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ABSTRACT.—Fishers in the United States pelagic longline 
fishery are required to self-report all fishing interactions 
(captures) on a per-set basis to the National Oceanic and 
Atmospheric Administration (NOAA) to quantify catch, 
increase conservation efforts, and allow for an accounting of 
international quota-managed species. Additionally, trained 
fisheries observers are deployed on commercial vessels to 
produce a statistical subset of pelagic longline fisheries data. 
Generalized additive mixed models were used to compare 
vessel captain-reported versus observer-collected datasets 
for fishing occurring in the western North Atlantic Ocean. 
Results showed a general consistency in logbook reporting 
for most target species, but potential under-reporting from 
1.4× to 5.4× for lesser-valued and bycatch species. These 
discrepancies among catch rates of targeted species, species 
of bycatch concern, and species of minimum economic value 
showed an under-reporting in the logbook versus observer 
data, indicating the level of accuracy for self-reported data 
is lower than data collected by pelagic fisheries observers 
for a number of species. Additional analyses are needed to 
examine how varying management measures through time 
may influence reporting accuracy at the species level.

NOAA is charged with federally managing US fisheries at an optimum yield by 
eliminating overfishing and rebuilding overfished stocks under the 1976 Magnuson-
Stevens Act (MSA, 16 U.S.C. §§ 1801 et seq.). All US-flagged pelagic longline (PLL) 
vessels fishing in the Atlantic Ocean, including the Gulf of Mexico and Caribbean 
Sea, must submit self-reported logbooks, which contain details on gear configuration 
and catch composition for each set and trip. These forms contain a list of preprinted, 
commonly encountered species a pelagic longline vessel might encounter, with the 
option to handwrite the more obscure species. NOAA selects a subset of vessels to 
carry a trained observer who is then tasked with recording similar data to the self-
reported logbooks, such that the stratum-level (area × calendar quarter) observer 
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coverage is at least 8% of the previous year’s stratum-level effort for total sets. While 
self-reported logbooks remain a necessity due to logistical and budgetary limitations, 
data inaccuracies and omissions may occur at a higher percentage with logbook data 
compared to observer-reporter data. These data discrepancies can be particularly 
concerning for bycatch species, as many marine megafauna have a low reproductive 
output and are vulnerable to overexploitation (Lewison et al. 2004). Both the logbook 
and observer datasets are used in international highly migratory species (HMS) stock 
assessments so it is essential to understand what disparities might exist between 
these two data sets on a species-specific basis.

Systematic differences in reported catch amounts between trips carrying an 
observer and those that did not have been referred to as an “observer bias” or “observer 
effect” (Johnson et al. 1999, Faunce and Barbeaux 2011). Referring specifically to the 
observer and logbook data reports within this analysis, “observer effect” is defined 
as the mean expected difference in reported set level catch by species, dating from 
the inception of the NOAA Pelagic Observer Program (POP) in 1992 through 2016. 
While other studies have applied similar methods to estimate reporting discrepancies 
between observer and logbook data (see Walsh et al. 2002, Faunce and Barbeaux 2011, 
Torres-Irineo et al. 2014, and Garrison and Stokes 2016), this is the first comparative 
analysis of catch data from the Atlantic PLL fleet. The observer effect analysis being 
presented here focused on the commonly encountered species of the Atlantic PLL 
fleet that are shared between the preprinted logbooks and the observer data sheets. 
The analysis aims to: (1) assess an observer effect in agency data, (2) assess the relative 
magnitude of this effect across species, and (3) help to understand the possible causes 
for dataset discrepancies. A standard assessment method for this analysis between 
datasets would be beneficial to the many fisheries agencies also collecting data from 
both logbook and observer programs. A species-specific evaluation of self-reported 
and observer-collected PLL data could help inform managers on the efficacy of 
current regulations regarding quotas of target species, bycatch reduction efforts, and 
overall fisheries management strategies.

Methods

Datasets.—Data on catches from the US Atlantic PLL fishery consisted of (1) self-
reported pelagic logbooks (PLP) and (2) the fisheries observer data from the POP. 
Vessels in the PLL fishery are required to self-report catches (and other details) for 
each trip on a per-set basis (64 FR 29135, 1999). Each vessel’s self-reported data are 
submitted at the completion of each trip and include information on the overall 
logistics (e.g., port of departure, number of crew), and each individual set, including 
any associated fishing activity (e.g., number of hooks, total catch). POP fisheries 
observers record a variety of similar data on individual catches, in addition to gear 
parameters, set characteristics, and environmental data. The annual number of 
observed vessels is proportional to the number of total vessels, with the intent of 
providing consistent coverage of the total effort within the PLL fleet over time.

In the present study, PLP and POP fisheries observer data from 1992 through 2016 
were analyzed, covering a total of 40 species, including several composite species 
groupings. The majority of species were analyzed over the full 25-year time-period, 
with the exception of the following species, which were added to logbook forms after 
1992: bonito (Sarda sarda; 1993–2016), sandbar shark (Carcharhinus plumbeus; 
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1993–2016), escolar (Lepidocybium flavobrunneum; 1994–2016), pilot whale 
(Globicephala spp.; 2007–2016), and Risso’s dolphin (Grampus griseus; 2007–2016).

Dataset Preparation.—A combined set-level dataset was created from variables 
common to both observer and logbook data. The following environmental and effort 
variables were considered for potential inclusion in the models: area, time, year, 
season, hook hours, number of light sticks (illuminated fishing gear attached near 
baited hooks to attract fish), bait type, and sea surface temperature.

Any records missing data for one of these explanatory variables were removed, 
as were records falling in areas without consistent overlap in observer and logbook 
coverage through time. Additionally, sets reported with an observer present were 
removed from the logbook dataset. The final combined dataset consisted of 25,739 
sets from the logbook program and 20,704 sets from the observer program.

Statistical Analysis.—General Additive Mixed Models (GAMMs) were 
selected to allow modeling of nonparametric penalized smooth functions of 
predictor variables [e.g., sea surface temperature (sst), year, hook hours], which can 
more accurately capture the relationship of these quantities with reported catch 
(Hastie and Tibshirani 1986). GAMMs were fitted by fast restricted maximum 
likelihood using the R programming language (R Core Team 2022) package mgcv 
(Wood 2011) bam function (Wood et al. 2015, 2017, Li and Wood 2020) for analyses 
of reported catch differences between data sources. Separate models were fitted to 
set level data by species, with the aim of capturing any nuisance variation arising 
from environmental and effort variables not directly related to the observer effect. 
To account for overdispersion, partially due to the excessive number of zeros present 
in the data, a negative binomial response structure with a log-link function was 
employed.

Type (categorical/continuous) and levels of each potential predictor variable were 
defined prior to model selection as follows:

•	 Area: Represents the 11 geographic regions (Cramer and Adams 1998) of the 
western North Atlantic, Gulf of Mexico and Greater Caribbean, as defined via 
latitude and longitude by NOAA for the US domestic HMS fisheries (Fig. 1).

•	 Season: Assigned sets to 1 of 4 seasons: March–May as “spring”; June–August 
as “summer”; September–November as “fall”; and December–February as 
“winter.”

•	 Haul Year: Calendar year in which set was retrieved. Included as both separate 
continuous smooth terms with trends estimated separately for observer 
and logbook sets and as a categorical random effect to address correlation 
of observations in time and prevent data in any given year from having an 
outsized influence on the results.

•	 Sea Surface Temperature (sst): Modeled as a continuous smooth term to 
capture potential nonlinearity.

•	 Hook Hours: Time (in hours) elapsed from the deployment of the last hook 
during the set and the first hook removed during the haul back multiplied by 
the number of hooks deployed. Any sets with “negative” soak times, or soak 
durations exceeding 50 hours were removed from subsequent analyses.
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•	 Targeted Species: A method used by the POP to determine the intended 
targeted species (swordfish, tuna, mix), the proportion of hooks to light sticks 
is used, with a higher proportion of light sticks (>0.75) used when targeting 
swordfish, and a lower proportion of light sticks used when targeting tuna 
(<0.25). Light stick proportions were defined according to the following ranges 
<0.25 | >0.25 and <0.50 | >0.50 and <0.75 | >0.75.

•	 Vessel ID: Each vessel’s unique identifier, included as a random effect.

•	 Observer Presence: A binary value of 1 (observer present) or 0 (observer absent) 
to test the hypothesis that the amount of reported catch is associated with the 
presence of an observer (in addition to other covariates).

To account for potential correlation between reports from the same vessel and 
unrepresentative observer deployments to certain vessels, a vessel random effect—
defined as each individual vessel identification number—was included in the model. 
This helped ensure that certain vessels did not have an outsized influence on the 
estimation of model parameters simply by having many reported sets, as opposed 
to treating each set as an independent unit. A random effect for individual trips was 
considered as well but proved too computationally costly for model convergence.

Akaike’s Information Criterion (AIC) was used to identify an appropriate set of 
predictor variables and interactions to include in the final models. For the sake of 
interpretability and fitting constraints, up to two-way interactions of main effects 
were considered for inclusion in a backward stepwise selection approach, with log 

Figure 1. Map of NOAA geographic statistical areas used for the pelagic longline fishery.
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hook hours, year random effect, vessel random effect, and observer effect kept in all 
models. This process was carried out for a range of species to identify consistently 
important variables and interactions, until ultimately settling on the final model. If 
data were not sufficient to allow estimation of all levels of an interaction for a given 
species, or if a particular model did not converge, interactions were subsequently 
dropped until the model converged. Basis dimensions (k) of thin plate spline terms 
were set sufficiently high such that there were no substantial gains in effective degree 
of freedom (edf), ensuring relationships between predictors and response were 
appropriately captured. To test for differences in reported catch between the two 
data sources in consideration of the other covariates, significance of the observer 
effect in each model was evaluated using the Bayesian estimated covariance matrix 
of parameter estimates (Wood 2017). Percent deviance explained was examined to 
indicate how well the terms included in the model captured variability in set level 
reported catch.

Species Analyzed.—
Finfish and Sharks (Coastal and Pelagic).—Swordfish, tunas, and other finfishes 

were placed into one of two disposition categories: kept or discarded catch. For 
discards, being alive or dead at time of discard was irrelevant. Kept species that 
were examined within this category included: swordfish (Xiphias gladius), Atlantic 
bluefin tuna (Thunnus thynnus; plotted as a bycatch species as well), yellowfin tuna 
(Thunnus albacares), bigeye tuna (Thunnus obesus), albacore (Thunnus alalunga), 
blackfin tuna (Thunnus atlanticus), skipjack tuna (Katsuwonus pelamis), escolar, 
common dolphinfish (Coryphaena hippurus), and wahoo (Acanthocybium solandri). 
The observer effect by species was analyzed over the entire 25-year study period.

Due to the common misidentification of certain shark species, the 18 species 
included within the analysis were grouped as either coastal shark species (11) or 
pelagic shark species group (7; Table 1). Each shark group (coastal or pelagic) was 
then analyzed separately over the 25-yr period under the same two disposition 
categories of kept or discarded.

Billfishes.—With the implementation of the 1988 Atlantic Billfish Fishery 
Management Plan (53 FR 37765), all billfishes were prohibited from sale or possession 
by the US PLL fishery. Given the retention prohibition for billfishes, the analysis only 
focused on whether an observer effect was present for discards. The following four 

Table 1. List of coastal and pelagic shark species.

Coastal sharks Pelagic sharks
Bignose Carcharhinus altimus Blue Prionace glauca
Blacktip Carcharhinus limbatus Shortfin mako Isurus oxyrinchus
Dusky Carcharhinus obscurus Longfin mako Isurus paucus
Great hammerhead Sphyrna mokarran Oceanic whitetip Carcharhinus longimanus
Scalloped hammerhead Sphyrna lewini Porbeagle Lamna nasus
Smooth hammerhead Sphyrna zygaena Bigeye thresher Alopias superciliosus
Night Carcharhinus signatus Common thresher Alopias vulpinus
Sandbar Carcharhinus plumbeus
Silky Carcharhinus falciformis
Spinner Carcharhinus brevipinna
Tiger Galeocerdo cuvier
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istiophorid billfish species were analyzed: blue marlin (Makaira nigricans), white 
marlin (Kajikia albida), sailfish (Istiophorus platypterus), and roundscale spearfish 
(Tetrapturus georgii), with roundscale spearfish and white marlin being combined 
into a single category due to common misidentification.

Sea Turtles and Marine Mammals.—Loggerheads (Caretta caretta) and 
leatherbacks (Dermocheys coriacea) were the only preprinted sea turtle options for 
captains to self-report on the 2016 Atlantic HMS Logbook Set Form, and for marine 
mammals, the only preprinted options were pilot whales (combined short-finned 
Globicephala macrorhynchus and long-finned Globicephala melas) and Risso’s 
dolphin. With sample sizes of reported interactions from the logbook program for 
both sea turtles and marine mammals being so low, model fitting was not feasible, 
resulting in their exclusion from the model-based analyses. Instead, species were 
summarized according to counts of total observer captures (per 100,000 sets) vs 
total logbook captures (per 100,000 sets) over all sets and disposition categories 
(uninjured, injured, and dead). Unlike the model-based comparisons, all variables 
were not required to be present for the comparative results, so all recorded sets 
from both programs (270,705 logbook sets and 21,336 observer program sets) were 
analyzed as opposed to only those sets with complete information.

Results

In addition to the observer effect, and year and vessel random effects, the final 
model consisted of parametric terms for area, season, light stick proportion, and 
interactions of area × season and area × light stick proportion. Smooth terms 
consisted of sea surface temperature (sst) by area, season, and light stick proportion, 
log hook hours by area and season, and separate smooths for haul year by observer 
presence. The full model is presented in Equation 1,

log(λi) = β0 + β1areai + β2seasoni + β3light sticksi + β4areai × seasoni + 
β5seasoni × light sticksi + β6observeri + s(year | observeri) + s(ssti | areai) + 
s(ssti | seasoni) + s(ssti | light sticksi) + s(log(hook hoursi) | areai) + s(log(hook 
hoursi) | seasoni) + Yi + Vi

where λi equals the expected number of captures reported (either kept, discarded, or 
total) on set i, β represents estimated parametric coefficients, s represents smooth 
functions, and Yi and Vi represent the year and vessel random effects, respectively. 
For the majority of species, these models resulted in between approximately 40% and 
60% deviance explained. Model R code and detailed model summaries are available 
as supplementary material.

Back-transformation of the model estimated observer effect parameters according 
to Equation 2 yielded percentage values to quantify the estimated effect of observer 
presence on the reported catch, with sets without an observer serving as the reference 
group.

% Difference = 100 * (exp(β6) − 1) 					     (Eq. 2)

(Eq. 1)
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These quantities are presented for retainable and bycatch species respectively over 
1992–2016 and are ranked in order of greatest to least estimated under-reporting 
with all disposition categories (kept and discarded; alive and dead) summed into 
a single variable (Figs. 2 and 3). Wald 95% confidence intervals based on standard 
normal quantiles were constructed around these percentages, with lower confidence 
bounds above zero indicating evidence of greater catch reported in the presence of an 
observer and upper confidence bounds below zero indicating evidence of lesser catch 
reported in the presence of an observer at α = 0.05. Time-series plots of the estimated 
observer effect between 1992 and 2016 (including all disposition categories) were 
produced for retainable (Figs. 4 and 5) and bycatch (Fig. 6) species by calculating 

Figure 2. Model estimated mean observer effect between 1992 and 2016 as a percentage relative 
to logbook baseline, ranked in descending order, with sets for (A) retainable species, (B) retain-
able species kept, and (C) retainable species discarded. Numbers denote sample size (number of 
sets) of each category (logbook vs observer) included in the model. Error bars represent Wald 
95% confidence intervals.
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differences with 95% confidence intervals (Marra and Wood 2012) between the 
model estimated smooths for haul year by observer presence and shifting the back-
transformed differences by the estimated coefficient for the observer main effect to 
display the expected multiplicative differences over time in set level reported catch 
with an observer onboard relative to the logbook baseline. As the observer effect may 
vary over time, the overall mean observer effects from Table 2 are displayed on these 
figures as dotted lines, representing long-term average reporting biases.

With all retention categories combined for target and incidental species, there was 
evidence of under-reporting (percent difference > 0) for skipjack tuna, blackfin tuna, 
bluefin tuna, and escolar (Fig. 2, top panel). Ranking the examined species according 

Figure 3. Model estimated mean observer effect between 1992 and 2016 as a percentage relative 
to logbook baseline, ranked in descending order, with sets for (A) bycatch species, (B) bycatch 
species kept, and (C) bycatch species discarded. Numbers denote sample size (number of sets) 
of each category (logbook vs observer) included in the model. Error bars represent Wald 95% 
confidence intervals.
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to their model-estimated observer effect parameters for combined retentions and 
discards in order of largest (most under-reported) to smallest (most over reported; 
Table 2), skipjack tuna was observed to be the most under-reported species, with an 
estimated 5.4 times more individuals reported per set in the presence of an observer 
(95% CI: 4.51–6.38) on PLL vessels. Four species analyzed had evidence of over-
reporting at α = 0.05 for combined retentions and discards: wahoo, with an estimated 
observer effect parameter of 0.92× (95% CI: 0.85–1.00), albacore tuna (0.94×, 95% 
CI: 0.88–1.00), bigeye tuna (0.95×, 95% CI: 0.90–1.00), and bonito (0.57×, 95% CI: 
0.37–0.88), meaning the estimated observer-reported catch per set for bonito was 
57% of that expected to be reported without an observer. For billfishes and sharks, 
the comparison showed under-reporting was likely in logbook reported catch for 
every examined taxon (or grouping of species) with the exception of pelagic sharks 
(Fig. 3). The greatest disparities occurred for the three billfish species (sailfish: 3.96×, 

Figure 4. Model estimated observer effect for retainable species: (A) bluefin tuna, (B) escolar, 
(C) swordfish, and (D) yellowfin tuna, 1992–2016. Solid lines (± 95% CI) represent expected 
magnitude difference in set level reported captures with observer present relative to logbook 
baseline (dashed line at 1.0). The dotted line represents estimated long-term mean difference 
over the study period.
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95% CI: 3.51–4.46; spearfish: 3.64×, 95% CI: 3.38–3.92; blue marlin: 3.15×, 95% CI: 
2.89–3.44).

Though the green sea turtle Chelonia mydas, hawksbill sea turtle Eretmochelys 
imbricata, and Kemp’s Ridley sea turtle Lepidochelys kempii have been caught by 
PLL vessels according to observer data (142 total interactions), encounters are a 
rarity, representing roughly 0.002% of the longline catch from 1992 to 2016 (even 
including unidentified turtle species interactions). Of all 21,336 observer sets from 
1992 to 2016, there were 2187 leatherback and loggerhead sea turtle encounters, or 
1182 logbook interactions vs 10,250 observer interactions per 100,000 sets (Table 3). 
The largest discrepancy between the datasets occurred between individuals deemed 
injured. For marine mammal interactions (short-finned pilot whales, long-finned 
pilot whales, and Risso’s dolphin), zero interactions were reported in the logbook 
dataset while 397 were reported when an observer was present, or 1862 per 100,000 
sets (Table 3).

Figure 5. Model estimated observer effect for retainable species: (A) albacore, (B) bigeye tuna, 
(C) common dolphinfish, and (D) wahoo, 1992–2016. Solid lines (± 95% CI) represent expected 
magnitude difference in set level reported captures with observer present relative to logbook 
baseline (dashed line at 1.0). The dotted line represents estimated long-term mean difference 
over the study period.
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Discussion

The analyses of each species or grouping of species led to the same result for a 
majority of bycatch species and retainable species discarded: an apparent under-
reporting in the logbook data versus the observer data, and the level of accuracy 
for self-reported data—in general—is lower than data collected by pelagic fisheries 
observers. Despite this quantitatively confirmed under-reporting, there is still utility 
to the logbook data set regarding catch trends for retainable species and time series 
analyses, especially since placing an observer on every commercial fishing trip is 
both logistically and economically impossible. While the aim of this paper was to 
compare differences by species on an annual level, all else equal, there is opportunity 
to focus on specific species of interest in the future to further explore the impact of 
the results presented here on finer scales of space and time.

Figure 6. Model estimated observer effect for bycatch species: (A) blue marlin, (B) sailfish, (C) 
coastal sharks, (D) pelagic sharks, and (E) white marlin/roundscale spearfish/unidentified mar-
lin/spearfish, 1992–2016. Solid lines (± 95% CI) represent expected magnitude difference in set 
level reported captures with observer present relative to logbook baseline (dashed line at 1.0). 
The dotted line represents estimated long-term mean difference over the study period.
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A portion of the logbook dataset (>200,000 sets, about 80%) was excluded from 
the analysis because of quality control issues, i.e., missing data for one or more of 
the modeled variables, or because an observer was present. Between 1992 and 2016, 
more than 600 distinct vessels reported at least one PLL set in the logbook data, 
but less than 300 distinct vessels were observed. In 2000, a large portion of these 
small day boats left the fishery entirely as a result of the East Florida Coast time area 
closure. As a small representation of the fleet and logbook data, it is worth noting the 
possibility that the discrepancy between vessels reporting and vessels observed is not 
as impactful in the full data set. However, we do not have reason to expect this would 
introduce a directional bias in the results and does not detract from meaningful 
comparisons among species.

Further analyses of vessels selected for observer coverage, including specific 
techniques and/or variables associated with higher recordings of self-reported 
logbook data, may provide future insight into increasing accuracy across the fleet. 
While misreporting would have a minimal impact on the indices of abundance if 
the bias is consistent in magnitude and direction; discards, on the other hand, are 
absolutes and hence positive or negative bias will lead to biased estimates of the 

Table 2. Observer effect (expected catch per set reported in presence of observer relative to logbook baseline) 
for combined retentions and discards by species in order of magnitude from largest to smallest, with 95% 
confidence intervals. * Denotes significant difference at α = 0.05 (i.e., 95% confidence interval does not 
overlap 1.0).

Species Observer Effect (relative to logbook) 95% Confidence Interval
Skipjack tuna (SKJ) 5.37* 4.51 – 6.38
Sailfish (SAI) 3.96* 3.51 – 4.46
W marlin/R spearfish (WHX) 3.64* 3.38 – 3.92
Blue marlin (BUM) 3.15* 2.89 – 3.44
Blackfin tuna (BLK) 2.79* 2.50 – 3.10
Coastal sharks 2.02* 1.90 – 2.15
Bluefin tuna (BFT) 1.37* 1.22 – 1.54
Escolar (GEM) 1.26* 1.19 – 1.34
Yellowfin tuna (YFT) 1.04* 1.00 – 1.08
Swordfish (SWO) 0.99 0.96 – 1.01
Dolphinfish (DOL) 0.98 0.94 – 1.03
Pelagic sharks 0.97 0.93 – 1.01
Bigeye tuna (BET) 0.95* 0.90 – 1.00
Albacore (ALB) 0.94* 0.88 – 1.00
Wahoo (WAH) 0.92* 0.85 – 1.00
Bonito (BON) 0.57* 0.37 – 0.88

Table 3. Uninjured, injured, and dead sea turtle and marine mammal interactions per 100,000 sets (Logbook 
and POP). Note that “Pilot Whales” includes both Globicephala species encountered in the fishery.

Status Source Loggerhead 
sea turtle

Leatherback 
sea turtle

Pilot whales Risso's dolphin

Uninjured Logbook 477 311 0 0
Observer 9 9  1 0

Injured Logbook 1,335 1,061 0 0
Observer 4,884 5,259 1,411 380

Dead Logbook 6 8 0 0
Observer 33 56 37 33

Total Logbook 1,818 1,380 0 0
Observer 4,926 5,324 1,449 413
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total removals from the population. Similarly biased estimates will mean that any 
measures designed to reduce discards will be difficult or impossible to measure. It is 
possible that captains who omit data fields might also be less likely to accurately report 
catch data, or captains in general may tend to under-report sets with no catch, so the 
“observer effect” might be even greater than is reported here, providing rationale for 
future opportunities to analyze logbook reporting accuracy. Additionally, a “negative 
observer effect,” meaning more catch reported in the absence of an observer, could 
be a result of discrepancies in species identification, especially for similar looking 
species, such as small tunas or a number of coastal and pelagic sharks.

For self-reported data, attempts to verify species-level identifications on non-
observed trips have led to the implementation of electronic monitoring systems (EM, 
i.e., video surveillance) on US Atlantic PLL vessels (79 FR 71594, 2014). Although 
originally intended for Atlantic bluefin tuna, EM offers additional options to verify 
self-reported catch and bycatch data without the high cost of deploying an observer. 
EMS have improved reporting accuracy in other fisheries such as the Australian 
Eastern Tuna and Billfish Fishery (Emery et al. 2019), though questions remain as to 
the ability of these systems to quantify species counts as completely and accurately 
as human observers in the Atlantic PLL fleet (Alhale and Dettloff 2020). As these 
monitoring systems are implemented and improved over time, logbook data should 
be reviewed for the effects of changes in self-reporting rates that could affect 
abundance estimates.

From 1992 until 2016, two major occurrences dramatically altered the US Atlantic 
PLL industry: closure of the Florida Straits in 2000 (65 FR 47213) and mandatory 
use of circle hooks in 2004 (69 FR 40733). It is also worth noting that in 1992, there 
were a total of 339 permitted PLL vessels, but that number decreased to 151 vessels 
by 2016. As this analysis quantified overall mean discrepancies through 2016, future 
analyses could similarly assess self-reporting, keeping in mind the implementation 
of the Individual Bluefin Quota Program (IBQ) in 2017 and the temporary reduction 
in observer coverage in 2020 as a result of COVID-19.

There is also opportunity to utilize these results in a further developed study 
associated with certain species, protected areas and time-areas closures such as the 
DeSoto Canyon closure in the Gulf of Mexico. Through an increased accuracy in 
logbook data, improved management of area-regulated closures, and potentially even 
opening a discussion for higher-accuracy-reporting vessels to be granted temporary 
access to restricted areas is plausible.

Additional drivers may be related to patterns in reporting accuracy. For example, 
there is strong potential for under-reporting legally retainable species with low 
market value (e.g., skipjack and blackfin tuna). For species of particular bycatch 
concern (e.g., sea turtles), there is an incentive to minimize self-reported interactions 
to avoid penalties or increased regulations. Alternatively, commonly caught species 
such as the pelagic stingray (Pteroplatytrygon violacea) or lancetfish (Alepisaurus 
spp.) have the potential for under-reporting due to minimal economic benefit. A 
third category for misreporting includes species like escolar, which historically had 
been considered of lesser or no value and thus discarded but have now become part 
of the “normal” retained incidental catch (Levesque 2010). Given that mandatory 
dealer reporting of landings can be matched with logbooks, there is a potential for 
a higher level of accuracy in self-reporting in recent years for these newly retained 
species in the fishery. Finally, there are “incidentally caught” species such as blackfin 
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tuna or skipjack tuna which are legally retainable but more commonly discarded due 
to their minimum market value.

While logbook catch reporting appears to be consistent for target species, the present 
analyses suggest a potential under-reporting for catches of nontarget and bycatch 
species. For some species, this under-reporting may be substantial, if unintentional. 
As fisheries management transitions into an ecosystem-based framework, catches 
and catch trends will be needed for modeling efforts, which logbook data may not 
be able to solely and accurately provide for nontarget species. Agencies and other 
organizations developing ecosystem models for large pelagic species may need to 
examine multiple data sources to ensure accurate modeling results.
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