains
tend towards a rounder shape. However, this is not the case
in the presence of sharp vertical temperature gradients: in this
case, the snow grains tend to become faceted crystals instead
of spheres, so the sphericity also decreases with snow aging.

3.12 GLASS snow albedo model

In GLASS, in addition to the BRDF albedo model (see Ap-
pendix C) we employ the albedo parameterization proposed
by He et al. (2018b), derived based on a stochastic radiative
transfer model. In this formulation, snow albedo in the visi-
ble (b is VIS) and near-infrared (b is NIR) bands is expressed
as a function of snow grain shape and size as

αb =b0(b,δ,sp)+ b1(b,δ,sp)Rn

+ b2(b,δ,sp)R
2
n−1αb,

(33)

where

Rn = log10

(
Reφb(µ)

R0

)
, (34)

with Re the snow grain effective radius defined as Re =

3Vs/(4As), where Vs and As are the snow grain volume and
the projection of its surface area average across all direc-
tions, respectively. R0 = 100 µm is a reference snow grain
effective radius. The grain radius can be related to the SSA
as RSSA = 3/ρi/SSA. For convex shapes RSSA = Re, while
for Koch snowflakes RSSA = 0.544Re. The model parame-
ters b0, b1, and b2 depend on the band and on the shape of
the snow grains and are tabulated in He et al. (2018b). The
correction term 1αb accounts for the effect of impurities de-
posited on old snow. While this phenomenon will be exam-
ined separately in future extensions of this study, here we
use a simple correction similar to that used in Vionnet et al.
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(2012) for alpine site conditions. We evaluate the decrease
in visible albedo as 1αVIS =min {0.2,0.2age/60}. There is
no correction in the near-infrared band, so 1αNIR = 0. In
Eq. (34), φb is a correction factor for direct light depending
on the cosine of the solar zenith angle µ. While for diffuse
light φb = 1, in the case of direct radiation, the dependence
of snow albedo on the direction of incident radiation is ac-
counted for following Marshall (1989),

φb(µ)= (1+ aθ,b1µ)2, (35)

with aθ,b = 0.781 for visible band (b is VIS) and aθ,b =

0.791 for the near-infrared band (b is NIR), and 1µ=

µ−µD, where µ= cosθ and µD = 0.65 correspond to θ =
49.5°. Grain shape has been recognized to play an impor-
tant role in determining the optical properties of the snow
medium (Robledano et al., 2023). He et al. (2018a) devel-
oped the parameterization defined by Eq. (33) for different
snow grain shapes, idealizing snow as a collection of ei-
ther (a) spheres, (b) spheroids, (c) hexagons, or (d) Koch
snowflakes. In GLASS, snow microphysical properties are
represented through three variables: grain sphericity, den-
dricity, and optical diameter. These three parameters are used
to characterize the effect of snow grain shape on snow re-
flectivity. In particular, a grain size with dendricity larger
than 0.5 is considered for radiative balance purposes to be
a Koch snowflake. Conversely, non-dendritic or weakly den-
dritic snow is modeled as a collection of spheroids, hexag-
onal crystals, or spherical particles. For the high-sphericity
parameter (sp > 0.8), we compute snow albedo using the pa-
rameters relative to a collection of spheres in Eq. (33). For
non-spherical or weakly spherical snow, the parameters rel-
ative to a collection of hexagons are used. In the remaining
case (non-dendritic snow with sphericity larger than 0.2 but
smaller than 0.8) the spheroid case is used. This approach
allows us to capture the effect of snow grain shape on the
optical properties of the snowpack. To our knowledge, this
is the first time a snow model developed for Earth system
model simulations includes a prognostic description of snow
grain shape and its effect on snow optical properties. Numer-
ical studies have shown that accounting for shape can impact
snow optical properties depending on snow optical diameter
and content of impurities (He et al., 2017).

In GLASS, when snow is thick enough, shortwave radia-
tion penetrates the snowpack. The absorbed radiation is dis-
tributed exponentially within the snowpack if this is thick
enough (d > 0.02 m) as

Qs(z)=

2∑
b=1
(1−αb)Rs,be

−βbz. (36)

The heat Qs(z) absorbed at snow depth z can be then in-
tegrated to obtain the heat source terms Sk for each snow
layer k as required to solve the vertical energy balance in
Eq. (13). The penetration of light in the snow is evaluated as

in CROCUS for our two bands (VIS and NIR). For visible
light, βVIS = 0.003759ρd−0.5

opt , with density and optical di-
ameter averaged over the near-surface layer of the snowpack
up to 3 cm. For the NIR band, βNIR = 400 m−1. These values
follow the values proposed by Jordan (1991) and by Shrestha
et al. (2010).

3.13 Model step summary

Figure 2 provides a schematic representation of the computa-
tional steps performed to update the state of the snowpack at
each model time step, summarized in panels (a)–(g). Due to
the nature of the implicit solution adopted for the energy and
water balance, the heat diffusion through the snowpack must
be solved in two separate steps. In a first snow model (step
1, panel b), the heat fluxes through the snowpack are com-
puted starting from the lower boundary, accounting for possi-
ble heat sources within the snowpack (e.g., due to shortwave
radiation absorption). In this first step, an estimate of the ice
available for melting is also computed. Then, the surface en-
ergy balance is performed, according to Eq. (5) (panel d).
Solving this equation yields the tendency for the surface tem-
perature 1Tg as well as the amount Mg of melting ice or
freezing water, depending on its sign. This information is
then used in the second model step (step 2, in panel e) of
the snow energy and mass balance: the temperature profile in
the snow is first updated based on the upper-boundary ten-
dency1Tg and the vertical fluxes obtained in step 1 (panel e,
E1). The mass of liquid and ice in the snowpack is then up-
dated based on the estimate of water changing phase (Mg)
previously computed (E2). Note that after this step it is still
possible that the solution of the heat equation yields above-
freezing temperatures in some snow layers or below-freezing
temperatures in layers where liquid water is present, which
are resolved with an additional change in phase. This implicit
melt is then applied by evaluating the thermal equilibrium of
each snow layer (E3): in the case of layers with solid ice
and temperatures above freezing, a new equilibrium temper-
ature is computed, and the excess heat is used to melt part of
the available ice. Conversely, in the case of layers containing
liquid water and below-freezing temperatures, liquid water is
frozen until thermal equilibrium is reached.

After performing the energy balance, the following steps
are computed. Fresh snow is added to the snowpack in the
presence of snowfall (E5). The model first tries to add the
new snow to the uppermost existing layer. If the snowfall
mass exceeds a threshold, a variable number of layers is
added to the top of the snowpack. We then perform the liquid
balance in the snowpack (E6): liquid precipitation is added
to the top layer. The maximum liquid-water capacity of the
layer is computed as a fraction of the layer pore space, given
by Eq. (24). If this liquid-water content is exceeded, the ex-
cess water flows vertically to the underlying layers. This step
is followed by the sequential solution of the liquid-water bal-
ance for all snow layers down to the bottom of the snowpack.

https://doi.org/10.5194/gmd-17-7219-2024 Geosci. Model Dev., 17, 7219–7244, 2024



7230 E. Zorzetto et al.: GLASS-detailed snow

Figure 2. A schematic representation of the main model steps in GLASS and their interface to other relevant physical processes in GFDL
LM 4.1.

In panel (e, E7), we perform in sequence snow compaction
(described in Appendix B) and wet- and dry-snow metamor-
phism and evaluate the effect of wind drift (see Appendix A).
Finally, at each time step we also re-layer the snowpack in
two steps (panel e, E4 and E8), trying to merge or split exist-
ing layers based on their distance from the optimal layering
structure for the given snow depth, as discussed in Sect. 3.1.
After computing this second snow physics step, the new inte-
gral properties of the near-surface snow layer are computed.
The near-surface layer is defined as the top 3 cm or the en-
tire snowpack, whichever is smaller. These properties are
then used to compute snow albedo (panel g) as discussed in
Sect. 3.12.

4 Data and methods

4.1 Forcing and validation data

To test model performance, we employ a reference dataset
widely used in the snow modeling community (Ménard et al.,
2019) and used, for example, in the SnowMIP project (Krin-
ner et al., 2018; Menard et al., 2021). Details for each ob-
servation site are reported in Table 2, and the location of the
sites is shown in Fig. 3. The 10 sites span a range of climates,
elevations, and terrain types. In particular, three of the sites
are forested, while the other seven are characterized by either
bare soil or grass and low vegetation. The three forested sites
located in the Canadian boreal forest are described in Bartlett
et al. (2006).

For this reason, for the seven sites with little to no vegeta-
tion we run the model turning off vegetation. For the three

forested sites, the long spinup allows model vegetation to
fully develop before starting the historical run with in situ
meteorological forcing. We force two of the sites (OJB, OBS)
to grow evergreen vegetation, while for the third (OAS) we
force deciduous species only, to match the existing vegeta-
tion types.

In this dataset, each site includes both in situ meteorologi-
cal forcing for the observation period (as reported in Table 2)
and a locally corrected Global Soil Wetness Project Phase 3
(GSWP3) forcing dataset (Ménard et al., 2019) for the pe-
riod 1980–2015. This forcing dataset is used here to spin the
model up for each station up to the year when the in situ me-
teorological observational record began. After that point, the
experiment is run forcing the model with in situ data. Both
GSWP3 and in situ forcing data are at hourly temporal res-
olution and are interpolated at the model 30 min time step.
Atmospheric forcing input to LM 4.1 includes liquid and
frozen precipitation, downward radiation (direct and diffuse
for both visible and near-infrared bands), longwave radiation,
air temperature, humidity, pressure, and wind speed. At the
Col de Porte site, measurements are done at a constant height
above the snow surface. However, this is not the case for the
other sites in the dataset, and the model does not correct for
the varying height of the measurements above the surface
when calculating turbulent fluxes at the snow surface. The
dataset forcing only provides total downward shortwave ra-
diation; in our experimental setup, this was divided between
direct and diffuse (0.46 and 0.54 of the total flux, respec-
tively) as well as in the visible and near-infrared bands (0.41
and 0.59, respectively) using average climatological values
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Table 2. Experimental sites used for model validation.

Station ID Obs. years Lat Long Elev. Climate Veget.

Col de Porte, FR CDP 1994–2014 45.30° N 5.77° E 1325 m Alpine No
Reynolds Mountain East, USA RME 1988–2008 43.06° N 116.75° W 2060 m Alpine No
Senator Beck, USA SNB 2005–2015 37.91° N 107.73° W 3714 m Alpine No
Swamp Angel, USA SWA 2005–2015 37.91° N 107.71° W 3371 m Alpine No
Weissfluhjoch, CH WFJ 1996–2016 46.83° N 9.81° E 2540 m Alpine No
Sapporo, JP SAP 2005–2015 43.08° N 141.34° E 15 m Maritime No
Sodankyla, FI SOD 2007–2014 67.37° N 26.63° E 179 m Arctic No
Old Jack Pine, CA OJP 1997–2010 53.92° N 104.69° W 579 m Boreal Pine
Old Aspen Site, CA OAS 1997–2010 53.63° N 106.20° W 600 m Boreal Aspen
Old Black Spruce, CA OBS 1997–2010 53.99° N 105.12° W 629 m Boreal Spruce

Figure 3. Sites used for model validation. Information about the sites is reported in Table 2.

obtained from the GFDL AM4.0 (Zhao et al., 2018) atmo-
spheric model output.

4.2 Experimental setup

In order to perform a meaningful comparison between model
and observations, we need to obtain a suitable initial condi-
tion for the state of the land model. This is done by perform-
ing a model spinup in which key land variables (e.g., vege-
tation if present, water and heat content in the soil) evolve
driven by the atmospheric forcing observed at each site. We
found that for all sites presented here in our model, the soil is
not frozen during the summer and that the equilibration times
characteristic for equilibrium are reached after less than 20
model years of model run. For model spinup, we use at each
study site the corrected GSWP3 data provided by Ménard et
al. (2019). The model spinup runs for 200 years from 1781 to
1981, cycling through the forcing for the decade 1981–1991.
This allows the soil to equilibrate and vegetation to grow at
the sites where it is present, i.e., at the three Canadian Boreal
Ecosystem Research and Monitoring Sites (BERMS).

After the spinup, the model is run using GSWP3 forcing
data up to the date when in situ forcing measurement starts,

which for each site is shown in Table 2. Then, the actual
experiment is run for the entire length of the in situ forc-
ing dataset. As the model is designed for long climate sim-
ulations, it is important that mass and energy are conserved
with good accuracy throughout a simulation. Mass and en-
ergy conservation are strictly enforced in the model: in the
current application, we run the model checking at each model
physics time step (30 min) so that conservation violations do
not exceed 10−7 Kgm−2 for water and 10−6 Jm−2 for en-
ergy.

4.3 Performance metrics

For a description of statistical model performance metrics,
we follow Lafaysse et al. (2017). To assess the improvement
in model performance due to the new snow scheme, we com-
pute a set of goodness-of-fit measures. For model configura-
tion i (e.g., i is LM-GLASS or i is LM-CM) we compute the
bias (B̂i) and root-mean-square error (R̂i) as

B̂i =
1
Ni

Ni∑
k=1
(mki − ok) (37)
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and

R̂i =

[
1
Ni

Ni∑
k=1
(mki − ok)

2

]0.5

, (38)

where Ni model simulated values (mki ) are compared to Ni
observed values (ok).

5 Results

5.1 Bulk snow properties

Simulating the seasonal evolution of the snowpack over the
10 SnowMIP sites allows the demonstration of the behav-
ior of the land model with the new GLASS snow scheme
(LM-GLASS) model over a wide range of climate condi-
tions. Time series of snow water equivalent (SWE; defined
here in kgm−2 of snow) is reported in Fig. 4 for all sites.
For each site, we show the last 6 snow years of the simu-
lation, including as a benchmark the results from old snow
model LM-CM. Overall, both models appear in good agree-
ment with observations for most stations and simulated snow
years. Depending on the station, LM-GLASS produces SWE
estimates that are either very similar to the old LM-CM snow
scheme or larger in magnitude. The latter is the case for the
SWA, SNB, and WFJ sites. In these cases, the larger SWE
magnitudes predicted by LM-GLASS are closer to observa-
tions. These differences in SWE predictions primarily origi-
nate from the difference in modeled snow optical properties,
with predicted broadband albedo values that tend to be lower
for the LM-CM model. For example, for the SWA site, with
some of the largest differences between the two models, the
BRDF albedo scheme used in LM-CM leads to a significant
underestimation of daily albedo (Fig. 5a). This underestima-
tion is not present in the LM-GLASS albedo scheme. For the
three BERMS forested sites (OJP, OBS, and OAS) where the
model simulates the effects of a multilayer canopy on radia-
tive fluxes, the SWE predictions of the two models are much
closer (Fig. 5b). However, in this case modeled and observed
albedo values differ significantly in both LM-GLASS and
LM-CM. Arguably, this behavior primarily originates from
the fact that the vegetation structure produced for the model
at this site does not match the dense canopy of the experi-
mental site.

When comparing snow depths predicted by the two mod-
els, again LM-GLASS yields generally larger snow depths
compared to LM-CM (Fig. 6). This behavior is not limited to
the sites characterized by appreciable SWE differences be-
tween the two models. For instance, in the case of the three
BERMS forested sites, LM-GLASS predicts thicker snow-
packs despite predicting virtually the same SWE, indicating
lower snow density than the constant value used in LM-CM.

5.2 Model performance metrics over the SnowMIP
sites

To quantify the relative performance of the two model con-
figurations, we compute the metrics introduced in Sect. 4.3
for all sites, namely bias and RMSE. To attribute the change
in model performance to revised snow optical properties or
to other snow physical properties, we compare the old snow
scheme (LM-CM) to not only the new snow model (LM-
GLASS) but also a version of GLASS in which the original
BRDF albedo model is retained (LM-GLASS-BRDF). Error
metrics for these three model configurations were computed
for daily SWE, snow depth, surface albedo soil temperature,
and surface snow temperature for all sites where observations
of these variables were available.

The LM-GLASS-BRDF model produces little improve-
ment in SWE compared to LM-CM. A general underestima-
tion of the SWE is observed for both models at all sites. On
the other hand, this bias is generally reduced in LM-GLASS
simulations, leading to a substantial improvement in SWE
estimates, as shown in Fig. 7a.

When considering predictions of snow depth, the differ-
ence in performance between the models is less marked com-
pared to SWE results (Fig. 7b). LM-CM generally exhibits a
small overestimation, which is mitigated in the case of LM-
GLASS-BRDF. In the case of LM-CM, this result implies
that the snow density in the model, which is constant, is
lower than observations, given the underestimation observed
for SWE. When the full LM-GLASS model is considered,
multiple sites show modest positive model biases in snow
depth. Since SWE predicted by LM-GLASS is the best be-
tween the three model configurations, these discrepancies in
snow depth also arise from an underestimation in snow den-
sity, which in LM-GLASS is primarily driven by the process
of snow compaction described in Appendix B.

For daily snow albedo (Fig. 7c), LM-GLASS performs
better than both LM-GLASS-BRDF and LM-CM, which
generally underestimate daily albedo. An exception to this
behavior is observed for two of the BERMS sites, where
all models significantly overestimate surface albedo. We ar-
gue that this is a consequence of the land model’s failure
to correctly represent vegetation characteristics and snow–
vegetation interactions at these sites, as already shown in the
case of albedo at the OBS site reported in Fig. 5b. The effect
of the revised albedo model in LM-GLASS is negligible at
these forested sites, where a large role is played by the en-
ergy balance of canopy layers above the snow. Differences in
predicted albedo are very small between LM-CM and LM-
GLASS-BRDF. This is not surprising since these two snow
schemes have identical BRDF albedo specifications and any
differences between the two models thus arise as a conse-
quence of different snow surface temperature values, tem-
perature being the only snowpack property used in the BRDF
albedo parameterization.
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Figure 4. Comparison of predicted SWE between LM-CM (orange) and LM-GLASS (blue). Manual observations (and automatic observa-
tions for sites where these are available) are reported by black markers.

Finally, biases in snow surface temperature are reported in
Fig. 7d for the sites where this variable was recorded. For this
variable, the new LM-GLASS model exhibits a larger nega-
tive bias compared to LM-CM. Since the bias is also smaller
for LM-GLASS-BRDF than for LM-GLASS, this behavior
is at least in part connected to the larger surface reflectivity,
which however does agree with daily albedo observations, as
shown in Fig. 7c. As an example, 3 snow years of daily sur-

face temperature from model simulations and observations
for the Col de Porte site are shown in Fig. 8. Here it can
be seen that while overall temperature variations are consis-
tent between models and observations, cold-temperature ex-
tremes during winter are several degrees lower in the case of
LM-GLASS.

A potential reason for the colder snow surface values pre-
dicted by LM-GLASS is that the near-surface snow layers in
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Figure 5. Comparison of predicted daily averaged broadband albedo for the Swamp Angel (SWA) site (a) and the BERMS Old Black Spruce
(OBS) site (b). Model results are shown for LM-CM (dashed orange lines) and LM-GLASS (solid blue lines). Daily albedo observations are
reported by black markers.

LM-GLASS can be thinner than those in LM-CM, especially
in the case of thick snowpacks. In this case, it is not surpris-
ing that thin surface layers with low heat capacity and the
increased insulating properties of the underlying snow layers
would lead to a colder surface temperature. While this could
be a limitation of LM-GLASS, it is also possible that cold
temperatures at the surface originate from discrepancies be-
tween modeled and actual turbulent fluxes in the atmospheric
surface layer. For all the snowpack variables, RMSE was also
computed to complement bias and is reported in Fig. 9.

When examining error metrics in soil temperature, there
are important differences between LM-CM and LM-GLASS
(Fig. 10). LM-CM exhibits a consistent negative bias of up
to −2.5 K at all sites examined here. This bias in soil tem-
perature is greatly mitigated in LM-GLASS. This improve-
ment in soil temperature is also observed in case of LM-
GLASS-BRDF, indicating that this behavior is not directly
related to the update in snow optical properties. Rather, we
argue that the improvement originates in a refined represen-
tation of snow heat conductance. LM-GLASS is character-
ized by not only a finer vertical discretization of the snow-
pack but also the explicit representation of snow compaction.
Snow heat conductance in LM-GLASS is explicitly mod-

eled as a function of snow density. Therefore, the insulating
properties of snow with respect to the underlying soil lay-
ers are more realistic in LM-GLASS, although a small neg-
ative bias remains, indicating that to some extent the actual
snow heat conductance could be smaller than that predicted
by LM-GLASS. As a representative example of the perfor-
mance of the models in capturing temperature variations in
the underlying soil, we show results for soil temperature at
three depths for the Col de Porte site, for which observations
are available (Fig. 11). Modeled values are overall consistent
with observations, although for the deeper layer, a cold bias
is observed for both models. However during the winter sea-
son when snow is on the ground, the LM-GLASS-predicted
temperatures greatly reduce the cold bias observed for the
original model, LM-CM.

5.3 Implications of the implicit scheme to solve phase
change

The treatment of melting and freezing processes can be de-
pendent on the numerical scheme used to resolve these pro-
cesses. To investigate this issue in LM-GLASS, we exam-
ine the differences in the two schemes discussed in Sect. 3.8.
SWE predictions obtained from LM-GLASS with the default
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Figure 6. Comparison of predicted snow depth between LM-CM (orange) and LM-GLASS (blue). Manual observations (and automatic
observations for sites where these are available) are reported by black markers.

explicit melt scheme are compared with the same predictions
from the implicit scheme. As discussed in Sect. 3.8, in the
latter case the change in phase for each snow layer is com-
puted only after the temperature profile is updated from solv-
ing the heat transfer through the snowpack implicitly. The
differences between explicit and implicit melt schemes are
shown in Fig. 12 (panels a and b, respectively). In the case
of implicit melt, the modeled SWE exhibits a marked depen-

dence on the time step used in the calculations, with longer
time steps leading to an underestimation of the snowmelt. On
the other hand, when explicit melt is included in the model
as is the case for the default LM-GLASS configuration, this
undesirable dependence on the time step effectively disap-
pears. Within the range of time steps examined here (ranging
from 5 to 30 min) the results of the explicit melt scheme are
closer to the implicit melt results obtained for a 5 min time
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Figure 7. Model bias in SWE (a), snow depth (b), albedo (c), and surface temperature (d) at the 10 SnowMIP sites. Results for each variable
are shown for all sites where observations are available.

Figure 8. Comparison of predicted daily average surface temperature between the LM-CM (dashed orange line) and LM-GLASS (solid blue
line) models for the Col de Porte site. Observed values (daily averages) are reported as black markers.

step. However, while this model time resolution may be at-
tainable for local studies, it is still out of reach for global-
scale climate simulations. For a time step of 30 min, which is
currently used in global simulations with GFDL LM 4.1, the
difference between the two model configurations can become
significant.

6 Discussion

A key improvement using LM-GLASS is the increase in win-
ter soil temperature below the snowpack. It has been reported
that ESMs participating in the Intergovernmental Panel on
Climate Change (IPCC) often underestimate soil tempera-
ture, especially at high latitudes (Koven et al., 2013), and
this is also the case for the GFDL model. Correcting this bias
has important implications for the correct representation of
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Figure 9. For each model configuration, RMSE metrics for daily SWE (a), snow depth (b), albedo (c), and surface temperature (d) at the
10 SnowMIP sites. Results are reported for all sites where observations are available. Higher RMSE values correspond to poorer model
performance.

Figure 10. Model bias and RMSE for soil temperature. For each site, error metrics were computed for the uppermost soil depth at which
observations were available.

biogeochemical cycles, as warmer soil can lead to climate
feedbacks due to the release of greenhouse gases from thaw-
ing permafrost. On the other hand, existing cold biases at
the snow surface are not resolved in LM-GLASS and are
even exacerbated in some cases examined at our experimen-
tal test sites. Cold temperatures observed at nighttime are

common to other snow models. For example, they have been
reported in the CLASS snow model (Brown et al., 2006) and
are inevitably heavily dependent upon the atmospheric sur-
face layer scheme used to compute sensible and latent heat
fluxes.
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Figure 11. Observed and predicted soil temperature for 3 snow years at the Col de Porte site. Observations (black circles) and model-predicted
values (LM-CM as dashed orange lines and LM-GLASS as solid blue lines) are reported at three soil depths.

According to the classification by Boone and Etchevers
(2001), the new LM-GLASS model presented here belongs
to the category of high-detail snow schemes. However, the
optical properties are characterized by a relatively simple pa-
rameterization (based on He et al., 2018b) compared to the
fully resolving models such as SNICAR (Flanner and Zen-
der, 2005) or TARTES (Libois et al., 2013). Improvement
in snow radiative properties is thus possible. For instance,
adding the radiative effect of light absorbing impurities de-
posited on snow to LM-GLASS will be examined in a com-
panion paper. On the other hand, the snow optical model
adopted in GLASS accounts for the effect of snow grain size
and shape, which was not done in LM-CM. This develop-
ment improves predictions of both daily snow albedo and
SWE.

Both snow schemes compared here (LM-GLASS and LM-
CM) are based on an implicit numerical scheme. This choice
is made to ensure numerical stability, given the relatively

large time step (∼ 30 min) used in global climate simula-
tions. However, computations of the phase change within
the snowpack is performed according to the explicit melt
approach, in which an estimate of the freezing/melting rate
is obtained when the surface energy balance is performed.
Comparing this approach with a simpler method sometimes
used in snow models (i.e., first updating the temperature pro-
file by solving the heat diffusion through the snowpack and
only in a second step evaluating freezing or melting rates),
we found that in the latter case model predictions are overly
dependent on the time step used in the numerical solution.
Therefore, this analysis supports the choice of the explicit
melt scheme employed in both LM-CM and LM-GLASS.
While here the model was applied at point sites so as to
mimic observational datasets, GFDL LM 4.1 is routinely em-
ployed in global simulations at a relatively coarse resolu-
tion (e.g., 1°×1° resolution). In such a case, further research
would be necessary to improve the current model with a fo-
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Figure 12. Time step dependence for the implicit melt (IM) and explicit melt (EM) numerical schemes used for snowmelt. Results are shown
for 3 snow years at the Col de Porte site. Manual and automatic SWE observations are reported as black circles and star markers, respectively.
Model results obtained by varying the numerical time step used in LM GLASS are reported for each case. Note that in panel (b) the results
are virtually independent of the time step, so the three lines overlap.

cus on transitions between snow and no-snow areas, espe-
cially over complex terrain. Recent approaches used to model
land surface heterogeneity could be useful for this purpose
(Chaney et al., 2018; Zorzetto et al., 2023).

Given the increased model complexity of LM-GLASS
with respect to LM-CM, it is important to investigate the in-
creased computational cost for the land model. The average
increase in runtime for LM-GLASS compared to LM-CM
is 7.4 % (with a standard deviation of 7.1 % across the test
sites) when considering only the fast 30 min time step of the
model in which snow physics is resolved. When consider-
ing the change in runtime for the entire land model, we find
that the increase in computational cost reduces to 5.6 %. Fur-
thermore, we note that for most of the sites here, the model
is run without vegetation, which is a computationally costly
component of the land model. We expect therefore that in the
presence of vegetation, the relative cost of the LM-GLASS
snow model will be lower. For example, when considering
only the three BERMS vegetated sites, we found that intro-
ducing LM-GLASS increases the cost of the land model only
by 3.6 %. Note that these results are only indicative of loca-
tions dominated by seasonal snow. However, we note that
as snow depth increases, the thickness of the deeper snow

layers also increases such that the number of snow layers in
LM-GLASS increases relatively slowly with snow depth. We
believe additional analysis should be done to assess the per-
formance of GLASS over different settings such as arctic re-
gions and glaciers. Both models compared here tend to have
larger biases in the forested sites compared to the other sites,
especially for daily surface albedo measured at two of the
sites. This is to some extent expected, as vegetation in the
model is dynamic and does not necessarily match the real
canopy structure at the test sites, which can also be affected
by local processes or disturbance history. Interactions of the
snowpack and multilayer canopy are a known modeling chal-
lenge and should be the focus of future research.

7 Conclusions

We have presented here a new snow model (LM-GLASS) tai-
lored to the GFDL Earth System Model. While maintaining
an implicit solution for the energy balance at the snow sur-
face, the new model provides a detailed representation of the
snowpack and its interactions with soil, vegetation, and the
lower atmosphere. The vertical discretization of the snow-
pack is now more refined, evolving dynamically based on de-
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position of fresh snow, sublimation, and snowmelt, and per-
forms within computational constraints. This novel vertical
structure allows LM-GLASS to describe vertical variations
in snow properties (snow density and grain size and shape),
which in LM-GLASS evolve dynamically in each snow layer
according to the laws of snow compaction, wind drift, and
wet- and dry-snow metamorphic processes.

Analysis of the performance of LM-GLASS and compari-
son with a simpler snow model (LM-CM) previously used in
the GFDL land model showed the relevance of accounting for
these additional physical processes. By evaluating the model
performance over 10 SnowMIP sites, we found an overall
improvement in how the model represents SWE and compa-
rable results for snow depth between the two models. The
observed improvement in SWE predictions primarily orig-
inates from the updated snow optical properties, which in
LM-GLASS explicitly depend on snow optical diameter and
grain shape. We found that the BRDF parameterization used
in LM-CM tends to underestimate albedo at the test sites in
general (by about 0.05 for sites with no vegetation) and thus
can lead to overestimating snowmelt.

The largest improvement(and the one more consistent
across sites) in model skill was found for soil tempera-
ture, which was generally underestimated by about 1.5° C
in LM-CM, suggesting an overestimation in heat conduc-
tance through the snowpack. In LM-GLASS, soil temper-
ature predictions were on average higher than those ob-
tained from LM-CM during the snow accumulation phase
at all sites and were generally closer to observations at sites
where these were collected. The increased model complex-
ity of LM-GLASS is due to a combination of refined vertical
resolution and additional physical processes resolved in the
model. These features lead to a computational cost increase
of about 5.6 % for the resulting land model (LM-GLASS)
on average over the test sites. The development of a refined
snow model and its implementation in an Earth system model
paves the way towards multiple future improvements and re-
search directions. First, future work could investigate the per-
formance of the snow scheme globally and in coupled land–
atmosphere simulations, necessary to evaluate the strength of
any feedbacks originating from the improved realism in snow
physics. LM-GLASS is expected to impact land–atmosphere
interactions due to the changes in (i) snow albedo, (ii) snow
surface temperature, and (iii) soil temperature. The last fea-
ture is particularly encouraging, as several ESMs (including
the GFDL model) have been found to broadly underestimate
soil temperature with important implications, e.g., for per-
mafrost simulation. Finally, future research could further im-
prove the description of snow optical properties harnessing
the vertical information on snow grain properties provided
by LM-GLASS. Towards this objective, in a companion pa-
per we will present the effects of deposition of light absorb-
ing impurities in LM-GLASS and their effect on snow albedo
and snowmelt.

Appendix A: Effect of wind on snow

The effect of wind on snow implemented in GLASS is based
on the approach used in CROCUS (Brun et al., 1997; Vion-
net et al., 2012), with the only difference being that GLASS
tracks three snow variables as prognostic (snow dendric-
ity, sphericity, and optical diameter), consistent with the ap-
proach used for snow metamorphism. A mobility index pa-
rameter M0,k quantifies the vulnerability of a snow layer to
wind erosion,

M0,k =


0.34(0.75δk − 0.5sp,k + 0.5)+ 0.66Fρk

for dendritic snow
0.34(−0.583gs,k − 0.833sp,k + 0.833)
+ 0.66Fρk for non-dendritic snow,

(A1)

with Fρk = 1.25− 0.0042(max(ρmin,ρk)− ρmin), with
ρmin = 50 kgm−3, and with gs,k = αM(4− sp,k),
αM = 10−4. A driftability index is then obtained as
Sl,k =−2.868exp(−0.085U)+ 1+M0,k , accounting for
the effect of the average wind speed U , so wind-driven
snow transport occurs only for Sl,k > 0. The effect of
wind drift on snow microstructure is accounted for by
evolving snow grain properties as a consequence of packing
and fragmentation by the wind action. The characteristic
timescale of this process for a snow layer is computed as
τWD,k =

τw0
0WD,k

, with 0WD,k =max(0,Sl,k exp(−ζWD,k/0.1))
and τw0 = 48 h. Here ζWD,k is a depth scale in the snowpack
that accounts for the hardening of overlying layers and reads
ζWD,k =

∑
i<k(1zi(3.25− Sl,i)). The evolution of snow

properties due to snow drift is computed as in CROCUS.
LM-GLASS evolves sphericity, dendricity, and optical
diameter of snow. Additionally, snow density also evolves
according to the equation

dρk
dt
=
ρmax− ρk

τWD,k
, (A2)

with ρmax = 350 kgm−3. For dendritic snow we have

dsp,k
dt
=

1− sp,k
τWD,k

(A3)

dδk
dt
=

δk

2τWD,k
(A4)

ddopt,k

dt
= αM

[
δk

2τWD,k
(sp,k − 3)+ (δk − 1)

1− sp,k
τWD,k

]
, (A5)

while for non-dendritic snow

ddopt,k

dt
=−2αMsp,k

1− sp,k
τWD,k

(A6)

dsp,k
dt
=

1− sp,k
τWD,k

. (A7)

Redistribution of snow across model grid cell or tiles is not
implemented at this stage; however, we note that this issue is
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generally more relevant for local studies on small horizontal
scales rather than the grid cell scale of the climate-focused
LM 4.1.

Appendix B: Effect of snow compaction

Snow compaction is described following the approach used
in the CROCUS model (Vionnet et al., 2012). The mechani-
cal settling of each snow layer k = 1, . . .nL is computed as

d1zk
1zk

=−
σk

ηk
dt, (B1)

with σk the vertical stress due to the weight of overlying snow
layers (σj = 1

2gρk1zk+
∑k−1
j=1gρj1zj , neglecting the effect

of local slope, and with g = 9.806 ms−2). The snow layer
viscosity ηk is parameterized as

ηk = f1f2η0
ρk

cη
eaη(TF−Tk)+bηρk , (B2)

with η0 = 7.62237× 106 kgs−1 m−1, aη = 0.1 K−1, bη =
0.023 m3 kg−1, and cη = 250 kgm−3. The factors f1 =

1/(1+60θL,k) and f2 =min(4,exp(min(g1,0.5gs−g2)/g3))

account for the presence of liquid water and the grain size
effects on viscosity, respectively. Here g1 = 0.4 mm, g2 =

0.2 mm, and g3 = 0.1 mm; gs,k = αM(4− sp,k) as in (Car-
magnola et al., 2014); and θL,k = wl,k/(ρw,k1zk) is the
liquid-water content of the snow layer.

Appendix C: LM-CM BRDF snow albedo model

For the purposes of computing the surface albedo in the case
of little snow on the ground, fractional snow cover is com-
puted based on snow depth as follows:

fsnow =
hs

hs+hs,c
, (C1)

where hs is the total snowpack depth and hs,c = 0.0167 m
in a typical model configuration. Equation (C1) is used in
all model configurations compared in this paper. We remark
that, as noted in Dutra et al. (2010), this formulation for the
effective snow fractional area to some extent accounts for
the effect of snow density, as it is based on snow depth rather
than on SWE, so the same mass of snow generally corre-
sponds to a smaller fractional area in the spring snow melting
phase. The snow albedo model used in the current version of
the model (GFDL LM 4.1 CM) is based on an empirical bidi-
rectional reflectance distribution function (BRDF) by Schaaf
et al. (2002). According to this model, black-sky albedo is
expressed as

αbs(θ)=fiso
(
g0,iso+ g1,isoθ

2
+ g2,isoθ

3)
+ fvol

(
g0,vol+ g1,volθ

2
+ g2,volθ

3)
+ fgeo

(
g0,geo+ g1,geoθ

2
+ g2,geoθ

3), (C2)

Table C1. Parameters of the BRDF model with j equal to iso, vol,
or geo, and b is the model shortwave band.

iso vol geo

g0,j 1.0 −0.007574 −1.284909
g1,j 0.0 −0.070987 −0.166314
g2,j 0.0 0.307588 0.041840
gj 1.0 0.189184 −1.377622
fj (b = VIS, cold) 0.92 0.06 0.0
fj (b = VIS, warm) 0.77 0.06 0.0

fj (b = NIR, cold) 0.58 0.08 0.0
fj (b = NIR, warm) 0.43 0.08 0.0

with θ the solar zenith angle. The white-sky albedo reads

αws = fisogiso+ fvolgvol+ fgeoggeo. (C3)

Given the ratio rdif of direct-to-total shortwave radiation re-
ceived by the surface, the blue-sky albedo is then obtained
as α(θ)= (1− rdif)αbs(θ)+ rdifαws. Here the parameters gi
are universal, given in Schaaf et al. (2002) and reported in
Table C1, while fi depend on the specific surface proper-
ties. For snow, two set of parameters are used, correspond-
ing to “cold snow”, characterized by surface temperature be-
low 10 °C, and “warm snow” above freezing (0 °C). Within
this temperature range, the snow albedo is obtained by linear
interpolation between temperatures estimated for cold and
warm conditions. This formulation was introduced to mimic
the effect of snow aging at different temperatures in the ab-
sence of information about snow microphysical properties.

Code and data availability. The source code of GLASS v1.0 as
well as the input data and model output are shared in the fol-
lowing public repository: https://doi.org/10.5281/zenodo.10901373
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