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The Taklamakan and Gobi Desert (TGD) region has experienced a pronounced
increase in summer precipitation, including high-impact extreme events, over
recent decades. Despite identifying large-scale circulation changes as a key

driver of the wetting trend, understanding the relative contributions of
internal variability and external forcings remains limited. Here, we approach
this problem by using a hierarchy of numerical simulations, complemented by
diverse statistical analysis tools. Our results offer strong evidence that the
atmospheric internal variations primarily drive this observed trend. Specifi-
cally, recent changes in the North Atlantic Oscillation have redirected the
storm track, leading to increased extratropical storms entering TGD and

subsequently more precipitation. A clustering analysis further demonstrates
that these linkages predominantly operate at the synoptic scale, with larger
contributions from large precipitation events. Our analysis highlights the
crucial role of internal variability, in addition to anthropogenic forcing, when
seeking a comprehensive understanding of future precipitation trends in TGD.

As the prominent Asian deserts, the Taklamakan and Gobi Desert
(TGD) region (black rectangle in Fig. 1a) features a classic interior
continental climate with scarce precipitation falling predominantly in
summer’*, The relatively infertile soil and sparse vegetation cover lead
to a fragile ecosystem that is highly susceptible to variations in sum-
mer rainfall>*, Local economic activities, such as agriculture and live-
stock herding, also rely heavily on the availability of summer rainfall>®.
Over the past several decades, the summer rainfall has increased sig-
nificantly over TGD™®. The wetting trend attracted considerable
interest from both the general public and the scientific community due
to its far-reaching environmental and socioeconomic impacts. On one
hand, more precipitation provides much-needed relief from drought
conditions in this region, potentially shifting its climate from a warm-
dry to a warm-wet regime, both in summer and annually’™. On the
other hand, the increase poses new challenges for water resource risk
management. The region has experienced a rise in extreme pre-
cipitation events'*"?, leading to numerous floods and other rainfall-

related hazards in recent years, resulting in the loss of life and
property®.

Many studies have attempted to understand the root cause of
this wetting trend. It has been interpreted as a superposition of large-
scale circulation changes (dynamic)*™® and long-term atmospheric
moistening (thermodynamic)®'’. However, the question of whether
this trend is driven by internal variability or external forcings remains
unexplored, complicated by the intricate link between these two
factors, making a clean separation challenging. Bridging this knowl-
edge gap is crucial for comprehending the physical mechanisms
underlying the historical trend and for providing more robust pro-
jections of future precipitation changes in the region'®*°2, In this
study, we address this problem by employing a hierarchy of numer-
ical simulations conducted with Geophysical Fluid Dynamics
Laboratory (GFDL) climate models. Our findings attribute the
observed trend to atmospheric internal variations as the primary
driver.
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Fig. 1| Observed summer precipitation features. a Topographic features overlaid
with long-term mean precipitation (mm d™) based on the NOAA/Climate Prediction
Center (CPC) dataset (contours) and the Global Historical Climatology Network
(GHCN) station records (dots) over the inner Eurasian continent. The subregion of
Taklamakan and Gobi Desert (TGD) is delineated by the black rectangle. b Time
series of TGD-average summer precipitation anomalies (units: mm d™) based on

multiple datasets (see Methods) during 2000-2019. The anomalies are calculated
by subtracting the mean value during the overlapping period of 2000-2014
(indicated by the number in the parentheses). Linear trends of TGD-average sum-
mer precipitation (units: mm d™ dec™) during 2000-2014 (circles) and 2000-2019
(triangles) are included. The trends are slightly shuffled horizontally for better
visualization. Source data are provided as a Source Data file.

Results

Observed and simulated precipitation trends

We focus on the summer (June-July-August) precipitation during
2000-2019 when the observed wetting trend over TGD (delineated by
the black rectangle in Fig. 1a) is prominent. Figure 1a shows the spatial
distribution of the 20-year mean summer precipitation, characterized
by a sharp contrast between the outer mountains (-2 mmd™) and inner
basins (-0.5 mmd™). The associated interannual variations are highly
consistent among different gridded datasets (Fig. 1b), with correlation
coefficients higher than 0.94 (p < 0.01) during their overlapping years.
The mean precipitation based on station records is consistently higher
than the gridded datasets likely due to the stations being located in or
close to the relatively wet mountainous regions (Fig. 1a). Nonetheless,
the gridded datasets and station records are strongly correlated at the
interannual time scale. All gridded datasets exhibit significant wetting
trends during 2000-2019, ranging from 0.11 to 0.16 mmd™dec™, or
about 10% dec™ of the long-term mean. The station records yield a
comparable wetting trend (0.13 mmd™ dec™) during the same period
(Fig. 1b and Supplementary Fig. S2a).

In comparison to observations, all three members of the CMIP
experiment are able to capture the spatial distribution of the TGD
summer precipitation, albeit with slight overestimation over the
mountainous regions (Supplementary Fig. S1). These wet biases are

common to CMIP5% and CMIP6 models?, and might be related to the
representation of topographic features over this region. Never-
theless, in terms of long-term mean and spatial distribution, results
from GFDL model simulations outperform the majority of the CMIP6
models (Supplementary Fig. S3), adding confidence in their suit-
ability for comprehending precipitation variability in the TGD region.
The ensemble members, however, differ considerably in terms of
their linear trends (Supplementary Fig. S2). While the ensemble-
mean reports a wetting trend when averaged over TGD
(0.18 mmd™dec™), it is not statistically significant (p>0.1), and the
values for the individual ensemble members range from 0.06 to
0.27mmd?dec™ (Fig. 2a). The simulated precipitation in the CMIP
experiment can be viewed as a combination of internal variability and
forced response. External forcing typically operates over longer time
scales due to gradual or persistent changes over time. Internal
variability tends to dominate over relatively shorter time scales,
driven by internal processes and feedback mechanisms within the
climate system that can vary rapidly and chaotically. Notably, internal
variability-induced changes can contribute significantly to climate
changes, and even surpass externally-forced changes on local to
continental scales, particularly in mid- and high-latitude regions® %,
This influence may persist over several decades. The large spread
across the three CMIP ensemble members suggests the possibility of
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Fig. 2 | Trends in summer precipitation across simulation hierarchy. a Time
series of summer precipitation anomalies (units: mm d™*) averaged over Takla-
makan and Gobi Desert region (black rectangle in Fig. 1a) based on the NOAA/
Climate Prediction Center (CPC) dataset, CMIP, and iCMIP experiments during
2000-2019. The anomalies are calculated by subtracting the mean value during the
overlapping period of 2000-2014. b Same as (a), but for CPC dataset, AMIP, and
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nAMIP experiments. Note, the CM4 experiment ends in the year 2014. The best
linear fit and prediction errors are represented by the dashed line and shading,
respectively. The long-term mean (units: mm d™), linear trend (units: mm d*dec™),
and the correlation coefficient (units: dimensionless) with the CPC dataset are
listed. Linear trends with an asterisk denote statistical significance at the 95%
confidence level. Source data are provided as a Source Data file.

internal variability playing an important role in shaping the observed
wetting trend.

Relative role of internal variability and external forcings

To assess the relative influences of internal variability and external
forcings on the observed wetting trend, we construct the density dis-
tribution of the 20-year linear trends of TGD summer precipitation by
resampling the piControl experiment, where the simulated precipita-
tion is solely a response to internal variability (See Methods). As shown
in Fig. 3a, the density distribution approaches Gaussian based on the
Kolmogorov-Smirnov two-sample test, without a discernible mean
trend. The observationally-based estimates fall within the 95% con-
fidence interval of the simulated trends, suggesting that internal
variability is a plausible explanation for the observed wetting trend.
This inference is further supported by the variability analogue analysis
(See Methods). The resulting analogue ensemble mean based on 10-
year segments matches both the spatial pattern and the temporal
evolution of the observed trend reasonably well (Fig. 3b, c). Notably,
the pattern correlation for the simulated trend across TGD is 0.74
(p<0.01). Moreover, the average wetting trend is 0.13mmd™dec™,
and the correlation coefficient of interannual variability is 0.95
(p<0.01). Similar results are obtained with 5-year segments (Fig. 3a
and Supplementary Fig. S3). These results strongly indicate that the
observed wetting trend could be reasonably attributed to internal
variability.

The iCMIP experiment provides a more explicit assessment. It
maintains the same external forcing as the CMIP experiment but is
distinguished by a more realistic representation of internal variability
(See Method). In contrast to CMIP, iCMIP demonstrates skills in
reproducing both the observed wetting trend (0.15mmd™dec™;
p<0.05) and the interannual variation (R=0.73; p<0.05) of TGD
summer precipitation (Fig. 2a and Supplementary Fig. S2). This finding
demonstrates that when appropriately initialized with specific atmo-
spheric and oceanic states, a dynamic model like the one employed in
this study has the capability to predict the time evolution of the
weather/climate system (i.e., internal variability) in the TGD region
within a defined limit, beyond which memory loss occurs due to a
combination of error amplification and model limitations. The fact that
the model’s ability to replicate the observed wetting trend relies on
initialization, rather than external forcings, strongly implies that the
trend is a result of internal variability. Furthermore, we note that no
predictive skill survives an increase in lead time from zero to one
month, indicating that memory loss occurs within one month.

Atmospheric internal variability versus underlying SST/Sea-ice

condition

The comparison between CMIP and iCMIP experiments highlights the
role of internal variability in reproducing the observed wetting trend.
Nonetheless, the core driver behind this trend—whether it stems pri-
marily from atmospheric internal variability or the underlying SST/Sea-
ice condition—remains ambiguous. This question bears crucial impli-
cations for subseasonal-to-seasonal prediction, as the atmosphere and
ocean exhibit markedly distinct memory characteristics. We use the
AMIP experiment, in which the oceanic conditions can be thought of as
perfect predictions, to isolate the role of atmospheric internal varia-
bility (See Method). Note that the direct response to external forcings
is confined to the atmosphere and land in AMIP, and may be weaker
than the full response in CMIP?. Despite showing reasonably good
climatology (Supplementary Fig. S1), the AMIP experiment fails to
simulate the observed wetting trend and instead shows no discernible
trend (Fig. 2b). The interannual variations also differ substantially from
the observations (R=0.11, p>0.1).

In contrast, the nAMIP experiment, where winds are nudged to
observation (see Methods), shows considerable skills in reproducing
both the observed wetting trend (0.21mmd™dec™; p<0.05) and
interannual variations (R=0.79; p < 0.05) (Fig. 2b). These results sug-
gest that the primary driver of the wetting trend is atmospheric
internal variability, while the role of oceanic conditions, if any, is lim-
ited. This conclusion is consistent with previous analyses conducted
over North America, where it was found that internal variability in the
large-scale atmospheric circulation played a substantial role in
explaining variations in precipitation’*°. Collectively, these findings
provide compelling support for attributing the observed wetting trend
to internal variability in the atmosphere.

Potential atmospheric variability source

Intrinsic atmospheric variability can originate from nonlinear physical
and/or dynamical processes. While these fluctuations may be limited
to a few weeks, the atmospheric circulation can exhibit longer time-
scale variations®**'. As one of the leading recurring modes of internal
atmospheric variability over the Northern Hemisphere, the North
Atlantic Oscillation (NAO) and its interaction with the Eurasian wave
train®>** are worth further investigation. The summer NAO index has
been predominantly in the negative phase since the mid-2000s***,
which seems to be consistent with the observed wetting trend over
TGD. The phase change in the NAO has been associated with the shift
of the North Atlantic summer storm tracks, with a negative phase

Nature Communications | (2024)15:4379



Article

https://doi.org/10.1038/s41467-024-48743-x

a b
m 1
1 | — 040
0.0060 I E 1 Variability Analogue Ensefyble
{ 10-year segment (I £ ] Mean = 1.34
- { 5-year segment [ > 020 A Trend = 0.13*
o ] | g . Corr. = 0.95*
© 0.0040 | 1)
© : | c
- 1 S 0.00
o ] | c
= 0.0020 : & -0.20
| S ]
] | o ]
1 o -0.40 A
0.0000 e S —
-0.20 0.00 0.20 2000 2005 2010 2015
Linear trend (mm d"' dec™)
(o] <Analogue,CPC>p,, = 0.74 (p<0.01)
50°N 9
©o 9
s °
o
[aV]
° E
N o
40°N < §
s 5
? o
R=
R
30°N

75°E 90°E

Fig. 3 | Characteristics of summer precipitation based on the piControl
experiment. a Kernel probability density estimates of the linear trends of 20-year
segments based on the resampled piControl simulation. The dashed vertical lines
indicate the observed trends and dotted regions represent trends that fall outside
the 95% confidence intervals. b Time series of the summer precipitation anomalies
(units: mm d™*) averaged over Taklamakan and Gobi Desert (TGD; black rectangle in
¢) based on the variability analogue ensembles using 10-year segments (blue) and
the NOAA/Climate Prediction Center (CPC) dataset (black). The anomalies are
calculated by subtracting the mean value during the entire 20 years. The light blue

120°E

shading denotes the spread among the respective ensembles. The mean, linear
trend, and correlation coefficient with the CPC dataset are shown for variability
analogue ensembles. ¢ Linear trends of summer precipitation (units: mmddec™)
based on the variability analogue ensembles using 10-year segments (shading)
overlaid with the trends based on CPC dataset (contours). Dashed contours
represent negative trends while solid contours indicate positive trends. The gray
isoline in (c) is the 2000-m contour of surface elevation. Stippling in (c) indicates
where the linear trends are statistically significant at the 95% confidence level.
Source data are provided as a Source Data file.

linked to a southward displaced and zonally elongated storm track,
leading to more extratropical storms traveling across northwestern
Europe while less frequent storm activity in the Mediterranean
region®**, Such a linkage is evident in the correlation coefficient map
between the summer NAO index and storm activity (Fig. 4b), which
shows a dipole structure over the North Atlantic, characterized by
negative anomalies south of Greenland and positive anomalies along
the western coast of Europe. Consistent with many previous
studies®**, this dipole pattern aligns closely with the first leading
mode of the empirical orthogonal function (EOF1) analysis of storm
activity (Supplementary Fig. S5). The corresponding time series (PC1)
exhibits a significant negative correlation (R=-0.77; p < 0.01) with the
summer NAO index (Fig. 4a).

Similar to North Atlantic, we also observe a distinct dipole pat-
tern in the correlation map between summer NAO and storm activity
around TGD-another significant center of storm activity (Fig. 4c).
When applying the same EOF analysis, the second leading mode
(EOF2) reveals a similar dipole structure (Supplementary Fig. S6), and
the corresponding time series (PC2) is negatively correlated with the
summer NAO index (R=-0.67; p <0.01; Fig. 4b). This result implies

the observed wetting trend over TGD may be associated with the
southward shift of the storm activities, influenced by the summer
NAO. We further analyze the co-evolution of changes in storm
activity, precipitation, geopotential height, and horizontal winds
during 2000-2007 and 2008-2019, accounting for the significant
change in the summer NAO around 2007. Mean precipitation during
the latter period is systematically larger than that during the former
over TGD, and the spatial pattern of this increase closely resembles
the observed wetting trend (Fig. 4d). This enhanced precipitation is
consistent with changes in storm activities, which shows a substantial
increase over TGD (Fig. 4e). The southward shift of storm track clo-
sely relates to upper-level anticyclonic anomalies and positive geo-
potential height anomalies upstream over central Europe (Fig. 4f),
which could trigger eastward propagating Rossby waves on the intra-
seasonal timescale”. In summary, the mechanism underlying the
linkage between the summer NAO and the precipitation over TGD
mirrors what has been observed in Western Europe. In both cases,
the primary controlling factor for variations in precipitation is the
synoptic-scale storm activity, which is significantly influenced by the
summer NAO***’,
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minus the latter). In (c-f), the Taklamakan and Gobi Desert (TGD) region is deli-
neated by the black rectangle. The gray isoline represents the 2000-m contour of
surface elevation. Stippling/blue vector in (c-f) indicates where the differences are
statistically significant at the 95% confidence level. The result in (d) is based on the
NOAA/Climate Prediction Center (CPC) dataset while results in the remaining
panels are based on the Fifth Generation of the European Centre for Medium-Range
Weather Forecasts (ECMWF) Reanalysis (ERAS). Source data are provided as a
Source Data file.

Verification on a synoptic-scale

To validate that the simulated wetting trends in iCMIP and nAMIP
experiments are physically correct, it is critical to assess if they can
adequately simulate the associated synoptic scale features. We com-
pare the distinct precipitation patterns and the associated synoptic

features in both experiments with observations based on a clustering
method (See Methods). Remarkably, both experiments successfully
capture the observed major precipitation patterns (Fig. 5). Specifically,
the first cluster features negative precipitation anomalies over large
parts of TGD, while the second and third clusters exhibit significant
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Fig. 5 | Hierarchical clustering analysis of summer precipitation.

a-c Precipitation anomalies (units: mm d™) for the three identified clusters based
on the NOAA/Climate Prediction Center (CPC) dataset. d-f Same as (a-c), but based
on the iCMIP experiment. g-i same as (a—c), but based on the nAMIP experiment.
The Taklamakan and Gobi Desert (TGD) region is delineated by the black rectangle.
The gray isoline represents the 2000-m contour of surface elevation. Linear trends
of summer precipitation (units: mm d™ dec™) in each cluster averaged over TGD

based on (j) the CPC dataset, (k) iCMIP, and (I) nAMIP experiments. N in (a-i) is the
number of samples in each cluster. Stippling in (a-i) indicates regions where the
anomalies are statistically significant at the 95% confidence level. The gray isoline in
(a-i) is the 2000-m contour of surface elevation. Solid dots in (j-I) denote the linear
trends are statistically significant at the 95% confidence level. The thick vertical lines
in (j-1) are the 95% confidence intervals for each cluster. Source data are provided
as a Source Data file.

positive anomalies over the central and southeastern parts of TGD,
respectively. Pattern correlations between both experiments and
observations are statistically significant (p < 0.01) for all three clusters.
Furthermore, in line with observational data, the probability density
distributions demonstrate that the latter two clusters are distinguished
by their association with intense precipitation occurrences (Supple-
mentary Fig. S7). The corresponding geopotential height anomalies for
these events reveal clear wave train patterns traversing the Eurasian
continent (Supplementary Fig. S8), and the associated moisture flux
patterns favor the occurrence of these large precipitation events
(Supplementary Fig. S9). Concurrently, the storm activities align well
with these large precipitation events (Supplementary Fig. S10). The
nAMIP and iCMIP simulations capture the general synoptic features,
but notable biases are evident when compared to observations. Based
on the geopotential height anomaly, the slightly poleward-shifted
wave pattern in the second cluster is distorted in the nAMIP simulation,
while the zonal wave pattern in the third cluster is misrepresented in
the iCMIP simulation. Similar discrepancies are observed in the low-
level moisture fluxes. These biases may be partly attributed to the
smaller sample size in the model simulation, warranting further
investigation. More importantly, when we compare the relative

contributions of the three clusters to the total precipitation trend, it
becomes evident that both the observed and simulated wetting trend
primarily arises from the third cluster, characterized by strong pre-
cipitation events occurring over the eastern TGD (Fig. 5).

Discussion

Using a hierarchy of numerical simulations and a variety of statistical
analysis tools, we offer unequivocal evidence that the recent wetting
trend observed over TGD is substantially influenced by internal varia-
bility, rather than the prescribed boundary conditions (e.g., sea surface
temperatures/sea ice and radiative forcings). In particular, the recent
shift of the summer NAO towards its negative phase has led to a
southward displacement of storm activities over TGD. These changes,
in turn, facilitate the passage of a greater number of extratropical
storms into TGD, thereby resulting in an increased precipitation trend.
This mechanism bears a notable resemblance to the patterns observed
over Western Europe, where North Atlantic storm activities, governed
by the summer NAO, exert substantial control over the regional pre-
cipitation patterns. Our clustering analyses further confirm that these
connections predominantly manifest at the synoptic scale, with larger
contributions to the wetting trend originating from large precipitation
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events. The dominant role of internal variability in driving the histor-
ical wetting trend suggests that it may not be sustainable and is likely
to reverse in the future, thus the prospect of a new, wetter climate
regime'®?° in this historically arid region may be illusory. To compre-
hensively grasp TGD’s future precipitation trends, it is imperative to
account for internal variability alongside anthropogenic forcing. Fur-
thermore, the hierarchical model simulation framework employed in
this study demonstrates its robust utility as a powerful tool for con-
ducting attribution analyses related to both internal variability and
external forcing. This framework can be effectively extended to other
regions, with the added advantage of requiring less computational
resources compared to conventional large ensemble simulations.

Methods

Observational datasets

Multiple widely used gridded monthly precipitation datasets, includ-
ing NOAA/Climate Prediction Center (CPC) precipitation dataset*’, U
of Delaware (UDel) dataset”, Tropical Rainfall Measuring Mission
(TRMM) 3B43*, CPC Merged Analysis of Precipitation (CMAP)
dataset®’, NOAA’s Precipitation Reconstruction over Land (PREC/L)
dataset**, Global Precipitation Climatology Project (GPCP) dataset®,
and Asian Precipitation-Highly-Resolved Observational Data Integra-
tion Towards Evaluation (APHRODITE; shorted for APHRO) dataset*®
are compared in this study to examine the wetting trend, among which
the CPC precipitation dataset is adopted as the main one since the
daily coverage makes it uniquely suitable for the subsequent clustering
analysis (to be detailed). Precipitation measurements from 47 obser-
vation stations located in Northwest China, Kazakhstan, and Mongolia,
retrieved from the Global Historical Climatology Network monthly
(GHCNm) precipitation dataset, are utilized as a reference (see Fig. 1a
for their geographical locations). The synoptic-scale analysis is based
on daily specific humidity, geopotential height, and large-scale winds
from the ERAS reanalysis*’. The principal component (PC)-based
indices of the North Atlantic Oscillation (NAO)*® are used in this study.
This index is derived through empirical orthogonal function (EOF)
analysis, which decomposes sea level pressure anomalies over the
Atlantic sector (20°-80°N, 90°W-40°E) into a series of uncorrelated
and orthogonal patterns. The primary EOF pattern, characterized by a
meridional dipole between Iceland/Greenland and the Azores, repre-
sents the NAO pattern. The associated time series of the principal
component (PC), obtained by projecting the EOF onto the anomaly
field, represents the NAO index.

Model simulations

A hierarchy of global climate model simulations are performed with
the different configurations of the NOAA/GFDL atmospheric model
AM4*°°, AM4, with a horizontal resolution of ~100 km and 33 vertical
levels, is the atmospheric component of the GFDL coupled physical
climate model CM4”', climate prediction model SPEAR%, and Earth
system model ESM4.1%. CM4 and ESM4.1 participate in the Coupled
Model Intercomparison Project Phase 6 (CMIP6), and SPEAR con-
tributes to the North American Multi-Model Ensemble (NMME)**. Note,
SPEAR can run with different atmospheric horizontal resolutions ran-
ging from 1° to 0.25°. We have chosen to use the medium resolution
configuration (i.e., SPEAR-MED) due to the availability of large
ensembles. A comparison with SPEAR-LO reveals minor differences in
simulated precipitation and large-scale fields, suggesting that varia-
tions in horizontal resolution have relatively small impacts. This series
of GFDL models are generally more skillful than the previous genera-
tions of GFDL models and other CMIP6 models in simulating both the
mean climate state™ and various modes of climate variability and
extreme weather events such as monsoon low-pressure systems’®,
mesoscale convective systems”°, atmospheric rivers’***¢!, and tro-
pical cyclones*®*®>¢*, To further provide a broader context for the
model results, we have included a comparison of precipitation

simulation over the TGD region from 40 CMIP6 models (see model
details in Supplementary Table S1). As shown in Supplementary Fig. S3,
when compared with the CPC precipitation dataset, GFDL models used
in the study exhibit smaller precipitation biases and higher pattern
correlations than the majority of CMIP6 models.

Four types of simulations are used to separate the roles of internal
variability and external forcings. A schematic outlining these simula-
tions, along with the rationale behind each simulation, is provided in
Supplementary Fig. S11. The first type involves the three-member fully
coupled CM4 ensemble (referred to as CMIP), driven by historical
anthropogenic and natural forcings such as greenhouse gases, aero-
sols, ozone, land use, solar irradiance, and volcanic aerosols. The
second type, initialized CMIP simulations (iCMIP), is part of the sea-
sonal prediction experiments conducted with SPEAR®*. For iCMIP,
atmospheric initial conditions are derived by nudging the model to
reanalysis data for three-dimensional temperature, winds, and specific
humidity, while the oceanic counterparts are generated with an
ensemble-based ocean data assimilation system. We use 15 members
(realizations), with each simulation lasts 12 months. The lead time is set
to 0, meaning that the mean precipitation for a specific month (e.g.,
July 2005) is computed by averaging the simulations initialized on the
first day of that month (e.g., July 1, 2005). The three-member CMIP and
15-member iCMIP simulations are created by slightly perturbing the
initial conditions of each respective model.

Following the Atmosphere Model Intercomparison Project (AMIP)
protocol, the third type (AMIP) consists of atmospheric-only simula-
tions forced with historical sea surface temperatures (SSTs), sea ice,
and other external forcings, identical to those used in CMIP. However,
in the AMIP setup, the forcings can only affect the atmosphere and
land as the oceanic conditions are prescribed. In the fourth type, the
nudged AMIP simulation (nAMIP), large-scale winds are nudged to
reanalysis data, rather than allowing the atmospheric model to gen-
erate its own winds. This nudging setup is similar to that used by an
earlier study®, but only large-scale winds are nudged in nAMIP. It’s
important to note that specific humidity, clouds, and precipitation are
computed interactively in both AMIP and nAMIP simulations, subject
to the same dynamic and physical processes as in the AMIP setup.
Other variables, such as temperature and humidity, are not nudged in
this study. This decision is made to achieve a balance between model
dynamics/physics and observational constraint, as incorporating
additional nudging variables can sometimes lead to significant incon-
sistencies in the mean climate. AMIP and nAMIP each have one reali-
zation. All simulations are conducted with identical external forcings
and are analyzed at the samel00-km horizontal resolution.

The CMIP simulations cover the period of 2000-2014, while
AMIP, iCMIP, and nAMIP span 2000-2019. These simulations are
analyzed and compared with observations for their entire durations.
However, it is worth mentioning that shortening the analysis to
2000-2014 for AMIP, iCMIP, and nAMIP yields similar results. Addi-
tionally, we employ the CM4-based preindustrial unforced control
(piControl) simulation with a length of 650 years to conduct the
unforced trend analysis and variability analogue analysis (details pro-
vided below).

Clustering analysis

A hierarchical clustering algorithm is employed to all summer pre-
cipitating days over TGD to identify predominant spatial patterns®.
Each precipitating day, defined as falling within the 99th percentile of
the overall domain-average daily precipitation distribution, is initially
assigned to one cluster. The similarity between each single-member
cluster is calculated using Ward’s minimum variance method®’, which
measures the Euclidean distance between each pair of clusters. The
clustering algorithm then merges the pair of clusters with the highest
degree of similarity and repeats this process until all precipitation days
become members of one single cluster. To determine the optimal
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number of clusters, we apply the average silhouette approach. As a
result, we identify a total of three clusters for both the observation and
the model simulations. The results are consistent if we extend the
summer season to warm season (May-September) and over a longer
period (1979-2019), attesting to the robustness of this method in
identifying the prevailing spatial patterns of precipitation. The
anomalies in moisture transport and divergence, and geopotential
height associated with each cluster are constructed by compositing
the respective daily anomalies.

Unforced trend analysis and variability analogue analysis

To construct the density distribution of linear trends based on the
unforced control simulation, we utilize a resampling approach by first
combining two randomly selected 10-year segments and then com-
puting the trend of the combined 20-year period using the Theil-Sen
estimator. The control simulation is linearly detrended to remove any
residual model drift before resampling. The selection of 10-year seg-
ments (as opposed to a 20-year segment) is justified in the sense that
any linear trends due to decadal variability can be largely preserved
while also accommodating the relatively short piControl simulation.
Note that four 5-year segments yield similar results. A total of
10,000 samples are derived from repeating the above procedure with
replacement. This resampling helps increase the sample size and
provides a more reliable estimation.

Variability analogue analysis, introduced by a previous work®, is
employed in this study. This method uses segments from unforced
control simulations to match observations. Based on the resulting
analogue ensembles, one can estimate the contribution of natural
variability to the observed variability. This method has been success-
fully used in previous studies examining observed temperature
trends® and ENSO variability®®. To identify analogous segments from
the resampled 20-year data, we select those that exhibit a resemblance
to the evolution of precipitation over TGD during 2000-2019.
Applying a correlation coefficient (R) threshold of 0.6 yields 33 out of
10,000 segments based on two 10-year segments, and 48 out of
10,000 segments based on four 5-year segments. Note that 0.6 is
chosen to achieve a balance between the strength of correlation and
the number of the variability analogue ensemble members®,

Storm activity analysis

Storm activity in this study is measured using the upper-level
(200 hPa) transient eddy kinetic energy (EKE), following the metho-
dology established earlier”°. EKE is calculated based on the daily hor-
izontal winds with deviations from their time mean values. To ensure
the robustness of our findings, we have cross-validated our results with
alternative storm activity proxies, such as bandpass-filtered geopo-
tential height anomalies, which have yielded consistent results. An
empirical orthogonal function (EOF) analysis is applied to the upper-
level EKE over two distinct regions characterized by the highest levels
of storm activities during 2000-2019: The North Atlantic and Central
Asia (see black rectangles in Fig. 4c for their respective locations). This
analysis enables us to demonstrate their major spatial pattern and
interannual evolution of the storm activities in these regions (Sup-
plementary Figs. S5, S6).

Over the North Atlantic region, the spatial distribution of the
first leading mode (EOF1) reveals a dipole pattern characterized by
negative anomalies situated to the south of Greenland and positive
anomalies adjacent to the western coast of Europe (Supplementary
Fig. S5). Similarly, in the Central Asia region, the spatial distribution
of the second leading mode (EOF2) exhibits dipole structures, with
positive anomalies located to the south of the TGD area and nega-
tive anomalies to the north (Supplementary Fig. S6). These two
dominant patterns are distinctly separable from other modes
using the North test method”. Compared to the mean storm activ-
ities, the positive values of PC1 over the North Atlantic and PC2 over

Central Asia are indicative of a southward shift in storm activities.
Notably, the time series data of these principal components exhibit
significant (p<0.01) correlations with the summer NAO
index (Fig. 4).

Statistics analysis

Trends are calculated using the robust Theil-Sen estimator’>”, in
which the linear trend represents the median slope between all paired
values. The Theil-Sen estimator is designed to reduce the influence of
outliers and endpoints in linear trend analysis. Confidence intervals of
the median slopes are calculated”. Correlation coefficients are calcu-
lated using the Pearson correlation with long-term trends removed.
Kolmogorov-Smirnov two-sample test is used to determine if two
samples are from the same distribution.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The monthly Tropical Rainfall Measuring Mission (TRMM) precipitation
data is accessible at https://disc.gsfc.nasa.gov/datasets/TRMM 3B43 7/
summary. The station records of the monthly precipitation dataset are
available for acquisition at https://www.ncei.noaa.gov/data/ghcnm/
v4beta/. The other precipitation datasets utilized in this study, includ-
ing the CPC Global Unified Gauge-Based Analysis of Daily Precipitation
dataset, the monthly GPCP precipitation dataset, the monthly UDel
precipitation dataset, and the monthly CPC Merged Analysis of Pre-
cipitation (CMAP) precipitation dataset, can be found and downloaded at
https://psl.noaa.gov/data/gridded/index.html. The PC-based summer
NAO index is obtained from https:/climatedataguide.ucar.edu/sites/
default/files/2023-04/nao_pc_monthly.txt. For the ERA5 reanalysis data-
sets, they can be accessed from https://apps.ecmwf.int/data-catalogues/
era5/?class=ea. The GFDL AM4 model source code can be obtained from
https://datal.gfdl.noaa.gov/nomads/forms/am4.0/. Model outputs from
AMIP, CMIP, and piControl experiments can be downloaded from the
CMIP6 data portal (https://aims2.linl.gov/search/cmip6/). Model outputs
from iCMIP experiment can be accessed publicly from the GFDL SPEAR
Large Ensembles website (https://noaa-gfdl-spear-large-ensembles-pds.
s3.amazonaws.com/index.html#SPEAR/GFDL-LARGE-ENSEMBLES/CMIP/
NOAA-GFDL/GFDL-SPEAR-MED/historical/). Model outputs from the
nAMIP experiment have been deposited in the Zenodo database under
accession code (https://doi.org/10.5281/zenodo.11110869). Source data
are provided with this paper.

Code availability

The NCAR Command Language (NCL v6.6.2) is used for plotting. All
custom codes are direct implementations of standard methods and
techniques, described in detail in Methods.
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