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Abstract

Research on weather and climate extremes has become integral to climate

science due to their increasing societal relevance and impacts in the context

of anthropogenic climate change. In this perspective we examine recent

changes and evolving paradigms in the study of extreme events, emphasizing

the increasingly interdisciplinary nature of research and their societal impli-

cations. We discuss the importance of understanding the physical basis of

extreme events and its linkages to climate impacts, highlighting the need

for collaboration across multiple disciplines. Furthermore, we explore the

challenge of big climate data analysis and the application of novel statistical

methods, such as machine learning, in enhancing our understanding of

extreme events. Additionally, we address the engagement with different

stakeholder groups and the evolving landscape of climate services and

private-sector involvement. We conclude with reflections on the risks and

opportunities for early career researchers in navigating these interdisciplin-

ary and societal demands, stressing the importance of meaningful scientific

engagement, and removing barriers to inclusivity and collaboration in

climate research.
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1 | INTRODUCTION

Research on weather and climate extremes has become a
fundamental part of physical climate science, involving
their modeling, predictions, study of their dynamic
drivers, detection of changes, and attribution to causes.
Different types of extremes are expected to shift in inten-
sity, frequency, and duration due to climate change, and
already demonstrate regional trends, including increases

in heat extremes, heavy precipitation, and agricultural
droughts (e.g., fig. SPM.3 in IPCC, 2021).

Over recent decades, climate researchers have made
significant advancements in providing a physical under-
standing of extreme events. This is owed much to theoreti-
cal groundwork in dynamic meteorology (e.g., Hoskins &
Karoly, 1981), sophisticated climate model archives like
those from the Coupled Model Intercomparison Project
(CMIP, Eyring et al., 2016), a variety of observational,
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remote sensing, and reanalysis products (e.g., Funk
et al., 2015; Hersbach et al., 2020), statistical methodolo-
gies like extreme value theory (e.g., Katz & Naveau, 2010),
and collaborative efforts (e.g., the core activities of the
Word Climate Research Programme [WCRP]). These
advancements are also reflected in increasing numbers of
publications on weather extremes (see also Figure 1a),
including the emergence of new subfields such as the
study of extreme event attribution (Diffenbaugh et al.,
2018; Jézéquel et al., 2018; Otto, 2017), compound events
(Zscheischler et al., 2020), and event-based storylines
(Sillmann et al., 2021).

The reason why research on the physical basis of
extreme events (hereafter, simply referred to as physical
climate science) is developing, is not only the observed
increasing trends in extremes, but also the associated
growing scale of impacts on society, ecosystems, and the
economy (with research on these topics hereafter simply
referred to as climate impact science). As such, under-
standing and predicting how extreme weather will
change under different greenhouse gas emission scenar-
ios is particularly critical for adaptation and mitigation
planning. Moreover, such research is crucial to provide
evidence-based information on expected losses and dam-
ages to support decision-making, as well as to contribute
to liability and compensation questions in the context of
climate change (Zhang et al., 2024).

Despite all mentioned advancements, there are still
noticeable knowledge gaps regarding the physical basis
of extreme events (Titley et al., 2016). This is particularly
evident from the limited availability of data and litera-
ture, notably in regions of the Global South (e.g., fig.

SPM.3 in Huggel et al., 2016; IPCC, 2021; Otto, 2023),
where models often perform poorly even in simulating
basic climatology (e.g., Bergner et al., 2022; Romanovska
et al., 2023). Other key challenges include adequately
reproducing processes that happen at smaller scales than
the current horizontal resolution of state-of-the-art cli-
mate models (e.g., Davis, 2018), to constrain uncertainties
in regional climate model projections (Shepherd, 2014),
understanding and modeling the role of vegetation and
biodiversity in modulating extreme events (Findell et al.,
2024), overcoming discrepancies between physical rea-
soning and statistical practice (Kretschmer et al., 2021;
Shepherd, 2021), as well as meaningfully evaluating
extreme event predictions (Lerch et al., 2017).

These prevalent research gaps present significant
opportunities to advance physical climate science and
enhance its relevance to society. Working Group 1 of the
Intergovernmental Panel on Climate Change (IPCC,
https://www.ipcc.ch/working-group/wg1/) plays a piv-
otal role in offering scientific insights to tackle climate
challenges on a global scale. Moreover, climate scientists
operate in a context where “Climate Action” stands as a
critical Sustainable Development Goal of the United
Nations, with many other goals also intersecting with
climate change issues. These are just two high-level
examples of how physical climate science is closely
linked to societal needs and impacts. Recent discussions
have highlighted the importance of recognizing how
social values influence research, impacting, for instance,
choices in attribution studies and climate service
developments (Pulkkinen et al., 2022; Rodrigues &
Shepherd, 2022).

FIGURE 1 Increase in articles on extreme event research. (a) Number of articles in Web of Science from 1988 to 2023 including at least

one of the terms (searched for in title, abstract, author keywords): Extreme weather, weather extreme(s), weather and climate extreme(s),

weather hazard(s), climate hazard(s). (b) Same as (a), but with the additional constraint of containing at least one of the terms: Machine

learning, deep learning, artificial intelligence. Note that the different scales of the y-axes. Data accessed on June 14, 2024.
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In this perspective piece, we discuss how extreme
event research has rapidly evolved in recent years due to
societal and technological shifts, affecting research
questions, data, methods, and target groups, with more
transformations anticipated. We here focus on the atmo-
spheric climate science community, and document some
of these key shifts we have witnessed since we entered
the field about a decade ago, acknowledging that these
changes might also apply to other research activities. We
further stress that our observations, shaped by our posi-
tions at research institutions in Western Europe and the
United States, are particular to us and not representative
of the broader field. In this perspective, we reflect on the
early career scientist (ECS) perspective and argue that
while these changes introduce new risks, they also offer
exciting new opportunities (for a common ECS definition
see e.g., https://egu.eu/awards-medals/ecs-definition/).
In particular, we tackle questions related to the above
reflections. What can we contribute as physical climate
scientists to the continuously evolving field? How can we
better train, prepare, and support ECSs in addressing
interdisciplinary research? What do we need, and what is
needed from us?

2 | NEW PARADIGMS AND
CHALLENGES

2.1 | Linking to climate impact research
and social science

Extreme weather events have societal interest as they are
susceptible to causing high impacts both in the short-
and long-term (e.g., Vigdor, 2008), with the United
Nations Framework Convention on Climate Change
(UNFCCC) highlighting the existence of noneconomic
losses on individuals (loss of life, health, or mobility),
society (e.g., loss of territory, cultural heritage, indige-
nous or local knowledge, or societal or cultural identity),
and on the environment (e.g., loss of biodiversity or eco-
system services).

Physical climate science alone cannot fully assess
these impacts or comprehend their causation as it pri-
marily addresses hazards. However, impacts arise not just
from hazards, but also from exposure and vulnerability
(Simpson, Mach, et al., 2021), and the most extreme
weather events are not necessarily leading to the biggest
impacts and vice versa (Tschumi & Zscheischler, 2020;
van der Wiel et al., 2020). This calls for interdisciplinary
work (Mahecha et al., 2024; Pisor & Jones, 2021), espe-
cially against the backdrop of a nonstationary climate,
where hazards are changing, and exposure and vulnera-
bility are too. Interdisciplinary research is particularly

urgently needed in the Global South, where vulnerability
is often greater than the Global North, and where there is
a relative scarcity of such studies, further contributing to
climate injustice (Callaghan et al., 2021; Otto et al., 2020;
Pulkkinen et al., 2022).

Yet, there are more and more successful examples of
interdisciplinary studies on extreme events, combining
climate science with disciplines like hydrology, ecology,
as well as social sciences such as geography, economics,
or anthropology (Byers et al., 2018; Choksi et al., 2021;
Júnior et al., 2021; Steinke et al., 2023). For example,
Smiley et al. (2022) applied climate science attribution
methods to a hydrological flood model and socioeco-
nomic data to evaluate social inequities in climate change
attributed impacts of Hurricane Harvey. Verschuur et al.
(2021) showed that climate change made the 2007
Lesotho-South Africa drought more likely, contributing
to crop failure and thereby to food insecurity in the
region. Bastos et al. (2020) used different vegetation
models to assess the influence of the 2018 heat wave and
drought in Europe on ecosystem productivity. At a global
scale, Byers et al. (2018) investigated the overlap between
climate hotspots including some extreme event metrics
with vulnerability indices. Climate scientists have also
propelled extreme weather event research as useful for
society, be it for raising awareness when a high-impact
event happens (Van Oldenborgh et al., 2021), adaptation
planning (Hov & Cubasch, 2013), or climate litigation
(Stuart-Smith et al., 2022; Wetzer et al., 2024).

While collaboration with social sciences is encour-
aged, it may suffer from inadequate integration and dif-
fering research focuses (Pisor et al., 2023). In the case of
extreme event attribution, information may also result in
a so-called “climatization” of natural disasters, by putting
the emphasis on the hazard and the responsibility on
emitters, and eluding the roles of vulnerability and expo-
sure, and hence the responsibility of local stakeholders in
potential maladaptation (Grant et al., 2015; Lahsen &
Ribot, 2022). The need for contextualizing is further
exemplified in the debate regarding the informativeness
(or rather lack thereof) of extreme event research for loss
and damage (King et al., 2023; Noy et al., 2023).

The interdisciplinary space around extreme weather
research thus appears plural and burgeoning. For ECSs,
interdisciplinary research can present both an opportu-
nity and a risk. On the one hand, an ECS wishing to con-
duct interdisciplinary work will have to become familiar
with two or more different communities and literatures,
with different epistemologies and values. This tends to
slow down the publication process, which is key to get-
ting recognition, funding, and new career positions.
On the other hand, it allows them to explore spaces that
are not already populated by many senior scientists,
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opening space for pioneering work relevant for society.
Researchers able to navigate on the interfaces between
different research communities, and particularly
between physical climate science and social science,
should hold some keys to overcome big challenges
regarding climate action, especially around adaptation.
Increased collaborations between physical climate scien-
tists —who are eager to share their findings and put them
in a decision-making context—and experts in cognitive
science, law, philosophy of science, and science and tech-
nology studies are therefore needed. This requires better
support and interdisciplinary training for ECS to mini-
mize current obstacles, as well as guidance and funding
from federal agencies.

2.2 | Applying novel methods and tools

Along with increasing opportunities for interdisciplinary
work with climate impact scientists, we are also witnes-
sing a new frontier for the application of statistical algo-
rithms in climate science. Nowhere is that more apparent
than in the adoption of artificial intelligence (AI) and
machine learning. A recent review on just some of these
advances in climate science can be found by de Burgh-
Day and Leeuwenburg (2023), with limitations with
respect to extreme events further discussed, for instance,
by Watson (2022) and Lafon et al. (2023).

While examples of machine learning applied to pre-
dicting meteorological phenomenon have existed for
decades (e.g., Barnes Jr. & Frankel, 1990; Chisholm
et al., 1968; Marzban & Stumpf, 1998), this field has seen
a particularly fast expansion in the last few years. In
2023, around 9% of all articles on weather extremes listed
in Web of Science included machine learning applica-
tions, in contrast to less than a handful of publications on
that topic only 10 years earlier (see Figure 1a,b). Both the
American Geophysical Union and American Meteorolog-
ical Society have recently launched new journals to target
submissions that make use of AI methods (AGU
Newsroom, 2023; Camporeale et al., 2024; McGovern &
Broccoli, 2022). Moreover, in just the last year alone, sev-
eral machine learning-based models have been intro-
duced that demonstrate skill that is already comparable
to traditional numerical weather prediction (Bi et al.,
2023; Chen et al., 2023; Kurth et al., 2023; Lam
et al., 2023, see also fourth paradigm/challenge). Despite
an increasing number of summer schools, workshops,
short courses, online tutorials, and open-source code
packages being offered each year around the topic of
machine learning (Abadi et al., 2016; Chase et al., 2022;
Chase et al., 2023; Hedström et al., 2023; McGovern
et al., 2023; Pedregosa et al., 2011), ECSs may struggle to

keep up-to-date with the sheet scope of machine learning
terminology, literature, and coding libraries, while simul-
taneously advancing their research in physical climate
science (Jain et al., 2022).

The increasing use of machine learning in climate
research raises also new ethical questions, particularly
concerning its “black box” nature and issues with repro-
ducibility (Gibney, 2022; McGovern et al., 2019). It is
therefore crucial to enhance machine learning models
with explainability and interpretability to foster user
trust, especially for evaluating physical mechanisms
behind extreme events and for use in regional climate
services or policymaking where transparency is essential
(Bommer et al., 2024; Mamalakis et al., 2022; Parker &
Lusk, 2019). In the United States, this has led to the for-
mation of the AI Institute for Research on Trustworthy
AI in Weather, Climate, and Coastal Oceanography
(AI2ES), devoted to researching ethical issues regarding
the use of machine learning methods in Earth science
(McGovern, Bostrom, et al., 2022; McGovern, Ebert-
Uphoff, et al., 2022). Moreover, the development of open-
source tools and benchmark datasets for model validation
(Rasp et al., 2024; Watson-Parris et al., 2022) and explain-
able AI (Alber et al., 2019; Flora et al., 2024; Hedström
et al., 2023) is underway to address these concerns. How-
ever, the lack of ground-truth data, particularly for
extreme events, complicates the application of machine
learning in climate science, where the utility of such
applications often hinges on the context and underlying
values (Pulkkinen et al., 2022).

We also recognize that it is not just the use of deep
learning that has grown. Frameworks bridging atmo-
spheric and climate science with statistical methods have
expanded immensely over the past decade, forming the
basis for extreme event attribution (e.g., Diffenbaugh
et al., 2017; Singh et al., 2014; Sippel et al., 2020; Swain
et al., 2020). New popular techniques of analysis further
include storyline approaches (Mindlin et al., 2020;
Shepherd et al., 2018), such as applying numerical
weather prediction models for attribution (Leach et al.,
2021) and ensemble boosting for targeting unforeseen
extreme events (Fischer et al., 2023; Ragone et al., 2018;
Sippel et al., 2024). Moreover, causal inference and causal
discovery methods are now used to study the climate sys-
tem (Kretschmer et al., 2016; Kretschmer et al., 2021;
Runge, Bathiany, et al., 2019; Runge, Nowack, et al.,
2019), emergent constraint relationships between differ-
ent climate models have been further evaluated
(e.g., Hall et al., 2019; Sanderson et al., 2021; Simpson,
McKinnon, et al., 2021), and forms of downscaling are
now applied to resolve regional information at finer spa-
tial resolutions (e.g., Ekström et al., 2015; Xu et al., 2019).
All these methods require substantial data science

4 of 15 KRETSCHMER ET AL.



knowledge and experience, along with robust physical
reasoning during their application (Kretschmer
et al., 2021; Shepherd, 2021).

ECSs interested in pursuing interdisciplinary connec-
tions between computer science, statistics, and climate
science, face similar challenges to those linking with
climate impact science. There are substantial differences
in publishing norms and expectations between fields,
posing the risk of ECSs having less time to focus on the
involved physics (Jain et al., 2022). For example, machine
learning papers are more likely to be published as
preprints (e.g., on arXiv) and short conference papers
(e.g., at NeurIPS) compared with the long-form scientific
journals standard in climate science. While we urge users
of these new methods to carefully and critically consider
their purpose, usefulness, strengths, and weaknesses, we
stress their potential to advance the field, if applied
meaningfully. They offer a plethora of exciting opportuni-
ties, and ECSs equipped with strong data analytical skills,
will play a major role in this transformation. Therefore,
we highlight the importance of training, recognizing, and
rewarding the successes of the next generation of scien-
tists tasked with addressing Earth system science prob-
lems using machine learning advancements, as much of
this work will require extensive data science and coding
(Ebert-Uphoff et al., 2019; Jain et al., 2022; McGovern &
Allen, 2021). Achieving this in the Global South presents

additional challenges, as resources, including access to
GPUs, are more limited, underscoring the need for tar-
geted support and investment in these regions (Dike
et al., 2018).

2.3 | Analyzing big climate data

Climate science has become a (big) data problem with
different products serving to answer different questions
(see Figure 2 for an overview of common data types).
Studies assessing extreme climate and weather projec-
tions typically use CMIP-type datasets and require evalu-
ations of multiple models for high-impact publications.
Large ensembles are essential as internal variability can
sometimes surpass model uncertainty in climate extreme
predictions, particularly for compound events (Bevacqua
et al., 2023; Deser et al., 2020). Additionally, high-
resolution datasets are critical because extremes may be
overlooked in coarser datasets (e.g., Davis, 2018; Liu
et al., 2023), which has led to advances in high-resolution
global climate models (e.g., Chang et al., 2020), nested
and variable model grids (Harris & Lin, 2014), and
regional climate modeling (e.g., Giorgi & Gutowski
Jr, 2015). Climate impact data are powerful resource for
understanding the links between weather and impacts,
with datasets available at global (de Bruijn et al., 2019;

FIGURE 2 Overview of the major data categories used in extreme event research. Shown are observations (in blue), climate models

(in red) and impact data (in green), with reanalysis data (in purple) and statistical and hybrid models (in pink) further indicated. The arrows

in the schematic indicate typical data flow between data categories, while the nondirected links connecting the boxes indicate dependencies

and examples of data types. Note that this overview is not fully comprehensive, with the IPCC Sixth Assessment Report (Working Group

1, Chap. 10, figs. 3 and 5), for example, showing a larger scope of models and datasets used in climate research. The purpose here is to

illustrate the variety of data products, including “big,” computationally heavy products such as large ensembles and CMIP. (CMIP, Climate

Model Intercomparison Project; CORDEX, Coordinated Regional climate downscaling experiment; EM-DAT, Emergency Events Database;

ISIMIP, Inter-Sectoral Impact Model Intercomparison Project).
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Guha-Sapir et al., 2017), regional, or national scales
(Gourley et al., 2013; Hall et al., 2015), covering multiple
disasters (Hilker et al., 2009) or specific types of events
(Artés et al., 2019).

Researchers hence rely on modeling centers to make
their output public, or on public or private computational
support for climate simulations, which may not always
be straightforward. Once they can access or run these cli-
mate simulations, another hurdle may appear due to the
size of the very large datasets (on the order of petabytes,
O[PB]) that need to be accessed, downloaded, analyzed,
and visualized (see Figure 3 for a typical workflow). As
an example, the upcoming CMIP7 archive is expected to
exceed 20 PB (Robinson et al., 2020). Additionally, spe-
cialized skill sets, or software may be needed to analyze
variable resolution or specialized grid model output. As
the access to internet/connectivity, computing and data
storage resources differ across countries and institutes,
this creates an uneven playing field and can shape the
ECSs' success in their scientific impact (Jain et al., 2022).
In particular in the Global South, access to high-perfor-
mance computing including storage is more limited, with
direct implications for publishing in high-impact journals.

Against this background, proposals for a reduced set
of climate models to operate similarly to global weather
forecasting models are gaining traction, potentially free-
ing resources for more impactful climate research (Jakob
et al., 2023; Stevens, 2024). Efforts to merge weather and

climate modeling are underway, such as at ECMWF,
with calls for similar initiatives at other global modeling
centers (Randall & Emanuel, 2024). Moreover, the use of
AI and machine learning, for example, to emulate high-
resolution processes in climate models, is reducing the
need for intensive computational approaches like dynam-
ical downscaling (Jones et al., 2024; Schneider et al.,
2024). Centralized or cloud computing efforts (e.g.,
pangeo, OPeNDAP, Google Earth Engine) have also
allowed more streamlined analysis, allowing scientists to
analyze data in situ, and enable assessment of multiple
model outputs and ensembles in one location (e.g.,
Robinson et al., 2022, see also Figure 3), with “compute-
near-the-data” also planned for the Next Generation
Earth System Grid Federation (ESGF2). Some modeling
centers have also established diagnostics packages that
can be easily used to assess various metrics of climate
data, including climate extremes (e.g., Phillips et al.,
2014). Additionally, partially due to open data and sci-
ence publishing policies, researchers are now more often
sharing workflows that have been used in published arti-
cles, reducing some of the hurdles that other researchers
keen to apply their methodologies may have in assessing
some of the datasets (Erdmann et al., 2022).

For ECSs, there are several emerging opportunities to
challenge and improve the status quo. For example,
“Fresh Eyes on CMIP”, a WCRP working group led by
ECSs, is bringing new perspectives to the development of

FIGURE 3 Typical climate science workflow in extreme event research and opportunities for improvements. The “bare minimum”
workflow (shown in black) from downloading data to publishing results, is often extended by additional steps (shown in gray) including

running an Earth System or Integrated Assessment model with optional processing steps. Along with this workflow, different opportunities

for improvement are indicated (in purple).
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future CMIP datasets. Given that it takes time to make
results broadly usable (e.g., through software and tuto-
rials) and is often undervalued by the academic system,
greater support from research institutions and modeling
centers is important. Necessary steps include training
workshops (e.g., McGovern et al., 2019), simplified user
interfaces (e.g., Lombardozzi et al., 2023), unrestricted
access to publications and datasets, and ensuring easier
access for Global South scientists to HPC. Importantly,
these should be integrated by all research institutions,
not just dedicated institutes like ICTP or IIASA. Ulti-
mately, ECSs have the potential to lead and invest in
some of these modeling and analysis efforts and may be
able to make larger scientific contributions as simulations
and datasets become more efficient.

2.4 | Engaging with different
stakeholder groups

As anthropogenic climate change and its impacts affect
everyone—albeit in varying ways—the number of stake-
holders in physical climate science is increasing. These
stakeholders include decision-makers in politics and
industry, lawyers, water managers, indigenous communi-
ties, nonprofit organizations, and the general public.

For example, the recognition of extreme weather
events as presenting societal and financial risks has
spurred interest from multinational finance and insur-
ance companies like MSCI, AXA-Climate, and Citadel
which now have departments dedicated to quantifying
climate risks (Fletcher, 2023). Additionally, tech giants
like Huawei Cloud, Google DeepMind, and NVIDIA are
developing machine learning-based weather forecasting
technologies (Bi et al., 2023; Chen et al., 2023; Kurth
et al., 2023; Lam et al., 2023). These companies offer
attractive employment opportunities to ECSs in climate
science due to cutting-edge research, quicker decision-
making, more permanent contracts, and often higher sal-
aries than academia. On the other hand, independent
academic research remains vital in the context of climate
justice, as companies may prioritize business interests
over public interest (Keele, 2019). Condon (2023) argues that
“actionable and transparent information about our climate-
changed future is a public good that the private sector can-
not be depended upon to provide equitably or reliably.”
Looking forward, a greater integration of academic and cor-
porate research is likely (e.g., through scientific collabora-
tions, joint workshops, nontraditional funding sources),
necessitating discussions on forms of engagements, with key
challenges around transparency and equity.

In recent years, climate services have surged, show-
casing successful collaborations between climate

scientists and various stakeholders (White et al., 2022).
Climate researchers also increasingly collaborate with
policy institutes (e.g., Climate Analytics) and national
agencies (e.g., Copernicus) on extreme weather and cli-
mate change questions. Despite encouragement from
funding agencies to provide actionable climate informa-
tion and engage with decision-makers, challenges arise
due to differing stakeholder needs and scientific method-
ologies (Bruno Soares & Buontempo, 2019; Findlater
et al., 2021; Nissan et al., 2019). Coproduction is pro-
moted (Vincent et al., 2018), yet it takes time to yield
results, and might lead to gray literature rather than jour-
nal papers (something that is again not valued in acade-
mia, at least in our domain). Moreover, the scope of
community-engaged research is likely too narrow for
high-impact publications, mirroring challenges in inter-
disciplinary research. In particular, working with indige-
nous communities is crucial (Makondo & Thomas, 2018;
Reyes-García et al., 2024) but takes time and can lead to
unethical practices if not done carefully (Orlove et al.,
2023). Translating scientific results into action is further
complex and can sometimes harm the communities it
aims to help (Klein et al., 2022; Vaughan et al., 2018;
Vaughan et al., 2019). For example, Webber and Donner
(2017), argue that in the Pacific islands, the development
of climate services may divert limited adaptation
resources available in these countries from other actions.
They also point out that the commercialization of climate
services leads to optimizing profit over the needs of the
users. ECSs may work with “boundary” organizations
that have deep and ongoing relationships with different
communities and are sometimes a part of their own aca-
demic institution. For example, the University of Califor-
nia Cooperative Extension in California, establishes and
maintains essential ties with agricultural entities and
tribal communities across the state, and has been found
to increase the impact of academic research hours on the
creation of societally relevant knowledge (Chatterjee
et al., 2018).

Nuanced science communication is also increasingly
crucial. Whereas in the past climate scientists mainly
defended the existence of anthropogenic climate change
and the scientific consensus around it, they are nowadays
frequently asked to comment on the role of climate
change in extreme weather events in near-real time. This
shift happened alongside the establishment of scientist-
led fast-track attribution initiatives like World Weather
Attribution (Philip et al., 2020) and the recent Clima-
meter (Faranda et al., 2023). However, succinct media
statements usually lack the space to convey the complexi-
ties and uncertainties inherent in these attribution ques-
tions. Consequently, scientists face a dilemma—they may
be labeled as ‘activist’ and ‘alarmist’ on the one hand or
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accused of downplaying the significant risks of climate
change on the other (e.g., Brysse et al., 2013;
Showstack, 2019). While social media offers a platform
for disseminating more intricate findings, online engage-
ment presents challenges, particularly for marginalized
groups, and may not be fully appreciated by the scientific
community.

Finally, activist groups such as “Fridays for Future,”
“Extinction Rebellion,” or “Last Generation” frequently
cite scientific findings in their advocacy efforts. In the
case of “Scientists for Future” and “Scientist Rebellion,”
academics themselves engage in activism (Hagedorn
et al., 2019, see also Figure 4). Arguably, the increasing
visibility of climate activism has become a key reason for
young people to enroll in climate science-related studies
in the first place, highly motivated in finding climate
solutions. However, activist groups also critique the sci-
entific community for its inertia and lack of urgency in
communication, further underscoring how these emerging
forms of climate activism might also influence scientists.

Overall, given the various stakeholder interactions in
climate science, there is a growing need for more training
and support for ECSs on this matter. Successful collabo-
rations highlight the potential for impactful research but
also reveal challenges such as differing stakeholder
needs, the complexity of science communication, and the
integration of interdisciplinary efforts. Additionally, more
collaborations between researchers across institutions,
particularly with those in the Global South, require

concrete actions to facilitate these partnerships. Research
institutes and funding agencies can play a critical role in
addressing these challenges by providing interdisciplin-
ary training and career development programs, offering
mentorship and networking opportunities to help ECSs
navigate both academic and industry career paths.
Encouragingly, funding agencies are partly beginning to
understand, value, and support co-produced research
endeavors (e.g., NASA's “Earth Science to Action” strat-
egy), which could pave the way for academic institutions
to also recognize these achievements beyond peer-
reviewed publications.

3 | CONCLUSIONS AND OUTLOOK

The expected effects of human-caused climate change,
coupled with recent academic, technological, and social
shifts, have led to fundamental changes in climate sci-
ence, including the establishment of extreme event
research. These changes imply that young scientists
entering the field nowadays are formed in a remarkably
more interdisciplinary environment than it was even a
decade ago. While fundamental and theoretical climate
research on extreme events is still needed, especially for
types of events and regions with little certainty regarding
expected changes, we believe that our research should con-
tinue to become more interdisciplinary—be it in the form
of linking to climate impact science and working with social

FIGURE 4 Integration of

Science and Activism. Climate

protests on 20 September 2019 in

Berlin, Germany, featuring a

banner from the activist group

Scientists4Future stating “We

provide the facts. Time to act!”
along with a figure of the

“climate stripes” (https://
showyourstripes.info/). The

protests in Berlin were part of a

series of climate protests around

the world that day, just a few

days before the United Nations

Climate Action Summit in New

York (e.g., Kaplan &

Dennis, 2019).
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scientists, by applying novel machine learning and big data
techniques, or through stakeholder interactions.

For ECSs, we argue that these changes overall present
a high-risk, high-reward situation. While they provide an
opportunity to craft a distinctive research profile with
cutting-edge work directly relevant for society, they also
pose challenges in developing deep expertise and estab-
lishing oneself within a specific community. Conse-
quently, there is a risk that traditional evaluation metrics
used by (disciplinary) appointment committees and fund-
ing agencies may not adequately reflect scientific excel-
lence, impact, and creativity (e.g., Bromham et al., 2016).
This exacerbates the existing issue in academia of limited
permanent faculty positions and the absence of mid to
long-term career planning.

Therefore, supervisors and PIs need to be aware of
the risks associated with interdisciplinary work, espe-
cially for ECSs, and should provide support in navigating
them. This could involve allocating sufficient time and
resources for training and offering joint supervision with
scientists from other disciplines to bridge domain differ-
ences. As interdisciplinary work often requires more time
and may result in fewer publications, funding agencies,
and universities must reconsider how they measure
scientific success. For example, interdisciplinary PhD
programs should allow more time for graduation, and
funding schemes should differentiate between disciplin-
ary and interdisciplinary applications in their evalua-
tions. Moreover, training and infrastructure are of
imminent importance to support ECSs, including inter-
national training workshops, cloud-solutions, and open
science practice (see also Figure 3). The new generation
of scientists should push for new metrics, and to rethink
the values by which academia is currently led.

ECSs should also have a greater voice in established
international research networks to shape processes and
discussions. Initiatives like the Young Earth System
Scientists community (YESS), or Fresh Eyes on CMIP are
therefore crucial for advancing as a research community
and deserve more visibility among ECSs as well as scien-
tists at later career stages. Finally, it is imperative to dis-
mantle barriers that particularly hinder researchers from
the Global South, such as reducing publication costs, pro-
viding comprehensive travel and visa support for scien-
tific conferences, facilitating easy data access, and
fostering capacity building and open collaborations
(Connors & Chavelli, 2023; Tandon, 2021).

The numerous scientific challenges we face, coupled
with the societal importance of our endeavors, should
ignite our enthusiasm, and drive us to action. ECSs are
uniquely positioned to transform the field of climate sci-
ence, given their specialized training and invaluable
skills crucial for providing climate information. With

robust support and acknowledgment from supervisors,
research institutes, and funding agencies, ECSs can lead
the charge in addressing climate challenges and help to
limit climate injustices. It is essential to include diverse
voices and recognize the role of values in climate science,
ensuring that a wide range of perspectives and ethical
considerations inform our work, which might depend on
context and user. This optimistic outlook emphasizes the
vital role ECSs play in advancing climate science and
underscores the importance of meaningful engagement,
introspection, and institutional backing within the field.
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