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A hybrid approach for skillful
multiseasonal prediction of winter
North Pacific blocking
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Wintertime atmospheric blocking often brings adverse environmental and socioeconomic impacts
through its accompanying temperature and precipitation extremes. However, due to the chaotic
nature of the extratropical atmospheric circulation and the challenges in simulating blocking, the
skillful seasonal prediction of blocking remains elusive. In this study, we leverage both observational
data and seasonal hindcasts from a state-of-the-art seasonal prediction system to investigate the
prediction skill of North Pacific wintertime blocking frequency and its linkage to downstream cold
extremes. The observational results show that North Pacific blocking has a local maximum over the
central North Pacific Ocean and that the occurrence of North Pacific blocking drives significant cold
anomalies over northwestern North America within a week, which are both well reproduced by the
model. Themodel skillfully predicts the western North Pacific blocking frequency near the subtropical
jet exit region at the shortest forecast lead, but skill drops off rapidly with lead time partly due tomodel
drift in the background flow. To overcome this rapid drop in skill, we develop a linear hybrid dynamical-
statistical model that uses the forecastedNiño 3.4 index and upstreamprecipitation as predictors and
that maintains significant forecast skill of high-latitude North Pacific blocking up to 7 lead months in
advance. Our results indicate that an improvement in the seasonal prediction skill of winter North
Pacific blocking frequency may be achieved by the enhanced representation of the links among sea
surface temperature anomalies, tropical convection, and the ensuing tropical-extratropical interaction
that initiates North Pacific blocking.

Atmospheric blocking is characterized by persistent and quasi-stationary
high-pressure systems that frequently develop in the mid-to-high latitudes,
particularly near the exit of the Pacific and Atlantic jet streams. The evo-
lution of blocking involves a persistent meandering of the jet stream, which
disrupts the midlatitude westerly flow and propagation of synoptic-scale
systems1,2. This disruption of regional atmospheric circulation, if sustained
for aweekor longer, can lead to extremeweather events that pose significant
socioeconomic risks3. For instance, during boreal winter, blocking exerts a
significant downstream impact on the occurrence of cold extremes over
many different regions, including East Asia4,5, Eurasia6, North America7–9,
and Europe10–12. This blocking-extreme weather linkage in turn emphasizes
the need for accurate prediction of blocking in operational forecasts since
blocking occurrence can serve as a source of predictability for extreme
weather events on a regional scale13,14.

The prediction of atmospheric blocking has been frequently noted as a
long-standing challenge in current weather prediction systems. This diffi-
culty partly originates from the chaotic nature of the extratropical atmo-
spheric circulation that makes blocking onset difficult to predict15,16 and
from the incomplete understanding of the blocking dynamics due to its
complexity2,13. Imperfect modeling systems with systematic biases in
blocking representation17,18 further hinder reliable blocking prediction.
Nonetheless, there have been efforts from the community to investigate
possible sources of blocking predictability and to assess the performance of
operational forecasts12,13 that have accompanied continuous model
improvements over the past few decades19. Recent studies showed appre-
ciable prediction skills in subseasonal forecasts for blocking systems asso-
ciated with extreme events12,14 and in decadal forecasts of North Atlantic
blocking20.
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Representation and predictability of blocking in models on the sea-
sonal time scale have received relatively less attention21, particularly for the
North Pacific (NP) blocking. The fact that seasonal prediction performance
of NP blocking has not been explored much may not be surprising since
blocking is an intrinsically intraseasonal phenomenon that is challenging to
predict even on weather timescales. It is notable, however, that the seasonal
statistics of temperature extreme events can be skillfully predicted in con-
nection with low-frequency variability, like that of the El Niño-Southern
Oscillation (ENSO), while the predictability of a single extreme event is
limited to a fewweeks22,23. In an analogous way, the statistics of atmospheric
blocking may be also predictable on the seasonal time scale to some extent
through the impact of slowly varying boundary conditions on the back-
ground mean state, upon which the blocking onset relies21,24. With this in
mind, we focus on the seasonal prediction of blocking frequency during
boreal winter, when atmospheric blocking occurs most frequently2 and the
magnitude of ENSO is strongest25.

Although wintertime blocking in the North Atlantic (NA) region has
received comparatively more attention than that in the North Pacific, NP
blocking occurs with similar frequency and with significant impacts on the
downstream North America region. A recent study using two different
generations of Canadian Earth System Models (CanESM2 and CanESM5)
showed that the observed linkage between NP blocking and North Amer-
ican cold spell frequency9 is well reproduced by the models. This finding
raises the possibility that a seasonal forecast modeling system may capture
this linkage, depending on howwell NP blocking frequency is simulated. In
addition to the fact that a dominant physical process of blocking formation
can differ across regions2,26, the need for an investigation of seasonal pre-
diction of NP blocking is further fueled by previous findings that the ENSO
teleconnection plays an important role in modulating the NP blocking
frequency7,24,27 and that seasonal forecasting systems are capable of skillful
forecasts of ENSO28–30.

The present study examines the statistics and prediction skills of
wintertime NP blocking frequency in seasonal hindcasts from the Seamless
System for Prediction and Earth System Research (SPEAR)31, a coupled
global climate model developed by the Geophysical Fluid Dynamics
Laboratory (GFDL) for seasonal to multidecadal prediction and projection.
Weused themedium-resolution version of SPEAR (SPEAR-MEDbutmore
simply referred to as SPEAR hereafter) due to current availability for both
historical simulations and seasonal hindcasts, which has a 50-km atmo-
spheric horizontal resolution and a 1.0° oceanic horizontal resolution with
tropical refinement to 0.3°. Regarding the utility of the SPEAR forecast
system, recent studies have demonstrated its ability to accurately simulate
and provide skillful multiseasonal predictions for a variety of phenomena,
including wintertime temperature extremes23, atmospheric rivers32, ENSO
and its teleconnection patterns29,33, and the Kuroshio extension variability34,
among others. These prior findings suggest that SPEAR may also be a
valuable tool for exploring the seasonal predictability and prediction skill of
atmospheric blocking. Therefore, this study leverages both observational
data and SPEAR retrospective seasonal forecasts to evaluate forecast skill of
NP blocking and to examine the sources of seasonal predictability. We also
propose a hybrid dynamical-statistical model that leverages the skillful
dynamical prediction of blocking precursors to yield skillful seasonal NP
blocking predictions for lead times reaching 7 months.

Results
Blocking climatology and interannual variability in
climate models
We first examine the climatology and interannual variability of wintertime
blocking frequency in both reanalysis and climatemodels. For the detection
of atmospheric blocking, three approaches based on the analysis of mid-
tropospheric geopotential height have been commonly adopted in the
community2: (1) the anomaly-based index, (2) the gradient-reversal index,
and (3) themixed (MIX) index. Inorder to reducepotential discrepancy and
misdetection of blocking results by using a single approach, we identify
blocking events in this study by the MIX index that considers both the

magnitude of 500-hPa geopotential height (Z500) anomaly and the reversal
of the meridional Z500 gradient around the local Z500 maximum17,35 (see
Methods). Figure 1A shows the ERA5 climatology of blocking frequency for
boreal winter (December to February; DJF), which depicts theNorth Pacific
and North Atlantic Oceans as the two preferred regions of blocking.
Notably, the climatological blocking frequency in the NA sector is sub-
stantially larger than that of the NP sector, as indicated by a NA local
maximum that is approximately 4.5 days larger than that of the NP. Such a
regional difference is due to the adoption of the reversal gradient criteria in
theMIX index5,35 that preferentially excludes quasi-stationary high-pressure
systems which frequently develop over the eastern Pacific1,36. The inter-
annual variability of blocking frequency measured by its interannual stan-
dard deviation, on the other hand, reveals four distinct maxima: the NP,
western Greenland, northern Europe, and Ural regions. Corresponding to
the collocated regional maxima in geopotential height standard deviation37,
the identified regions showcomparablemagnitudes of standard deviation in
blocking frequency, albeit with different climatological mean values.

In the second row, we show the 30-ensemble-member averaged cli-
matology of blocking frequency and its interannual variability simulated by
SPEAR (Fig. 1C, D). In general, both climatology and standard deviation of
the blocking frequency are reasonably simulated in themidlatitudes. SPEAR
well captures the two climatological peaks over the two ocean basins, as well
as four regions of large interannual variability. These spatial features are
similarly found in models from phase 6 of the Coupled Model Inter-
comparison Project (CMIP6)38, as shown by the panels in the third row
(Fig. 1E, F). If we use the root-mean-square error to evaluate the structural
resemblance between observation andmodel, we see that themagnitudes of
blocking biases in the SPEAR large ensemble are overall similar to those
fromCMIP6multi-model mean. Given thatmodels share typical structural
blocking biases, the difference maps of climatology and interannual varia-
bility between ERA5 and SPEAR are displayed in Fig. 1G, H. In terms of
climatological mean frequency, SPEAR overestimates NP blocking and
underestimates NA blocking. These contrasting biases align with findings
from a previous study using the earlier generation of climate models2,17, as
well as with results from recent studies using other GFDL comprehensive
climate models that participated in CMIP639,40. These studies revealed a
connection of biases between blocking and zonally asymmetric background
flow (i.e., stationary wave biases). In simulated interannual variability
(Fig. 1H), negative biases are foundover the four localmaxima.Thenegative
bias is particularly pronounced in Ural blocking, reflecting an influence
from themodel representationof theUralMountains41. This result indicates
potential improvement of orographic impact through better-resolved oro-
graphy in high-resolutionmodels. Further discussion on the topic of model
bias and potential improvements in blocking representation is pre-
sented below.

Despite sharing biases common to most state-of-the-art coupled cli-
mate models, SPEAR can simulate Northern Hemisphere blocking with
statistics that are reasonably close to those of observations.We next explore
the degree to which SPEAR can produce skillful seasonal predictions of NP
blocking. To address this question, we employ the 15-member SPEAR
hindcasts that cover the 1991-2021 period. These hindcasts are initialized
with atmospheric restoring simulations and ocean data assimilation and
then integrated for 12 months after initialization (Methods).

To investigate how SPEAR hindcasts simulate wintertime blocking
frequency, themodel blocking climatology in three different leadmonths is
shown in the left column of Fig. 2. When identifying blocking from hind-
casts, we additionally applied mean bias correction (Methods) which is
known to improvemodelblockingbiases in general20,42.Across thefirst three
leadmonths, SPEARhindcasts show a consistent spatial pattern of blocking
climatology, generally sustaining regional features simulated by SPEAR
historical simulations (Fig. 1C).However, the blocking frequencyprediction
skills measured by the anomaly correlation coefficient (ACC; Methods)
decrease rapidly with increasing lead month, implying that the simulated
interannual variability heavily depends on the initializationmonth (Fig. 2B,
D, F). For instance, at the shortest lead (i.e., initialized onDecember 1st), the
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hindcasts show significant prediction skills over the western NP, Canadian
Arctic Archipelago, and northern Europe. In the lead 1 month (i.e., initi-
alized onNovember 1st), onlymoderate prediction skills are found over the
subtropical Pacific and northeastern North America. The lead 2 forecasts

have even less area with positive ACC,mostly over the North Pacific Ocean
with thenorthwest-southeast tilted structure. The rapiddropof the blocking
prediction skill beyond lead 0month likely indicates that most of the lead-0
skill is tied to the atmospheric rather than ocean or land initial conditions,

Fig. 2 | Climatology and Prediction skills of wintertime (DJF) blocking in SPEAR
hindcasts (1991/92-2020/21).Wintertimeblocking climatology of SPEARhindcasts
(1991/92-2020/21) after seasonal cycle bias correction (see Methods) for (A) lead
0month (December 1st initialized), (C) lead 1month (November 1st initialized), and

(E) lead 2 months (October 1st initialized). The corresponding prediction skills
measured by anomaly correlation coefficient are shown in (B), (D), and (F),
respectively. Stippling indicates anomaly correlation coefficient statistically sig-
nificant at the 5% level with an effective sample size as evaluated in Bretherton et al.79.

Fig. 1 | Statistics of wintertime (December-to-February; DJF) blocking from
1991/92-2020/21 in the ERA5 reanalysis and global climate models. DJF Cli-
matology (left) and interannual variability estimated by the standard deviation
(right) for (A, B) ERA5, (C, D) SPEAR large ensemble, (E, F) CMIP6 multi-model
mean, and the differences (G, H) between SPEAR and ERA5. Regarding the

interannual variability of the SPEAR large ensemble in (D), the standard deviation of
blocking frequency has been computed for each ensemble member and then aver-
aged over 30 ensemble members. In panels with calculations from climate models
(C–F), the corresponding root-mean-square error over the Northern Hemisphere is
shown at the bottom left.
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and the drop is associated with the absence of the accurate atmospheric
backgroundflow informationat longer leads.By investigating theprediction
skills of individual winter months at the shortest lead, we ascertained that
most prediction skills in Fig. 2B originate from skills of December blocking
frequency. The limited prediction skill of wintertime blocking frequency in
high latitudes was similarly found in ref. 21 which used the seasonal pre-
diction systems from the European Center for Medium-range Weather
Forecasts (ECMWF).

Despite rapidly decreasing skills with lead time, we stress that SPEAR
can skillfully predict blocking frequency at the shortest forecast lead over
regions that have large observed interannual variability (Fig. 1B). It is also
notable that the positive ACC in the North Pacific Ocean persists longer
relative to other regions, suggestive of potential sources of blocking pre-
dictability therein. In the next subsection, we focus on the NP blocking
frequency and discuss why its skillful prediction at lead 0month can still be
practical, owing to its downstream influence over North America.

Prediction skills and downstream impact of the western North
Pacific blocking in SPEAR hindcasts
The western NP blocking, sometimes referred to as the Okhotsk or Kam-
chatka blocking in the literature, has been recognized as a driver of East
Asian cold surges during boreal winter4,5. Figure 3A is a zoomed-in version
of Fig. 2B, highlighting the lead-0ACC in theNPdomain. The areawith the
ACC larger than0.7 is concentratedwest of theBering Sea, as denotedby the
green box (40°–70°N/150°E–170°W). Calculations with the anomaly-based
blocking index yield consistent results. We then explore whether the
exceptionally high ACC in the western North Pacific is influenced by
increasing greenhouse gas concentrations. To test this, the anomalous
radiative component of Z500 derived from the SPEAR large ensemble is
removed before blocking detection (Methods). As a result, model skills in
the analyzed domain are overall maintained after removing the estimated
contribution of global warming (Fig. 3B), again highlighting the substantial
influence of initial conditions on the predictions of blocking frequency. To
assess howmodel hindcasts simulate the year-to-year variability of western
NP blocking, the time series of domain-averaged blocking frequency from
bothERA5and the SPEARhindcasts are presented inFig. 3C.The ensemble
spread of blocking frequency in the SPEAR hindcasts initialized on
December 1st includes the observed blocking frequency for most years, as
illustrated by a boxplot at each year. Evaluated by the ensemble-averaged
blocking frequency, the rank correlation skill of 0.59, statistically significant
at the 0.1% level, supports the model’s ability to predict the western NP
blocking, in addition to supporting evidence from the high ACC. From an
energetics perspective, this region is where the baroclinic growth and
intensification of NP blocking preferentially occur43.

The downstream impact of NP blocking is crucial for NorthAmerican
cold spells during boreal winter primarily through anomalous horizontal
temperature advection7–9. Aiming to investigate the downstream influence
of blocking, we conduct a composite analysis of westernNPblocking events
from the same hindcasts. The onset day of the blocking event (i.e., lag day 0)
is defined as the first day when more than 60% of the area in the domain
denoted by the green box is blocked. We note that the results are not
qualitatively sensitive to the choice of the threshold to define the onset day.
Figure 3D shows the observed composite of surface air temperature
anomalies averaged over lag days 1 to 10 following blocking onset. Alaska
and the PacificNorthwest experience significant cold anomalies in response
to the cold advection driven by blocking. Farther downstream, the western
United States also experiences significant warm anomalies due to the
southeasterlies associated with the trough over central Canada. This dipole
temperature anomaly pattern in observations is well reproduced by the
SPEAR hindcasts (Fig. 3E). The intensity and centers of circulation
anomalies associated with NP blocking are also captured well. Insomuch as
the hindcasts accurately simulate seasonal blocking frequency, its down-
stream impact is likely to be well reflected in the hindcasts, contributing to a
further improvement in the seasonal prediction of North American cold
extremes23.

Additionally, the lagged composites of precipitation anomalies show
that the western United States and Southwest Canada experience sig-
nificantly increased precipitation anomalies in response to the moisture
advectionbyblocking-related circulations,whereas the centralNorthPacific
Ocean close to the blocking center experiences significantly reduced pre-
cipitation anomalies (Fig. 3F). These observed spatial features are again well
reproduced by the SPEAR hindcasts (Fig. 3G), which further increases
confidence in the model performance of simulating the downstream
influence of North Pacific blocking.

Atmospheric sources of predictability for the western North
Pacific blocking
The above results of the western NP blocking are based on the hindcasts at
lead 0 month (i.e., December 1st initialization), which relies on the atmo-
spheric initial conditions to produce skillful predictions of the western NP
blocking. To shed light on what features of the atmospheric initial condi-
tions are most critical for the skillful prediction of blocking, we examine the
representation of the NP storm track (i.e., 850-hPa high-frequency eddy
heat flux obtained by 10-day high-pass filtered meridional wind and tem-
perature) inhindcasts, given the importanceof synoptic-scale eddy feedback
on the downstream formation of blocking26,44–46. For the composite analysis,
the 7 winters with the highest and lowest blocking frequency are selected
from observations to highlight the spatial difference of storm track eddies,
and the period of December 1-5 is chosen as representative of the initial
conditions.

The lead 0 hindcasts clearly show that compared to low-blocking
winters, lower tropospheric eddy heat fluxes are developedmore vigorously
and reach farther poleward during high blocking winters (Fig. 4A, D, G). In
the 150°E–170°W averaged values, we find that the local maximum of 850-
hPa eddy heat flux in high-blocking winters is stronger by 1 K m s−1 and
shifted poleward by approximately 6°, relative to that in low-blocking
winters (Fig. 4I), along with distinct differences in magnitudes poleward of
50°. In contrast, such spatial differences in the early December storm tracks
are rarely seen from the composites of hindcasts averaged over leads of 1-3
months (Fig. 4B, E,H),which likely explainswhy the skill drops rapidlywith
lead time. The longitudinally averaged values in leads 1–3 are also similar to
the climatology (Fig. 4J), and this muted difference is similarly found if
individual lead months are used for the analysis. Similarly, the location and
intensity of the low-level jet from850-hPa zonalwind show starkdifferences
between high- and low-blocking winters (Fig. S1). During high-blocking
winters, the zonal wind within the western NP domain slows down con-
siderably, indicating favorable conditions for blocking development1. On
the other hand, this distinct difference in zonalwindbetween low- andhigh-
blocking winters from lead 0 is not found in leads 1-3. Therefore, the
atmospheric background flow in the initial conditions strongly modulates
the model ability of seasonal prediction of blocking, as noted by earlier
studies of the subseasonal forecasts15,47.

Given the apparent strong dependence of seasonal prediction skill on
the atmospheric initial conditions, one may hypothesize that the seasonal
predictability of North Pacific blocking is intrinsically limited by the short
memory of chaotic atmospheric variability. Alternatively, if the sharp drop
in skill is more of a reflection ofmodel errors inhibiting the simulation of all
the dynamical processes that result in blocking, and if the model is more
skillful at simulating the large-scale precursors of blocking, then there may
still be opportunities to produce skillful seasonal predictions of NP blocking
at longer lead times. For example, seasonal prediction models, including
SPEAR, have shown good performance in predicting tropical sea surface
temperature (SST) variability such as ENSO28–30, and the ENSO tele-
connection can modulate the frequency of NP blocking7,24,27. In the fol-
lowing subsection, we explore if the ENSO-blocking linkage can be utilized
as a prediction source of the western NP blocking.

The ENSO-blocking relationship in observation and SPEAR
Adistinct characteristic of the boreal winter ENSO teleconnection pattern is
the northwest-southeast tilted anomalous atmospheric pressure pattern
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Fig. 3 | Prediction skills and the downstream impact of the western North Pacific
blocking. AACC of DJF North Pacific blocking from lead 0month.BAs in (A), but
after removing global warming contribution by using the SPEAR large ensemble.
The green box denotes the domain of the western North Pacific.CDJF time series of
the domain-averaged western North Pacific blocking frequency for ERA5 (black
line) and SPEAR hindcast ensemble-mean from lead 0 month (yellow line). The
model ensemble spread for each winter is denoted by a boxplot, while white circle
indicates amodel outlier. The rank correlation with its p-value is shown in the upper
left corner. D 10-day lagged composite of ERA5 surface air temperature anomalies

after the development of the western North Pacific blocking events (n = 24). Black
contours denote Z500 anomalies composited for lag days−2 to+2 with an interval
of 40 m. Stippling indicates the statistical significance at the 5% level evaluated by a
MonteCarlo test with 5,000 random subsamples of the same sample size.EAs in (D),
but for the ensemble-mean of SPEAR hindcasts, while composite analysis and
Monte Carlo significance tests have been performed for each ensemble member.
F, G As in (D) and (E) but for 10-day lagged composites of ERA5 and SPEAR
hindcast precipitation anomalies, respectively.
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over the NP, which is well reproduced by the SPEAR model31,33. To inves-
tigate whether this ENSO teleconnection leads to a significant relationship
between ENSO and NP blocking, we first analyze the rank correlation
between the 3-month runningmeanNiño-3.4 index, orOceanicNiño Index
(ONI), and blocking frequency from observations (Fig. 5A). The result
reveals that significant negative correlations are mostly found over the
Russian Far East and North Pacific Ocean, indicating that suppressed
blocking frequency tends to be favored in the boreal winters of El Niño. In
Fig. 5B,we replace the observedONIwith the ensemble-mean lead 0-month
SPEAR hindcast ONI (i.e., initialized on December 1st), considering that
SPEAR maintains a prediction skill of the wintertime ONI variability
exceeding 0.7 until lead month 7 (i.e., May 1st initialization; Fig. S2). As
expected from high prediction skill of ENSO at the shortest lead time (e.g.,
ref. 29; Fig. S2), thepatternof significant correlationswith the SPEARONI is
nearly identical to that with the observed ONI, albeit with a weaker

correlation for high-latitude blocking poleward of 65°N. Figure 5C depicts
how this ENSO-blocking linkage is represented in the hindcasts on average.
The simulated linkage tends to be shifted westward compared to the
observation, particularly over the centralNPandnorthernCanada, which is
partly associated with the westward-shifted biases in the maximum ENSO
teleconnection over the Pacific-North American region31,33. This figure also
shows that the linkage between ENSO and the eastern Pacific blocking is
muted in the SPEAR hindcasts. This model error in the ENSO-blocking
linkage would be one of the reasons for the limited prediction skill of NP
blocking frequency.

Given that ENSO has a strong connection to NP blocking and that
SPEAR skillfully predicts ENSO for lead times reaching 9 months (see
Fig. S2), we may expect that SPEAR also can skillfully predict NP blocking
for longer lead times than indicated in Fig. 2. However, as partly shown in
the differences of the atmospheric background flow depending on lead

Fig. 4 | Model representation of synoptic-scale eddies dependent on lead time.
A, B Composites of December 1st–5th 850-hPa high-frequency eddy heat flux
(v�HT

�
H ; where subscript H stands for 10-day the high-pass filtered variable and the

asterisk stands for the deviation from the zonal mean) from SPEAR hindcasts of (A)
lead month 0 (December 1st initialized), and (B) lead months 1–3 average
(November 1st, October 1st, and September 1st initializations) for the top 7 winters
of western North Pacific blocking frequency in the ERA5 reanalysis. C Difference
between (A) and (B). Gray contours indicate the climatological December 1st–5th
eddy heatfluxwith an interval of 5Km s−1. The results are qualitatively consistent if a
single lead month is used for (B).D–F As in (A–C), but for the bottom 7 winters of

western North Pacific blocking winters in the ERA5 reanalysis. G, H Differences
between the top and bottom 7 winters. Note that the top and bottom ranked winters
are chosen from the observed blocking frequency to emphasize the importance of
synoptic-scale eddy representation. I, J Longitudinally averaged 850-hPa high-fre-
quency eddy heat flux over the western North Pacific domain (green boxes;
20°–70°N, 150°E–170°W) for (I) leadmonth 0 and (J) leadmonths 1–3 average. Red
text indicates the latitude and magnitude of the peak values for the top 7 winters,
while blue text indicates the same for the bottom 7 winters. Stippling indicates the
statistical significance at the 5% level evaluated by a two-sided Welch’s t-test.

https://doi.org/10.1038/s41612-024-00767-2 Article

npj Climate and Atmospheric Science |           (2024) 7:227 6

www.nature.com/npjclimatsci


months (e.g., Fig. S1), model errors in the atmospheric mean state quickly
grow due to an inherentmodel drift. Figure 6A shows the root-mean square
deviation of the 850-hPa zonal wind field in theNorthernHemisphere with
respect to the same field from the historical simulation, specifically on the
seasonal cycle ofDecember 1st-January 29th (i.e., 60 days).We see that after
about one month from initialization, the characteristics of zonal winds
simulated in the SPEAR hindcasts show very similar differences regardless
of lead time, reflecting the model drift toward the uninitialized SPEAR
climatology. Such behavior is systematically found in other regionalmetrics
such as thePacific low-level jet location (Fig. 6B), intensity, and atmospheric
circulation fields (e.g., an upper-level zonal wind). Since the model drift of
the atmospheric mean state becomes pronounced with lead time, we
hypothesize that themodel fidelity in representing the relationship between
ENSO and synoptic-scale eddy heat flux on the seasonal time scale alsomay
deteriorate rapidly with lead time in response to this model drift.

We test this hypothesis by regressing the SPEAR wintertime 850-hPa
eddyheatflux against theONI at different leadmonths (Fig. 7).Wefind that
lower tropospheric fluxes at the entrance and northeastward flank of the
North Pacific storm track are significantly modulated by ENSO at lead 0
(Fig. 7B), generally in accordance with the observed linkage of synoptic-
eddy heat fluxes to ENSO (Fig. 7A). This result indicates that the SPEAR
hindcasts at lead 0 partly capture poleward eddy heat fluxes associated with
ENSO, which dominantly occur over the Gulf of Alaska and serve as energy
source for wintertime blocking through baroclinic energy conversion43.
However, even at a lead of just 1 month earlier, the ENSO/850-hPa eddy

heat flux linkage overall is displaced equatorward, as depicted by weakened
regressions polewardof 30°Nand intensified regressionswest of thedateline
(Fig. 7C). This equatorward drift from the regressions continues at longer
lead months and becomes more pronounced (Fig. 7D), indicating that a
growing error in the ENSO-eddy heat flux linkage (Fig. 7E) is likely to
induce errors in the ENSO-blocking linkage and a reduced NP blocking
forecast skill. Furthermore, a direct impact ofmodel drift to the ENSO-eddy
heat flux linkage is depicted by the root-mean square deviation (RMSD) of
the regressions between the ONI and eddy heat flux for different lead
months (Fig. 6C, D). The regressions in lead month 0 only substantially
deviate from those of the SPEAR historical simulation up to day 20 (i.e.,
December 20th), while other lead months show nearly constant RMSD
values, indicating that in spite of high ENSO prediction skills by SPEAR
(Fig. S2), themodel drift in the atmosphericmean state directly disrupts the
linkage between ENSO and synoptic-scale eddy activity.

Multiseasonal forecasts of North Pacific blocking using a hybrid
dynamical-statistical model
The strong ENSO seasonal prediction skill from the current dynamical
prediction systems28–30 and the significant relationship between ENSO and
NP blocking demonstrated above motivate us to test a hybrid dynamical-
statistical prediction approach. A hybrid dynamical-statistical model com-
bines output from dynamical forecasts and statistical relationships between
predictors and predictand (e.g., ref. 48). In this study, we predict wintertime
blocking frequency by using a linear regression model that has two

Fig. 5 | Relationship between ENSO andNorth Pacific blocking frequency during
boreal winter. A A map of rank correlation between the NOAA DJF Oceanic Niño
Index and ERA5 blocking frequency. B A map of rank correlation between the 15-
ensemble-member averaged DJF Oceanic Niño Index from SPEAR hindcasts
initialized onDecember 1st and blocking frequency in the ERA5 reanalysis.CAmap

of the 15-ensemble-member averaged rank correlation between the DJF Oceanic
Niño Index from SPEAR hindcasts of the December 1st initialization and DJF
blocking frequency in the SPEAR hindcasts from the same initialization month.
Stippling indicates rank correlations that are statistically significant at the 10% level
with an effective sample size as evaluated in Bretherton et al.79 .
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predictors associated with NP blocking frequency—the ONI and western
NP precipitation. While the ONI plays a major role as a predictor in this
hybridmodel (e.g., Fig. S3),we found it is also advantageous to consider local
latent heating that serves as a wave source and contributes to the

amplification of downstream blocking systems, as supported by both
observations and a theoretical framework49,50.

The role of latent heating in atmospheric blocking suggested by the
previous studies operates mostly on the shorter intraseasonal time scale.

Fig. 6 |Model drift of the backgroundflowand its influence on the linkage between
ENSO and high-frequency eddy heat flux in SPEAR hindcasts. A Temporal evo-
lution of the root-mean square deviation (RMSD) of the 850-hPa Northern Hemi-
sphere (20°–90°N) zonalwind.TheRMSDvalueshavebeen computed fromDecember
1st to January 29th for the hindcasts with different lead months, relative to the cor-
responding DJF-mean flow in the SPEAR historical simulation (Unit: m s−1). B
Temporal evolution of differences in the western North Pacific (150°E–170°W) low-
level jet latitude from December 1st to January 29th for the hindcasts at different lead

months. Note that the DJF climatological low-level jet latitude in the SPEAR historical
simulation has been used to compute its difference from that in the hindcasts. C
Temporal evolution of the RMSD of the regression coefficients of the 850-hPa high-
frequency eddyheatflux (v�HT

�
H) on the SPEAROceanicNiño Indexover theNorthern

Hemisphere (20°–90°N). The RMSD values have been computed from December 1st
to January 29th for the hindcasts at different lead months, relative to the regression
coefficients in the SPEARhistorical simulation at the correspondingday (Unit: Km s−1

per K).D As in (C), but for the North Pacific domain (120°E–120°W, 30°–80°N).
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Nevertheless, a significant linkage between NP blocking and its upstream
precipitation (Fig. S4) encourages us to test its usefulness as a local ther-
modynamic predictor for the interannual variability of atmospheric
blocking. This choice has been further prompted by a recent finding that
there is a significant interannual relationship between NP blocking and its
upstream boundary condition over the Okhotsk Sea region (e.g., ref. 51).
The statistical significanceof upstreamprecipitation as a secondpredictor of
NP blocking has been confirmed by an F-test (seeMethods).While SPEAR

exhibits good Niño 3.4 index prediction skill up to lead month 9 (Fig. S2),
reasonably high and significant prediction skill of the seasonal-mean wes-
tern NP precipitation, independent from ENSO, is also found up to lead
month 3 (Fig. S5). This persistence of ENSO-independent Okhotsk Sea
precipitation prediction skill is due to its connection with slowly varying
North Pacific sea surface temperature variability (Fig. S6), which can be
skillfully predicted by SPEAR (Fig. S7). Although there might be other
significant predictors of NP blocking worth exploring in future studies, we
focus on these two predictors for the hybrid model in this study because of
the strong theoretical grounds for their inclusion and the support from
previous studies2,17,24,27,49,50,52. We make predictions of DJF blocking fre-
quency for leads of up to 9 months (1 March initialization) using the pre-
dictors from each initialization. Moreover, to avoid overfitting, we generate
cross-validated forecasts by using a leave-one-year-out approach in which
the model is trained with data that excludes the prediction year (Methods).

Figure 8 shows the rank correlation skill of blocking frequency for
leads of 0-9 months from our hybrid dynamical-statistical model in the
left column and that from the dynamical model in the right column. It is
clearly seen that the hybrid model prediction sustains significant cor-
relation skill over the Russian Far East andNorth Pacific Ocean for leads
of up to 3 months (i.e., September 1st initialization; Fig. 8A–F),
accompanying the prominent northwest-southeast tilt reminiscent of
wintertime ENSO teleconnection. Although the performance of the
dynamical model output is superior to the hybrid model at a 0-month
lead (i.e., December 1st initialization; Fig. 8B), especially for high-
latitude blocking, its prediction skill rapidly deteriorates beyond lead
0 month, consistent with the previous model assessment by the ACC
(Fig. 2). For instance, at leads of 1 and 3 months, most significant cor-
relation skills derived directly from SPEAR are found equatorward of
60°N and west of the dateline (Fig. 8D, F) but not farther north and east,
reflecting the displaced relationship between ENSO and synoptic-scale
eddy heat flux (Fig. 7). Even at leads of 6 and 9months, the hybrid model
shows regions of persistently positive skills over the North Pacific Ocean
(Fig. 8G–J), and this long-lasting correlation raises the possibility of
operational multiseasonal forecasts of NP blocking and its downstream
impacts.

We also compare the domain-averaged blocking frequency between
the dynamical and hybridmodel forecasts. The high-latitude NP blocking
near the Bering Sea (i.e., 50°–75°N/150°E–150°W) is chosen because of its
local climatological peak during boreal winter. Figure 9A shows the
standardized and linearly detrended time series of the high-latitude NP
blocking frequency fromboth thehybrid anddynamicalmodels at leads of
0, 1, and 3 months. As captured by the temporal correlation coefficients
for each time series, the ensemble-mean SPEAR hindcast at lead 0 (black
solid line) shows the largest correlation, 0.68. This high skill is followed by
a marked decrease in dynamical forecast model performance with lead
time, as seen from previous results. The hybrid model prediction per-
formance, on the other hand, is relatively well maintained across leads,
suggesting that the NP blocking may be skillfully predicted by the hybrid
model up to 7 months in advance (Fig. 9B). We found that the dynamical
forecast model occasionally shows negative correlation skills in longer
lead months, unlike the hybrid model, which consistently retains positive
skills (Table S1). The result is qualitatively insensitive to the choice of the
latitudinal domain (e.g., 40°-80°N). The persistence of prediction skill in
the hybridmodel is inherently derived from the dynamicalmodel’s ability
to predict the interannual variability of tropical SST, including ENSO,
and, to a lesser extent, the North Pacific SST. The importance of ENSO
prediction is also evidenced by the timing when the hybrid model’s pre-
diction skill notably diminishes at lead 8 month (i.e., initialized on April
1st), which corresponds to a steeper decline of the Niño 3.4 index pre-
diction skill by SPEAR at the same time (Fig. S2B). This decline is asso-
ciated with the challenge that many seasonal prediction systems in
predicting ENSO during spring initializations, often referred to as the
“spring predictability barrier”25,29. Another notable aspect of the hybrid
model performance is that its correlation skill shows a temporal peak at a

Fig. 7 | Model representation of the ENSO-lower tropospheric eddy heat flux
relationship. A A regression map of the ERA5 DJF-mean 850-hPa high-frequency
eddy heat flux (v�HT

�
H Þ onto the NOAADJFOceanic Niño Index. Prior to regression,

each time series is linearly detrended. Green contours indicate climatological eddy
heatflux larger than8Kms−1 with an interval of 2Kms−1, andpink contours indicate
regression coefficients larger than 1Kms−1 perKwith an interval of 0.2Kms−1 perK.
Stippling indicates the statistical significance at the 10% level evaluated by a two-sided
Student’s t test. In this regression analysis, the 29-year period (i.e., 1992/93-2020/21
DJF) is used due to the data loss at the beginning of the time series arisen from a
Lanczos band-pass filter. B A regression map of the SPEAR 15-ensemble-member
averaged DJF-mean 850-hPa high-frequency eddy heat flux onto the corresponding
DJF ONI from the December 1st initialization. C, D As in (B), but from (C)
November 1st initialization and (D) the average of September 1st-November 1st
initializations. E Difference in regression coefficients between (B) and (D).
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lead of 3 months (i.e., initialized on September 1st), as hinted by the rank
correlation map (Fig. 8E). This peak is primarily driven by precipitation
over the Okhotsk Sea, serving as an additional predictability source of NP
blocking variability on the interannual time scale. In agreement with the
decrease of the hybrid model prediction skill at a 4-month lead, the

prediction skill of SPEAR for this upstream precipitation persists for
3 months (Fig. S5). At the 4-month lead time (i.e., initialized on August
1st), the rank correlation skill of this upstream precipitation against the
observation drops to 0.21, in contrast to the correlation value 0.47
(p < 0.01) at the 3-month lead time.

Fig. 8 | Comparison of rank correlation skills between the hybrid statistical-
dynamical model hindcasts and SPEAR dynamical hindcasts for different
lead times. Rank correlation maps of DJF blocking frequency (A) between ERA5
and the hybrid model using the forecasted Niño 3.4 index and upstream pre-
cipitation from theDecember 1st initialization, and (B) between the ERA5 reanalysis
and SPEAR hindcasts of the December 1st initialization. For the hybrid model, the
linear dependence between the two predictors has been removed by the linear

regression method. The green boxes denote the domain of high-latitude North
Pacific blocking frequency used in Fig. 9. C, D As in (A, B) but for a 1-month lead
(November 1st initialization), (E, F) 3-month lead (September 1st initialization),
(G, H) 6-month lead (June 1st initialization), and (I, J) 9-month lead (March 1st
initialization). Stippling indicates a rank correlation statistically significant at the 5%
level with an effective sample size as evaluated in Bretherton et al.79.
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Discussion
This study explores the prediction skill of wintertime North Pacific (NP)
blocking frequency in the GFDL SPEAR seasonal forecast system. While
there have been a number of studies exploring the short-to-medium-range
forecasts of atmospheric blocking events due to their potential to provide
early warnings of high-impact extreme weather events closely linked to
blocking (e.g., refs. 12–15,53), our study attempts to expand this effort to the
seasonal time scale of blocking frequency. The blocking detection algorithm
considers both the reversal criteria of the geopotential height gradient and
amplitude of geopotential height anomaly to identify blocking events. We
have shown that the skill at a 0-month lead (i.e., initialized onDecember 1st)
is pronounced over the western NP region on the poleward flank of the
Pacific storm track, but this skill drops rapidly with increasing lead time.
This result motivated us to explore whether the drop in skill may reflect an
intrinsic limitation of the seasonal predictability of NP blocking or, alter-
natively, the high initial skill may indicate the potential for skillful multi-
seasonal forecasts of NP blocking if we can overcome key model biases.
Given the strong connection between NP blocking and slowly varying sea
surface temperatures, particularly from ENSO, we hypothesized that model
drift in the background state was likely a major inhibitor of seasonal
blocking skill. We then demonstrated that the interaction of these growing
errors in background state with slowly evolving ENSO signal induces errors
in the linkage between ENSO and synoptic-scale eddy heat fluxes that are
critical for NP blocking frequency anomalies. Therefore, the accurate

simulation of the background mean state, the slowly evolving tropical SST
anomalies, and the interaction between these SST anomalies and the storm
track synoptic eddies are essential formaintaining skillful predictions of NP
blocking beyond the shortest lead times.

In spite of limited deterministic skills in blocking frequency prediction
due to the apparent model deficiencies in simulating high-frequency eddy
heat fluxes, we still achieve skillful multiseasonal forecasts of NP blocking
frequency through a hybrid dynamical-statistical prediction approach. This
adaptation capitalizes on the significant interannual linkage between ENSO
and upstream precipitation with blocking, as well as the ability of themodel
to predict these blocking precursors at long leads more skillfully than the
blocking frequency itself. The hybrid model is constructed as a multiple
linear regression model that has the predictors – Oceanic Niño Index and
upstream precipitation – incorporated from the dynamical model (i.e.,
SPEAR hindcasts with leads extending to 9 months). Regarding the pre-
diction of high-latitude NP blocking frequency, the hybrid model forecasts
outperform the dynamicalmodel forecasts for leads from1 to 9months and
are inferior to the dynamical model forecasts only at lead 0 when the
midlatitude background flow from initial conditions plays a crucial role as a
dominant source of predictability. The promising skills of the hybrid
dynamical-statistical model suggest some potential operational application
that overcomes the limited blocking prediction skill in the dynamical
modeling systems on seasonal time scales.

With the above in mind, we discuss some limitations of the hybrid
model. First, as expected from its design, the hybridmodel does not include
predictors that represent the atmospheric dynamic contribution to the
formation and maintenance of blocking, including interactions among
eddies on different time scales, due to its short-term predictability in the
dynamical model47,54. Second, similar to the aforementioned caveat, a
multiple linear regressionmethodof themodel inherently does not consider
nonlinearity of blocking, including its nonlinear linkages to the thermo-
dynamic predictors. Third, there still might be other predictors influencing
NP blocking frequency. For example, the recent decline in Arctic sea ice
concentration affects the extratropical circulation on a regional scale, which
changes zonal winds adjacent to the area of sea ice loss and thus modulates
blocking frequency (e.g., refs. 55–57). The proposed mechanism involves a
more vigorous excitation of upward propagating planetary-scale waves,
which often results in a decelerationof the stratospheric polar vortex and the
following downward influence on regional blocking. If this mechanism
operates in the seasonal prediction model, the variability of regional sea ice
may also serve as an influential predictor of NP blocking. However, the
current version of the atmospheric model in SPEAR does not resolve
stratospheric-tropospheric coupling well enough to take the mechanism
into consideration. A version with a finer stratospheric resolution that may
be able to capture this proposed linkage is under development, and we leave
this investigation for future studies. Fourth, due to the limited time period
available for thehindcasts (i.e., 30 years),more detailed linkages betweenNP
blocking and El Niño diversity (e.g., Central Pacific El Niño versus Eastern
Pacific El Niño; ref. 24) have not been considered. Lastly, with the limited
data available, it is challenging to avoid the overfitting problem caused by
overlapping training and testing periods58. Therefore, a prolonged period of
hindcast data availability will be merited.

Despite these limitations, our finding that the SPEAR hindcasts are
able to reproduce the observed downstream impact of NP blocking sug-
gests that an enhancement of the blocking prediction skill would entail an
improved skill in the seasonal prediction of North American climate,
including precipitation and temperature variability. A previous study
investigated the prediction skill of North American temperature during
ENSO winters by using 6 different models in the North American Multi-
Model Ensemble (NMME)project59 and found that their performance at a
1-month lead is particularly poor for predicting temperature patterns
during La Niña winters60 when the occurrence of NP blocking is pre-
ferential.We speculate that this deficiencymayhave resulted, in part, from
the overall underrepresented variability of NP blocking frequency in the
hindcasts and from potential biases in the ENSO-blocking relationship

Fig. 9 | Simulated interannual variability of high-latitude North Pacific blocking
from the hybrid statistical-dynamicalmodel and SPEARdynamical hindcasts for
different lead times. A Standardized time series of DJF North Pacific domain-
averaged (i.e., 50°–75°N/150°E–150°W indicated by the green box in Fig. 8) blocking
frequency for the ERA5 reanalysis (red line), SPEAR hindcasts (solid contours), and
the hybrid model hindcasts (dashed contours) for different lead months. Each time
series is also linearly detrended, and temporal correlations between hindcasts and
reanalysis are shown in the legend. B Correlation of DJF North Pacific blocking
frequency between the ERA5 reanalysis and the hybrid dynamical-statistical model
for leads ranging from 0 (Dec initialization) to 9 (Mar initialization) months. A star
symbol indicates that the Pearson correlation is statistically significant at the
5% level.
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(e.g., Fig. 5C) due to the westward shifted ENSO teleconnection in climate
models61. This may provide an opportunity to explore the linkage of
prediction skills between North American temperature and NP blocking
across the NMME models. In addition, although not explored in this
study, incorporating the duration of NP blocking into the hybrid model
approach may improve the prediction skills of North American tem-
perature variability, since the quasi-stationarity of blocking has often been
linked to the occurrence of temperature extremes6,12–14,17. Given that the
mean westerly flow and vertical wind shear are closely linked to the per-
sistence of regional atmospheric blocking and related temperature
extremes through meridional surface temperature gradients6, a similar
hybrid model approach incorporating local boundary conditions as pre-
dictors has potential to address the predictability of the seasonal-mean
blocking duration.

Amore general approach to improve the prediction skill of blocking
may be a reduction of climatological biases in the modeling systems
(Fig. 1), which is closely related to atmospheric circulation mean state
biases to leading order39,62. In the case of another GFDL model closely
related to SPEAR, for instance, Narinesingh et al.40 examined the zonal-
mean removed 500-hPa geopotential height climatology in GFDL-CM4
as a model representation of stationary waves (i.e., zonal asymmetry in
the climatological mean state) and found positive biases for the NP
stationary waves and negative biases for the NA sector. Their result
indicates a close relationship between blocking biases and stationary
wave biases, supported by the finding that stationary waves affect the
diffluence of the jet stream, upon which the magnitude of the zonal local
wave activity flux hinges (e.g., ref. 1). Together with the importance of
atmospheric mean state bias, we recognize that there has been a myriad
of other model shortcomings discussed in the literature2, including but
not limited to climatological SST biases63–65, limited atmospheric and
oceanic resolutions21,41, errors in parameterized orographic drag66, and
underrepresentation of diabatic processes67,68. For a systematic assess-
ment of model performance, a comprehensive testbed is essential to
investigate the extent of improvement in blocking representation
achievable through testing variousmodel configurations (e.g., ref. 21). In
this context, our future study will examine blocking representation in
alternative versions of the GFDL SPEAR model. This will include
simulations aimed at significantly reducing climatological SST biases
using the flux adjustment technique (e.g., ref. 69) and simulations
implementing higher atmospheric and oceanic resolution, which are
currently under development.

Methods
Observational data
In this study,weuse thefifth generationof theEuropeanCentre forMedium
RangeWeather Forecasts (ECMWF) Reanalysis (ERA5)70 for observational
reference.Dailymean surface temperature, horizontal winds,mean sea level
pressure, and geopotential height data are obtained by averaging four
6-hourly time steps, while daily accumulated precipitation data is obtained
by integrating outputs fromhourly time steps. The analyzedperiodof boreal
winter (December-January-February; DJF) ranges from December 1991 to
February 2021 (total 30DJFs), and the horizontal resolution of the analyzed
variables is 1.25° × 1.25°. For ENSO analysis, the Oceanic Niño Index
provided by the National Oceanic and Atmospheric Administration Cli-
mate Prediction Center (NOAA-CPC) is used, which is computed as the
3-month runningmean of ERSSTv5 SST anomalies in theNiño 3.4 domain
(5°N-5°S, 120°-170°W).

The SPEAR model
A suite of large ensemble simulations from the Seamless System for Pre-
diction and Earth System Research (SPEAR)31 model is employed
throughout the study. The SPEAR modeling system has been recently
developed by theGFDLwith the aim to investigate seasonal tomultidecadal
predictability and variability of various climate phenomena, providing both
historical simulations and seasonal hindcasts that are primarily forced by

external radiative forcing and initial boundary conditions, respectively. It
consists of the GFDL state-of-the-art component models such as atmo-
spheric (AM4), land (LM4), sea ice (SIS2), and oceanic (MOM6) compo-
nent models. This study used the medium-resolution version of SPEAR
(SPEAR-MED) characterized by a 50-km atmospheric horizontal resolu-
tion anda1.0°oceanic horizontal resolutionwith tropical refinement to 0.3°.
SPEAR-MED has participated in the North American Multi-Model
Ensemble (NMME) project with real-time seasonal forecasts provided
since 2021. This study used both historical simulations and seasonal
hindcasts that are further described in the following subsections. We refer
the reader toDelworth et al.31 for further details on the specific choicesmade
for configuration and physical parametrizations.

Historical simulations from SPEAR and CMIP6
To investigate the features of atmospheric blocking simulated by climate
models, we use a 30-member ensemble of SPEAR historical simulations
covering the analysis period from 1991 to 2021. Because historical simula-
tions are available until 2014, projections following the Shared Socio-
economic Pathway 5-8.5 are appended for the period of 2015-2021.
Moreover, to assess if other climate models exhibit similar atmospheric
blocking statistics, the corresponding simulations from 19 global climate
models participating in phase 6 of the Coupled Model Intercomparison
Project (CMIP6) are also analyzed in this study. These models are chosen
based on the availability of daily output from the future projection scenario
(e.g., ref. 19; Table S2). Model Z500 has been uniformly regridded to a
1.25° × 1.25° horizontal resolution using bilinear interpolation to facilitate a
direct comparison with ERA5 reanalysis and reduce computational costs.

SPEAR hindcasts
To investigate the predictability of atmospheric blocking, this study utilizes
SPEAR hindcasts for the analysis period spanning from 1991 to 2021.
Specifically, on the first day of eachmonth, 15 ensemblemembers of SPEAR
hindcasts are generated by inputting different initial conditions for each
member, followed by a 12-month model integration. The initial conditions
for the atmosphere, land, and sea ice components are obtained from a
5-member set of SPEAR restoring simulations. In these simulations, the
atmospheric temperature, winds, and moisture are nudged toward the Cli-
mate Forecast System Reanalysis (CFSR) data71, while the SSTs are restored
to the Optimum Interpolation Sea Surface Temperature version 272. The
5-member initial conditions of atmosphere, land and sea ice are repeated
three times to create a total of 15 members. Oceanic initial conditions are
derived from15 ensemblemembers generated by an ocean data assimilation
system coupled to the SPEAR model. This system implements a bias cor-
rection scheme, referred to as ocean tendency adjustment, to alleviate ocean
model drift. We refer the reader to Lu et al.29 for further details on the ocean
data assimilation system for SPEAR hindcasts. The daily surface air tem-
perature, SST, horizontalwinds,mean sea level pressure, geopotential height,
and precipitation data are used in this study. As in historical simulations, the
hindcast Z500 has been regridded to a 1.25° × 1.25° horizontal resolution.
For construction of the hindcast Oceanic Niño Index, as in theNOAA-CPC
Oceanic Niño Index, we applied 3-month running mean to the forecasted
SST anomalies in the Niño 3.4 domain (5°N-5°S, 120°-170°W), where
anomaly here is defined as a deviation from the 1991-2020 base period.

Blocking detection algorithm
This study employs theMIX index that considers both Z500 anomalies and
the reversal of the Z500 meridional gradient 73, which is obtained by the
following procedure. First, the daily time series of Z500 anomaly is com-
puted by subtracting its smoothed seasonal cycle that retains the first ten
harmonics of the calendar-day mean values. Next, we apply the criteria of
blocking detection as in Hwang et al.5, which entails the exceedance of four
thresholds: amplitude, area, consecutiveness, and persistence. The ampli-
tude threshold is defined for each calendar month by computing the stan-
darddeviationof dailyZ500 anomalies in the 30°-80°N latitudinal bandover
a three-month window with the target month at the center. The daily Z500
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anomaly greater than 1.3 standard deviations at each grid point is con-
sidered as a blocking candidate. These blocking candidates must occupy an
area larger than 2:0× 106 km2, spatially overlap within consecutive days for
more than 50% of the area, and persist at least 5 days to be defined as a
blocking episode. The resultant blocking from these four criteria corre-
sponds to the blocking identified from the anomaly-based index approach.
TheMIX index is defined by additionally applying the criteria of the reversal
gradient in Z500 (GHGN) as follows.

GHGN λ; ϕ
� � ¼ max Z500 λ; ϕ

� �� Z500 λ; ϕ� Δϕ
� �� �

> 0;

λmax � Δλ=2 < λ < λmax þ Δλ=2 and ϕmax � Δϕ=2<ϕ<ϕmax þ Δϕ=2

ð1Þ

where λmax and ϕmax denote longitudinal and latitudinal grid point of the
maximum Z500 anomaly, Δλ and Δϕ correspond to 10° and 15°, respec-
tively. Any blocking day that fails to satisfy this gradient reversal criterion is
excluded fromblocking index. The aforementioned four criteria of blocking
detection – amplitude, area, consecutiveness, and persistence – are imposed
again to guarantee seamless identification of blocking. Consequently, this
MIX index provides a blocking system that retains both enhanced magni-
tude and a reversed meridional gradient of Z500. For the entire process of
blocking identification, we employed an open-source python package, the
ConTrack-Contour Tracking74. While showing the results from ERA5
reanalysis for the rest of the study, we also confirmed that the identified
blocking from ERA5 reanalysis is in good agreement with that from the
Japanese 55 years Reanalysis (JRA-55)75.With respect to blocking in climate
models, we adapted the same blocking detection algorithm using the daily
Z500 time series from eachmodel and each ensemblemember. In addition,
for consistency with models that do not retain leap days, leap days are
discarded after blocking systems are detected.

In the SPEAR hindcasts, prior to blocking identification, we applied a
mean bias correction technique to the daily Z500 time series in order to
alleviate a drift of model mean state20,42. For every initialization month and
ensemblemember, thedailyZ500 is subtractedby its lead-monthdependent

seasonal cycle ( gZ500SPEAR) and then added the corresponding observed

seasonal cycle back ( gZ500ERA5). The resultant time series is used for blocking
identification. In Fig. 3B, an estimate of the global warming contribution is
eliminated by additionally removing the ensemble-mean daily Z500
anomalies of SPEAR historical simulations from the daily Z500 time series
of SPEAR hindcasts prior to blocking identification.

Prediction skill analysis
To analyze how skillful SPEAR can predict the seasonal blocking frequency,
we evaluate performance with the anomaly correlation coefficient (ACC),
which measures a linear relationship in anomalous blocking frequency
between observation and hindcasts. This metric is often used for assessing
model ability to capture the observed interannual variability of the targeted
variable. As in Tseng et al.32, the ACC is computed as follows:

rxy ¼
Pn

i¼1ðxi � �xÞðyi � �yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðxi � �xÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðyi � �yÞ2
q ð2Þ

where xi and yi denote the seasonal blocking frequency at each grid point
from SPEAR and ERA5, respectively, in the year index i. �x and �y denote the
climatological mean blocking frequency for the 30-year period, and n
denotes the total numberof years, thus 30.As a rule of thumb, anACC larger
than 0.4 is generally acceptable as a skillful seasonal prediction. In addition,
Spearman’s rank correlation has been employed as another skill metric to
ensure the robustness of the results. This non-parametric correlation
estimates the monotonic relationship based on ranked blocking frequency
between observation and hindcasts.

A hybrid dynamical-statistical model
We use a hybrid dynamical-statistical model to examine if a multivariate
linear regressionmodel can provide skillful prediction for longer lead times.
The premise behind this approach is the potential that the model may be
more skillful in predicting the large-scale precursors of atmospheric
blocking than blocking itself. Previous blocking studies showed that ENSO
significantly modulates the seasonal blocking frequency through its impact
on extratropical circulation24,27,76 and that latent heating located upstreamof
blockingplays an important role in triggeringblockingonset and amplifying
the ridge49,50,77. Along this line, two predictors from the hindcasts are chosen
to construct this hybrid model: (1) Oceanic Niño Index (SST anomaly
averaged from 5°S–5°N/120°–170°W) as a metric of ENSO variability and
(2) precipitation over the Okhotsk Sea (50°–70°N/135°–165°E) as an esti-
mate of the latent heating upstream of NP blocking (40°–80°N/
150°E–150°W). For the latter, the choice of the domain is justified by the
regression between blocking frequency and precipitation where significant
positive regression coefficients are pronounced (Fig. S4). SPEAR hindcasts
at lead 0 month (i.e., December 1st initialization) reproduces the observed
regression pattern remarkably well (Fig. S4B, C). This upstream precipita-
tion signal is robustly foundwhenregressed against different domains ofNP
blocking frequency.The resultant hybridmodel that utilizes the relationship
between blocking frequency and these thermodynamic variables is written
as follows:

blockhybrid;m ¼ anino34 xfc nino34;m þ bprecip xfc precip;m þ coffset

The regression coefficients anino34, bprecip, and coffset at each grid point are
derived by regressing the linearly detrended DJF-mean ONI and upstream
precipitation values from the ensemble-mean SPEAR hindcast at lead
0 month onto the observed NP blocking frequency (i.e., area-averaged
blocking frequency from 40°–80°N/150°E–150°W). The dependence
between the two predictors is removed by using their linear regression
prior to be inputted to this hybrid model. To determine if the regional
precipitation used in this regression model acts as a statistically significant
predictor,weperformed theF-test by evaluating theF-ratio (e.g., ref. 78) and
found that the addition of upstream precipitation as the second predictor is
statistically significant at the 5% level. Furthermore, to avoid overfitting, we
applied leave-one-year-out cross-validation with the hindcast data (e.g.,
ref. 54) for each year in the analyzed period (i.e., 91/92-20/21 DJF) when
deriving the regression coefficients. Therefore, the predictions for year y
were constructed with regression coefficients calculated from all years
excluding year y. Next, we input the linearly detrended DJF-mean Niño 3.4
and upstream precipitation from the ensemble-mean SPEAR hindcast at
lead monthm, denoted by xfc nino34;m and xfc precip;m, respectively, to obtain
the seasonal blocking frequency from the hybrid model, blockhybrid;m. The
linear trends in thepredictors are removed to exclude thepotential influence
of global warming trends, but the results are nearly the same if these trends
are retained. Lastly, we tested different domains of upstream precipitation
for the hybrid model and found qualitatively consistent results.

Data availability
TheERA5 reanalysis hourly data used in this study canbedownloaded from
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
pressure-levels?tab=form for pressure levels and https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form for
single levels. The ERSSTv5 sea surface temperature dataset is available from
https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html. SPEAR Large
ensemble data can be downloaded from GFDL’s ftp server (https://www.
gfdl.noaa.gov/spear_large_ensembles/) and seasonal retrospective forecasts
data can be accessed from the NMMEwebsite (https://www.cpc.ncep.noaa.
gov/products/NMME/).

Code availability
The blocking identification code used in this study is a python open-source
package, CONTRACK, which is accessible from https://github.com/
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steidani/ConTrack74. Other python custom codes are direct implementa-
tions of standardmethods and statistical techniques that are described in the
Methods section. These codes are available from the corresponding author
upon reasonable request.
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