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Coastal communities face substantial risks from long-term sea level rise and decadal sea level
variations, with the North Atlantic and U.S. East Coast being particularly vulnerable under changing
climates. Employing a self-organizing map-based framework, we assess the North Atlantic sea level
variability and predictability using 5000-year sea level anomalies (SLA) from two preindustrial control
model simulations. Preferred transitions among patterns of variability are identified, revealing long-
term predictability on decadal timescales related to shifts in Atlantic meridional overturning circulation
phases. Combining this framework with model-analog techniques, we demonstrate prediction skill of
large-scale SLA patterns and low-frequency coastal SLA variations comparable to that from initialized
hindcasts. Moreover, additional short-term predictability is identified after the exclusion of low-
frequency signals, which arises from slow gyre circulation adjustment triggered by the North Atlantic
Oscillation-like stochastic variability. This study highlights the potential of machine learning to assess
sources of predictability and to enable long-term climate prediction.

Sea level rise (SLR) poses significant risks to coastal communities due to its
impact on flooding, erosion, and seawater intrusion in estuaries and
aquifers'”. Therefore, accurate predictions of coastal sea levels are crucial
because they enable communities to prepare more effectively for extreme sea
level events and the associated risk of coastal flooding. Reliable sea level
predictions hinge on a thorough understanding of sea level variability and its
predictability.

Coastal sea level varies on a broad range of timescales from hourly to
centennial, in addition to the global SLR associated with thermal expansion
of seawater and melting of glaciers and ice sheets*’. Sea level changes on
hourly to daily timescales can primarily be attributed to storm surges,
astronomical tides, and waves'*''. On seasonal-to-multidecadal timescales,
variations in sea level are often linked to climate variability (e.g., El Nifio-
Southern Oscillation [ENSO]****) and large-scale ocean dynamics (e.g.,
Atlantic meridional overturning circulation [AMOC]""°). Multiyear-to-
decadal sea level variations establish a background state that modulates the
impacts of high-frequency storm surges and tides'"*.

The U.S. East Coast has been shown as a hotspot of accelerated SLR
under present and future climates'>'*">**, Specifically, the sterodynamic sea
level in the North Atlantic is projected to rise rapidly in a warmer climate,
especially in the northwestern Atlantic including the U.S. Coast north of
Cape Hatteras'*. This SLR is primarily attributed to steric effect and mass

redistribution, both closely related to a weakened AMOC'*. The resulting
sharp gradient of sea level change across the Gulf Stream and North Atlantic
current is balanced by a deceleration of these currents. This Gulf Stream and
AMOC-related mechanism is a prevailing argument to explain the accel-
eration of SLR along the U.S. Northeast Coast over the past several decades,
together with other processes such as alongshore wind forcing and the
inverse barometer effect” ™.

In addition to the SLR along the U.S. Northeast Coast, recent studies
have identified an accelerated SLR since 2010 along the U.S. Southeast
Coast region, south of Cape Hatteras, and the Gulf of Mexico'**' "',
This acceleration is not seen to the north of Cape Hatteras, indicating
that mechanisms differing from these discussed above should be
responsible. In addition to the anthropogenic external forcing, multiple
processes are demonstrated as potential mechanisms driving this rapid
SLR, yet without a consensus being reached. These proposed mechan-
isms include variations in the Gulf Stream strength and position3 ’
warming of the Florida Current’”, large-scale heat divergence linked to
AMOC and low-frequency North Atlantic Oscillation (NAO)**, a
lagged response to the 2009-2010 AMOC slowdown'®, cumulative effect
of NAO and ENSO?, and wind-forced Rossby waves in the tropical
North Atlantic with additional contributions from river discharge and
coastal winds™.
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Due to the limited spatial coverage of tide gauges and the short dura-
tion of satellite observations, capturing a full range of observed sea level
variability in the North Atlantic on decadal timescales is challenging. This
limitation also complicates our understanding of the underlying mechan-
isms and potential decadal predictability of sea level changes. To better
understand the multiyear-to-decadal sea level variability and predictability
in the North Atlantic, we leverage an unsupervised machine learning clas-
sification method named the self-organizing map (SOM)** and apply it to
long climate model simulations. The SOM is an effective tool for classifying
high-dimensional datasets into clusters* and identifying physically relevant
patterns of variability™. It has been widely applied across a range of studies in
climate science, including characterizing atmospheric circulation®* ",
probing teleconnection patterns™*", investigating climate variability*~,
and conducting climate predictions™.

In this study, we classify 5000-year annual mean sea level anomalies
(SLA) in the North Atlantic from two preindustrial control (piControl)
simulations from the Seamless System for Prediction and EArth System
Research (SPEAR)* coupled global climate model using the SOM. Applying
the SOM method to two long piControl simulations enables an investigation
of a full range of internal sea level variability in the North Atlantic, revealing
patterns that resemble the observational dynamic sea level patterns from
recent decades. Additionally, we assess the multiyear-to-decadal predict-
ability of the sea level by tracing the temporal evolution of the classified
patterns across the SOM. Decadal predictions of large-scale North Atlantic
sea level patterns and low-frequency coastal sea level variations are also
conducted using a model-analog method"~** based on the SOM framework,
leading to comparable skill to that from initialized decadal hindcasts.

Results

Multiyear-to-decadal North Atlantic sea level variability in SPEAR
piControl simulations

To examine the sea level variability and predictability in the North Atlantic
Ocean, we first utilize the SOM to classify the 5000-year annual mean North
Atlantic SLA from the piControl simulations from two versions of the
SPEAR model. This classification is conducted by repeatedly training the
SOM to learn the SLA patterns from the simulations (see Methods for
details). These two versions, SPEAR_MED and SPEAR_LO, have the same
oceanic resolution but different atmospheric resolution: SPEAR_LO with a
1°horizontal resolution and SPEAR_MED with a 0.5° horizontal resolution.
Using these simulations enriches the data for training the SOM and also
allows us to assess the influence of atmospheric horizontal resolution on
SLA variability and predictability. Classification using the SOM method
results in a predefined number of generalized patterns (a 3 X 4 array in this

instance), referred to as SOM nodes (Fig. 1). Each node represents a
dominant pattern of sea level variability in the North Atlantic, with the
frequency of occurrence of each pattern denoted in the top right corner of
the corresponding subplot. These dominant patterns of variability are
robust to different SOM sizes (see Methods for details). As expected from a
well-trained SOM™, similar patterns appear in nearby nodes, while different
patterns are found in nodes that are farther apart. The composite SLA
patterns associated with each SOM pattern from SPEAR_LO (Supple-
mentary Fig. 1) and SPEAR_MED (Supplementary Fig. 2) piControl
simulations are similar to the corresponding SOM pattern, indicating that 1)
the dominant patterns from both simulations are similar, despite the dif-
ferent resolutions of their atmospheric components; and 2) the SOM
training process is robust, effectively capturing the patterns of SLA varia-
bility in both simulations.

Among the identified SOM patterns, several delineate pronounced
SLAs along the U.S. East Coast. Notably, node [3,1] characterizes robust
positive anomalies in the western subpolar North Atlantic and the Labrador
Sea, extending to the U.S. Northeast Coast, north of Cape Hatteras. South of
these pronounced positive anomalies, a zone of moderate negative
anomalies is seen around 35°N near Cape Hatteras with limited meridional
expansion. This pattern resembles the changes in dynamic sea level
(deviation from the global mean sea level) projected for future climates due
to a weakened AMOC under global warming'**. Additionally, it aligns with
the most predictable component of North Atlantic SLA identified using
average predictability time by Zhang et al."”. Conversely, node [1,3] char-
acterizes a pattern largely opposite to [3,1], with lower-than-average sea
levels along the U.S. Northeast Coast. The composite Atlantic meridional
overturning streamfunction patterns associated with the SLA in nodes [3,1]
and [1,3] reveal a mature negative and positive AMOC phase, respectively
(Fig. 2 for the SPEAR_LO piControl simulation and Supplementary Fig. 3
for the SPEAR_MED piControl simulation; see Methods for details). These
AMOC states are consistent with the underlying physical mechanisms
driving their respective SLA patterns, encompassing mass redistribution,
density variations, and circulation dynamics'*******,

In addition to the nodes exhibiting pronounced SLAs along the U.S.
Northeast Coast, nodes [1,1] and [3,4] display distinct loadings along the
U.S. Southeast Coast. Node [1,1] is characterized by a dipole-like pattern,
with positive anomalies in the western subpolar North Atlantic and Lab-
rador Sea, situated north of 50°N, and negative anomalies near the Gulf
Stream path. These negative anomalies extend to the U.S. Southeast Coast.
Conversely, node [3,4] presents an opposite pattern, with positive anomalies
along the U.S. Southeast Coast. These two patterns bear resemblance to the
second most predictable component of North Atlantic SLA, as revealed by

Fig. 1 | Generalized 3 x 4 SOM for the 5000-year
annual mean SLA (cm; shading) in the North
Atlantic from the SPEAR_LO and SPEAR_MED
piControl simulations. The top left corner of each
subplot denotes a two-index notation with the first
(second) index representing the row (column) of the
SOM node. The top right corner of each subplot
displays the overall frequency of occurrence of the
corresponding node in both simulations.
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Fig. 2 | Composites of annual mean Atlantic meridional overturning stream-
function patterns (Sv; shading) from the SPEAR_LO piControl simulation for all
SOM nodes (with the SOM shown in Fig. 1). The absence of black hatching
indicates that the shaded value is significant at the 95% confidence level using a two-
tailed ¢ test. The top left corner of each subplot denotes a two-index notation with the
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first (second) index representing the row (column) of the node. The top right corner
of each subplot displays the frequency of occurrence of the corresponding node in
the SPEAR_LO piControl simulation, which slightly differs from the overall fre-
quency shown in Fig. 1.

Zhangetal.”. The underlying mechanisms, as detailed in their work, involve
heat convergence/divergence due to AMOC transition between its mature
positive and negative phases'>**'. Consistently, the composites of AMOC
patterns associated with these two nodes show transition states with dif-
ferent signs of anomalies in the north and south of 40°N (Fig. 2 and Sup-
plementary Fig. 3).

The SOM is designed to span the data space, thereby depicting dif-
ferent phases of North Atlantic SLA variability. Hence, the remaining
nodes can be interpreted as transition states between the aforementioned
four nodes or as different “flavors” of these nodes, each displaying a
similar frequency of occurrence to these four nodes but with relatively
minor loadings along the coastal regions of the United States. For example,
node [2,3] represents an SLA pattern similar to that of [1,3], albeit with
weaker anomalies (Fig. 1), consistent with the comparison between their
AMOOC states (Fig. 2). Nodes [3,3] and [2,4] exhibit a dipole pattern
similar to that of node [3,4], but with one pole exhibiting less pronounced
anomalies. A similar relationship exists between [1,2], [2,1], and [1,1].
While it is common for most nodes to have a counterpart with a similar
pattern but an opposite phase across the SOM (e.g., [1,3] versus [3,1]),
there are exceptions. For instance, the extended band of modest positive
SLA located south of Florida in node [1,4] does not have a corresponding
counterpart in other nodes, even when using a larger SOM that displays

more phases of SLA variability (Supplementary Fig. 4). This discrepancy
may be attributed to certain nonlinear processes.

Having identified the variability of SLA in the North Atlantic, we
proceed to examine their multiyear-to-decadal predictability by employing
a SOM-based lagged transition probability framework®. Specifically, we
calculate the probability of each node transitioning to any of the 12 nodes,
including itself, after 1-30 years (hereafter denoted as lags 1-30 years; see
Methods for details). This approach enables us to trace the temporal evo-
lution of SLAs across the SOM nodes.

The resulting transition probability tables are similar between the
SPEAR_LO (Fig. 3 for lags 1, 6, 11, 16 years and Supplementary Movie 1 for
lags 1-30 years) and SPEAR_MED piControl simulations (Supplementary
Movie 2). Within the first 3 years, most nodes show strong persistence, as
evidenced by the highest transition probability remaining within the starting
node itself (e.g,, Fig. 3a). In addition to persistence, most nodes along the
edge of the SOM display distinct anticlockwise tendencies within the first 16
years (Fig. 3). That is, nodes tend to transition anticlockwise to adjacent
nodes, rather than clockwise. This tendency is more clearly depicted in Fig. 4
for node [3,1] over lags 1-24, and in Supplementary Movies 1, 2 for all nodes
over lags 1-30, where the reddish shadings gradually spread out from the
starting nodes (denoted by yellow rectangles) and transition in an antic-
lockwise direction across the SOM. For some nodes (e.g., node [3,1]), this
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Fig. 3 | Transition probability tables used to track the temporal evolution of SLA
from the SPEAR_LO piControl simulation across the SOM. The small shaded

cells display the conditional probability of their occurrence (%) atalag1,blag6, clag
11, and d lag 16 years, given the occurrence of the larger cell at lag 0. The positions of
these cells correspond to the positions of the SOM nodes in Fig. 1, with the yellow

rectangle denoting the starting node (the state at lag 0). Cells shaded with warm
(cold) colors represent significantly larger (smaller) values than the unconditional
probabilities according to a Monte Carlo significance test, while white cells represent
values not significantly different from the unconditional probabilities (see Methods
for details).

anticlockwise tendency persists throughout the entire 30-year lag period.
The persistence and directional transition of SLA patterns are attributable to
the low-frequency buoyancy-driven AMOC variability, as evidenced by
their corresponding relationship (Figs. 1 and 2).

The tendency for SLA patterns to remain in or transition to certain
nodes, as signified by higher-than-normal probabilities (reddish shadings in
Figs. 3 and 4), or to avoid certain nodes, as marked by lower-than-normal
probabilities (bluish shadings in Figs. 3 and 4), serves as an indicator of
elevated predictability relative to climatological frequencies of occurrence.
Therefore, the aforementioned behavior—the tendency of persistence and
preferential transitioning to adjacent nodes along a specific direction
(anticlockwise here)—denotes high predictability of North Atlantic SLA on
decadal timescales for the first 15-20 years. Over time, the probability of all
nodes becomes more evenly distributed (Supplementary Movies 1 and 2),
converging towards their climatological frequencies of occurrence, which
indicates a loss of predictability. Following this logic, we can therefore
quantify the predictability of SLA over time based on the number of tran-
sition probabilities that are significantly larger or smaller than normal
within the transition probability tables starting from each node over lags*

(see Methods for details). As shown in Fig. 5a, the large-scale North Atlantic
SLA evolutions are considered predictable for about 16 and 21 years, on
average, in SPEAR_LO and SPEAR_MED piControl simulations, respec-
tively. We speculate that the long theoretical predictability identified here
arises from the persistence of low-frequency AMOC states and their
directional shifts, along with the close association of the SLA patterns with
various AMOC phases, as discussed above. Spectral analysis reveals that the
AMOC indices in both models have peaks at a period of 25-40 years, with
the amplitude in SPEAR_MED exceeding that in SPEAR_LO (Supple-
mentary Fig. 5). This difference may explain the higher SLA predictability in
SPEAR_MED compared to SPEAR_LO.

Based on previous discussions, low-frequency signals dominated
by buoyancy-driven AMOC variability are identified as critical to
North Atlantic sea level variability and predictability in the piControl
simulations. To further substantiate their role from an additional
perspective, we generate a SOM using 15-year low-pass filtered SLA
patterns from the piControl simulations to characterize the low-
frequency sea level variability. The resulting patterns (Supplementary
Fig. 6) closely resemble the unfiltered SOM (Fig. 1), with slight
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Fig. 4 | Transition probability tables used to track the temporal evolution of SLA starting from node [3,1]. Same as Fig. 3 but for node [3,1] across lags 1-24.
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A greater number of significant probabilities indicates higher predictability, with 12
(the total number of SOM nodes) being perfectly predictable. If the number of
significant transition probabilities reaches or exceeds the threshold marked by the
gray line at 3, the associated SLA state is viewed as theoretically predictable in this
study (see Methods for details). b Same as a but for the transition probability tables
associated with the SOM generated from 15-year high-pass filtered North Atlantic
SLA patterns (Supplementary Movies 3 and 4).

differences in magnitude and detail. This similarity can be attributed to
the greater total sea level variability explained by low-frequency
variability compared to high-frequency variability. Specifically, as
shown in Supplementary Fig. 7a, the total sea level variability is much
higher in the subpolar and subtropical North Atlantic compared to the
tropics, with the maximum variability occurring along the Gulf Stream
and North Atlantic Current. The variability explained by the 15-year
high-pass filtered SLA is primarily concentrated in the tropical region
(Supplementary Fig. 7b), where the total variability is minimal. In
contrast, the low-pass filtered patterns account for a much larger share
of the sea level variability in mid-to-high latitude regions (Supple-
mentary Fig. 7c), where the total sea level variability across all time-
scales is also greater. This additional evidence further underscores the
importance of low-frequency signals, dominated by the buoyancy-
driven AMOC, in influencing North Atlantic internal sea level
variability.

North Atlantic sea level variability and predictability on shorter
timescales

The low-frequency buoyancy-driven AMOC variability has been identified
as the dominant source of internal decadal predictability for the North
Atlantic sea level in fully coupled control simulations, as discussed above
and in previous studies'>”. However, the limited length of observational
records poses challenges in reliably isolating the low-frequency AMOC
signals to inform decadal SLA predictability. Therefore, our investigation
extends to exploring SLA variability and predictability on shorter timescales.
This is achieved by applying a 15-year high-pass Butterworth filter to the
annual mean SLA, filtering out longer-timescale signals dominated by the
low-frequency buoyancy-driven AMOC, followed by a SOM analysis that
produces a3 X 4 SOM (Fig. 6; see Methods for details on the choice of the
SOM size). Notably, the 15-year high-pass filter does not eliminate wind-
driven AMOC signals on shorter timescales, which typically range from
seasonal to interannual>*.
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Fig. 6 | Generalized 3 x 4 SOM for the 15-year
high-pass filtered annual mean SLA (cm; shading)
in the North Atlantic from the SPEAR_LO and
SPEAR_MED piControl simulations. The top left
corner of each subplot denotes a two-index notation
with the first (second) index representing the row
(column) of the SOM node. The top right corner of
each subplot displays the overall frequency of
occurrence of the corresponding node in both
simulations.
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In general, the SOM patterns derived from the high-pass filtered SLA
are characterized by anomalies of relatively uniform magnitude that display
tripole-like features (Fig. 6). This finding contrasts with the SOM patterns
associated with unfiltered SLA variability (Fig. 1), which feature strong
bands of anomalies with limited meridional extent, tied to the low-
frequency buoyancy-driven AMOC in various phases as discussed above. In
Fig. 6, node [1,1] represents a tripole pattern, with negative SLA in the
subpolar and tropical North Atlantic and positive SLA in the subtropical
region, extending towards the U.S. Southeast Coast. This pattern resembles
the sea surface temperature (SST) tripole typically associated with positive
NAO-related atmospheric forcing and the consequent wind-driven ocean
circulation**””. Furthermore, it aligns with the SLA pattern induced by
NAO-like wind stress as evidenced by Zhang et al.”’. Conversely, node [3,4]
presents an opposite pattern to that of [1,1], leading to lower-than-normal
sea levels in the U.S. Southeast Coast region. The rest of the patterns
identified in this SOM exhibit lower loadings in coastal areas.

Next, we explore the temporal evolution of the high-pass filtered SLA
across this SOM and infer the predictability of all nodes based on the
transition probability (Fig. 7 for lags 1, 3, 5, 7 years from the SPEAR_LO
piControl simulation, and Supplementary Movies 3 and 4 for lags 1-30
years from the SPEAR_LO and SPEAR_MED simulations, respectively).
Consistent with findings from the transition probability tables of the SOM
with unfiltered SLA, high-pass filtered patterns in both simulations exhibit
similar temporal evolution. At lag 1 year (1 year after the initial state), the
SLA pattern tends to stay in the starting node or transition to adjacent nodes
(Fig. 7a). The close alignment between the SLA patterns (Fig. 6) and their
corresponding SST composites (Supplementary Figs. 8 and 9) indicates that
the SLA variability is dominated by its thermosteric component. Therefore,
the 1-year persistence of SLA may be attributed to the persistence of SST,
possibly due to the ocean memory’™”, the transient-eddy feedback
mechanism*******, or both.

Unlike the prolonged persistence and directional transition as shown
in the transition probability tables for the SOM with unfiltered SLA (Fig. 3),
the probabilities for most high-pass filtered SLA patterns become relatively
evenly distributed at lag 2 year (Supplementary Movies 3 and 4). Conse-
quently, tracing the evolution of SLA patterns across the SOM becomes
challenging, signaling a decrease in predictability. However, predictability
reemerges at lags 34 years for most nodes, owing to an increased prob-
ability of transitions to nodes that are distant from the starting node (Fig.
7b). This reemergence might be attributed to longer timescale processes
associated with slow gyre circulation adjustment™. From lag 6 year onwards,
the return to evenly distributed transition probabilities that mirror the cli-
matological frequencies of occurrence once again signifies a loss of

predictability. The evolution of the SOM-based predictability for the high-
pass filtered SLA patterns over 30 years is depicted in Fig. 5b. The overall
predictability lasts for 4-5 years for both simulations, much shorter than
that of the unfiltered SLA patterns, due to the exclusion of longer timescale
signals.

Observational multiyear-to-decadal SLA variability

To examine whether the patterns characterized by the SOM from high-pass
filtered piControl simulations using SPEAR (Fig. 6) also exist in the
observed record, we next classify the dynamic sea level (deviation from the
global mean sea level) anomalies in satellite observations over the
1993-2021 period against the existing SOM nodes by identifying their most
similar SOM node (see Methods for details). There are two nodes, [1,4] and
[2,2], that do not have satellite observations assigned, potentially due to the
limited duration of the satellite record (Fig. 8). Composites of the obser-
vational SLA patterns associated with the SOM nodes show similar large-
scale features to their corresponding SLA patterns from piControl simula-
tions, albeit with larger magnitude and more small-scale structures (Fig. 8
versus Fig. 6). Particularly, the enlarged anomalies along the Gulf Stream
and North Atlantic Current resemble those seen in the SOM from the
unfiltered SLA (Fig. 1). Such discrepancies were anticipated due to several
factors: 1) the absence of high-pass filtering on satellite observations due to
its short record, 2) the climate model’s limitation in resolving subgrid-scale
processes, and 3) the presence of other processes in the observations, such as
the glacial isostatic adjustment, which might influence regional sea levels but
are not accounted for in the model simulations. Due to the short duration of
the satellite observations, the longer timescale buoyancy-driven AMOC
signals may not be well-captured. Consequently, the composites of obser-
vational SLA on the SOM associated with unfiltered piControl SLA patterns
(with the SOM displayed in Fig. 1) show much less similarity to the SLA
patterns from unfiltered piControl simulations, since the latter are closely
linked to low-frequency AMOC signals.

It is noteworthy that the frequency of observational SLA classified into
node [1,1] is exceptionally high, reaching 27.6% (8 out of 29 years). A closer
examination indicates that the satellite observation is persistently classified
as node [1,1] from 2015 to 2021. This recent increase in the occurrence of
node [1,1] suggests an accelerated increase in the coastal sea level in the U.S.
Southeast, relative to other regions, which aligns with findings documented
in recent studies'**'~*%,

The persistence of node [1,1], shown in the observations, contrasts
sharply with its representation in high-pass filtered SLA from the piControl
simulations. In these simulations, the probability of remaining in node [1,1]
five years after starting from this node itself is only 2% and 1% for the
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Fig. 7 | Transition probability tables used to track the temporal evolution of high-pass filtered SLA. Same as Fig. 3 but for high-pass filtered SLA patterns from the
SPEAR_LO piControl simulation shown in Fig. 6 at a lag 1, b lag 3, c lag 5, and d lag 7 years.

Fig. 8 | Composites of annual mean dynamic sea
level anomalies from satellite observations (cm;
shading) for all SOM nodes generated from high-
pass filtered SLA patterns in the piControl simu-
lations (with the SOM shown in Fig. 6). The top
right corner of each subplot displays the frequency
of occurrence of the corresponding node in satellite
observations. The absence of black hatching in
nodes indicates that the shaded value is significant at
the 95% confidence level using a two-tailed ¢ test,
except for nodes [1,2], [2,1], and [3,2] where only
one year composited, precluding a significance test.
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Fig. 9 | SOM-based predictions of SLA patterns
from initialized decadal hindcasts and model-
analogs for node [3,1]. a Composites of SLA pat-
terns from the five reanalysis years classified in node

Reanalysis

[3,1] (Year 1) and their following evolutions on
Years 4, 7, and 10. b Composites of model-analog
SLA patterns including ten most similar SLA pat-
terns from piControl simulations for each reanalysis
year assigned to node [3,1] (Year 1), and their sub-
sequent evolutions on Years 4, 7, and 10.

¢ Composites of SLA patterns from decadal hind-
casts, initialized on 1 January of the years that cor-
respond to those classified in node [3,1] from the
reanalysis (Year 1), and the subsequent hindcasts on
Years 4, 7, and 10. The absence of black hatching
indicates that the shaded value is significant at the
95% confidence level using a two-tailed f test.

Model-analog

Hindcast

Year 10

-9 -6 -3 0 3 6 9 12 15
Node [3,1] composite SLA (cm)

Fig. 10 | SOM-based predictions of SLA patterns
from initialized decadal hindcasts and model-
analogs for node [3,4]. a, b, and c are the same as
those in Fig. 9 but for node [3,4]. There are eight
reanalysis years classified in [3,4], which are inclu-

Reanalysis

ded in the composite shown in a.

Model-analog

Hindcast

Year 10

Node [3,4] composite SLA (cm)

SPEAR_LO and SPEAR_MED piControl simulations, respectively, as
demonstrated in Supplementary Movies 3 and 4. This substantial difference
between the observations and the high-pass filtered piControl simulations
could be attributed to the impact of external forcing, which may not be fully
removed by subtracting the global mean sea level from the observations, or
to longer timescale processes retained in the satellite observations due to the
lack of high-pass filtering. External forcing may lead to the persistence of
node [1,1], either through its direct influence, reflected as a trend, or
indirectly by modulating internal variability, even after the trend is
removed*®. To explore both possibilities, we employ high-pass filtered SLA
patterns from 1993 to 2021 in the SPEAR large ensemble*, conducting one
analysis with the ensemble mean retained to assess the direct impact of
external forcing, and another with the ensemble mean removed from each
grid point in each year to evaluate its modulation effect on internal varia-
bility. Specifically, we composite these high-pass filtered SLA patterns onto
the SOM generated from high-pass filtered piControl simulations to eval-
uate how external forcing influences patterns of high-frequency variability
and the persistence of node [1,1]. Surprisingly, the resulting composite SLA
patterns from the large ensemble, whether the ensemble mean is retained or
removed, closely resemble those from the piControl simulations (Supple-
mentary Figs. 10 and 11). Moreover, based on the transition probabilities

associated with these composite patterns from the SPEAR large ensemble,
the persistence of node [1,1] after five years is 4% for the patterns with
ensemble mean (Supplementary Fig. 12) and 0% for the patterns without
ensemble mean (Supplementary Fig. 13), similar to the piControl simula-
tions and much lower than the observations. These results suggest a limited
role of external forcing on short timescale sea level variability. However,
given model biases, such as different sensitivities to external forcing com-
pared to observations, we cannot completely eliminate the potential impact
of external forcing on the observed persistence of node [1,1]. Nonetheless,
the notable persistence of node [1,1] seen only in the observations, coupled
with the presence of features resembling AMOC SLA fingerprints, suggests
that the observed variability cannot be solely attributed to short-term
atmospheric variability, its impact on wind-driven ocean circulation, or
external forcing. Instead, it is also shaped by mechanisms operating on
longer timescales, likely involving the low-frequency buoyancy-driven
AMOC'**7_ Consequently, as some features of the observational
dynamic sea level variability resemble high-pass filtered variability while
others align with unfiltered variability in the piControl simulations,
understanding their predictability requires consideration of processes
operating across both longer and shorter timescales (a combination of
Fig. 5a, b).
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Fig. 11 | Skill assessment for the SLA predictions over a lead time of 1-10 years.
a Pattern correlation (ACC) between the SLA patterns from the reanalysis and from
predictions through initialized decadal hindcasts (purple) and the SOM-based
model-analog method (cyan). The solid thick lines denote the mean ACC over all
nodes, with shadings showing the mean ACC + one standard deviation of ACC
across all nodes. b Correlation between the low-pass filtered, detrended tide gauge
record at Eastport and the predicted time series through initialized decadal hind-
casts (purple) and the SOM-based model-analog method (cyan) on the
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corresponding closest model grid point. Solid circles denote significantly positive
correlations, while open circles indicate correlations that are either not significant or
significantly negative at the 90% confidence level, with the statistical significance
determined using a ¢ test based on an effective sample size” """ (see Methods for
details). c-f Same as b, but for the tide gauge stations and the corresponding closest
model grid points in Bar Harbor, Portland, Boston, and Woods Hole, respectively.
Locations of the tide gauge stations and the closest model grid points are shown in
Supplementary Fig. 15.

Prediction of SLA using the SOM-based model-analog method
After assessing the variability and predictability of the North Atlantic SLA
using SOM-based methods, we delve into the potential of perfect-model
predictability, as identified in the piControl simulations, to foster skillful
decadal predictions. To achieve this, we apply a model-analog method* >
on a per-SOM node basis associated with the SOM from the unfiltered SLA
patterns in the piControl simulations (Fig. 1). We refer to this as a SOM-
based model-analog prediction. Specifically, we use composites of a certain
number of SLA patterns from the piControl simulations, associated with the
SOM, and their subsequent evolutions as the model-analog predictions of
the target benchmark SLA patterns. Here we focus on the SOM derived from
the unfiltered piControl SLA patterns, as these unfiltered patterns, with both
low- and high-frequency signals retained, capture much longer theoretical
predictability compared to the high-pass filtered patterns (Fig. 5).

The benchmark used to evaluate predicted North Atlantic SLA pat-
terns is from an observationally constrained reanalysis dataset by SPEAR,
with the linear trend removed to focus on internal variability. Here, we opt
for reanalysis over satellite observations because 1) the reanalysis dataset
offers a substantially longer historical record, and 2) it provides a reasonable
representation of AMOC evolution, facilitated by quasi-observational
boundary conditions"”’ (see Methods for details). To create a SOM-based
benchmark, we map the SLA patterns from the reanalysis dataset to their
most similar SOM node from the piControl simulations (Fig. 1), based on a
minimum Euclidean distance principle (see Methods for details). Then we
construct the composite of the SLAs from the reanalysis for each SOM,
including those with time lags (Fig. 9a for node [3,1] and Fig. 10a for [3,4]).

The SOM-based model-analog prediction for the reanalysis composite
in each SOM node involves selecting the ten most similar piControl
simulation analogs from the corresponding SOM node for each reanalysis
year assigned to this node. These selected analogs and their subsequent
evolutions are then composited to form the SOM-based model-analog
prediction for each node (Fig. 9b for node [3,1] and Fig. 10b for [3,4]). It is
notable that the model-analog prediction skill exhibits low sensitivity both
to the number of analogs used (ten in this instance) and to whether the
analogs are confined to the specific SOM node associated with the reana-
lysis. Increasing the number of analogs, however, can decrease the

prediction skill during the early lead times. As a comparison, we also assess
the skill of a widely used method, the initialized decadal hindcasts produced
by SPEAR” (with the linear trend removed for each lead time; see Methods
for details). Specifically, the 10-year decadal hindcasts, initialized from the
same years as the reanalysis associated with each SOM node, are composited
onto the corresponding node (Fig. 9c for node [3,1] and Fig. 10c for [3,4]).
The hindcast model is initialized on 1 January of each year, with outputs for
the remainder of that year considered as predictions. Therefore, we denote
the year of initialization as a lead time of 1 year for the hindcasts. Following
this naming convention, a lead time of 1 year in predictions from the model-
analog method signifies the composites of piControl SLA patterns onto the
SOM without lags.

Here we present the predictions of nodes [3,1] (Fig. 9) and [3,4]
(Fig. 10) as examples, as they initialize from mature and transition AMOC
phases, respectively. Node [3,1] starts from a mature negative AMOC phase,
leading to higher-than-normal SLA in the U.S. Northeast Coast (Fig. 9a).
This feature is well-captured in both model-analogs and initialized hindcasts
(Fig. 9b, c). After several years, the increase in SLA to the north gradually
diminishes, and a narrow band of positive SLA extending to the U.S.
Southeast Coast emerges as shown in the reanalysis (Fig. 9a). Surprisingly,
the model-analogs identify this change more distinctly compared to the
hindcast, which exhibits much weaker anomalies than that in the reanalysis
(Year 7, Fig. 9). In contrast to node [3,1], the prediction skill of the model-
analog method for node [3,4] falls short of the hindcast (Fig. 10), with the
signal gradually diminished from Year 7. This comparison of model-analog
prediction skills between nodes [3,1] and [3,4] highlights the importance of
the initial AMOC state to the prediction skill using this method. That is, a
prediction starting from a mature AMOC state has higher skill than one
from a transition state, closely aligning with a previous study".

To evaluate the predictions associated with all SOM nodes, we further
quantify the pattern correlations between the reanalysis and predictions
from the model-analogs and hindcasts using the Anomaly Correlation
Coefficient (ACC; see Methods for details). In general, the hindcast out-
performs the model-analog prediction for most nodes in the first several
years (Fig. 11a), which may be attributed to the effective initialization in the
hindcast”’. Then the spread of the prediction skill of hindcast starts to
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overlap with that of the model-analog prediction. Although the overall skill
is lower in the model-analog method, it can exhibit notable skill for SLA
patterns starting from certain states (e.g., node 3,1]). Another advantage of
the model-analog method is its ability to provide reasonably good prediction
skill over longer lead times for certain initial states. Specifically, nodes [1,2],
[1,3], [2,1], [2,2], [3,1] exhibit an ACC greater than 0.5 after a lead time of 10
years (Supplementary Fig. 14). Therefore, this method can provide a cost-
effective preliminary assessment of the internal variability in future SLA
states before hindcasts, which conventionally extend up to 10 years, reach
those points.

Evaluating predictions against the reanalysis enables an examination of
the prediction skill across the entire North Atlantic basin. However, the
SPEAR reanalysis cannot be considered an independent dataset for model-
analogs and hindcasts. Therefore, we extend our evaluation of prediction
skill to the U.S. coastal regions, utilizing annual mean tide gauge records. At
each station, the tide gauge record undergoes linear detrending to focus on
internal variability and is subjected to an 11-year running mean low-pass
filter to remove short timescale variations, such as the inverse barometer
effect, thereby focusing on decadal timescale variability. In a manner similar
to the reanalysis, the record from each tide gauge station for each year is
matched to a SOM node based on its similarity to the nearest model grid
point. For the model-analog method, rather than selecting the ten most
similar analogs, we employ all SLA from the piControl simulations that are
categorized within the SOM node corresponding to the tide gauge data.
While the differences are subtle, using a broader set of analogs enhances the
prediction skill. Notably, restricting analogs to the SOM node linked with
the tide gauge data substantially boosts the prediction skill, as opposed to
merely comparing the tide gauge records with individual model grid points.
This approach incorporates the information associated with large-scale
patterns, which are often linked to low-frequency variability.

Figure 11b-d shows the correlation between a number of tide gauge
records along the U.S. Northeast Coast and predictions from the hindcasts
and SOM-based model-analogs at the closest model grid point to the cor-
responding tide gauge station (see the locations in Supplementary Fig. 15).
Here we focus on the Northeast Coast, where low-frequency variability from
the AMOC and the Gulf Stream enhances the predictability of low-pass
filtered tide gauge records'>'******. In general, the SOM-based model-
analogs demonstrate a significantly positive correlation with tide gauge
records during the initial 5-8 lead years, after which the correlation
decreases (Fig. 11b-d). Unlike Fig. 11a, which measures the pattern corre-
lation across the entire North Atlantic basin, the model-analogs perform
better than the hindcasts in the first several lead years at tide gauge stations
along the U.S. Northeast Coast. However, the skill of the hindcasts remains
consistently high, maintaining a positive correlation exceeding 0.5
throughout. We speculate that this high skill is due to an accurate repre-
sentation of low-frequency variability in the tide gauge records across all
lead times. In contrast, the model-analogs exhibit a decline in skill as lead
time increases. This decline is anticipated to some degree due to the pre-
dominant timescale of low-frequency AMOC variability in the piControl
simulations, which is 25-40 years, being shorter than the timescale in the
observations and hindcasts.

Discussion

In summary, we utilize a SOM-based framework to identify dominant
patterns of SLA variability in the North Atlantic and assess the associated
predictability on multiyear-to-decadal timescales within the SPEAR_LO
and SPEAR_MED piControl simulations. These dominant patterns of
internal variability are closely linked to different phases of AMOC, corro-
borating findings from previous studies focusing on specific AMOC
phases'™*”. This low-frequency buoyancy-driven AMOC variability
associated with the SLA leads to the persistence of SLA patterns and their
directional transition across the SOM, resulting in prolonged decadal pre-
dictability that lasts for 15-20 years. Moreover, SLA variability excluding
longer timescale signals dominated by buoyancy-driven AMOC is char-
acterized using the SOM after applying a 15-year high-pass filter to the

annual mean SLA patterns. Additional predictability on shorter timescales is
then identified, which we speculate is associated with ocean memory***, the
transient-eddy feedback'*”*"*, or both, within the first year. Moreover,
gyre circulation adjustments (e.g, through oceanic Rossby wave
propagation™’"”) triggered by the initial stochastic forcing (e.g., NAO) can
extend the predictability to 4-5 years.

Composites of dynamic sea level from satellite observations, when
mapped onto the SOM, reveal large-scale patterns similar to the SOM
patterns associated with the 15-year high-pass filtered SLAs from the
piControl simulations. This is due to the short observational record that
inadequately captures the longer timescale buoyancy-driven AMOC signals.
Nevertheless, the signal of buoyancy-driven AMOC emerges in these
observational composites (e.g., enlarged SLAs along the Gulf Stream and
North Atlantic Current), resembling those in the SOM patterns from
unfiltered SLAs. This suggests that when considering the predictability of
dynamic sea level in observations, it is crucial to integrate predictability
sources on both longer and shorter timescales, affirming the results from
Zhang et al. (2024)”.

Given the prolonged predictability identified in the piControl simu-
lations, we further conduct decadal predictions of the internal SLA varia-
bility using a SOM-based model-analog method. Compared to a benchmark
derived from an observationally constrained reanalysis dataset, the overall
predictions from model-analogs are less accurate in predicting large-scale
North Atlantic SLA patterns than conventional initialized hindcasts.
However, predictions that start from certain SLA states (e.g., those asso-
ciated with a mature AMOC state) can achieve reasonably accurate pre-
diction skills over an extended period. Importantly, this model-analog
method is cost-effective, allowing for long-lead predictions when necessary.
Therefore, it can serve as a useful tool for early estimation of large-scale SLA
states, bridging the gap until the initialized decadal predictions from
dynamical models, which typically cover up to 10 years, become available.
This ability is useful for informing policy and decision makers. However,
determining whether the AMOC is in a state that can provide high pre-
dictability to SLA patterns may be challenging due to the limited duration of
direct AMOC observations and the projected future changes in both the
AMOC™” and North Atlantic internal variability”. Long-term proxy
data”™® may help identify periods when the AMOC is in such a state;
however, caution is needed in light of the evolving impacts of climate
change.

Our focus here is on the large-scale North Atlantic SLA patterns, which
may have implications for coastal regions. On decadal timescales, it is
typically the large-scale patterns that offer some level of predictability. This
predictability is reflected in the ability of our SOM-based model-analogs to
predict low-frequency U.S. Northeast coastal SLA up to 5-8 years in
advance, where the analogs are selected based on large-scale patterns. This
SOM-based coastal sea level prediction serves as a testbed to demonstrate
the linkage between large-scale SLA patterns and low-frequency coastal
SLA. It offers improved prediction skill in the first several lead years in a
cost-effective way compared to initialized decadal hindcasts. Future
research could enhance prediction skill over longer timescales by training a
SOM on model simulations that exhibit a predominant timescale of AMOC
variability similar to that in observations. Furthermore, coastal sea level is
subject to many other processes that are not represented in the model, such
as glacial isostatic adjustment, vertical land motion, land ice melting, and
gravitational, rotational, and deformational effects. Future research could
also investigate whether long-term predictability exists within these pro-
cesses, potentially contributing to even more informed decadal predictions.

In this study, we examine two piControl simulations, each spanning
2500 years but with different atmospheric resolutions. The SLA variability
captured by these simulations is comparable. However, SPEAR_MED
exhibits slightly higher predictability, and we speculate that this is due to its
larger low-frequency AMOC variability compared to SPEAR_LO. Future
work could explore the impact of horizontal ocean grid resolution on SLA
variability and predictability by leveraging long simulations with higher-
resolution ocean components.
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Methods

Model simulations

In this study, we use simulations from the National Oceanic and Atmo-
spheric Administration (NOAA) Geophysical Fluid Dynamics Labora-
tory (GFDL) SPEAR model®, which include two long piControl
simulations from SPEAR_LO and SPEAR_MED, with the atmospheric
composition fixed at levels representative of the year 1850. SPEAR_LO is
fully coupled and consists of ocean and ice components from Modular
Ocean Model version 6 (MOM6)*' and atmosphere and land components
from AMA4.0-LM4.0°***, with nominal 1° horizontal resolution in all
components. SPEAR_MED is the same as SPEAR_LO but with 0.5°
horizontal resolution in its atmosphere and land components. A total of
2500 years from both piControl simulations (model years 201-2700) are
used to characterize the multiyear-to-decadal variability of SLA patterns
in the North Atlantic, after omitting the first 200 years to account for
model spin-up. All data from both simulations are linearly detrended to
remove the model drift.

In addition to the piControl simulations, the SPEAR large ensemble®®,
which contains 30 members, is used to assess the role of external forcing on
internal variability. Simulations are performed with SPEAR_MED, initi-
alized from the piControl simulation with a 20-year interval between each
member. These simulations are conducted under the historical forcing from
1921 to 2014, and the Shared Socioeconomic Pathway 5-8.5 (SSP5-8.5)
scenario™* from 2015 to 2100.

Furthermore, the SPEAR reanalysis and initialized decadal hindcasts
based on SPEAR_LO" are used to evaluate the prediction skill of the SOM-
based model-analogs (described more thoroughly in the main text). In the
SPEAR reanalysis, the 6-hourly atmospheric temperature and winds were
restored towards the 55-year Japanese Reanalysis (JRA55)*, and the SSTs
were restored towards the NOAA Extended Reconstructed Sea Surface
Temperature version 5 (ERSSTv5)". These atmospheric and SST con-
straints ensure that the ocean component of the reanalysis adheres to quasi-
observational boundary conditions, leading to reasonable AMOC multi-
decadal variability. Here we use the 30 ensemble members contained in this
reanalysis over the 1961-2020 period. Before they are compared with the
predicted SLA patterns from the model-analog method, linear detrending is
applied to each ensemble member, after which the ensemble mean is
computed and used as the benchmark.

The decadal hindcasts used contain 20 members, each initialized from
the SPEAR reanalysis on 1 January every year from 1961 to 2020, and
integrated for 10 years with realistic time-evolving anthropogenic and
natural forcing conditions. To remove the systematic model drift, the lead
time-dependent climatology is subtracted from the hindcasts. Linear
detrending is then applied to each lead time of each ensemble member.
Similar to the reanalysis, here we use the ensemble mean across the 20
members.

Observations

We utilize the gridded monthly mean global SLA estimates based on satellite
altimetry measurements over the 1993-2021 period, released by the
Copernicus Marine Environment Monitoring Service and the Copernicus
Climate Change Service®. This dataset has a horizontal resolution of 0.25°
X 0.25° Before comparing it with the SLA patterns from the piControl
simulations, the annual mean SLA is calculated from the monthly mean
measurements, the global mean sea level is subtracted from each grid point
to derive the dynamic sea level, and the 1993-2021 climatology is subtracted
to obtain the anomalies.

Additionally, we utilize coastal sea level records from tide gauge
stations, processed and distributed by the Permanent Service for Mean
Sea Level (PSMSL)¥, to evaluate sea level predictions along the U.S.
Northeast Coast. We select data from 1956 to 2023 for all the stations
used, remove the linear trend, and apply an 11-year running mean to
focus on the low-frequency internal variability. After excluding the first
and last five years affected by the low-pass filter, the record used is
refined to 1961-2018.

Self-organizing maps

In the SOM method, a predetermined number of generalized patterns,
known as SOM nodes, are trained to approximate the distribution of the
input data. In a well-constructed SOM, these SOM nodes are spatially
organized, conserving topological order. That is, adjacent SOM nodes
represent similar patterns, while distant ones exhibit different features.
Unlike other classification methods that maximize the difference between
clusters (e.g., k-means clustering™), SOM views the input data distribution
as a continuum. Consequently, SOM is trained to span the input data space.
This characteristic renders SOM especially effective for examining fields that
vary continuously, such as sea level pressure” and SST*. Additionally, SOM
can capture nonlinear behaviors and is not constrained by orthogonality or
stationarity. This endows SOM an advantage over principal component
analysis, which is designed to maximize the variance and might merge
physically distinct patterns of variability”””. In contrast, SOM can identify
physically relevant patterns™, thereby offering insights into the mechanisms
and processes underlying these patterns.

To create a SOM, the SOM size (i.e., the number and arrangement of
nodes) and other relevant parameters are first specified. All SOM nodes have
the same size as an input data vector. These nodes are initialized with
random values, and then trained by repeatedly being compared to input data
vectors and modified. We use N to denote the number of times each input
data vector is compared to the nodes per training process. Therefore, for a
training process, the total training steps L is the number of input data vectors
times N. At each training step #, spanning from 1 to L, an input data vector
x(n) is compared against each SOM node m;(n), where i is the SOM node
index and m; denotes the SOM node vector associated with node i. The
Euclidean distance between x(n) and m;(n) is computed for each SOM
node, and the node with the minimum Euclidean distance is selected as the
best matching unit (BMU) c for this training step. The SOM nodes are then
updated towards the current input data vector in this training step as follows:

my(n+ 1) = my(n) + a(n) - hy(n) - (x(n) — my(n)),

where m;(n + 1) denotes the data vector associated with SOM node i at
training step n + 1, updated from its previous state m;(n) at step n, a(n) is
the learning rate parameter at step n, and h (1) denotes the neighborhood
function at step n”. a(n) denotes the extent to which SOM nodes are
updated at each training step. Here the inverse parameter is utilized, defined
as follows:

oc(n)zoco/(l-i-lOO%),

where « is the initial « value that is specified before training. a(n) is
designed to facilitate larger updates at the beginning of each training process
and more subtle tuning later. The neighborhood function h;(n) dictates the
shape of the influence of input data on SOM nodes. The Epanechikov
function is applied here as it has been shown to outperform other neigh-
borhood functions™:

2
h,; = max(O, 1-— d”iz).
a(n)

Here d ; denotes the distance between the BMU ¢ and each SOM node
i, 0(n) represents the radius of influence at training step n. According to this
equation, h; is maximized when d; is 0, indicating that the impact of each
input vector on the nodes is maximized at its respective BMU in the
neighborhood function. The impact of an input data vector on SOM nodes
diminishes as d; increases, with nodes beyond ¢(#) remaining unaffected.
In this study, we start with a larger o that impacts a wide array of nodes and
decreases its value with training time. This neighborhood function estab-
lishes the topological order of the SOM, where adjacent nodes are similar
and distant nodes are different, thereby leading to the key difference between
the SOM method and the k-means clustering. Further details on parameters
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and the quality of SOM are available in Kohonen (2021)” and Gu et al.
(2023)”. The SOM Program Package (SOM_PAK) is available online™
(http://www.cis.hut.fi/research/som-research/).

In this study, we use the SOM method to investigate the multiyear-to-
decadal variability and predictability of SLA in the North Atlantic (0-
65°N, 100°W-0), with and without the buoyancy-driven AMOC-related
longer timescale signal. Specifically, we train three 3 X 4 SOMs, one for
the annual mean SLA patterns in the 5000-year piControl simulations
from the SPEAR_MED and SPEAR_LO, a second for the same simula-
tions but with a 15-year high-pass Butterworth filter applied to the annual
mean SLA field before training, and a third with a 15-year low-pass
Butterworth filter applied. We note that the first and last 15 years are
removed from both simulations for the second and third SOM:s to mitigate
the edge effects of the filtering, resulting in a total of 4940 years. For all
three SOMs, we conduct two sets of trainings, with each data vector
presented to the nodes 50 times per training (N equals 50). The radii of
influence o, are set to 5and 2 and «, are set to 0.1 and 0.01 for the first and
second trainings, respectively. Well-trained SOMs lead to similar patterns
even with different tuning parameters. We also test different SOM sizes for
both unfiltered and high-pass filtered SLA patterns, as shown in Supple-
mentary Figs. 4 and 16-18. A larger SOM size leads to more phases of SLA
patterns that can be viewed as transition states of the existing patterns in
the 3 x 4 SOMs, while a smaller SOM size shows fewer phases and can
merge physically distinct patterns of variability. Overall, SOMs of various
sizes display similar dominant patterns of variability. The 3 X 4 SOMs are
used in this study as they encompass all the physically relevant patterns
needed for our purpose, as well as an appropriate number of transition
states.

After the training process, each input data vector from both simula-
tions is assigned to its final BMU, that is, the SOM node most closely
resembling the input data vector on the basis of minimum Euclidean dis-
tance. The frequency of each SOM node within each simulation or across
both simulations can be calculated as the percentage of input data vectors
whose final BMU is the corresponding SOM node in the corresponding
simulation(s). With the final BMU identified, we then create composites of
other variables (e.g., SST, meridional overturning streamfunction) asso-
ciated with SOM nodes for each piControl simulation. This enables us to
investigate the processes associated with each SLA classification.

In addition to the variables from the same simulations used to train the
SOM, we composite the SLA patterns from satellite observations to assess
whether they exhibit similar patterns of variability. To accomplish this, we
follow these steps: (1) Remove the global mean sea level from each grid point
to derive the dynamic sea level, and then subtract the 1993-2021 clima-
tology to obtain the SLA, making it more comparable to the SLA patterns
from piControl simulations. (2) Interpolate the observational SLA onto the
model grid. (3) Calculate the Euclidean distance between each observational
SLA pattern and all SOM nodes, selecting the node with the minimum
distance as its BMU. (4) Composite the original (not interpolated) obser-
vational SLA associated with each SOM node, based on their BMUs. Using a
similar approach as in steps 3-4, the SLA patterns from the reanalysis
dataset are composited onto the SOM as the benchmark for the SOM-based
decadal predictions.

To evaluate the role of external forcing on short timescale SLA varia-
bility, we also composite the SLA patterns from the 30-member SPEAR
large ensemble® onto the SOM generated from high-pass filtered SLA
patterns in the SPEAR piControl simulations. Specifically, two sets of
composites are conducted: one with the ensemble mean retained and
another with the ensemble mean removed from each grid point in each year.
To focus on short timescales, we apply a 15-year high-pass filter and then use
the SLA patterns over the 1993-2021 period for the composite analysis to
align with the period used for the satellite observations.

Transition probability table
To assess the temporal evolution of SLA patterns across the SOM, we create
a set of transition probability tables for SOMs following Gu and Gervais®.

Each input data vector (an annual mean SLA pattern) associated with a
SOM has its own BMU. The BMU series for all input data in each simulation
can be represented as a time series of discrete variables with values ranging
from1to 12 fora3 x 4 SOM map (one value for each node). These 12 states
form a mutually exclusive and collectively exhaustive partition of the SLA
patterns.

The temporal evolution of the SLA patterns can then be represented
using transition probability, defined as:

Pij(") = Pri{x,, = jlx, = i},

where x, is the SLA pattern at a specific year ¢, X, , is the SLA pattern at year
t + n with n being the time lag, and p;; is the conditional probability of the
occurrence of node j at lag n year given the occurrence of node i at lag 0. The
transition probabilities are calculated over lags for each simulation within
each SOM (Supplementary Movies 1-4, Figs. 3,4, and 7, and Supplementary
Figs. 12and 13). In each table, the 3 % 4large cells represent the initial node i
and the 3 X 4 small cells within each large cell represent the node j. The
number in each small cell is p,.

A Monte Carlo method is applied to evaluate the significance of the
transition probabilities. The null hypothesis is that the transition
probability equals the unconditional probability, which is the frequency
of the occurrence of each SOM node without any given information. A
null distribution is created for each SOM by repeatedly calculating the
unconditional probability from a number of randomly selected years
100,000 times. The numbers of years selected are 208 and 206 for each
piControl simulation associated with the SOM generated from unfil-
tered and high-pass filtered SLA patterns, respectively. For the SPEAR
large ensemble composites associated with the SOM generated from
high-pass filtered piControl simulations, the selected number of years is
73. These values represent the average number of input data from each
simulation classified within each SOM node. Transition probabilities
greater (smaller) than the 97.5th (2.5th) percentile of the null distribu-
tion are considered to be significantly higher (lower) than normal,
denoted by warm (cold) shadings in the transition probability tables
(Supplementary Movies 1-4, Figs. 3, 4, and 7, and Supplementary
Figs. 12 and 13).

The global significance theory”” is then utilized to determine the
overall significance level of an initial node (global significance) based on the
number of significant transition probabilities when starting from this node
(local significance)®. Specifically, the global null hypothesis, which asserts
that all local null hypotheses are true, is rejected if there are m or more locally
significant probabilities:

Pr(M = m) < &gopq1,
where M represents the number of local tests that reject their null
hypotheses, m denotes the threshold number of rejections needed among
the local tests to reject the global null hypothesis, and a,, is the global
significance level.

Assuming that the local tests are mutually independent, the probability
of M 2 m can be calculated using the binomial distribution,

K

K! . :

Pr(M=m) = E ——— (pea) (1 — )™,
= il(K — i)l o

where K is 12, and «;,,; is equal to 0.05. For a global significance level of 0.05,
m is 3. That is, if the number of significant probabilities starting from one
initial node is greater than or equal to 3 at a given time lag, the transition
probabilities associated with the whole initial node are viewed as globally
significant at this lag. The global significance of a node at a certain time lag
suggests that this initial node has a significant number of nodes to which it
does or does not tend to transition to at this lag. Therefore, if a given node at
a given lag is globally significant, we view the pattern starting from this node
as theoretically predictable at that lag.
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Pattern correlation

We verify the prediction of North Atlantic SLA patterns from the model-
analogs and initialized hindcasts using the ACC, which is widely used to
quantify the spatial similarity between patterns™. The ACC between two
patterns P and Q is calculated as follows:

G
Zg:lePgQg

G 2\~G 2

\/Zg=lwgp g Zg=lngg

ACC = [(~1<ACC<1),

where P, and Q, denote the anomalies for each grid cell g with respect to

their climatology in P and Q, respectively; w,, is the weight, calculated as the
horizontal area for each grid cell g; G is the total number of grid cells within

the domain.

Effective sample size

To account for the autocorrelation in the data when computing the corre-
lations between the tide gauge records and predictions, we use a t test based
on an effective sample size to determine the statistical significance of cor-
relations. Specifically, we estimate the effective sample size $* using the
following equation”'”:

S
= max_la, T ’
1425777 (1 = ) pulpy, (1)
where § is the original sample size, p, (1) and pyy(r) are the autocorrelation

coefficients of the two time series x and y at lag 7. Here we consider the
autocorrelation up to a maximum lag of 5.

sk

Data availability

The global estimates of SLA based on satellite altimetry measurements are
available through Copernicus Marine Environment Monitoring Service and
the Copernicus Climate Change Service, at https://doi.org/10.24381/cds.
4¢328¢78. The tide gauge sea level records from the PSMSL are available at
https://psmsl.org/.

Code availability
The source code of ocean component MOM6 of SPEAR _LO model is
available at https://github.com/NOAA-GFDL/MOMS6.
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