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ABSTRACT: El Niño–Southern Oscillation (ENSO) is often characterized through the use of sea surface temperature
(SST) departures from their climatological values, as in the Niño-3.4 index. However, this approach is problematic in a
changing climate when the climatology itself is varying. To address this issue, van Oldenborgh et al. proposed a relative
Niño-3.4 SST index, which subtracts the tropical mean SST anomaly from the Niño-3.4 index and multiplies by a scaling
factor. We extend their work by providing a simplified calculation procedure for the scaling factor, and confirm that the rel-
ative index demonstrates reduced sensitivity to climate change and multidecadal variability. In particular, we show in three
observational SST datasets that the relative index provides a more consistent classification of historical El Niño and
La Niña oceanic conditions that is more robust across climatological periods compared to the nonrelative index. Forecast
skill of the relative Niño-3.4 index in the North American Multimodel Ensemble (NMME) and ACCESS-S2 is slightly re-
duced for targets during the first half of the year because subtracting the tropical mean removes a source of additional skill.
For targets in the second half of the year, the relative and nonrelative indices are equally skillful. Observed ENSO telecon-
nections in 200-hPa geopotential height and precipitation during key seasons are sharper and explain more variability over
Australia and the contiguous United States when computed with the relative index. Overall, the relative Niño-3.4 index
provides a more robust option for real-time monitoring and forecasting ENSO in a changing climate.

SIGNIFICANCE STATEMENT: The goal of this study is to further explore a relative sea surface temperature index
for monitoring and prediction of El Niño–Southern Oscillation. Sea surface temperature indices are typically computed
as a difference from a 30-yr climatological average, and El Niño and La Niña events occur when values exceed a certain
threshold. This method is suitable when the climate is stationary. However, because of climate change and other lower-
frequency variations, historical El Niño and La Niña events are reclassified depending on which climatological period is
selected. A relative index is investigated to ameliorate this problem.
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1. Introduction

El Niño–Southern Oscillation (ENSO) derives its name from
the oceanic (El Niño) and atmospheric (Southern Oscillation)
coupling that takes place periodically over the tropical Pacific
Ocean. Because ENSO is a sprawling, diverse, and multifaceted
coupled ocean–atmosphere phenomenon (Bjerknes 1969), there
are many different indices that measure it (Li et al. 2023). While
all metrics provide some insight into ENSO, arguably the most
widely used index is the Niño-3.4 index, which is based on the

departure of sea surface temperature (SST) averaged over the
Niño-3.4 region (58S–58N, 1708–1208W) from its climatological
value (Barnston et al. 1997). Even though ENSO is a coupled at-
mosphere–ocean phenomenon, oceanic indices such as the
Niño-3.4 index are less affected by shorter-term weather fluctua-
tions compared to atmospheric indices, making it more smoothly
varying and more amenable for real-time monitoring. The Niño-
3.4 index therefore plays a key role in early alert systems for
El Niño and La Niña from operational climate centers, such as
the National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center (CPC) in the United States
and the Bureau of Meteorology (BOM) in Australia (Nguyen
et al. 2022). For these alerts, Niño-3.4 thresholds of 60.58C
(NOAA) and 0.88C (BOM), along with other measures of the
tropical atmospheric circulation (Southern Oscillation index,
outgoing longwave radiation anomalies, wind anomalies, etc.;
Gamble et al. 2017; L’Heureux et al. 2017) are used to define
the ENSO status. Such thresholds are important for users who
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make decisions on whether to mobilize resources to prepare for
El Niño or La Niña events and therefore desire an objective,
governmentally endorsed ENSO definition.

Defining ENSO events based on anomalies (departures
from the mean) necessitates defining a climatology or a base-
line average, from which SST anomalies are calculated. Con-
ventionally, the BOM and CPC have followed practices from
the World Meteorological Organization (WMO) recommen-
dation to compute climate anomalies with respect to a single
30-yr monthly mean climatology (WMO 2017). The assump-
tion is that a 30-yr period is long enough to average out most
interannual-to-decadal climate variability, including that of
ENSO. However, in a warming climate there are pronounced
shifts in the climatology of the Niño-3.4 region from one 30-yr
period to another (Fig. 1, left panel). Consequently, whether
the magnitudes of Niño-3.4 index exceed thresholds or not is in-
creasingly dependent on the climatology used. On the other
hand, ENSO is a physical phenomenon and an inherent mode of
seasonal-to-interannual global climate variability, and therefore
ENSO classification should ideally be independent of the choice
of climatology. For example, the lived experience of an El Niño
or La Niña event during the 1950s should not be modified
based on a warmer climatology that occurs 70 years later
(e.g., 1991–2020).

Recognizing that trends in the Niño-3.4 index influence the
categorization of El Niño and La Niña events, van Oldenborgh
et al. (2021) defined a relative SST index for ENSO monitoring.
This index is based on the difference of the Niño-3.4 index (SST
anomalies averaged in the region 58S–58N, 1208–1708W) and a
tropical mean index (SST anomalies over the entire tropics,
from 208S to 208N). A scaling factor is applied to the difference
to match the variance of the Niño-3.4 index. Van Oldenborgh
et al. (2021) argued that this relative Niño-3.4 index has several
advantages over the current NOAA method of computing the
Oceanic Niño Index (ONI), which is the 3-month (seasonal)
running mean of the Niño-3.4 index. Currently, the ONI is com-
puted as a departure from a moving 30-yr climatology that up-
dates every 5 years, which means that the most recent 15 years
of ONI values are changed every five years when those updates
occur (NOAA CPC 2023). Further, van Oldenborgh et al.
(2021) demonstrated that the relative SST index more effectively
removes trends in the recent, real-time record when a past 30-yr
climatology is used. One consequence of this lagged climatology

is that the humanitarian response to the La Niña of 2016/17
(declared by NOAA but not by BOM) may have been more
limited because ONI values were with respect to the 1986–2015
climatology, which made them warmer than they would have
been had a centered climatology been used. In this case, the
weak La Niña event suggested by the real-time ONI values did
not match the impacts that ultimately occurred (van Oldenborgh
et al. 2021).

Beyond its use for ENSO applications, another reason adopt-
ing a relative SST index is warranted in a changing climate is
that it is more directly associated with local atmospheric instabil-
ity. Local instability in turn is more directly tied to rainfall and
convective anomalies, which are key to the coupled ocean–
atmosphere ENSO phenomenon. Mainly, the relative Niño-3.4
index more closely reflects the changes in the tropical Pacific
SST gradients that drive Walker circulation changes and hence
atmosphere–ocean coupling, and, unlike the conventional
Niño-3.4 index, its formulation is more directly associated with
local atmospheric instability.

Why is a relative index more directly tied to local instabil-
ity? Due to the small Coriolis effect near the equator, there is
little horizontal variation in temperature in the upper tropical
troposphere (Sobel et al. 2002). Therefore, the surface condi-
tions across the entire tropics set the temperature of the tro-
posphere beyond the boundary layer. The tropical mean SST
is, in essence, a proxy for tropospheric temperature, and the
difference of tropospheric and local surface temperatures con-
trols instability, which explains why the relative Niño-3.4 index is
better tied to changes in tropical deep convection (Back and
Bretherton 2009; Johnson and Xie 2010; Johnson and Kosaka
2016; Izumo et al. 2020). In fact, this reasoning is also provided
to justify using relative SSTs to determine tropical cyclone po-
tential intensity (Vecchi and Soden 2007; Ramsay and Sobel
2011). Because relative SST has a physical basis, it is preferred
compared to subtracting out a curve or least squares trend fit line
placed through the Niño-3.4 index. The latter strategy would be
especially challenging to apply to real-time monitoring when it is
not clear that the fit can be reliably extrapolated, although alter-
native methods involving trend removal have been proposed
(Turkington et al. 2019).

While van Oldenborgh et al. (2021) provided compelling ar-
guments for using a relative index for ENSOmonitoring, a num-
ber of practical issues and questions remained. In the analysis

FIG. 1. Overlapping 30-yr climatologies over 1931–2020 for (left) monthly mean values of Niño-3.4 and (center) the tropical mean
(208S–208N), and (right) the difference between the tropical mean and Niño-3.4. Units are in 8C (y axis) and shown by calendar month
(x axis). Data are from ERSSTv5.
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that follows, we propose a simpler method of computing the
scaling factor in the relative Niño-3.4 index, which eases the
computation of the relative index in model forecasts and simula-
tions. We also extend the van Oldenborgh et al. (2021) index
computation using the NOAA extended reconstruction SSTs
version 5 (ERSSTv5) and compare it with two other well-known
SST datasets: the Hadley Centre Global Sea Ice and SST (Ha-
dISST) and the Centennial in situ Observation-Based Estimates
(COBE) SST. While van Oldenborgh et al. (2021) briefly exam-
ined the forecast skill of the relative index using the European
Centre for Medium-Range Weather Forecasts (ECMWF)
model, we perform a more extensive forecast verification using
multiple models. Finally, we take a closer examination of ENSO
teleconnections, in 200-hPa geopotential height and precipita-
tion, to assess the ability of the relative index to identify an
ENSO signal with less influence from climate change and multi-
decadal variability. Overall, we find that the relative SST index
provides a more stable historical record of El Niño and La Niña
events that is not as sensitive to changes in climatology or the
choice of SST dataset.

2. Data and methods

In addition to the NOAA ERSSTv5 data (Huang et al. 2017)
that van Oldenborgh et al. (2021) examined, the Met Office
Hadley SST (Rayner et al. 2003) and Japan Meteorological
Agency (JMA) COBE SST (Ishii et al. 2005) datasets are also
examined and used to compute the Niño-3.4 and tropical mean
indices, as discussed in the previous section. Focusing on
ERSSTv5, Fig. 1 herein shows the monthly mean climatology of
total SST in the two regions for multiple overlapping 30-yr peri-
ods (left and center panels) and the difference between them
(right panel). Figure 1 in the online supplemental material re-
peats this figure for the HadSST and COBE SST datasets. Nota-
bly, across all three datasets, the seasonality of the Niño-3.4
region and the tropical mean region is not the same, which re-
sults in up to 0.88C difference between the climatologies of the
two different regions. Therefore, in order to avoid including a
seasonal cycle in the relative Niño-3.4 index, the monthly mean
climatology of tropical mean SST and Niño.3.4 SST must be sub-
tracted prior to the computation of the relative Niño-3.4 index.
We tested different ranges of latitudes (158–308) to define the
tropical mean with similar differences found in the seasonality
(not shown). We selected 208S–208N as in van Oldenborgh et al.
(2021).

In addition to examining multiple observational SST datasets,
seven climate models are evaluated for their skill in predicting
indices of Niño-3.4, tropical mean, and relative Niño-3.4 for all
calendar month targets and forecast lead times (out to 8–12-
month lead times). Herein, 0-month forecast lead refers to the
monthly average closest to the initial condition, which occurs
during the first week of the month (for some models, some
members are lagged with conditions extending back to the final
week of the previous month). Six of these models come from
the North American Multimodel Ensemble (NMME) prediction
system, which is often relied upon in operational ENSO predic-
tions by NOAA (Kirtman et al. 2014; Becker et al. 2022).
Models are sourced from the National Aeronautics and Space

Administration (NASA), Environment and Climate Change
Canada (ECCC), and two groups from the National Oceanic
and Atmospheric Administration (NOAA): the National Cen-
ters for Environmental Prediction (NCEP) and the Geophysical
Fluid Dynamics Laboratory (GFDL). The University of Miami
also provides a model (CCSM4) and leads the NMME research
project. Additionally, the ACCESS-S2 global coupled model, as
used operationally for multiweek to seasonal prediction at the
BOM, is also evaluated (Wedd et al. 2022). The NMME models
are evaluated over the period from 1991 to 2022 because the
GFDL SPEAR model hindcasts begin in 1991. The ACCESS-
S2 model is evaluated from 1991 through 2018, when the hind-
casts end (there is a several-year gap before real-time forecasts
were operationalized). In the results, the forecast verification fo-
cuses on temporal anomaly correlations (AC) between the fore-
casts and OISSTv2.1 monthly mean data (Huang et al. 2021),
but the mean squared error skill score (MSESS) from the
NMME is also shown in supplemental Fig. 2.

Finally, through the use of linear regression, teleconnections
in 200-hPa geopotential heights are evaluated over 1959–2021
from the ERA5 dataset (Hersbach et al. 2020). Globally,
monthly average precipitation anomalies are examined over the
ocean and land from the CPC Merged Analysis of Precipitation
during 1979–2022 (CMAP; Xie and Arkin 1997). Regionally,
station-based gridded monthly average precipitation datasets
are also examined during key impact seasons for Australia
(June–August) and the United States (January–March) during
1979–2022. The CPC Unified gauge-based analysis is relied
upon for calculations focused on the United States (Chen et al.
2008) and the Australian Gridded Climate Data (AGCD)
version 2 is used for Australia (Evans et al. 2020). A carbon
dioxide (CO2) index is also examined from the Mauna Loa ob-
servatory, which is obtained from NOAA Global Monitoring
Laboratory (Keeling et al. 1976).

3. Results

a. Relative Niño-3.4 index across three observational
SST datasets

For each of the three SST datasets, Fig. 2 displays the Oceanic
Niño Index (ONI; top panel), 3-month running average of the
tropical mean SST index (middle panel), and Relative Oceanic
Niño Index (RONI; bottom panel, defined as the 3-month run-
ning average of the relative Niño-3.4 index), each computed
with respect to the 1991–2020 climatology for the entire record
(note: this figure and all others below are computed with respect
to a single climatology). As expected, the datasets are in better
agreement in the recent satellite era record (late 1970s onward),
with less agreement evident the further back in the historical re-
cord that is a result of sparser in situ measurements and there-
fore greater sensitivity to the chosen SST reconstruction scheme.
Over time, there is a positive trend in the ONI index (supple-
mental Table 1 and supplemental Fig. 3), with more El Niño
extremes and fewer La Niña extremes in the recent record.
Compared to the ONI, the tropical mean SST index has less var-
iability, but shows a positive trend in all datasets, which more
clearly reflects the gradually warming climate. The amplitude of
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the positive trend in the tropical mean index is larger, and more
statistically significant, than the ONI. Therefore, when the two
indices are subtracted to form the RONI (Fig. 2), a less dis-
cernible, but slightly negative trend emerges. A ;95% confi-
dence interval based on block bootstrapping shows that only
the negative trend in HadSST is distinct from zero (supple-
mental Table 1). Regardless, as in van Oldenborgh et al.
(2021), the RONI damps the positive SST trend found in the
ONI, making seasonal ENSO variability a more distinctive
feature of the time series.

When the tropical mean index is subtracted from the ONI,
there is a loss in variance in the resulting time series, which, as
discussed in the introduction, is problematic for operational agen-
cies that rely on threshold anomalies to determine the status of
ENSO. Therefore, the time series of RONI in Fig. 2 incorporates
a scaling factor to match the variance of the RONI to that of the
ONI. In forecast and observational data, the scaling method is
simpler to use and computationally faster than the regression-
based method described in van Oldenborgh et al. (2021). The
scaled relative index is defined as

Relative ONI 5 (ONI 2 TropAve) 3 sONI

s(ONI2TropAve)
,

where s is the standard deviation (1950–2020 in Fig. 2) and
the ONI and tropical mean indices are computed relative to a
30-yr climatology (1991–2020 in Fig. 2). The scaling ratio is
computed separately for each calendar month/season and is
largest in March–May and smallest during July–August
(supplemental Fig. 4). The RONI associated with the two in-
flation methods appear very similar (Fig. 3), but the scaling
method results in a RONI variance that more closely matches
the original ONI variance, and will be used through the
remainder of this study. The scaling ratio is computed by
month/season because the variance of the ONI changes sub-
stantially by month/season. If used for operational purposes,
the scaling ratio should be updated periodically, ideally at the
same time the 30-yr climatology is updated, to ensure the rela-
tive index has the same variance as the nonrelative index.

One of the advantages of adopting RONI is that the catego-
rization of historical El Niño and La Niña events is less sensi-
tive to the choice of 30-yr climatology. Figure 4 shows heat
maps across time (1950–2022) of historical El Niño episodes
(in red shading) and La Niña episodes (in blue shading) as de-
fined by NOAA’s 60.58C threshold and the requirement that
ENSO periods last at least five consecutive overlapping sea-
sons. Each column on the x axis represents the use of a differ-
ent 30-yr climatology period (presented in Fig. 1). The left

FIG. 2. Values of the (top) Oceanic Niño Index (ONI), (middle) tropical mean SST index, and
(bottom) Relative Oceanic Niño Index (RONI) are displayed for three SST datasets (see leg-
end). Data spans 1931–2022 (x axis) and are in units of 8C (y axis).
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panel shows the historical ENSO classifications based on the
ONI (using a single climatology for the entire historical re-
cord for each column) and the right panel shows the same for
the RONI. For the ONI (left panel), varying the 30-yr climatol-
ogy has a substantial impact on the classification of past El Niño
and La Niña episodes. In particular, using an older climatology
(e.g., 1931–60) increases the number of El Niño events and their
duration, while reducing the number of La Niña events and their
length. Due to the positive trend in the ONI (Fig. 2, top panel),
the use of a comparably cooler climatological base period shifts
the index toward more positive values. Likewise, using a more
recent climatology (e.g., 1991–2020) translates into more fre-
quent and longer-lived La Niña events because of the warmer
base period.

In contrast to that for ONI (left panel), the heat map using
the RONI (right panel) shows colors that are more horizontally
aligned from the first column to the last column, meaning that
the historical classification of ENSO episodes is more consistent
irrespective of the selected climatology. ERSSTv5 is shown in
Fig. 4, and results for the other two SST datasets are found in
supplemental Fig. 5. The trends in the other two SST datasets
are smaller than that in ERSSTv5 (supplemental Table 1 and
supplemental Fig. 3) and as a result show less dependence on cli-
matology than ERSSTv5.

Given the differences among SST datasets, another attrac-
tive property of RONI is the modest increase in alignment in
the ENSO event classification between ERSSTv5 data and
the other two datasets when RONI is used versus the ONI.
Figure 5 shows the root-mean-square differences (RMSD)
based on the ENSO classification shown in Fig. 4 and supple-
mental Fig. 5 (with periods of El Niño 5 11, neutral5 0, and
La Niña 5 21). The columns show the RMSD between dif-
ferent SST datasets and the y axis shows the selected 30-yr
climatology. The top-left panel is the RMSD for ENSO classi-
fications using the ONI between 1950 and 2022 and the top-
right panel shows the same for the RONI. The bottom panel
shows the difference between the two top panels. While the re-
ductions are modest, the RMSD between ERSSTv5 and the
other two datasets (COBE, HadSST) are mostly either the same
(lighter shading) or reduced (blue shading) when the RONI is
used. A primary reason for this is the reduction in the trend in
ERSSTv5 when RONI is used. Supplemental Fig. 3 and supple-
mental Table 1 show that ERSSTv5 has a large positive trend in
the ONI and, after the tropical mean is subtracted, the resulting

RONI has a much smaller trend, which is more comparable to
the RONI trends in HadSST and COBE.

b. Forecast verification with the NMME and ACCESS-S2

Another important consideration is how skillfully the rela-
tive Niño-3.4 index can be predicted. Van Oldenborgh et al.
(2021) briefly evaluated two versions of the ECMWF model
(S4 and S5) and found that the monthly Niño-3.4 and relative
Niño-3.4 indices have similar anomaly correlations for most
target months, with the exception of those targeted for boreal
spring (March–May), which have slightly lower correlations in
the relative index (a difference of 0.3 at most). However, they
displayed a single forecast lead time (12 months) and there-
fore we extend the evaluation to include all lead times for the
six models that comprise the NMME in use at NOAA, and
the ACCESS-S2 model in use at BOM. First focusing on the
NMME, Fig. 6 shows the anomaly correlation skill score for the
monthly Niño-3.4 index (top row), monthly relative Niño-3.4 in-
dex (middle row), and the difference (Niño-3.4 AC minus rela-
tive Niño-3.4 AC; bottom row). Each panel shows a single
NMME model, with target month on the x axis and monthly
lead time on the y axis. Two of the models have shorter forecast
time horizons (NASA-GEOSS2S and NCEP-CFSv2), and these
periods are masked out with gray shading, as are targets and
lead times with statistically insignificant skill (5% significance
level).

Reflecting the boreal spring predictability barrier, all models
show a reduction in correlation for boreal spring start months (ini-
tial conditions) that is manifest for target months beginning ap-
proximately in May. This lower skill region extends diagonally
into the top right corner, illustrating the lower skill found at pro-
gressively longer lead times for target months in the last half of
the year. The spring predictability barrier is present in both indi-
ces, but the bottom panel shows that, for target months in the first
third to half of the calendar year, the relative Niño-3.4 index has
slightly lower correlations than the Niño-3.4 index (change in cor-
relation coefficient from ;0.1 to 0.3). A sign test (e.g., DelSole
and Tippett 2014) applied to the correlations indicates that these
differences are statistically significant for only some models and
lead times, mostly for March–May targets (at the 5% significance
level). For some models (e.g., NCEP-CFSv2, GEM-NEMO5) the
period with the largest reduction in skill persists for targets into
July, and longer forecast leads generally are associated with a

FIG. 3. The Relative Oceanic Niño Index is shown from 1931 through 2022 for the scaling
method (red line) and for the van Oldenborgh et al. (2021) regression-based method (dashed
blue). Data are from ERSSTv5.
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FIG. 4. Heat maps of historical El Niño (red shading) and La Niña (blue shading) episodes as de-
fined by NOAA’s 60.58C threshold and requirement that ENSO periods last at least five consecutive
overlapping seasons. Each column on the x axis represents a different 30-yr climatology period. (left) The
historical ENSO classifications based on the ONI (using only a single climatology for the entire historical
record); (right) as in the left panel, but for the RONI. Data are from ERSSTv5.
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larger drop in skill, though not exclusively. For instance, NCEP-
CFSv2 shows an almost uniform skill reduction at all lead times.

Van Oldenborgh et al. (2021) noted that months with lower
skill in the relative Niño-3.4 index tend to be the same months
with smaller Niño-3.4 index variance, which can lead to lower
skill because trends would play a correspondingly larger role.
They argued that the skill of the Niño-3.4 index is therefore
slightly inflated due to trends. However, linearly detrending
the predicted Niño-3.4 index and then correlating it to the ob-
served Niño-3.4 slightly increases forecast skill (not shown).
This implies that the presence of trends, within the Niño-3.4
index itself, does not fully account for a reduction in skill in
relative Niño-3.4. Also, for the shorter 1991–2020 model hind-
cast period, the Niño-3.4 index trend is small and negative.
We therefore explore this further in Fig. 7.

In the NMME, Fig. 7 (top row) shows the forecast skill of the
tropical mean index, which is subtracted from the Niño-3.4 index
to form the relative Niño-3.4 index. The tropical mean index
forecast also seems to be influenced by the same boreal spring-
time barrier that impacts skill in the Niño-3.4 index, which likely
stems from the relationship between the tropical mean and
Niño-3.4 indices (in models and observations, r . 0.5 for
January–May). For every model, the highest skill at leads
greater than 6 months occurs for target months in the first half
of the calendar year, and for spring target months in particular
(Fig. 7, top row). To better highlight this seasonal peak in skill in

the tropical mean index, the all-months average skill (January–
December for each lead time) is subtracted from that of the
monthly index, with red (blue) shading indicating where correla-
tions are larger (smaller) in the seasonal cycle relative to other
calendar months (Fig. 7, middle panel). For consistency, the
same procedure is applied to the difference plot previously
shown in the bottom row of Fig. 6 and is now presented in the
bottom row of Fig. 7. It is apparent that the seasonality of skill
in the tropical mean index (middle row of Fig. 7) largely corre-
sponds with targets/lead times that have higher skill in the Niño-
3.4 index compared to the relative Niño-3.4 index. Put another
way, the skill reduction that occurs in the relative Niño-3.4 index
(vs. Niño-3.4) is at least partially attributable to the fact the trop-
ical mean index is being subtracted, which is removing a compo-
nent that is both skillful and related to Niño-3.4, particularly
during the spring. This component of the Niño-3.4 skill likely re-
flects, in part, the communication of the tropical Pacific anoma-
lies to remote ocean basins that lags the peak of ENSO (Chiang
and Sobel 2002). Conversely, during the last half of the year,
when the tropical mean index is comparatively less skillful, sub-
tracting it from the Niño-3.4 index results in a relative Niño-3.4
index that is just as skillful (neutral to slightly blue shaded re-
gions in Fig. 6, bottom row).

Analysis of the ACCESS-S2 model forecasts is largely consis-
tent with the NMME models. Figure 8 displays the equivalent
anomaly correlations that were displayed in Fig. 6 (left panel)

FIG. 5. The root-mean-square differences (RMSD) between each SST dataset (x axis), with the y axis showing over-
lapping 30-yr climatologies. (top left) The RMSD for the seasonally overlapping ONI values between 1950 and 2022;
(top right) as in the top-left panel, but for the RONI. (bottom) The difference between the top two panels.
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and Fig. 7 (right panel). Even though the evaluation periods
are not identical (1991–2018 in ACCESS-S2 versus 1991–2022
in NMME), it is clear that ACCESS-S2 shares the same first
half-year reduction in skill when a relative Niño-3.4 index is
used (Fig. 8, bottom-left panel). The skill of the tropical mean
index (Fig. 8, top-right panel) also compares well with the most
skillful NMME models (Fig. 7, top row). Subsequently, the re-
duction in relative Niño-3.4 index skill (Fig. 8, bottom row)
clearly coincides with the seasons of higher skill in predicting
the tropical mean (Fig. 8, middle-right panel).

c. Relationships with upper-level circulation anomalies

Another of the potential advantages of removing the influ-
ence of a changing climate in Niño-3.4/ONI is that the new
index may better represent the conventional year-to-year
ENSO signal in the global circulation. A typical measure of
global climate change is the tropospheric concentration of
carbon dioxide as indicated by the CO2 index (Fig. 9), which
has a very steady increasing trend. However, regional climate
change is often not expressed as a change related linearly to
increasing carbon dioxide. Indeed, the relative Niño-3.4/ONI

is uncorrelated with the CO2 index, whereas the CO2 index
and tropical mean SST index have a similar increasing trend
(r 5 0.7; Fig. 9). This is explained by the fact that the tropi-
cally averaged surface conditions set the temperature of the
free troposphere. Thus, subtracting out the tropical mean SST
index from Niño-3.4/ONI, to better isolate regions of local in-
stability, also helps to reduce the influence of regional climate
change on the Niño-3.4/ONI. Van Oldenborgh et al. (2021)
thus argue that the relative ONI isolates a purer ENSO signal,
unencumbered by the low-frequency influence of climate
change.

In part because the tropical mean SST index incorporates the
influence of CO2 and its radiative effects, it is a key predictor of
the tropical circulation and anomalous geopotential heights. Fig-
ure 10 shows overlapping seasonal 200-hPa geopotential height
(GPH) anomalies regressed onto the ONI (top panel), the rela-
tive ONI (middle panel), and the difference between the top
and middle panels (bottom panel). Both ONI and relative ONI
patterns exhibit the classic ENSO teleconnection stemming
from the tropical Pacific and influencing the middle-to-high lati-
tudes (Horel and Wallace 1981). However, the ONI pattern is

FIG. 6. Anomaly correlation between NMME ensemble-mean forecasts and OISSTv2.1 observations for the (top) monthly Niño-3.4 in-
dex and (middle) monthly relative Niño-3.4 index, and (bottom) their difference (Niño-3.4 minus relative Niño-3.4). Each panel shows a
single NMME model, with target (validation) month on the x axis and monthly lead time on the y axis. In the top and middle rows,
GEOSS2S and NCEP-CFSv2 have shorter forecasts and lead times beyond 9 and 10 months, respectively, are masked out with gray shad-
ing, as are targets and lead times with statistically insignificant skill (p. 0.05). In the bottom row, dots indicate targets and lead times with
statistically significant differences in skill (p, 0.05).
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characterized by widespread, positive GPH anomalies over the
globe, with the exception of the high latitudes of the Southern
Hemisphere. The relative ONI pattern is associated with a re-
duction of positive height anomalies compared to the ONI, espe-
cially in the tropical latitudes, which reflects the consequence of
subtracting out the tropical average SST. Additionally, in the rel-
ative ONI plot, the area covered by the positive height anoma-
lies appears to be more equally balanced with regions of
negative height anomalies, hinting that conventional ENSO vari-
ability is being isolated.

To better understand the contributions to the difference map
between the ONI and RONI (Fig. 10 bottom panel), we employ
a three-predictor linear regression equation (Fig. 11). Because
CO2 is a key contributor to climate change, we select this index
as a predictor. We also include the components of RONI: tropi-
cal mean SST index and the ONI, as the second and third pre-
dictors. For the seasonal averages used here, a smoothed global
mean temperature index can be substituted for the CO2 index,
with indistinguishable results.

As might be expected, the CO2 and the tropical mean SST
indices are associated with widespread, positive geopotential
height anomalies (top two panels of Fig. 11). However, be-
cause CO2 and the tropical mean are correlated (Fig. 9), the

two maps exhibit a high degree of collinearity and are split
with positive height anomalies dominating different regions.
In fact, the tropical mean index is equally driven by ENSO (as
measured by ONI) and CO2. While not shown, the time series
of the tropical mean is nearly reproduced (r 5 0.9) by linearly
combining the time series of the ONI and CO2. Thus, the
tropical mean index isolates the regional expression of climate
change (CO2) plus ENSO variability, and is critical to explain-
ing the global 200-hPa height anomalies. If only CO2 is used
in combination with the ONI (a two-predictor regression),
CO2 is insufficient to explain the positive height differences in
Fig. 10 (bottom panel), especially over the tropics. Conse-
quently, in order to sufficiently explain the positive height dif-
ferences in Fig. 10 (bottom panel), both CO2 and the tropical
mean indices must be included as predictors. Supplemental
Fig. 6 (bottom panels) confirms the summation of these re-
gression maps (CO2 1 tropical mean) closely matches the
bottom panel of Fig. 10.

While CO2 and tropical mean index collectively explain the ra-
diatively forced climate change signal in the global height anoma-
lies, the final predictor, targeting ENSO variability, strongly
resembles the height anomalies described by relative ONI
(cf. Fig. 10, middle panel with Fig. 11, bottom). This indicates the

FIG. 7. (top) Anomaly correlation between NMME ensemble-mean forecasts and OISSTv2.1 observations for the monthly tropical
mean (208S–208N) index. (middle) The skill with the all-month average subtracted from the tropical mean index, highlighting the seasonal-
ity of skill. Red (blue) shading indicates where correlations are largest (smallest) in the seasonal cycle relative to other calendar months.
(bottom) As in the bottom row in Fig. 6, except with the all-month average subtracted out.

L ’HEUREUX E T A L . 120515 FEBRUARY 2024

Brought to you by NOAA Library | Unauthenticated | Downloaded 02/28/25 04:38 PM UTC



process of subtracting out the tropical mean SST from the ONI
reduces the radiatively forced climate change component that is
intrinsic to the ONI. The smaller positive height anomalies indi-
cate that the relative ONI better reflects ENSO only impacts.

d. Relationships with precipitation anomalies

The relative ONI index also sharpens the tropical Pacific
precipitation anomaly dipole that is a signature of ENSO-
related changes in the equatorial overturning circulation (e.g.,
Ádames and Wallace 2017). Figure 12 shows the January–
March (left panel) and June–August (right panel) global
CMAP precipitation anomalies regressed onto the ONI (top
panel) and the relative ONI (middle panel), and the differ-
ence between the two (RONI minus ONI; bottom panel).

Compared to the ONI, the relative ONI regression maps
(middle panel) are associated with more amplified precipitation
anomalies over the Maritime Continent region and central/
western Pacific Ocean. The difference maps reveal the stronger
anomalies of the RONI overlaid with the typical anomalous
tropical dipole (shown with contours). In the boreal winter
months, the pattern is more zonally oriented, whereas in the bo-
real summer months the anomalous dipole shifts northwestward
due to increased solar heating over the Northern Hemisphere.
Despite the shifts in the seasonality of the tropical dipole, the
relative ONI makes both the positive anomalies wetter and the
negative anomalies drier. Therefore, the relative index more
strongly identifies the zonal asymmetries in the tropical precipi-
tation anomalies, tied to the coupled feedbacks of the ENSO
cycle.

FIG. 8. As in (left) Fig. 6 and (right) Fig. 7, except showing the anomaly correlations from the BOMACCESS-S2 model.
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The relative ONI does not explain more variance in precipi-
tation anomalies everywhere across all seasons, but it does
add some modest explanatory power in some key ENSO re-
gions during seasons of peak impact. Focusing on Australia
(June–August) and the contiguous United States (January–

March), Fig. 13 displays the correlation of precipitation anom-
alies with the ONI (top panel), the relative ONI (middle
panel), and the percent variability explained (correlation co-
efficient squared, 3100) difference between the relative and
nonrelative indices. During their respective winter seasons,

FIG. 9. Standardized June–May (annual) averaged index values of the nonrelative Oceanic
Niño Index (ONI; blue line), CO2 index (orange line), and tropical mean SST index (green line).
The June–May average is based on Tippett and L’Heureux (2020). Data are shown from 1959 to
2021. SST indices are based on HadSST.

FIG. 10. Overlapping seasonal average 200-hPa geopotential
height (GPH) anomalies (m) regressed onto (top) the ONI and
(middle) the relative ONI, and (bottom) the difference between
the top and middle panels. GPH data are based on ERA5 and SST
data are based on HadSST from 1959 to 2021.

FIG. 11. Three-predictor multiple linear regression patterns to
predict overlapping seasonal average 200-hPa geopotential height
anomalies (m) using a (top) CO2 index, (middle) tropical mean
SST index, and (bottom) nonrelative ONI. GPH data are based on
ERA5, and SST data are based on HadSST from 1959 to 2021.
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the relative ONI appears to add ;5%–10% more explained
variability over the positively correlated southern regions of
the United States and over Queensland and New South Wales
in eastern Australia. In the United States the seasonal precipi-
tation of the southwestern states is especially well captured by
the relative index, and the intensity of this signal persists
through the February–April and March–May seasons as well
(not shown). For Australia the enhanced variance explained
continues during July–September and August–October (not
shown), which is consistent with the ENSO influence shown
in Risbey et al. (2009).

4. Conclusions and discussion

Because classifying El Niño and La Niña events in the his-
torical record requires a climatology, it has become increas-
ingly imperative to reckon with climate change in ENSO
monitoring and forecasting tools. SSTs across the tropical Pa-
cific are undoubtedly influenced by past climate change, and,
even if it is not fully understood how exactly SSTs will change
in the future, lower-frequency variability in SSTs must be rec-
ognized and addressed (Lee et al. 2022; Maher et al. 2023).
Relative SST provides a useful paradigm for the monitoring
and prediction of the oceanic component of ENSO, mainly
because it does not strongly depend on the choice of a clima-
tology. Across multiple SST datasets, and different 30-yr cli-
matologies, the historical classification of ENSO events is
more robust when a relative Niño-3.4 index/ONI is used.

Further, we have shown that predictions of relative Niño-
3.4/ONI remain skillful across several state-of-the-art climate

models from the North American Multimodel Ensemble
(NMME) and ACCESS-S2. While there is a slight reduction
in skill (correlations are ;0.1–0.3 lower) in the relative index,
especially for verification times in the early half of the year, it
is likely that the classic Niño-3.4 index is deriving some skill
from lower-frequency changes versus seasonal-to-interannual
ENSO dynamics. As evidence, the tropical mean index, which
is subtracted from Niño-3.4/ONI to form the relative index,
has higher skill during the first half of the year as well.
Because the tropical mean index is correlated to Niño-3.4
(r . 0.5), the subtraction results in some removal of predic-
tion skill during the first half of the calendar year. In contrast,
in the last half of the year, the relative Niño-3.4 index is just
as skillful as the nonrelative index. Ultimately, removing the
lower-frequency component of the Niño-3.4 index is benefi-
cial to certain users because this part does not impact the
global climate in the same way as the seasonal-to-interannual
component.

To establish that the relative Niño-3.4 index captures vari-
ability more strongly associated with seasonal ENSO telecon-
nections, we evaluated relationships with the global mean
circulation and precipitation anomalies. ONI relationships
with 200-hPa geopotential height are characterized by higher
heights across most of the globe compared to the relative in-
dex. Also, a three-predictor regression with CO2, tropical
mean SST, and the ONI as predictors reveals that the height
pattern associated with the ONI, independent of the other
two predictors, strongly resembles that of the relative ONI.
This finding suggests that radiative effects, embedded within
the CO2 and tropical mean SST influences, are leaking into

FIG. 12. (left) January–March average precipitation anomalies (mm day21) regressed onto the (top) ONI and
(middle) RONI, and (bottom) their difference. (right) As in the left column, but for June–August. The contours in
the bottom panels are duplicated from the top panels. Precipitation anomalies from CPCMerged Analysis of Precipi-
tation over 1979–2022.
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the nonrelative index. Additionally, the pattern of tropical Pa-
cific precipitation anomalies becomes sharper when a relative
index is used. During their respective winter/spring seasons,
the relative index describes about ;5%–10% more precipita-
tion variability over portions of the southern United States
and eastern Australia. All considered, a relative SST index
appears to better isolate the expected ENSO teleconnections,
without mixing in signals from background climate change or
low-frequency variability.

For some purposes, such as the prediction of seasonal
temperature and precipitation, it is fundamental to consider
lower-frequency climate changes and ENSO collectively. But for
attribution and for monitoring of the ENSO phenomenon itself,
it is problematic to have climate change incorporated within the
Niño-3.4 index/ONI. Without an adjustment made to the tradi-
tional ENSO index, a periodic reshuffling of historically classified
El Niño and La Niña events is likely to occur, which may not re-
flect baseline conditions experienced at the time of the event.
This paper expands upon the initial work of van Oldenborgh
et al. (2021) and further justifies the use and adoption of a

relative SST index for monitoring and prediction. As they previ-
ously cautioned, in the future, if there are significant divergences
between the tropical mean state and trends in the Niño indices,
then this index will need to be re-evaluated. We hope this work
motivates additional studies and simulations of these indices in a
changing climate.
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Data availability statement. The NMME model data ana-
lyzed for this study can be found in the International Research
Institute for Climate and Society data library https://iridl.ldeo.
columbia.edu/SOURCES/.Models/.NMME/ and precipitation
data were provided by the NOAA Physical Sciences Labora-
tory, Boulder, Colorado, USA, from their website at https://psl.
noaa.gov. The CO2 data came from the NOAA Global Moni-
toring Laboratory, from their website at https://gml.noaa.gov/.

FIG. 13. (left) Over the contiguous United States, correlation of January–March average precipitation with (top)
ONI and (middle) RONI; (bottom) the percent variance explained by RONI minus the percent variance explained
by ONI. (right) As in the left column, but for Australia during June–August. Precipitation anomalies from CPC Uni-
fied gauge-based analysis (for the United States) and Australian Gridded Climate data version 2 over 1979–2022.
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ERA5 data were retrieved from the Copernicus Climate Data
Store, from their website at https://cds.climate.copernicus.eu/
cdsapp. Australian Gridded Climate data were obtained from
the Australian government, at their website https://portal.ga.gov.
au/. ACCESS-S2 data are published on the National Computa-
tional Infrastructure (NCI) and are available for research pur-
poses from https://geonetwork.nci.org.au/geonetwork/srv/eng/
catalog.search#/metadata/f3311_4920_0252_8073. Python code
to calculate the relative ONI index from ERSSTv5 is available
at https://github.com/michellelheureux/Relative-SST/ and from
the NMME predictions at https://github.com/mktippett/
NMME/.
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