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a b s t r a c t 

In the last decade, the detection and attribution science that links climate change to extreme weather and climate 

events has emerged as a growing field of research with an increasing body of literature. This paper overviews the 

methods for extreme event attribution (EEA) and discusses the new insights that EEA provides for infrastructure 

adaptation. We found that EEA can inform stakeholders about current climate risk, support vulnerability-based 

and hazard-based adaptations, assist in the development of cost-effective adaptation strategies, and enhance 

justice and equity in the allocation of adaptation resources. As engineering practice shifts from a retrospective 

approach to a proactive, forward-looking risk management strategy, EEA can be used together with climate 

projections to enhance the comprehensiveness of decision making, including planning and preparing for un- 

precedented extreme events. Additionally, attribution assessment can be more useful for adaptation planning 

when the exposure and vulnerability of communities to past events are analyzed, and future changes in the 

probability of extreme events are evaluated. Given large uncertainties inherent in event attribution and climate 

projections, future research should examine the sensitivity of engineering design to climate model uncertainties, 

and adapt engineering practice, including building codes, to uncertain future conditions. While this study focuses 

on adaptation planning, EEA can also be a useful tool for informing and enhancing decisions related to climate 

mitigation. 
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. Introduction 

High-cost weather and climate disasters have doubled over the past

our decades across the United States due to a combination of increased

xposure, vulnerability, and frequency of extreme events [1] . Extreme

eather and climate events are usually caused by natural climate vari-

bility, but changes in anthropogenic forcing, such as increased green-

ouse gas concentrations, also contribute to the shifts in the frequency,

ntensity, spatial extent, duration, and timing of weather and climate

xtremes [ 2 , 3 ]. This forcing may also result in unprecedented extreme

vents. For example, the heatwave that impacted the Pacific Northwest

rea of the United States and Canada in June 2021 was as rare as a

-in-1000-year event in today’s climate. Researchers estimated that cli-

ate change increased the likelihood of such an event by 150 times [4] ,

hich was approximately a four standard deviation event [5] . Similarly,

he heatwave in the United Kingdom led to unprecedented temperatures
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bove 40ºC during July 18-19, 2022, which was found unlikely to occur

ithout human-induced climate change [6] . 

Extreme event attribution (EEA) is a developing field of research that

xamines how human-induced changes in the global climate system af-

ect the probability and characteristics of extreme events [7] . It brings a

ew perspective into climate-change attribution as existing studies are

argely focused on long-term changes in climate variables, such as mean

emperature, precipitation, sea level, and sea ice, rather than changes in

xtremes [7–9] . However, attribution of extremes is more challenging

han attribution of means because (1) the influence of climate change

s more difficult to detect due to the fact that extreme events are mod-

lated by natural climate variability [ 10 , 11 ]; (2) there is insufficient

nowledge on how dynamical atmospheric processes, such as the large-

cale circulation, respond to increased greenhouse gases, resulting in

ow confidence and large uncertainty in modeling extreme precipita-

ion and storms [12–15] ; (3) the cause-and-effect chains for extremes
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Fig. 1. Confidence in attribution of extreme events to anthropogenic climate change on global scale. “+ ” represents an increasing trend, and “- ” represents a 

decreasing trend. 
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re nonlinear and may include instantaneous and delayed effects, which

akes it difficult to quantify anthropogenic influence on the change of

xtreme events [ 9 , 16 ]. 

The motivations for EEA include understanding the influence of an-

hropogenic climate change on extreme events; convincing policymak-

rs, stakeholders, and general public of the reality of human-induced

limate change; pursuing legal liability for damages caused by past ex-

reme events; and supporting evidence-based adaptation planning and

ecision making [17–27] . There has been extensive literature review

n attribution methods [ 7 , 8 , 28–30 ], attribution results [ 2 , 3 , 9 , 31 ], and

mplications of EEA for climate litigation and climate policies [ 9 , 17–

0 , 22 , 32 , 33 ]. However, few studies connect EEA to climate adaptation

or civil infrastructure [ 18 , 26,29 ]. Critical infrastructure, such as en-

rgy, transportation, water and waste water, and telecommunication

ystems, is vulnerable to extreme event impacts because the failure in

ne sector can trigger cascading repercussions throughout the broader

nfrastructure network, leading to widespread disruptions [ 34 , 35 ]. The

nterdependence among energy, transportation, water, and commu-

ication systems further amplifies the potential for extensive disrup-

ions when the functionality of an essential component is compromised

 28,34–36 ]. The interplay of within-system and between-system depen-

ences highlights the need for resilient and adaptive infrastructure plan-

ing and management [ 34 , 35 ]. 

This study provides new insights for incorporating EEA into infras-

ructure adaptation planning. Infrastructure planning is the process of

dentifying, evaluating, and prioritizing infrastructure projects that are

ecessary to support the growth and development of a community [ 37–

9 ]. It involves the development of long-term plans for the construc-

ion, maintenance, and improvement of infrastructure systems [ 37 ].

ection 2 of this paper reviews the current state of event attribution

ractice. Note that this is not an exhaustive review, as this has been

overed by numerous studies. Section 3 elaborates attribution methods.

ection 4 discusses the state of adaptation practice with a focus on build-

ng codes, and proposes a method to incorporate EEA into risk assess-

ent and decision-making processes. This section also outlines the ben-

fits of using EEA in adaptation planning, and delineates the limitations

f attribution analyses and future research needs. Section 5 summarizes

nd concludes this study. 
104
. State of attribution practice 

The sixth assessment report of the Intergovernmental Panel on Cli-

ate Change (IPCC) [2] and the 2016 report of the National Academies

f Science (NASEM) [6] all stated that the climate science community

as developed a good understanding of extreme cold and heat, extreme

ainfalls, and compound dry and hot events, but lower confidence for

nderstanding droughts, extreme snow and ice, wildfires, and tropical

yclones, as shown in Fig. 1 . As the climate gets warmer, the signal of

limate change will likely be clearer, and hence, there will be increased

onfidence in attributing trends of extreme events to human-induced

limate change [2] . 

The IPCC report [2] also suggested that the hottest temperatures may

ncrease over continental land areas at a rate that is 1.5-2 times of global

ean surface warming. Heavy precipitation events and agricultural and

cological droughts may become more frequent and intense in some

egions, and this likelihood is more pronounced at higher levels of global

ean warming. The maximum wind speed of extreme tropical cyclones

Category 4-5) may increase by 10 %, 13 %, and 20 %, and tropical

yclone-related precipitation may increase by 11 %, 14 %, and 28 %

or global warming levels of 1.5, 2, and 4◦C, respectively. Concurrent

eatwaves and droughts, fire weather, and compound flooding are likely

o increase as climate gets warmer ( Fig. 1 ). Compound flooding refers

o a flood with multiple drivers, such as extreme rainfall, storm surge,

iver flow, sea level rise, waves and tides. 

Table 1 provides examples of definitions for eight types of weather

nd climate extremes [ 2 , 40 ]. It is worth noting that the results of an at-

ribution study can be very sensitive to the event definition. Therefore,

n practice, extreme events are often determined based on observed im-

acts on human society and ecosystems [ 41 , 42 ]. However, in the con-

ext of adaptation planning, defining extremes based on the probability

f exceedance or the return period of an event provides a basis to eval-

ate the effectiveness of adaptation strategies in mitigating the impacts

f climate change. 

In the last decade, the science of rapid attribution has received a

rowing interest around the world as a way to inform the public about

he links to climate change before or immediately after the occurrence

f an event. The first product for rapid attribution was the Weather Risk
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Table 1 

Common definitions, indices, and drivers for weather and climate extremes. 

Category Definitions Indices Drivers 

Heatwave • Consecutive days in which maximum daily 

temperature is above the 90th or higher 

percentile of maximum daily temperature 

over a base period; or 

• Consecutive days in which daily maximum 

temperature is above an absolute threshold 

such as 35ºC 

Maximum and minimum daytime and 

nighttime temperatures; 3-day average 

maximum temperature; wet bulb globe 

temperature; heat index; number of heatwave 

days; warm spell duration index; combined 

extreme index 

Large-scale meteorological pattern; 

land-atmosphere feedback (e.g., soil moisture, 

snow or ice albedo); land use change (e.g., 

deforestation, irrigation and crop 

intensification); emission of anthropogenic 

aerosols; the urban heat island effect 

Cold wave • Consecutive days in which maximum daily 

temperature is below the 10th or lower 

percentile of maximum daily temperature 

over a base period; or 

• A rapid fall in temperature within 24 hours 

and extreme low temperatures for an 

extended period 

Maximum and minimum daytime and 

nighttime temperatures; number of cold wave 

days; snow depth; cold-degree days; wind chill 

index 

Extreme rainfall • Days with precipitation above the 90th or 

higher percentile of local precipitation in 

history; or 

• Rainfall in 24 hours greater than a certain 

amount such as 100 mm 

Peak rainfall; the 90th , 95th , or 99th percentile 

precipitation; probable maximum 

precipitation; maximum depth of precipitation 

accumulation for certain hours or days; the 

total precipitation accumulated from hours 

exceeding specified percentiles; annual 

exceedance probability; precipitation duration 

Increase in moisture advection; decrease in 

atmospheric aerosols; increase in sea surface 

temperatures; large-scale land use change; 

reservoirs; irrigation; urbanization 

Drought a A sustained period with substantially 

below-average moisture conditions 

The National Drought Mitigation Center [ 43 ] 

classified drought into five categories: abnormally 

dry, moderate drought, severe drought, extreme 

drought, and exceptional drought. 

Standardized precipitation-evaporation index; 

Palmer drought severity index; rainfall 

anomaly index; reconnaissance drought index; 

standardized precipitation evaporation index; 

number of consecutive dry days 

Large-scale circulation pattern; global 

ocean-atmosphere coupled pattern; 

land-atmosphere feedback; precipitation 

deficits; soil moisture deficits; hydrological 

deficits; change in land cover and plant 

phenology 

Extreme storm 

b • Wind speed above the 90th or higher 

percentile of local wind in history; or 

• Storms that occur every 500 years 

Peak wind speed; the 90th , 95th , or 99th 

percentile of wind speed; Saffir-Simpson 

hurricane wind scale 

Large-scale circulation pattern (e.g., Hadley 

and Walker circulations, monsoon 

circulations); decrease in atmospheric 

aerosols; increase in sea surface temperatures; 

land use/land change impacts (e.g., surface 

roughness changes [ 44 ]) 

Flood c Inundation of normally dry land 

The National Weather Service [ 40 ] classified 

flood into three categories: minor flooding, 

moderate flooding, and major flooding. 

Peak streamflow; the 90th , 95th , or 99th 

percentile of daily streamflow distribution; 

annual maximum streamflow; number of 

catchments flooding simultaneously; flood 

synchrony scale; annual number of flood 

events; return period; expected number of 

exceedances 

Land-atmosphere feedback; amount and 

intensity of precipitation; antecedent soil 

moisture; snowmelt; stream morphology; river 

and catchment engineering; land cover 

change; water regulation and management; 

sea level rise; waves and tides; storm surge 

Compound heat 

and drought 

Concurrent extreme heat and precipitation 

deficit in a region 

Indices for heatwave and drought Precipitation deficit; global warming 

Fire weather or 

fire season 

Compound hot, dry, and windy events Forest fire danger index; Canadian fire 

weather index; monthly severity rating 

Heat; drought; wind speed; anthropogenic 

ignition; biofuel abundance 

a Droughts include meteorological droughts (due to precipitation deficits), agriculture droughts (due to soil moisture deficits), ecological droughts (due to water 

stress in plants), and hydrological droughts (due to water shortage in streams or storages). 
b Storms include tropical cyclones, extratropical cyclones, and severe convective storms (e.g., thunderstorms). 
c Floods include pluvial floods, flash floods, river floods, groundwater floods, surge floods, and coastal floods. 
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ttribution Forecast (WRAF) system, which generated monthly forecasts

or extreme hot, cold, wet, and dry conditions across 58 territorial re-

ions, and assessed the change in the likelihood of extreme conditions

rom the year 2009 to 2017 [ 45 ]. In 2015, the World Weather Attribu-

ion (WWA) group developed a protocol to deliver rapid attribution ser-

ice worldwide [ 41 , 42 ]. This effort focuses on highly impactful events

nd takes into account the exposure and vulnerability of population and

nfrastructure [ 46 ]. 

Similar attribution protocols have since been initiated, but with more

egional focuses. For example, New Zealand launched a project known

s the Extreme Weather Event Real-time Attribution Machine in 2018,

iming to provide a national attribution service for heat and precipi-

ation extremes within days of occurrence of the events [ 47 , 48 ]. The

ational Oceanic and Atmospheric Administration (NOAA) funded a

roject in 2021, intended to create a prototype rapid event attribu-

ion system for temperature-related and drought extremes in the United

tates and outlying territories [49] . The Australian Bureau of Meteorol-

gy has started to build a real-time Event Explainer system with a focus

n regional heatwaves, and other extremes such as high-intensity rain-

alls and fire weather conditions could be incorporated into the system
105
t a later stage [50] . Results from rapid attribution can help communi-

ies to prepare for future extreme events by improving understanding of

he physical drivers of these events and the health and societal impacts

f these events at the community level [ 51–53 ]. 

However, rapid and operational attribution methods tend to use a

imited number of peer-reviewed methods to ensure confidence in their

esults [ 7 , 9 ]. “Slow ” attribution is often conducted afterward to up-

ate attribution statements and evaluate the robustness of rapid at-

ribution [49] . A notable reference for “slow ” attribution is the an-

ual report of the Bulletin of the American Meteorological Society,

hich collects attribution studies for weather events that occurred in

he past years [ 54 ]. Nevertheless, the WWA studies that have undergone

eer-review have remained largely unchanged, implying that the rapid

nalysis can be an acceptable and useful method for event attribution

 55 , 56 ]. 

Compound event attribution also has received a growing research

nterest, as many weather and climate related catastrophes are inher-

ntly of a combined nature [ 2 , 57 ]. Compound events are defined as the

ombination of multiple drivers and/or hazards that contributes to so-

ietal or environmental risk [2] . The drivers are not necessary to be
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xtreme to cause extreme impacts [ 58 ], but researchers tend to investi-

ate the cases of joint extremes in which all drivers exceed the 95th or

 higher percentile. The well-studied cases include concurrent drought

nd heat [ 59 , 6 ], fire weather [ 60–62 ], concurrent wind and precipita-

ion extremes [ 63–65 ], and compound flooding [ 66–68 ]. 

Attribution of compound events is more challenging than attribu-

ion of single events because (1) the dependence structure between con-

ributing drivers affects the exceedance probability of compound events;

2) multivariate hazard indictors (for risk assessment) and multivari-

te evaluation indices (for model validation) are not available for some

ypes of hazard combination; (3) large observational datasets are re-

uired for compound event attribution to achieve the same level of con-

dence as single event attribution [ 69 , 6 ]. In the case that observational

ata are scarce, process-based model simulations and reanalysis data are

sed to extend or replace observational datasets. 

. Attribution methods 

.1. Single event attribution 

The two well-accepted methods for EEA are the probabilistic ap-

roach (or risk-based approach) and the storyline approach (or process-

ased approach). 

.1.1. Probabilistic approach 

The probabilistic approach uses a statistical model to estimate the

ikelihood of the observed event occurring in the current climate and in

 counterfactual climate, and thus to estimate the influence of climate

hange [ 70 , 71 ]. This can be based on a statistical model of the trend or

n the output of a forced climate model, as in the storyline approach.

he probabilistic approach often uses the fraction of attributable risk

 FAR ) to quantify the influence of climate change: 

 𝐴𝑅 = 1 −
𝑝0 
𝑝1 

= 1 − 1 
𝑃 𝑅 

(1)

here 𝑝0 is the probability that the event occurs in a counterfactual

orld without climate change. The counterfactual world can be approx-

mated by the pre-industrial climate conditions. 𝑝1 is the probability

hat the event occurs in the actual world. 𝑃 𝑅 is the probability ratio,

ndicating that the event is 𝑃 𝑅 times more likely to occur in the current

limate than in a pre-industrial climate. 𝐹 𝐴𝑅 describes the contribution

f human-induced climate change to the changed likelihood of an event,

hat is, the proportion of occurrences in the actual world that would not

ave occurred in the counterfactual world. 

.1.2. Storyline approach 

The storyline approach identifies the causal chain of factors leading

o the extreme event and assesses the role of each factor [ 16 , 72 ]. The

pproach relies on climate model sensitivity experiments to disentangle

he role of each causal factor. Two forms of sensitivity modeling ex-

eriments are commonly used: “all-but-one experiments ” in which the

nfluence of one specific factor is removed from the model, and “only-

ne experiments ” in which only a specific causal factor is considered

hile the influences of other factors are removed from the model [ 73 ].

The storyline approach focuses on components that are well under-

tood by scientists and well captured by climate models, allowing for

igh confidence statements about a portion of the event [ 16 , 9 ]. The

ramework of this approach is given as follows [7] : 

 𝑅 =
𝑝1 ( 𝐻) 
𝑝0 ( 𝐻) 

=
𝑝1 ( 𝐻|𝐷) 
𝑝0 ( 𝐻|𝐷) 

×
𝑝1 ( 𝐷) 
𝑝0 ( 𝐷) 

(2)

here 𝑝1 ( 𝐻) and 𝑝0 ( 𝐻) are the probabilities of the hazard in the actual

nd counterfactual worlds, respectively. 𝑝1 ( 𝐻|𝐷) and 𝑝0 ( 𝐻|𝐷) are the

robabilities of the hazard for the given dynamical conditions 𝐷 in the

ctual and counterfactual worlds, respectively. 𝑝1 ( 𝐷) and 𝑝0 ( 𝐷) are the

robabilities of dynamical conditions in the actual and counterfactual
106
orlds, respectively. Extreme events are often associated with atmo-

pheric and oceanic dynamics [2] , such as through patterns of climate

ariability including the North Atlantic Oscillation, El Niño–Southern

scillation, Madden-Julian Oscillation, Indian Ocean Dipole, Atlantic

ulti-decadal Variability, and Pacific Decadal Variability. 

The ratio of 𝑝1 ( 𝐻|𝐷) to 𝑝0 ( 𝐻|𝐷) describes the change in the prob-

bility of the hazard for the given dynamical conditions. The ratio of

1 ( 𝐷) to 𝑝0 ( 𝐷) depicts the change in the probability of the dynamical

onditions due to climate change. The literature indicated that tempera-

ure extremes at the regional scale are dominated by mean global warm-

ng trends (e.g., thermodynamics) [ 2 , 74 ], but extreme precipitation and

torms are largely controlled by atmospheric dynamics, such as associ-

ted with jet stream variability or mesoscale convective processes [2] . 

While it is theoretically possible to compute a PR using the storyline

pproach, in practice it may be impossible to accurately estimate all of

he possibilities required to calculate it, and thus the method is more

ften used to estimate changes in the intensity of events than in the fre-

uency [ 75 , 76 ]. However, when the results from storylines corroborate

hose from probabilistic methods, we can have increased confidence in

he findings from the probabilistic study. The key advantage of the sto-

yline approach lies in its capability to isolate the influence of specific

hysical aspects of climate change [ 75–77 ]. This capability is pivotal for

stablishing the casual chain between climate change and damage and

oss [20–23] , which will be discussed in the later section. 

.2. Compound event attribution 

Compound events can be classified into five categories: precondi-

ioned, where a weather-driven or climate-driven precondition ampli-

es the impact of a hazard; multivariate, where multiple drivers lead

o an impact; temporally compounding, where a succession of haz-

rds lead to an impact; spatially compounding, where hazards in multi-

le connected regions cause an aggregate impact; and complex events,

here non-climatic stressors exacerbate climate hazard impacts, such

s COVID-19 [ 78 , 58 ]. Infrastructure systems are prone to experiencing

ompound events due to the extensive geographical coverage of their

hysical structures. Moreover, the interdependency among multiple sys-

ems increases the likelihood that a single infrastructure system will

e impacted by compound events if other connected systems it relies

n are affected [ 28,34–36 ]. The literature has shown that concurrent

eat and drought can affect hydropower generation, resulting in power

hortage [ 79 , 80 ]. Compound heat, drought, and fire can damage in-

rastructure and property, reduce access to energy and water supplies,

nd strain firefighting resources [ 78 ]. Concurrent wind and precipita-

ion extremes, often associated with hurricanes or cyclones, can lead to

oad erosion, landslides, mudslides, fallen trees and other large objects,

amaging roads, bridges, signs, and traffic lights [ 35 ]. This in turn can

esult in costly congestion and difficult access for emergency response

ehicles. 

For bivariate events, the fraction of attributable risk ( 𝐹 𝐴𝑅𝑥𝑦 ) can be

stimated as follows [6] : 

 𝐴𝑅𝑥𝑦 = 1 −
𝑝0 ,𝑥𝑦 

𝑝1 ,𝑥𝑦 
= 1 −

𝑃 ( 𝑥0 > 𝑥∗ ∩ 𝑦0 > 𝑦∗ ) 
𝑃 ( 𝑥1 > 𝑥∗ ∩ 𝑦1 > 𝑦∗ ) 

(3)

here 𝑝0 ,𝑥𝑦 is the probability that two variables in the counterfactual

imulation (denoted as 𝑥0 and 𝑦0 ) exceed extreme thresholds 𝑥∗ and 𝑦∗ ,

espectively. 𝑝1 ,𝑥𝑦 is the probability that the two variables in the fac-

ual simulation (denoted as 𝑥1 and 𝑦1 ) exceed extreme thresholds 𝑥∗ and
∗ , respectively. 𝑝0 ,𝑥𝑦 and 𝑝1 ,𝑥𝑦 are computed using the copula function,

ssuming that the dependence between 𝑥0 and 𝑦0 is the same as the

ependence between 𝑥1 and 𝑦1 . The bivariate 𝐹 𝐴𝑅𝑥𝑦 is greater than

nivariate 𝐹 𝐴𝑅𝑥 or 𝐹 𝐴𝑅𝑦 when the dependency between the two vari-

bles is weak or when the two variables substantially exceed respective

xtreme thresholds [6] . 
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. Incorporating attribution analyses into climate adaptation 

.1. Climate adaptation 

Adapting infrastructure to a changing climate requires that engi-

eering practice, including building codes and standards, incorporates

he latest research and data from both building science and climate

cience perspectives [ 81 , 82 ]. Governments typically enforce building

odes as minimum requirements for the planning, design, materials, con-

truction, operation and maintenance, repair, and renovation of build-

ngs and non-building structures [ 35,81–83 ]. Current building codes

argely rely on the climate conditions of the twentieth century to estab-

ish criteria for climate loads [ 84 , 81 , 82 ]. These loads reflect the haz-

rd levels a structure could encounter throughout its life cycle, and

n turn, structures are engineered to withstand these loads, ensuring

afety and resilience. However, as climate patterns change, the loads

ikely to be encountered in the lifetime of a structure may exceed those

equired by building codes based on historically observed events. Re-

ssessing and updating building codes to align with the changed cli-

ate conditions is necessary to ensure that structures can provide the

esired level of safety and resilience [ 35,81–83 ]. The indices presented

n Table 1 can serve as a link connecting climate-related hazards to

he design of buildings and structures. For example, 15-minute and

0-minute rainfalls with 1 %, 0.5 % and 0.2 % annual exceedance

robabilities (100, 200 and 500-year mean recurrence intervals) have

een used to design drainage systems for roofs [ 85 ]. Flood depths for

00, 500, 750 and 1,000-year mean recurrence intervals have been

sed to design flood-resistant foundations for buildings and structures

 85 ]. 

Several countries have begun to incorporate climate change mod-

ling into their national building codes. For example, New Zealand’s

uilding for Climate Change Program is investigating the robustness of

odelled future climate data, the degree of conservation inherent in cur-

ent building codes, and the changes needed for building codes to enable

 resilient future [ 81 ]. The Standards Council of Canada is developing

uidance for weather data and climate information, updating existing

nfrastructure standards, and investing in new technical standards con-

erning infrastructure adaptation and climate resilience [ 86 , 82 ]. In the

nited States, the American Society of Civil Engineers (ASCE) is working

ith NOAA to update design parameters and hazard mapping used in

SCE provisions and to interpret the implications of climate model un-

ertainties (particularly climate scenarios) in engineering contexts [ 84 ].

t the municipal level, New York City developed guidelines for using

orward-looking climate data in the design of city facilities [ 87 ]. The

uidelines provide a consistent methodology for engineers, architects,

andscape architects, and planners to tackle three climate stressors: heat,

recipitation, and sea level rise. 

Most building codes address extreme events based on the probabil-

ty of the occurrence of the specific event, with the design requirements

arying in accordance with the potential severity of the event and the

riticality of the building [ 81 , 85 , 87 ]. For example, the ASCE 7 code

efines four risk categories of buildings based on the potential risk to

uman life in the event of failure. Each risk category is linked to specific

equirements for flood, wind, snow, ice, and earthquake loads [ 85 ]. Yet

ome extreme events have not been considered in building codes. For

xample, U.S. building codes do not account for heatwaves and droughts

 35 ]. Canada’s national model codes do not consider extreme flood,

ildfire, and extreme heat [ 81 ]. New Zealand’s national codes do not ad-

ress extreme flood, drought, bushfire, and extreme heat [ 81 ]. Japan’s

uilding codes do not take extreme weather and climate events into ac-

ount at all [ 81 ]. These extremes did not have significant impacts on the

uilt infrastructure in the past. However, given the projected changes

n their frequency and severity, integrating the changing likelihood and

ntensity into engineering risk assessment and design concepts is impor-

ant to ensure the integrity, functionality, and durability of structures

nd systems in the future [ 81 , 35 ]. 
107
.2. Quantifying climate risk 

Climate risk reflects a combination of climate-related hazards, ex-

osure, vulnerability, and human responses to climate change [ 2 , 3 ]. In

ystem engineering, climate risk is computed as a summation of possible

osses due to different climate scenarios, climate stressors, and system

ailures [ 83 , 88 , 89 ]. Annual climate risk ( 𝑅 ) is given as follows: 

 =
∑
𝐶𝑐 

∑
𝐶𝑠 

∑
𝐹 

∑
𝐿 

𝑃
(
𝐶𝑐 

)
𝑃
(
𝐶𝑠 |𝐶𝑐 

)
𝑃
(
𝐹 |𝐶𝑠 

)
𝑃 ( 𝐿 |𝐹 ) 𝐿 (4) 

here 𝐶𝑐 denotes climate scenarios. 𝐶𝑠 denotes climate stressors (e.g.,

ore frequent and intense precipitation events, heat waves, coastal

ooding, and wildfires). 𝐹 denotes system failure. It can refer to a single

r a complex infrastructure system. 𝐿 comprises direct and indirect eco-

omic losses due to physical damage of components and loss of services

 39 , 90 ]. 𝐿 is a function of hazard levels. 𝑃 (𝐶𝑐 ) is the probability that a

limate change scenario occurs. 𝑃 (𝐶𝑠 |𝐶𝑐 ) is the probability that a stres-

or intensifies when climate changes, indicating the hazard. 𝑃 (𝐹 |𝐶𝑠 ) is
he probability of system failure when the stressor intensifies, indicating

he exposure. 𝑃 (𝐿 |𝐹 ) is the probability of loss when the system fails, in-

icating the vulnerability. In this paper, 𝑅 denotes the absolute climate

isk (the expected value at risk due to the various climate-related factors

onsidered), and Δ𝑅 denotes the added risk due to climate change. 

In the case that loss 𝐿 is directly proportional to the magnitude of

n extreme event (or, by extension, inversely proportional to the ex-

eedance probability of an extreme event), Δ𝑅 can be estimated as fol-

ows [ 91 , 92 ]: 

𝑅 = 𝐹 𝐴𝑅 × 𝑅 (5)

However, the loss 𝐿 is often not linearly proportional to the magni-

ude of extreme events [ 93 ], as shown in Fig. 2 . For an extreme type

nder a given climate scenario (e.g., a global warming level of 1, 1.5,

, or 4◦C), where 𝐶𝑐 is fixed and thus 𝑃 (𝐶𝑐 ) equals one, Eq. 4 can be

ewritten as follows: 

 =
∑
𝐸 

∑
𝐹 

∑
𝐿 

𝑃 𝑅𝐸 ⋅ 𝑃 ( 𝑥 ≥ 𝐸 ) 𝑃 ( 𝐹 |𝑥 ≥ 𝐸) 𝑃 ( 𝐿 |𝐹 ) 𝐿 (6)

here 𝐸 denotes the hazard level. 𝑃 𝑅𝐸 is the probability ratio that ad-

usts the probability of experiencing an event more extreme than E from

he baseline to the given climate scenario. 𝑃 𝑅𝐸 is estimated through

he attribution analysis via Eq. 1 or 2 . 𝑃 (𝑥 ≥ 𝐸 ) is the probability that

he extreme exceeded the level 𝐸 in the historical climate condition.

 ( 𝐹 |𝑥 ≥ 𝐸) is the probability of system failure when the extreme ex-

eeds the level 𝐸, which can be estimated through numerical or statisti-

al modeling, including but not limited to simple extrapolation [ 39 , 94 ].

n practice, the hazard level 𝐸 may consist of binned or grouped data

ue to the rarity of extreme events and thus limited cases available for

ttribution assessment. For example, wind extremes can be categorized

nto five levels according to wind speed: level 1 (119-153 km/h), level 2

154-177 km/h), level 3 (178-208 km/h), level 4 (209-251 km/h), and

evel 5 (252 km/h and higher) [ 95 ]. Climate risk associated with a par-

icular hazard level can be approximated from the events that fall into

his range. 

Fig. 2 shows a schematic of loss curves with and without climate

hange, highlighting the additional risk due to human-induced climate

hange. The shaded area represents the annual risk incurred by extreme

vents in a changing climate. The shaded area with a white background

epicts the annual risk without climate change. The shaded area with

 blue background describes the increased annual risk due to anthro-

ogenic climate change. It should be noted that modern infrastructure

ystems are designed to endure frequent, low-intensity hazard events

ithout incurring losses [ 34 ]. Losses typically occur when an event sur-

asses a specific hazard level, referred to as the trigger point. As the

azard level escalates, losses intensify until reaching their maximum.

he hazard level that leads to the collapse of the service is called the

ipping point [ 96 , 97 ]. Fig. 2 presents the loss curves between the trig-

er point and the tipping point. 
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Fig. 2. Loss curve. 𝑃 (𝑥 ≥ 𝐸 ) is the probability that the extreme exceeded the level 𝐸 in the historical climate condition. 𝑃 𝑅𝐸 is the probability ratio that adjusts the 

exceedance probability to the given climate condition. The maximum loss refers to the total property loss. 
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The annual risk after the implementation of an adaptation measure

an be estimated as follows: 

𝑎𝑑𝑎𝑝𝑡 =
∑
𝐸 

∑
𝐹 

∑
𝐿 

𝑃 𝑅𝐸 ⋅ 𝑃 ( 𝑥 ≥ 𝐸 ) 𝑃𝛼( 𝐹 |𝑥 ≥ 𝐸 ) 𝑃𝛼( 𝐿 |𝐹 ) 𝐿𝛼 (7)

here 𝑃𝛼( 𝐹 |𝑥 ≥ 𝐸) is the probability of system failure after adaptation.

𝛼( 𝐿 |𝐹 ) is the probability of loss after adaptation. 𝐿𝛼 is the loss func-

ion after adaptation. 𝛼 is the coefficient of risk reduction due to climate

daptation, ranging from 0 to 1. In most cases, 𝛼 is set by strategy design-

rs as the target for an adaptation. For example, in order to reduce the

nnual climate risk for electricity systems by 50 %, strategy designers

ay explore options such as retrofitting existing buildings to improve

heir energy efficiency, increasing electricity generation and optimiz-

ng energy distribution system, and increasing the share of renewable

nergy in energy supply, until 

1 − 𝑅𝑎𝑑𝑎𝑝𝑡 ∕𝑅 ≥ 𝛼. The risk reduction coefficient 𝛼 can be validated

nd refined through numerical and statistical modeling [ 88 , 89 ]. 

The benefit of adaptation ( 𝐵𝑎𝑑𝑎𝑝𝑡 ) can be estimated as follows: 

𝑎𝑑𝑎𝑝𝑡 =
𝑇 ∑

𝑡 = 𝑡0 

𝑅𝑎𝑑𝑎𝑝𝑡 ( 1 + 𝑟 ) −( 𝑡 − 𝑡0 ) + 𝐵𝑐 (8)

here 𝑇 is the planning horizon in the future time period, over which

enefit and cost are counted [ 39 , 90 ]. Planning horizon is typically

ligned with the expected lifespan of a building or structure. 𝑟 is the an-

ual discount rate, used to adjust future cash flows back to the present

alue. 𝑡0 is the year when adaptation strategy is implemented. 𝐵𝑐 is the

o-benefit of adaptation, such as reduced losses to moderate events and

ther hazard types. It should be noted that Eq. 7 typically uses a static

stimate for 𝑃 𝑅𝐸 based on historical data. If 𝑃 𝑅𝐸 is expected to increase

ver time, Eq. 8 will be a conservative estimate of the benefit. For ex-

mple, the likelihood of exceeding a particular temperature threshold is

ikely to increase over time, in which case 𝑃 𝑅𝐸 will also increase over

he lifetime of the structure being designed. On the other hand, if 𝑃 𝑅𝐸 

s expected to decrease over time, which is the case for cold extremes,

q. 8 will lead to an inflated estimate of future benefits. However, it is

traightforward to allow 𝑃 𝑅𝐸 to vary with 𝑡 in Eq.s 6 and 7 so as to

void this problem. 

When the total benefit outweighs the total adaptation cost over the

lanning horizon, the adaptation measure is considered cost effective.

t should be noted that cost-effectiveness is only one of the criteria for

ecision making. Other factors such as justice and equity also should be

onsidered in adaptation planning. Justice and equity are challenging
108
o quantify and monetize, but subjective or qualitative analysis can be

mployed to evaluate them. 

.3. Advantages of attribution analyses and future research needs 

Attribution assessment offers three advantages for adaptation plan-

ing. First, EEA can support both vulnerability-based adaptation plan-

ing and hazard-based adaptation planning. The vulnerability-based ap-

roach assesses current vulnerability based on existing biophysical and

ocioeconomic conditions, and determines the likelihood that the com-

unity will be vulnerable in the future [ 98 , 99 ]. This approach is ad-

antageous in situations with limited resources (such as time or data)

r significant uncertainty in climate and impact projections. A recent

eport from NASEM also stated that given large climate uncertainties, it

s impossible to design infrastructure to resist all future extreme events;

nstead, the goal should be to pick a design event (e.g., historical high-

mpact event) and then design systems, programs, cultures, and mecha-

isms to reduce suffering and accelerate recovery when the design event

s exceeded [ 100 ]. Therefore, EEA can be utilized to evaluate the chang-

ng likelihood and intensity of a design event and to improve the un-

erstanding of changing vulnerability of population and infrastructure

hen vulnerability assessment is integrated. 

The vulnerability-based approach has long been used in the devel-

pment of building codes. For example, in the aftermath of catastrophic

vents, thorough investigations are carried out to examine the causes

f building failures. The findings are then utilized to inform and rec-

mmend revisions to existing building codes with the goal to prevent

imilar failures in the future [ 101 ]. By integrating the knowledge of

takeholders, experts and local communities, the vulnerability-based

pproach enables comprehensive assessment and adaptation planning.

owever, it is important to note that, the vulnerability-based approach

s local-focused and location-specific. Its capacity for broader-scale ap-

lications arises when a substantial number of cases are compiled, fos-

ering a more comprehensive understanding of patterns, implications,

nd generalizations across various geographic contexts [ 98 , 99 ]. 

In contrast, the hazard-based approach aligns with ongoing adapta-

ion practices that advocate for progressive enhancement of infrastruc-

ure based on the most reliable future climate projections [ 83 ]. This ap-

roach applies climate projections to impact models to assess the future

ailure probability of the components and systems [ 98 , 99 ]. The results

re then used to determine the timing and level of adaptation, depend-

ng on acceptable risk levels and adaptive capacity. The results can also
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Table 2 

A comparison for extreme event attribution and climate projection. 

Approach Extreme event attribution Climate projection 

Outcomes Change in frequency and 

intensity of a particular event 

or type of event due to 

anthropogenic climate change 

Future trends and levels of 

climate-related hazards (e.g., 

frequency, intensity, duration) 

Potential 

engineering 

applications 

Building code improvement. 

Current building codes 

evaluate risk based on past 

weather experience and 

extreme events. Codes are 

amended after events to reduce 

identified vulnerability. 

Strategy assessment. 

Attribution results can be used 

to assess the cost-effectiveness 

of strategies designed to 

mitigate the impacts of 

anthropogenic climate change 

only. 

Strategy optimization . 

Attribution assessment helps to 

recognize the responsibility of 

stakeholders for past climate 

change and to optimize 

adaptation strategies for 

justice. 

Building code improvement. 

Future building codes are 

expected to reduce climate 

change risk based on model 

projections. Design parameters 

and hazard mapping need to be 

updated regularly. 

Strategy assessment. 

Projection results can be used 

to assess the cost-effectiveness 

of strategies designed to 

mitigate the impacts of overall 

climate change. 

Strategy optimization . Hazard 

projections help to identify the 

regions or populations that will 

be most affected by climate 

change and to optimize 

adaptation strategies for social 

equity. 
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nform decision makers about the urgency of mitigating climate change,

educing climate risks at their source. The selection of climate scenarios

epresents the major uncertainty in the hazard-based adaptation plan-

ing [ 84 ]. Given the ability of EEA to project the changing probability

f a type of event, the changing probability of component and system

ailure can be estimated. While the hazard-based approach leans more

owards scientific analysis, its comprehensiveness can be enhanced by

ntegrating non-climate factors, such as policies and socioeconomic con-

itions, in a later stage. 

Second, the storyline approach seeks to develop a qualitative under-

tanding of the driving factors for extreme events and the plausibility of

hese factors [ 72 , 75 ]. Recent studies suggest that the storyline approach

an be applied to establish the casual chain between climate change and

ndividual injury and property loss through a deductive process [ 9 , 22 ].

his could provide the evidence needed to initiate and plan for miti-

ating climate risks [ 77 ]. Moreover, by improving the understanding of

he changes in the likelihood and intensity of extreme events already

bserved, EEA can motivate decision makers to account for climate

hange in future plans [26] , and help stakeholders to develop adaptation

trategies within a context of deep uncertainty caused by the varied lo-

al or regional atmospheric circulation, greenhouse gases and aerosol

mission, and land cover conditions [ 102 ]. Future attribution work

hould address the challenge of disentangling the confounding roles

f external factors [ 49 , 102 ], such as land use and land change, trends

n anthropogenic aerosols, or multi-decadal natural climate variabil-

ty, which may influence the attribution statements used for adaptation

lanning. 

Third, EEA can promote justice and equity in climate adaptation

 32 , 103–105 , 92 ]. Huggel et al. (2016) articulated three justice princi-

les for climate policies: (1) Those who have contributed more to an-

hropogenic climate change have the responsibility of minimizing and

reventing climate change impacts in proportion to the magnitude of

heir contribution to the problem; (2) Those who have benefited from

ast emissions but have not directly contributed to climate change have

he responsibility of assisting those impacted by climate change; (3) The

bove two principles do not apply to those incapable of taking climate

hange measures or reducing carbon emissions [ 103 ]. Moreover, Burger

t al. (2020) stated that it is reasonable to impose responsibility on up-

tream producers or midstream electric generators because it is easier to

egulate a small group of well-informed companies than a large group

f poorly informed consumers, and some of the costs imposed on up-

tream and midstream entities will eventually flow down to consumers

9] . In addition, fossil fuel producers and energy companies have long

nown about the climate risks posed by use of their products but chose

o challenge the legislation aimed at curtailing production [9] . 

By establishing the causality between greenhouse gases and extreme

vents, EEA can facilitate strategic interactions across stakeholders for

itigating experienced and expected climate impacts [ 103 , 104 ]. More-

ver, EEA can be combined with exposure and vulnerability assessments

o attribute inequality of extreme event impacts to climate change [ 92 ].

dentifying inequality is essential for developing equitable and targeted

nterventions, policies, and strategies to address the specific challenges

aced by vulnerable groups or areas. Nevertheless, some studies sug-

ested that establishing the causality can discourage adaptation action

rom those who contribute little to climate change. For instance, some

overnmental officials ascribed the responsibility for increased disasters

o major carbon emitters, and deflected their responsibility for inaction

r improper action on social vulnerability issues [ 24 , 25 , 27 ]. Future re-

earch may assess the relative contributions of different sectors, activ-

ties, and entities to climate change, and focus on disadvantaged com-

unities that suffer a high burden of climate impacts but have low ca-

acity to adapt to climate change, so as to provide a basis for allocating

esponsibility for minimizing and preventing climate change impacts,

nd an approach for promoting justice and equity in adaptation finance

nd resource allocation. Table 2 summarizes the potential applications

f event attribution and climate projections in adaptation planning. 
109
.4. Limitations of attribution analyses and future research needs 

There are three major concerns regarding the use of EEA in adap-

ation planning. First, EEA primarily characterizes past events because

uantifying future changes in the probability of extreme events requires

onsiderable computational resources [ 33 ]. Moreover, the shifts in the

hresholds of future extremes and potential alterations in the shapes of

robability distributions introduce additional complexities and uncer-

ainties to EEA [ 33 ]. However, adaptation planning requires a good un-

erstanding of prospective risks, enabling the integration of anticipatory

easures in the early stages of design and construction. This imperative

rises from the limited flexibility or adaptability of many physical ob-

ects in response to evolving environmental conditions. Infrastructure,

n particular, is typically designed with a lifespan of 75 to 100 years,

uring which their adaptation capacity is restricted by the initial con-

truction. 

Recent research has introduced several frameworks to predict prob-

bility changes of extreme events in a 1.5◦C or 2◦C warmer world or

nder other climate scenarios [ 33 ]. These frameworks offer valuable

ools for preparing and planning for unprecedented events in the fu-

ure, even though the confidence of attribution diminishes as the stud-

ed extremes exceed historical ranges [ 33 ]. It is worth noting that most

WA studies already include projections for changes in the likelihood

nd intensity of extreme events [ 4 , 106 ]. Moreover, attribution analy-

es and climate projections together could be expected to give more

seful information than either attribution or projections alone. Specifi-

ally, attribution analyses are rooted in historical events with real loss

ata, allowing robust estimation of the costs and impacts. Climate pro-

ections foresee future changes due to both greenhouse gases emissions

nd natural climate variability, allowing for comprehensive evaluation

f climate-related hazards. 

Second, EEA can lead to adaptations in sectors and regions with most

ttributable impacts to climate change rather than sectors and regions

hat are most vulnerable to weather and climate extremes [17] . The

ost attributable impacts to climate change are illustrated in Fig. 1 , in-

luding extreme cold and heat events. Heatwaves have resulted in sig-

ificant death tolls and social impacts in the last two decades [ 107 ].

owever, winds and floods pose a greater threat to properties and as-

ets across the world, accounting for two thirds of economic losses from
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limate-related hazards during 1980-2016 [ 108 ]. It is important to rec-

gnize the various impacts arising from extreme events, such as mortal-

ty rates, population displacement, property loss, and economic losses.

mphasizing one aspect while neglecting others may lead to an incom-

lete understanding of the overall impact. In less developed regions,

hile addressing climate change is undoubtedly a critical concern, basic

nfrastructure needs must not be neglected, because inadequate infras-

ructure can hinder social and economic progress, limiting access to ed-

cation, healthcare, and economic opportunities [ 109 , 110 ]. Unreliable

nfrastructure can impair emergency response, disaster resilience, and

ustainable urban development [ 111 ]. Therefore, a balanced approach

s needed that both meets immediate needs and incorporates long-term

limate considerations. 

Even without climate change, some communities can be repeatedly

isrupted by disasters due to improper urban planning, infrastructure

nvestment gaps, or systematic inequity and marginalization [ 35 , 112 ].

n the United States, the exposure of property and infrastructure to

limate-related hazards is increasing due to urban expansion and sub-

rban growth [ 113 ]. The vulnerability of critical infrastructure is also

ncreasing due to the aging and deterioration of components [ 35 , 114 ]

nd increased burdens resulting from population growth without cor-

esponding infrastructure support [ 115 , 35 ]. In order to provide a com-

lete picture of climate risk, future attribution work should include an

valuation of vulnerability and exposure alongside the meteorological

azard, similar to those produced by WWA [ 41 ]. 

Third, EEA involves various sources of uncertainties, including dif-

erences in definitions and indices for extreme events, climate models

sed to reproduce the events, bias correction methods applied to cli-

ate model outputs, and unconditional (full) or conditional probabil-

ty employed to depict FAR [ 116 , 105 ]. Unconditional probability or

nconditional attribution uses preindustrial conditions as the baseline

o evaluate anthropogenic influence on the change of extreme events.

n contrast, conditional attribution presumes an initial level of anthro-

ogenic forcing (e.g., sea surface temperature warming), mode(s) of cli-

ate variability (e.g., El Niño), or atmospheric circulation pattern, and

valuates anthropogenic influence conditioned on those presumptions,

hich avoids running models from preindustrial time to the present day

 7 , 117 , 30 ]. 

The various sources of uncertainties can cause divergent results and

ow confidence of EEA results, and therefore it is a recommended prac-

ice to use the multi-method multi-model attribution approach to cap-

ure some of the uncertainties associated with event definitions and cli-

ate simulations [ 41 , 42 ]. Moreover, as the number of available studies

ncreases, stakeholders will have access to a large body of evidence that

ay be able to give more confidence to the findings of individual stud-

es. Future research should examine the sensitivity of engineering design

o uncertainties in climate modelling, and investigate the level of con-

ervation (e.g., coping range, adaptive capacity) required by building

odes to provide adequate protection in an uncertain world. 

. Summary and conclusion 

Extreme weather and climate events have become more frequent

nd more intense in recent decades. Extreme event attribution pro-

ides an explanation for these observed changes from the meteorologi-

al and long-term climatological perspectives, and answers the question

hether and to what extent the increase in greenhouse gas concentra-

ions has affected the probability and magnitude of a particular event.

hile there is a lack of knowledge on how dynamic atmospheric pro-

esses respond to increased greenhouse gases, there is already high con-

dence in attributing extreme cold and heat and extreme rainfall events

o human-induced climate change. 

In recent years, rapid event attribution services and compound event

ttribution have received increased attention. Rapid attribution services

an provide timely information about the causes of events and vul-

erabilities of communities. Compound event attribution extends the
110
ethod employed in single event attribution to address more intricate

nd complex scenarios. Because each event is unique, there is no stan-

ard way to perform EEA. Each event definition should be carefully

onsidered to ensure that it best reflects the observed impacts. In addi-

ion, it is a recommended practice to consider multiple event definitions,

ompare a hierarchy of climate models, and evaluate different modeling

pproaches when studying the same event [ 41 , 42 ]. This practice also fa-

ilities the measurement of uncertainties inherent in EEA methods. 

This study proposes a method for incorporating EEA into infrastruc-

ure adaptation planning. The fraction of attributable risk and proba-

ility ratio derived from EEA can be integrated into the risk assess-

ent framework to compute increased risk due to anthropogenic climate

hange via Eq. 5 or 6 . This in turn can be used to evaluate the benefit-

ost ratio of adaptation measures via Eq. 8 . Notably, this framework can

lso be applied to assess mitigation measures for climate hazards and

mprove decision making concerning reduction of greenhouse gases. In

omparison to climate projections, EEA presents additional advantages

n unveiling the processes affecting the vulnerability of communities

o climate change, and establishing the causality between greenhouse

ases and extreme events, which may help enhance justice and equity

n the allocation of adaptation resources. 

Finally, this paper reviews the ongoing adaptation efforts to inte-

rate forward-looking climate data into national building codes. Many

hallenges emerge throughout this process, including interpreting un-

ertainties of climate modelling within the context of engineering de-

ign, developing methodologies to routinely update design parameters

nd hazard mapping based on evolving climate projections, and devel-

ping guidelines for extremes that are not considered in current building

odes but may threaten the integrity or resilience of infrastructure with

ontinued global warming. In this context, EEA can be used together

ith long-term climate projections to enhance the comprehensiveness of

ecision making, including planning and preparing for unprecedented

xtreme events. Moreover, EEA can be more useful to adaptation plan-

ing when the exposure and vulnerability of communities to past events

re analyzed alongside the meteorological hazard, and future changes

n the probability of extreme events are evaluated for a global warming

evel of 1.5, 2, or 4◦C or other plausible scenarios. 
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