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ABSTRACT 

State-space geolocation models feature coupled process (movement) and observation (data 

likelihood) models to reconstruct fish movement trajectories using electronic tag data. 

Development of the data likelihood model is therefore a key step in adapting a state-space 

geolocation model for use with different fish species, geographical regions, or types of electronic 

data. Here we adapt a discrete hidden Markov model for the geolocation of Pacific spiny dogfish 

(Squalus suckleyi, n = 154) in the North Pacific Ocean by developing a data likelihood model 

based on Microwave Telemetry X-tag Pop-up Satellite Archival Tag (PSAT) data. The data 

likelihood model consists of light-based longitude, light-based latitude, sea surface temperature 

(SST), temperature-depth profile (TDP), and maximum daily depth. Pacific spiny dogfish tend to 

occupy coastal waters where small-scale local currents and freshwater inputs make SST and 

TDP variables difficult to map. To address this issue, we introduce an empirical method for 

parameterizing SST and TDP likelihoods by calculating root mean square difference between 

PSAT temperature and depth values recorded at known locations (day of tag deployment and 

tag pop-up) and mapped values at those locations. For SST observations (n = 85), the 

difference between measured and mapped values did not vary seasonally or monthly and the 

overall root mean square error (RMSE) used to parameterize the SST likelihood was 0.9 °C. 

Likelihood values for SST at known locations were higher for likelihoods parameterized with the 

empirical value compared to variance specification methods from previous studies. For TDP, 

measured values differed from mapped values (n = 89) by depth, season, and month. Therefore, 

RMSE values used to parameterize the TDP likelihood were calculated for each depth bin (n = 
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27) and month. RMSE values were low (< 1°C) for all depths during the winter but increased for 

depths < 100 m during the summer months. Our work provides an example of adapting state-

space geolocation models for specific applications. It demonstrates the value of large numbers 

of tagged animals for parameterizing the data likelihood model in coastal waters as well as 

flexible data likelihood models with component likelihoods that can be switched on or off 

depending on geolocation quality. 

 

Keywords: Fish geolocation, hidden Markov model, Pop-up Satellite Archival Tags, Pacific spiny 

dogfish 

 

1. Introduction 

Knowledge of fish movement patterns is a key component of fisheries management and stock 

assessment (Goethel et al. 2011, Lowerre-Barbieri et al. 2019). Obtaining detailed information 

on fish movement over large scales in space and time is challenging, but the development of 

electronic archival tags and analysis tools such as state-space geolocation models in recent 

years has greatly improved researchers’ abilities to obtain insights into important behaviors such 

as migration and foraging for highly mobile fish species (Costa et al. 2012).  

 

State-space models reconstruct movement paths of fish tagged with electronic archival tags by 

coupling a movement model, which describes the way the tagged animal is expected to move 

through the study area, to a data likelihood model that links the data collected by the tag to 

specific locations in the study area in a probabilistic way. Benefits of state-space models include 

the ability to accommodate messy data, accounting for measurement error in the model, 

allowing multiple movement states (e.g., foraging vs. migrating), and providing uncertainty in 

location estimates. State-space model approaches can be linear, such as a Kalman filter 

(Nielsen et al. 2006, Lam et al. 2008), or non-linear, such as a particle filter (Andersen et al. 

2007) or a hidden Markov model (HMM, Pedersen et al. 2008).  

 

HMMs are relatively simple discrete state-space geolocation models, and thus their use has 

rapidly increased in recent years. The HMM approach to geolocation was developed for Atlantic 

cod in the North Sea (Pedersen et al. 2008, Thygesen et al. 2009) and features a study area 

that is divided into discrete grid cells with an isotropic diffusion (random walk) movement model. 

It is ideal for non-linear applications such as nearshore study areas, as no probability is 

assigned to land. It allows for inclusion of multiple movement states and can be readily adapted 
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 3

for use with different fish species and study areas. To adapt the HMM for specific applications, it 

is necessary to choose a model grid size, obtain a value of diffusion for the movement model, 

and develop a data likelihood model that is tailored to the behavior of the fish, the type of 

electronic tag, and the available geolocation data maps for the study area.  

 

We adapted the HMM for the geolocation of Pacific spiny dogfish (Squalus suckleyi, hereafter 

termed “dogfish”) in the North Pacific Ocean. The dogfish is one of the most common shark 

species in the coastal waters of the North Pacific Ocean and is distributed throughout the 

nearshore waters of the U.S., Canada, Russia, and Japan (Figure 1). This species is often 

bycaught in major fisheries such as those for Pacific halibut and walleye pollock (Tribuzio et al. 

2020), and has been subjected off and on to directed fishing (King et al. 2017). Dogfish stocks 

in Alaskan waters are assessed, and the catch of the species is managed, as part of a complex 

of all shark species within the Gulf of Alaska (GOA) and Bering Sea-Aleutian Islands (BSAI) 

fishery management plan areas. As a whole, the shark stock assessments are data-limited, but 

dogfish are the most data-rich within the complex. Life history data and fishery-independent 

survey indices inform the assessment. However, information on habitat associations and 

seasonal and annual movement within and between management jurisdictions is limited.  

 

Previous research on dogfish movement using conventional tags has provided some evidence 

of seasonal movement between U.S. and Canada (Taylor 2008) and some large-scale 

movements across the northeast Pacific to Japan and Russia (McFarlane and King 2003, Taylor 

2008). However, detailed information on movement patterns is difficult to obtain using only 

information about release and recovery positions. To learn more about dogfish movement 

patterns relative to fisheries management areas in the North Pacific Ocean, we initiated a Pop-

up Satellite Archival Tag (PSAT) study in 2009 and used the HMM to reconstruct movement 

paths of tagged dogfish based on PSAT light, depth, and temperature data. 

 

We customized the HMM for our application by developing and parameterizing a data likelihood 

model that accounts for dogfish behavior, PSAT data type, and the environmental 

characteristics of our study area. The data likelihood model for Pacific spiny dogfish is based on 

light-based latitude and longitude, sea surface temperature (SST), temperature-depth profiles 

(TDP), and maximum daily depth. Although the parameterization of the light-based latitude, 

light-based longitude, and maximum depth likelihoods is straight-forward, parameterizing the 

SST and TDP likelihoods is more challenging because dogfish tend to occupy near-shore 
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 4

waters where the influence of small-scale coastal currents and freshwater run-off can reduce 

accuracy of the mapped values in the study area. We addressed this challenge by leveraging 

the large number of tagged dogfish in this study to develop a new method for parameterizing 

data likelihoods for SST and TDP based on empirical differences between PSAT data and 

mapped data at known (release and pop-up) locations. Our work provides an example of 

customizing a data likelihood model for a specific application and adapting the model for 

situations where errors in study area mapped data may be high. In addition, this work can be 

viewed as a continuation of efforts to explore the sensitivity of state-space geolocation models 

to choices about fixed parameters and likelihood methods which are needed to ensure 

robustness and confidence in geolocation results. 

 

2. Materials and methods 

2.1. PSAT data 

During 2009 – 2013, 173 Microwave Telemetry (Columbia, Maryland) X-tags were deployed on 

dogfish in the GOA (Figure 1). Tags were deployed during directed research cruises and 

opportunistically on the Alaska Fisheries Science Center's annual groundfish longline survey 

(e.g., Malecha et al. 2019). The PSATs were attached with a method adapted from Carlson et al. 

(2014) where a hole was drilled through the anterior dorsal fin spine below but near the point 

where the spine extrudes from the skin. A piece of 300lb test monofilament line was looped 

through the hole, pulled tight, and clamped. The tag was attached to the monofilament line with 

a loose loop which allowed the tag to swing freely. The monofilament line was covered with 

silicone tubing (1/8" inner diameter, 1/4" outer diameter) to prevent it from snagging and keep 

the clamps from irritating the skin of the dogfish. 
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Figure 1. Pacific spiny dogfish study area in the North Pacific Ocean. The Food and Agriculture 

Organization of the United Nations (FAO) species distribution map for Pacific Spiny Dogfish 

(pink area) depicts a mostly nearshore distribution. 

 

The PSATs weigh 46 g in air with a diameter of 3.3 cm and a length of 12.2 cm. The tags 

recorded depth, temperature, and light and were programmed to release (“pop up”) from the fish 

after 6 – 12 months. After the tags popped up, they transmitted daily light-based latitude and 

longitude estimates and time series of depth and temperature records. If tags released from the 

fish prior to the pop-up date, data transmission was triggered by a constant depth when the tag 

floats at the surface. Measurement intervals for the depth and temperature time series varied 

depending on the length of tag deployment and ranged from 15 minutes to one hour. 

Information on measurement resolution also accompanied each depth (0.34 m – 5.4 m) and 

temperature (0.16 °C – 0.23 °C) observation. Physically recovered PSATs provided depth and 

temperature records every 2 minutes.  

 

Latitude and longitude estimates were derived from light levels at dusk and dawn by the tag 

manufacturer using a proprietary algorithm. The estimates were available as both raw (daily) 

and smoothed (multiple day average) locations. The location estimates were accompanied by 

the depth at which dawn and dusk values were obtained. Because light-based latitude and 

longitude estimates can produce estimated locations that are far beyond the possible range of 

movements of the fish in a given time period, we used only raw values and filtered the position 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 



 6

estimates manually to remove obviously spurious values (daily difference greater than 2 

degrees longitude and 4 degrees latitude) prior to running the geolocation model. The filter is 

larger for latitude compared to longitude because latitude estimates are much less precise. 

Filtering of extreme values was necessary because spurious estimates that fall outside the 

study area would negate relevant information from other data sources, such as depth and 

temperature, at that time step (see “overall likelihood calculation” section below). Latitude and 

longitude estimates were treated separately for pre-processing and in the model, as longitude is 

more robust than latitude during equinox and when measurements are obtained from deeper 

waters (Seitz et al. 2006).  

 

Temperature and depth records were processed to obtain a data set of concurrent depth and 

temperature values. Microwave Telemetry tags use an algorithm for the compressed data (i.e., 

those data that are transmitted) in which any changes in depth or temperature that are too great 

to be measured accurately are flagged as “delta limited”. For our analyses, we discarded these 

values, which typically comprised < 2% of the transmitted data points. For periods of time where 

depth and temperature measurements were offset slightly (e.g., 15 min), depth and temperature 

records were linearly interpolated using the command “na.approx” from R package “zoo” (Zeileis 

and Grothendieck 2005) with a maximum record gap of 1 time interval. 

 

2.2. Geolocation model 

To reconstruct the movement paths of dogfish in the North Pacific Ocean, we adapted a HMM 

developed for the geolocation of Atlantic cod in the North Sea (Pedersen et al. 2008, Thygesen 

et al. 2009). The HMM is a Bayesian state-space geolocation model based on the division of the 

study area into discrete grid cells. Each grid cell ultimately contains the probability that the 

tagged fish occupied the grid cell at each time step. First, beginning at the tag release location, 

a forward filter is implemented that alternately applies an update from the movement model 

followed by an update from the data likelihood model at each time step (Figure 2). The 

movement model is a random walk, represented in the model as a two-dimensional diffusion 

kernel that is convolved with the prior. After the movement model update, the prior is then 

multiplied elementwise by the data likelihood model values at that time step to obtain the joint 

probability of the observed tag data and grid cell value. The sum of the joint probability density 

is referred to as lambda, and this quantity is used to assess the performance of the model and 

to estimate diffusion. The joint probability density is normalized by lambda to become the 

posterior and then becomes the prior for the next time step. Once the recovery location is 
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reached, backward smoothing is performed to update the probabilities with knowledge of the 

recapture location. In addition to the initial description of the model provided by Pedersen et al. 

(2008), additional details for all of these steps are available in Thygesen et al. (2009), Pedersen 

et al. (2011), Le Bris et al. (2013), Woillez et al. (2016), Braun et al. (2018a), and Nielsen et al. 

(2019).  
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Figure 2. A conceptual model of the forward filter of a Hidden Markov Model (HMM) for fish 

geolocation (Figure 1 from Nielsen et al., 2019). The matrix Φk holds the estimated probability 

distribution in each study area grid cell at time k. The model is initiated at time k = 1 with all of 

the probability in the grid cell of the release location. The matrix H contains the transition 

probabilities from time k to time k+1 derived from the diffusion coefficient (movement model) 

and can change depending on the movement state (e.g., foraging or migrating, assigned prior to 

running the model) at time step k. The initial probability is updated first by the movement model, 

through convolution (*) with H, and then by the data likelihood model through cell-wise 

multiplication (x) with the matrix Lk+1 that contains the data likelihood at time k+1 (see Figure 3 

for illustration of individual data likelihood model components for the geolocation of spiny 

dogfish). Updated probabilities are then normalized by cell-wise division (/) with the 

normalization constant λ and the recursion continues with alternating movement model and data 

likelihood updates until the last observation is reached.  
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Development of the data likelihood model is one of the most important steps in the process of 

adapting the HMM for a new application (e.g., species or geographic region). Data likelihood 

models specify the way that data collected by the PSAT are linked to known spatial distributions 

(i.e., maps) of geolocation variables in the gridded study area. The data likelihood models take 

into account fish behavior (e.g., preference of demersal vs. pelagic habitat), the type and quality 

of tag data, and environmental gradients of geolocation variables in the study area. 

 

In order to link data recorded by the PSAT to grid cells in the study area at each time step, 

specification of the distribution of geolocation variables, usually assumed to be Gaussian, within 

each grid cell is needed. Deciding how to parameterize grid cell variance is a critical component 

of the data likelihood model that can affect model performance (Nielsen et al. 2019) and 

researchers have parameterized variance in different ways. One common approach is to assign 

variance values in each cell by calculating the standard deviation of adjacent grid cells (Le Bris 

et al. 2013, Liu et al. 2017, Braun et al. 2018a). When the resolution of the mapped geolocation 

variable is higher than the model grid cell resolution, it is also possible to assign variance by 

calculating the standard deviation of small-scale grid cells aggregated to form the larger model 

grid cells (Nielsen et al. 2019). Other researchers use a constant value for all grid cells in the 

study area that is based on auxiliary data, prior research, uncertainty values that accompany the 

data set, or the value that provides the best model performance (Pedersen et al. 2011, Biais et 

al. 2017). Alternatively, variance may be estimated by the model (Woillez et al. 2016).  

 

In addition to development of a data likelihood model, adapting the HMM for different 

applications (e.g., species or geographic regions) involves 1) deciding whether to estimate 

diffusion in the model or use a pre-determined value, and 2) choosing the optimal grid size. 

Movement states (e.g., foraging vs. migrating) can be specified prior to model estimation based 

on auxiliary analyses of the data set or information from previous research, for which different 

values of diffusion may be used. In this manuscript, however, we focus on the development and 

parameterization of the data likelihood as the key step in adapting the HMM for our specific 

application. 

 

2.3. Data likelihood model for dogfish 

Dogfish can be found throughout the water column. When they occupy shallow waters, PSATs 

collect information on light intensity, which provides information on latitude (e.g., day length) and 

longitude (e.g., time of local noon). Light-based geolocation is the primary means of geolocation 
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for pelagic fish (Musyl et al. 2001, Schaefer and Fuller 2016). When dogfish spend time near the 

sea surface, the temperatures recorded by the PSAT can be matched to satellite imagery of sea 

surface temperature (SST) in the study area (Nielsen et al. 2006, Lam et al. 2008). When 

dogfish occupy deeper waters, temperature-depth profiles (TDPs) recorded by the PSATs can 

be matched to mapped TDPs in the study area (Skomal et al. 2009, Braun et al. 2018b). 

Because dogfish can be anywhere in the water column (in contrast to demersal fishes which are 

assumed to be on or near the sea floor at least once a time step), the maximum depth recorded 

by the tag each day is used to rule out geographic areas with shallower depths. Therefore, the 

data likelihood model for spiny dogfish is composed of light-based longitude and latitude, SST, 

TDPs, and maximum depth (Figure 3).  
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Figure 3. Example of the data likelihood model for a dogfish for the day before the PSAT pop-up 

date. The pop-up location is indicated by a crossed square symbol in all plots. The data 

likelihood consists of A) light-based longitude, B) light-based latitude, C) maximum daily depth, 
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D) sea surface temperature (SST), and E) temperature-depth profile (TDP) components. All 5 

components are combined to produce the total likelihood at that time step (F). 

 

2.3.1. Light-based longitude and latitude 

We treat longitude (Figure 3A) and latitude (Figure 3B) as separate likelihoods to allow for 

inclusion of only longitude values when latitude values are spurious (e.g., when the fish 

occupies deeper waters or during equinox periods). The likelihood value for light-based 

longitude (or latitude) is the probability of observing the longitude (or latitude) obtained from the 

PSAT given normal probability density function (PDF) centered on the study area grid cell: 

 

Llight = Ν(�; �, �),          (1) 

 

where x is the longitude (or latitude) estimated by the PSAT, µ is the longitude (or latitude) of the 

grid cell, and σ is the standard deviation of longitude (or latitude) obtained from previous 

geolocation studies. We specified a standard deviation of 1.5 degrees for longitude and 3.5 

degrees for latitude based on values used for other temperate shark species (Biais et al. 2017, 

Doherty et al. 2017).  

 

2.3.2. Maximum depth 

A bathymetric map is used to calculate the maximum depth likelihood (Figure 3C) as well as to 

assign a probability of zero to land during the estimation process. We use the SRTM30+ Global 

1-km Digital Elevation Model (DEM): Version 11 bathymetry data set which provides bathymetry 

information on a 0.008 degree grid.  

 

The maximum depth likelihood is obtained from a normal cumulative distribution function (CDF) 

of the mean depth and estimated depth variance within each grid cell (Pedersen et al. 2008). 

The likelihood value is the CDF quantile represented by the tag depth, normalized by a CDF 

truncated at a depth of zero and modified to accommodate positive depth values: 

 �� � �   

  Lmax_depth = 1 − 
 � � � �1 − 
 � � ��  ,     (2) 

 

 

where Φ is a Gaussian cumulative distribution function, x is the maximum observed depth 

during the time step interval from the PSAT, µ is the mean depth value for the grid cell (always 
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288 positive), and � is the standard deviation of the bathymetry in the grid cell. The standard 

 deviation for each grid cell was derived from all depths used to aggregate the fine-scale 

 resolution bathymetry map (1-km resolution) to the 20-km resolution model grid (Nielsen et al. 

 2019). 

  

 2.3.3. SST 

 To calculate the SST likelihood, we use the Multi-scale Ultra-high Resolution Sea Surface 

 Temperature (MUR SST), which provides daily SST and error estimates on a 0.01 degree grid 

 (JPL MUR MEaSUREs Project 2010). To link tag temperature at the surface to the SST map, 

 we first define how the X-tag measured SST. For X-tag data, SST must be defined from the time 

 series depth and temperature records. The MUR SST data set provides information about the 

 “foundation” SST, which reflects the base temperature of the top water layer at night or when 

 strong winds mix the surface waters. Under those conditions, differences between SST and 

 deeper waters (e.g., up to the first 10 m) are small relative to tag measurement resolution 

 (Donlon et al. 2007, Kawai and Wada 2007). We conducted a preliminary analysis to determine 

 whether the mean, median, or maximum temperature obtained at depths less than 10 m was 

 closest to known SST values at known locations. Because the maximum temperature performed 

 the best, we define SST measured by the PSAT as the maximum temperature of all 

 measurements obtained when the depth plus tag depth measurement resolution (maximum 5.4 

 m) was less than 11 m each day. This effectively limits the temperature records that can be 

 matched to SST to the two shallowest depth bins (0 – 5.39 m and 5.4 – 10.7 m) at the highest 

 levels of depth uncertainty. This is similar to the definition of SST used by Woillez et al. (2016) 

 for geolocation of a pelagic fish.  

  

 The SST likelihood value in each grid cell (Figure 3D) is obtained by integrating a normal PDF 

 of SST values in the grid cell between the upper and lower values of tag measurement ± tag 

 measurement uncertainty (Le Bris et al. 2013):  

  

 LSST = ���
� Ν(�; �, �) ��,         (3) �

  

 where x is the maximum temperature measured by the fish at depths shallower than 11m 

 (including depth measurement uncertainty) during the time interval, T1 and T2 are the lower and 

 upper limits of uncertainty in tag temperature measurement, µ is the value of SST in each grid 
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cell from the MUR SST data set, and σ represents the standard deviation of SST values within 

the grid cell. Sigma can be derived using different methods (Nielsen et al. 2020). Here, we 

introduce a new method for determining σ by calculating an empirical value based on the 

difference between SST measured by the tag and SST provided by the MUR SST data set at 

known locations (see “Calculation of empirical variance” section below). 

 

2.3.4. TDP 

To calculate TDP likelihoods, we use estimated temperatures from the HYCOM global 

oceanographic model (Wallcraft et al. 2009), which provides daily temperatures for 40 depth 

bins on a 0.08 degree grid. To link temperature values measured by the PSAT at different 

depths to the HYCOM map, we calculated the average PSAT temperature for each depth bin 

and compared those values to the corresponding depth bins for the HYCOM model. For the 

likelihood calculations, we linked PSAT data to a subset of 27 of the 40 depth bins provided by 

the HYCOM model to account for depth measurement uncertainty of up to 5.4 m in the PSAT 

data. For example, for the first 30 m the HYCOM model provides estimates at 0, 2, 4, 6, 8, 10, 

12, 15, 20, 25, and 30 m but the depth bins used for the first 30 m of the likelihood were 0, 6, 10, 

20, and 30 m.  

 

The TDP likelihood is calculated for each depth bin separately and then combined to obtain the 

likelihood for all depths at each time step (Figure 3E). We do not reconstruct temperature-depth 

profile curves as is done with other TDP likelihoods (Braun et al. 2018a, Braun et al. 2018b) 

because dogfish move rapidly from shallow to deep waters and measurements at intermediate 

depths were frequently “delta-limited” by the X-tags and thus discarded. Likelihood values for 

each depth bin are calculated in the same manner as SST likelihood values (eq. 2), where a 

normal PDF with a mean of the HYCOM temperature in the grid cell and an empirical value for 

standard deviation (see “Calculation of empirical variance” section below) are integrated 

between the upper and lower values of the mean tag temperature in the depth bin ± tag 

measurement uncertainty (Le Bris et al. 2013). After likelihoods for all depth bins are calculated, 

likelihoods for all depth bins in each grid cell are multiplied (Braun et al. 2018a) to obtain the 

overall likelihood in each grid cell for that time step: 

 

LTDP = LTDP_depth_1 * LTDP_depth_2 * ….. *LTDP_depth_n ,     (4) 
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where depth_1 is the likelihood for first depth bin, depth_2 is the likelihood for the second depth 

bin, and n is the number of depth bins for which temperature was recorded by the PSAT. 

 

2.3.5. Overall likelihood calculation 

All individual likelihoods (longitude, latitude, SST, TDP, and maximum depth) are created using 

the same grid size. Likelihood data available as geographic coordinates were first aggregated to 

0.2 degrees, then projected to meters (Robinson with a meridian at -145º). The 20 × 20 km grid 

size used in this study was chosen based on the size of the study area, the relatively coarse 

spatial scale of variation in likelihood components, and the movement speed of spiny dogfish. It 

is a typical grid size for pelagic fish geolocation studies (Pedersen et al. 2011, Braun et al. 

2018b). Then for each time step (one day), all likelihoods are combined by cell-wise 

multiplication to obtain the overall likelihood for that time step (Figure 3F);  

 

LTotal = LLongitude* LLatitude* LSST* LTDP *Lmax_depth .     (5) 

 

If a variable (e.g., SST) is not available for that time step, all grid cells in the study area are 

given a value of 1 for that likelihood.  

 

2.4. Calculation of empirical variance 

We parameterized the SST and TDP likelihoods by comparing observed PSAT depth and 

temperature data at known locations to values from SST and TDP maps at those locations. For 

each release and pop-up location, we examined all available PSAT records and recorded SST 

and TDP values up to 3 days after release and 3 days prior to pop-up. Only pop-up locations 

from PSATs that released on schedule were used for this analysis because tags that detached 

from the fish prior to the scheduled pop-up date drifted on the water surface for several days 

before transmission to the Argos satellite network was initiated. We calculated the difference 

between values measured by the PSAT and mapped values using the values closest to the day 

of release or pop-up in all calculations. Assuming the location observations would be more 

accurate on Day 0 compared to Day 3, we assigned ad hoc weights to each PSAT observation 

based on our confidence that the recorded tag values corresponded to the location of the 

tagged fish at that time. Observations on days 0, 1, 2, and 3 after release or before pop-up were 

assigned weights of 0.5, 0.3, 0.15, and 0.05, respectively. Observations from fish released in 

the same location on the same day were averaged to provide a data set with unique 

combinations of location and day. 
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For TDP comparisons, we supplemented tag data with two auxiliary sources of temperature-

depth profile information. First, Sea-Bird Scientific (Bellevue, WA) SBE 39 temperature-depth 

recorders (TDRs) were deployed on the AFSC longline survey near release locations for fish 

tagged on that survey (Figure 1). These recorders provided TDP information for the full range of 

depths near release locations (K. Siwicke, NOAA AFSC, unpublished data). Second, we 

obtained detailed (30 minute) temperature measurements at depths of 20, 30, 60, 100, 150, 200, 

and 250 m with Sea-Bird Scientific conductivity temperature and depth (CTD) sensors from the 

GAK1 mooring (University of Alaska College of Fisheries and Ocean Sciences, data available at 

http://research.cfos.uaf.edu/gak1/) located at 59.845 N, 149.4667 W (Figure 1). The mean 

temperature for each depth and day was obtained from the GAK1 records, and monthly 

averages of daily differences between GAK1 measurements and HYCOM values were added to 

the TDP data set. 

 

We checked for difference between measured and mapped SST and TDP values by season 

(winter = December, January, and February, spring = March, April, and May, summer = June, 

July, and August, autumn = September, October, and November) and month using Kruskal-

Wallis test for non-parametric analysis of variance (Zar 1999). For the TDP value, we combined 

depth observations into three larger depth bins for statistical analyses (0 – 50 m, 51 – 100 m, 

and > 100 m). We plotted difference between measured and mapped values by distance from 

shore. We then calculated the root mean square error (RMSE) between mapped SST and TDP 

values and observed tag measurements, weighting each observation by the number of days 

from the known location, for use in the SST and TDP likelihoods: 

 

RMSE = �∑%�&�(���� !"�)�∗$�
∑% $   ,       (6) 

�&� �

 

where Obs is the observed temperature from PSAT, TDR, or GAK1 measurements, Map is the 

mapped temperature value from MUR SST or HYCOM at the known location, and w is the 

weight corresponding to the number of days between observation and time of release or pop-up. 

If no temporal variation was observed, one value of RMSE was calculated per depth for use in 

the model. If temporal variation was observed, RMSE was calculated for each time period and 

depth, and RMSE values were interpolated with the interp.loess command from the R package 
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“tgp” (Gramacy 2007). To compare the empirical SST RMSE value to offshore values, RMSE 

was also calculated for observations > 50 km offshore. 

 

3. Results 

3.1. PSAT data  

Of the 173 PSATs deployed, 79 PSATs popped up on the scheduled date and thus provided 

precise pop-up locations. Another 73 PSATs detached from the fish prior to the pop-up date. 

Eight tags were physically recovered and provided detailed data. Most pop-up locations were 

scattered along the Pacific coast from California to the Aleutian Islands, ten were 700 - 2000 km 

offshore in the North Pacific Ocean, and one pop-up location was in Russian waters (Figure 1). 

An example of a dogfish data set (Figure 4) features periods of rapid change between near-

surface waters and depths to more than 400 m, periods of time spent exclusively at shallow 

depths, and periods of time spent at intermediate depths with few visits to surface waters. 
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 434 

Figure 4. Example of geolocation data available for spiny dogfish. Temperature-depth profile (A) 

with the HYCOM depth bins used in the model. Circles on the lower portion of the plot indicate 

days when SST observations are available; x’s and squares indicate days with longitude and 

latitude observations, respectively. Processed (filtered) longitude (B) and latitude (C) 

observations for use in the model. 

 

3.2. Calculation of empirical variance 

For the SST likelihood, the number of unique observations (locations and times) was 85. No 

temporal variance in the difference between measured and mapped SST values was observed 

by season (Kruskal-Wallis, p = 0.2463) or month (Kruskal-Wallis, p = 0.2379). Therefore, a 

single value of RMSE (0.9) was calculated to parameterize the SST variance in the model. The 
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difference between measured and mapped SST values decreased with distance from shore, 

however (Figure 5), where the RMSE from locations > 50 km from shore (n=22) dropped to 0.5. 
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Figure 5. Difference between sea surface temperature (SST) measured by Microwave 

Telemetry X-tag Pop-up Satellite Archival Tags (PSATs) and values predicted by the MUR SST 

satellite-derived map at known locations plotted by distance from shore. Vertical line indicates 

50 km from shore. 
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Figure 6. Difference between temperature measured by Microwave Telemetry X-tag Pop-up 

Satellite Archival Tags (PSATs) and values predicted by the HYCOM global model at known 

locations by month and depth bin. 

 

For the TDP likelihood, the number of unique observations (locations and times) was 89. The 

sample size was slightly higher than the SST sample size because sometimes TDP values were 

available only for depths greater than 10 m, and thus SST values could not be calculated. In 

contrast to SST, the difference between measured and mapped TDP values varied both 

seasonally (Kruskal-Wallis, p = 2.6 exp-04 for depths 0 – 50 m, p = 1.401 exp-06 for depths 50 

– 100 m, and p = 1.374 exp-04 for depths > 100 m) and monthly (Kruskal-Wallis, p = 1.74 exp-

10 for depths 0 – 50 m, p = 6.35 exp-09 for depths 50 – 100m, and p = 6.47 exp-05 for depths > 



 19 

100m, Figure 6). Therefore, RMSE was calculated for each depth bin (n = 27) and month of the 

year. RMSE values were low (<1 °C) at all depths during the winter, but RMSE values almost 

doubled in shallower waters during the summer months (Figure 7). In contrast to SST, the 

difference between measured and mapped values did not decrease appreciably with distance 

from shore (Figure 8). 
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Figure 7. Root mean square error (RMSE) values for the temperature-depth profile (TDP) 

likelihood. RMSE values reflect differences between temperature at depth values measured by 

Microwave Telemetry X-tag Pop-up Satellite Archival Tags (PSATs) and values predicted by the 

HYCOM global hydrodynamic model at known locations. Note that depth bins are not graphed 

to scale. 

 

472 

473 

474 

475 

476 

477 



 20 

478 
Figure 8. Difference between temperature-depth profile (TDP) measured by Microwave 

Telemetry X-tag Pop-up Satellite Archival Tags (PSATs) and values predicted by the HYCOM 

global model at known locations plotted by distance from shore. Observations are grouped into 

0 – 50 m, 51 – 100 m, and >100 m depth bins. Vertical line indicates 50 km from shore. 
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4. Discussion 

In this paper, we develop a more flexible application of the HMM which allows for smooth 

integration and evaluation of accessory data. Due to the large number of tags available, we 

were able to develop methods for parameterizing the data likelihood model and quantify 

uncertainty between tag measurement and map data. The HMM demonstration is supported by 

data, minimizing proxies and assumptions, and is likely to result in an improved estimate of daily 

locations and overall movement of each tagged animal. 

 

4.1. Data likelihood model 

We developed a data likelihood model for the HMM that is tailored to the behavior of our tagged 

fish, the type of data provided by the PSATs used, and the physical characteristics of our study 

area. The inclusion of multiple geolocation variables in the data likelihood model is helpful for 

working with PSAT data, where many gaps may exist due to incomplete signal transmission, 

and when the behavior of the animal reduces the number of geolocation variables for 

substantial time periods. For example, dogfish can occupy deep waters or inhabit regions with 

seasonally limited light for long periods of time, during which the TDP and maximum depth 

likelihoods are the only source of geolocation information available. Expanding the data 

likelihood model to include known locations from acoustic telemetry or Smart Position and 

Temperature Transmitting (SPOT) tags can be easily accomplished by assigning positive 

likelihood values to grid cells within an acoustic receiver’s detection distance or position error 

radius of the SPOT tag, further expanding the utility of the HMM tool. 

 

Though the data likelihood model is conceptually simple, there are many decisions that need to 

be made to parameterize it. For example, the semi-pelagic behavior of dogfish means that 

bathymetry is treated differently than demersal fish for the maximum depth likelihood (Nielsen et 

al. 2019). In addition, the tendency for dogfish to conduct rapid dives to deep waters and return 

to shallower waters, combined with the challenges of X-tag compression algorithms for 

measuring temperature at depth accurately during periods of rapid changes, means that the 

temperature-depth likelihood for our model may differ slightly from models designed to use 

binned TDP data from other tag types (e.g., the Wildlife Computers PDT product). Therefore, 

although likelihood models may seem similar conceptually, there are often important differences 

in the details that researchers should be aware of before they apply a data likelihood model to 

their own data. However, open source software such as HMMoce (Braun et al. 2018a) is 
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transparent, flexible, and can be readily adapted for specific applications (Haase et al. 2021, 

Hoffmayer et al. 2021). 

 

4.2. Empirical parameterization of SST and TDP likelihoods 

Our research expands recent efforts to explore the implications of different methods for grid cell 

variance specification (Nielsen et al. 2019). The choice of variance parameterization method 

depends on the characteristics of the study area (such as gradient strength), the resolution and 

accuracy of available geolocation variable maps in the study area, and the availability of 

auxiliary data in the study area. Each method has pros and cons. For example, estimation of 

Gaussian parameters such as variance in the model can lead to errors that affect model 

performance in state-space models (Auger-Méthé et al. 2016). 

 

Here we present a method for parameterizing variance in situations where map error is high 

based on empirical comparison of values measured by the tag to mapped values at known 

locations. The intent of the empirical variance is to estimate the probability distribution of values 

that could occur within each model grid cell. In effect, the empirical variance estimate accounts 

for both map error and the spatial scale of variation in the geolocation variable. The resulting 

variance values are customized for the study because they integrate the behavior of the animal, 

the type and quality of data provided by the PSAT, and the accuracy of the geolocation map. 

For example, our empirical variance (0.9 °C) for SST is nearly twice as high as the typical value 

that accompanies the MUR SST data set (approximately 0.5 °C). This value reflects both the 

difficulty in mapping SST in nearshore conditions and our definition of SST as the maximum 

temperature at depths (including tag resolution) less than 11 m. Thus, we simultaneously 

validated our SST definition for tags that provide only time series data (as opposed to tags that 

specifically record the temperature when the tag is at the surface) and the difference between 

that SST measurement and mapped values. Because the variance at locations > 50 km 

offshore was similar to the typical value provided by the data set, it is likely that the larger 

variance value is due primarily to map error in nearshore waters. Therefore, researchers with 

offshore study areas would likely not need to bother with empirical estimation of variance for the 

SST likelihood. However, some caution is needed in the comparison of nearshore and offshore 

variance due to low sample sizes for observations > 50 km from shore. 

 

In contrast to SST, our empirical variance estimate for the TDP likelihood varied strongly by 

month and did not decrease with distance from shore. This indicates that it is a characteristic of 
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the HYCOM data set that should be considered for all future studies that utilize this geolocation 

variable. In our situation, the TDP likelihood is most needed in the winter, when spiny dogfish 

may spend months in deeper waters and therefore the higher variance during the summer 

months should not cause problems for geolocation accuracy. The TDP provides similar 

geolocation information to the SST, which is frequently available during the summer months 

when the HYCOM model error is high. It is worth noting that other temperature-depth profile 

maps, such as Regional Ocean Monitoring System (ROMS) model maps, may be available in 

different study areas.  

 

We acknowledge that without independent location information for the tagged fish, accuracy and 

precision of the geolocation model is unknown. Ideally, a comparison of HMM daily estimated 

locations with auxiliary data such as SPOT tags, which can provide satellite position estimates 

when the tagged animal is at the surface, is used to confirm improvements to model 

performance (Braun et al. 2018a, Gatti et al. 2021). Given our lack of auxiliary location data, 

additional research with simulated data sets could be beneficial for further understanding the 

effects of data likelihood model specification methods on performance. Simulations were not 

attempted in this study because TDP values assigned to simulated locations based on mapped 

TDP values would likely result in misleading estimates of accuracy and precision given the high 

map error observed (Gatti et al. 2021). Therefore, future research that features double-tagging 

with tags that can provide independent location information (such as SPOT or acoustic tags) 

would likely be the most valuable approach for assessing model performance. 

 

In addition to comparing different variance specification methods, future research could address 

the effect of including different combination of data likelihood model components. For example, 

because TDP map error was smaller for waters > 100 m year-round, model performance could 

be improved if only TDP bins > 100 m are used. In addition, model performance could be 

improved if the 0 and 6 m TDP depth bins were removed, as these bins have the highest map 

error during the summer and are also included in the SST likelihood. Performance could also be 

higher if the TDP likelihood is not included in the model when SST data are available, as 

likelihood values were much higher for SST compared to TDP at known locations. In addition, a 

general investigation into assigning weights to each likelihood based on its potential quality 

could be a valuable contribution for data likelihood model development. Future research could 

also address the potential effect of spatial and temporal autocorrelation in map errors. 
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5. Conclusions 

Applications of the HMM geolocation model are growing worldwide, yet research on the effects 

of different parameterization methods on model performance is needed to ensure that models 

are adapted properly for different study conditions. Our data likelihood model for dogfish in the 

North Pacific Ocean is specifically customized for Microwave X-tag PSATs, the behavior of the 

tagged fish, and study area characteristics. It provides an example of data likelihood model 

customization that should be considered when applying the model to new species or new study 

areas. The information on SST and TDP variance provided by this study will be helpful for other 

movement studies of mesopelagic species with Microwave Telemetry X-tag PSATs in the North 

Pacific Ocean.  
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