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ABSTRACT: This study quantifies tropical cyclone (TC) error statistics from the Hurricane Analysis and Forecast System
(HAFS) across different environmental conditions (e.g., vertical wind shear) and inner-core structural metrics. A particular
focus is the evolution of poorly understood aspects of internal TC structure, including vortex tilt, and their impact on fore-
cast errors. Although previous studies have demonstrated that vortex tilt, vertical wind shear, and precipitation processes
impact TC intensity and track, this is the first known study to stratify these cooperative interactions to gain insights into
their relationships with forecast errors. A 3-yr retrospective sample of forecasts in the North Atlantic basin from two
HAFS configurations (HAFS-A and HAFS-B) demonstrates that TCs with larger tilt magnitudes have larger forecast track
errors on average than smaller tilt TCs. Smaller tilt magnitudes have larger absolute intensity errors in short-range fore-
casts, whereas larger tilt magnitudes tend to have larger negative intensity biases at medium range. TCs with a tilted vortex
are shown to have both left-of-shear [maximizing downshear left (DSL)] and left-of-tilt-oriented positional track biases.
Furthermore, those cases with greater downshear biases tend to have more convection and larger positive intensity biases,
highlighting the importance of the interplay between inner-core characteristics and forecast errors.

KEYWORDS: Hurricanes/typhoons; Tropical cyclones; Forecast verification/skill; Forecasting techniques;
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1. Motivation/introduction

The confidence in a particular model forecast can vary de-
pending on the characteristics of environmental conditions
surrounding tropical cyclones (TCs). Zhang and Tao (2013)
and Tao and Zhang (2015) demonstrated in idealized simula-
tions that predictability decreases with increasing values of
vertical wind shear (VWS) but only to a certain point when
high VWS causes development to cease altogether. Bhatia
and Nolan (2013) quantified the effects of synoptic variables
and environmental conditions on track and intensity forecast
errors from the National Hurricane Center (NHC), dynamical
models, and statistical models using a dataset of TCs from
2006 to 2010. They found that although greater values of VWS
were associated with larger forecast errors, this effect tended to
maximize in moderate VWS regimes (5–12 m s21). More recent
case studies have also partly attributed moderate VWS to de-
creased predictability (Munsell et al. 2013; Rios-Berrios et al.
2016a,b; Alvey et al. 2020). The large spectrum of horizontal
(e.g., radius of maximum winds) and vertical (e.g., vertical
tilt or misalignment and vortex height; DesRosiers et al. 2023)
vortex structures including precipitation distributions in cases
with moderate shear can also decrease the predictability of
future intensity change (Tao and Zhang 2015; Alvey et al.
2020). Furthermore, Sumwalt et al. (2017) have identified
moderate VWS cases as “some of the most significant chal-
lenges for tropical cyclone forecasting and are prone to causing
large forecast errors.”

Trabing and Bell (2020) expanded upon Bhatia and Nolan
(2013) by examining NHC forecast error stratifications of en-
vironmental parameters from the Statistical Hurricane Inten-
sity Prediction Scheme (SHIPS) in both the Atlantic and east
Pacific basins using a larger and updated dataset from 1989 to
2018. They found, on average, broader error distributions for
TCs that undergo rapid intensification (RI) within climatolog-
ically favorable environments. Although the larger error dis-
tributions they found in favorable environments differ from
the largest errors in moderate VWS found by other studies
like Bhatia and Nolan (2013), their focus on RI (and rapid
weakening) cases (rather than all cases) and differing samples
can likely explain some of these discrepancies. Perhaps more
importantly, Trabing and Bell (2020) hypothesized that inter-
nal storm dynamics, which remain poorly understood, are
likely the cause of their finding that the largest RI errors oc-
cur in favorable environments.

This study addresses those poorly understood aspects of in-
ternal storm dynamics by uniquely examining how both envi-
ronmental conditions and internal storm characteristics relate
to forecast errors. The importance of achieving an aligned vortex
for RI to occur has been well documented within the literature
(Frank and Ritchie 2001; Zhang and Tao 2013; Rios-Berrios
et al. 2016b, 2018; Chen et al. 2019; Alvey et al. 2020, 2022;
Alvey and Hazelton 2022; Stone et al. 2023). Misaligned storms
are commonly weaker TCs initially (minimal hurricane strength
or weaker) and may be in moderate VWS environments. How-
ever, determining whether misaligned storms will align, and
the timing of such events, remains challenging (Finocchio and
Majumdar 2017; Munsell et al. 2017; Yu et al. 2023), hence one
of the difficulties in improving RI forecasts.
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Despite these challenges, some recent studies have estab-
lished potential relationships between alignment and RI with
TC size. For example, Alvey et al. (2020) found that normaliz-
ing the tilt by the radius of maximum winds (RMWs) im-
proved the correlations of tilt as a predictor with future
intensity change, and a ratio of tilt/RMW , 0.75 was neces-
sary for rapid intensification in an ensemble of simulations
from Edouard (2014) in 288–308C SST. Schecter (2022) fur-
ther tested this result in idealized experiments with varying
SSTs wherein he found ratios of 0.31 6 0.12 for 268C, 0.54 6

0.21 for 288C, and 0.74 6 0.24 for 308C SSTs preceded by sus-
tained alignment and more substantial intensification. These
relationships, however, and their impacts on forecast errors
remain poorly understood. Thus, this study places an empha-
sized focus on vortex tilt and its relationships with precipita-
tion and intensity change in the context of associated forecast
errors. The goal is to achieve a better understanding of fore-
cast errors to help model developers prioritize potential
problem areas for future upgrades and to help forecasters un-
derstand when they should or should not place confidence in
a particular model solution.

2. Data and methods

a. HAFS model configurations

This study uses the Hurricane Analysis and Forecast Sys-
tem (HAFS) operational versions “A” and “B” with storm-
centric nested configurations (a 6-km static nest and a 2-km
storm-following nest; Hazelton et al. 2023). The primary dif-
ferences between HAFS-A and HAFS-B exist within the
physical suites, wherein HAFS-A uses the Geophysical Fluid
Dynamics Laboratory (GFDL) microphysical parameteriza-
tion (Chen and Lin 2013; Zhou et al. 2022) and HAFS-B uses
the Thompson microphysical scheme (Thompson et al. 2008).
HAFS-B also uses the “tc-pbl” TC-specific adjustments to the
eddy-diffusivity mass-flux (EDMF)–TKE planetary boundary
layer (PBL) scheme (Chen et al. 2022, 2023). Retrospective
simulations covering the Atlantic basin from 2020 to 2022
with identical configurations (including initial and boundary
conditions) are run by NOAA’s Atlantic Oceanographic and
Meteorological Laboratory (AOML)/Hurricane Research
Division (HRD) in collaboration with the University of Mi-
ami and Cooperative Institute for Marine and Atmospheric
Studies (CIMAS) and Environmental Modeling Center
(EMC).

The verification of HAFS uses the NHC best track for in-
formation on TC intensity in terms of both the maximum-
sustained 10-m wind and the minimum central pressure, as
well as TC position estimates every 6 h over the duration of
the TC lifetime (Landsea and Franklin 2013).

All TCs in HAFS are tracked using the GFDL vortex
tracker (Marchok 2021). For the purposes of this study, all
3-hourly forecast output periods during, and within 6 h of,
the TC center traversing any landmass1 are removed from the

sample. All subsequent forecast outputs for a given cycle
are also removed following land interaction, as defined
above. Forecast periods with a verification position over-
land are also removed. Additionally, only those simula-
tions after which the storm has been designated as a
TC2 (including tropical depressions) are included in the
dataset.

b. Environmental and internal storm dynamic metrics

Variables from the retrospective simulations are calculated
for each 3-hourly output time following conventions from the
SHIPS predictor files (DeMaria et al. 2005). This study primar-
ily utilizes deep-layer VWS magnitude (SHRD, 850–200 hPa
within 200–800 km of the storm center) and direction
(SHTD), midlevel VWS (SHRS and SHTS, 850–500-hPa
VWS magnitude and direction within 200–800 km of the
storm center), and 200–800-km midlevel (700–500 hPa,
RHMD) relative humidity.

In addition to environmental variables, internal storm dy-
namic characteristics like vortex tilt are also calculated for
each storm’s output time. TC centers are calculated for each
vertical level in 25-hPa increments following methods from
Nguyen et al. (2014) by using geopotential height centroids.
Vortex tilt is defined as the maximum displacement between
the low-level center at a height of 800 hPa (;2.0 km) and any
TC center in the 525–425-hPa (;5–6.5-km) layer, hereafter
referred to as 2–6.5-km tilt. Unless otherwise stated, the tilt
magnitudes for all initial conditions use the 6-h forecasts to
account for large initial adjustments (0–3 h) caused by
potential inconsistencies between vortex initialization and
inner-core data assimilation processes. The RMW is calcu-
lated as the distance between the maximum azimuthally
averaged wind at 2 km and the GFDL tracker surface cen-
ter estimate, which assumes that there is no material differ-
ence between wind fields and corresponding centers in the
lower troposphere. Although the axisymmetric RMW may
introduce a low bias in highly asymmetric TCs, this method-
ology was chosen due to the noisiness in alternative
point-based methodologies (Hazelton et al. 2023). The TC
precipitation structure is also partitioned into either con-
vective modes or stratiform modes based on a modified al-
gorithm3 using 2-km model reflectivity (Steiner et al. 1995;
Rogers 2010).

c. Overview

Figure 1 demonstrates the distributions of the 6-h forecasts
for 1171 simulations from HAFS-B and 1225 from HAFS-A
that have no land interaction. The intensity histogram (Fig. 1a)
shows that the majority of TCs at 6 h after initialization time are
tropical storm (TS) strength with a median intensity of 51 kt
(1 kt’ 0.51 m s21) in HAFS-B and 50 kt in HAFS-A. The VWS
in Fig. 1b using the SHIPS SHRD spans from 10.3 to 23.7 kt
(10.4–23.0 kt) within the interquartile range (IQR) of HAFS-B

1 The landmass filter includes all major landmasses and island
chains.

2 TCs designated as subtropical or extratropical are not included.
3 A more detailed description of the partitioning algorithm tun-

ing for HAFS can be found in Hazelton et al. (2021).
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(HAFS-A). Nearly half of HAFS-B (HAFS-A) simulations ini-
tialize with a vortex tilt (2–6.5 km, Fig. 1c) greater than 27.9
km (25 km) using methodologies described in section 2b.
HAFS-A simulations tend to have slightly lower tilt magni-
tudes with a 25-km median and smaller tilt magnitudes
within the IQR. The 24-h intensity change shown in Fig. 1d
generally follows a normal distribution; however, the IQR
is slightly skewed toward greater intensity change rates in
HAFS-B (28 to 114 kt) than in HAFS-A (27 to 111 kt).
These positive skews are potentially related to the removal
of land interaction cases, which are mostly weakening TCs;
those systems that undergo extratropical transition or dissi-
pate (via rapid weakening) are also not included in the veri-
fication. The 48-h track error distribution (Fig. 1e) has a
113-km mean and 100-km median error and IQR from 59
to 148 km in HAFS-B, which also closely corresponds to
the NHC mean errors from 2017 to 2021 (114 km; Cangia-
losi 2022). The HAFS-A 48-h track errors are compara-
tively small with a 110-km mean, a 92-km median, and an
IQR from 54 to 149 km. The HAFS-B 48-h intensity bias
(Fig. 1f) IQR from 29 to 16 kt indicates a slight skew to-
ward underprediction of intensification, which can also
likely be attributed to missed RI events. On the other hand,
the HAFS-A 48-h intensity error IQR ranges from 28 to
17 kt indicating little or no bias. Although the mean abso-
lute 48-h intensity errors of 10.5 kt in HAFS-B and 10.8 kt
in HAFS-A improve upon the 2017–21 NHC average error
of 10.9 kt, it is important to consider that NHC forecasts

are also commonly based on the early runs4 [e.g., HAFS-A
early cycle (HFAI) and HAFS-B early cycle (HFBI)] or previ-
ous cycles of numerical models. Furthermore, the cited NHC
forecast errors account for all cases including land interaction,
whereas the HAFS forecasts examined in this study do not in-
clude land interaction cases. Analyses hereafter that only show
one model configuration will focus on HAFS-A, wherein
HAFS-B has qualitatively similar results.

3. Results

a. Relationships between tilt and intensity (change)
in HAFS

This section shows relationships between internal storm char-
acteristics (e.g., vortex tilt) and external environmental factors
(like VWS) and the overall intensity (change) of TCs. The
HAFS retrospective dataset presents a unique opportunity to
explore these relationships within a large sample of real case
simulations for the first time and provide comparisons to a re-
cent investigation of the relationships with observational data-
sets like the tail Doppler radar (TDR; Fischer et al. 2023b).

In addition to the removal of cases with land interaction
and sub- or extratropical designation as described in section 2a,
the analysis in Fig. 2 removes high-latitude TCs (.358N) that

FIG. 1. Histogram distributions (number of samples) for HAFS-B (red) and HAFS-A (blue) of (a) 6-h intensity, (b) VWS (SHRD,
200–800 km 850–200 hPa), and (c) vortex tilt (2–6.5 km). Probability density function (PDF) for (d) 24-h intensity change (kt), (e) 48-h
track error (km), and (f) 48-h intensity error (kt) for HAFS-B (red) and HAFS-A (blue). The “X” symbols correspond to the median,
and the circles denote the 25th and 75th percentile with the color matching each respective model. Each PDF has 25 bins which equates to
a bin increment of 4 kt in (d), 10 km in (e), and 4 kt in (f).

4
“Early runs” use the previous model run (e.g., 0600 UTC) and

adjust the forecast based on the current position and intensity
(e.g., 1200 UTC) of a TC.
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are often recurving, undergoing extratropical transition, or tra-
versing lower-ocean heat content. Stronger TC intensity (.64 kt)
has a robust negative correlation with vortex tilt (Fig. 2a),
wherein a small vortex tilt, 30 km is necessary for intensity with
maximum sustained winds greater than 85 kt. TC intensity
, 64 kt, however, has a much weaker relationship with vortex
tilt (Fig. 2d), a result also shown by Fischer et al. (2023b). Those
TCs less than hurricane strength range from 0 to 1501 km vortex
tilt magnitudes. Therefore, it is important to understand the in-
ternal dynamics responsible for differing vortex tilts in these TCs,
how they become virtually aligned (,;25 km; Alvey et al. 2020,
2022) to attain strong hurricane status, and any potential relation-
ships with future intensity change.

Because several previous case studies and modeling studies
have highlighted the importance of vortex alignment for fu-
ture TC intensity change (Frank and Ritchie 2001; Reasor
and Eastin 2012; Rappin and Nolan 2012; Tao and Zhang
2014; Nguyen and Molinari 2015; Rios-Berrios et al. 2016a,
2018; Chen et al. 2019; Rogers et al. 2020; Rios-Berrios 2020;
Alvey et al. 2020; Schecter and Menelaou 2020; Alvey et al.
2022; Alvey and Hazelton 2022; Fischer et al. 2023a,b; Nam
et al. 2023), Fig. 2b shows the histogram distribution for vor-
tex tilt and future 24-h intensity change. Only those panels
with 24-h intensity change (y axis, Figs. 2b,c,e,f,h,i) utilize an
average vortex tilt parameter (tilt as defined in section 2b but
averaged from 26 to 16 h for a given forecast hour between

FIG. 2. (a) The relationship between HAFS-A 2–6.5-km tilt (km) and intensity (kt), (b) tilt and future 24-h intensity change (kt), (c) and
future 12-h tilt change and future 24-h intensity change for all forecast time periods at a latitude less than 358N shown in percent distribu-
tion (color fill) with sample sizes (white text,310). Bins with less than 10 samples do not have numbers. (d)–(f) The configurations follow
the top three panels except they are restricted to only those cases , 64 kt. (g) The relationship between tilt and 2-km RMW (km) and
(h) the ratio of tilt divided by 2-km RMW and future 24-h intensity change for only those cases , 64 kt. (i) The future 12-h change in the
ratio of tilt/RMW and future 24-h intensity change for all cases. All panels with a 24-h intensity change [y axis; panels (b), (c), (e), (f), (h),
and (i)] utilize a time-averaged vortex tilt (as defined in section 2b but averaged from 26 to 16 h for a given forecast hour using 3-h
outputs). The red dashed lines in (b), (c), (e), (f), (h), and (i) delineate the RI threshold (30 kt1/24 h).
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6 and 114 h using 3-h outputs) to account for high temporal
variability. Little or no statistical relationship exists between
average vortex tilt and future TC intensity change for the full
sample. However, nearly all the cases that undergo RI (de-
fined as a 30 kt or greater intensification in 24 h; Kaplan and
DeMaria 2003; red dashed line) have an initial tilt , 40 km,
which indicates the importance of a nearly aligned vortex for
RI, a result also found by several of the aforementioned stud-
ies documenting alignment. Because there are a few outlier
cases that undergo RI despite a large vortex tilt (.40 km), an
aligned vortex is not always a necessary condition for RI. This
can likely be at least partly attributed to cases that have rap-
idly evolving vortex-scale evolution (e.g., vortex reformation
events; Nguyen and Molinari 2015; Chen et al. 2019; Alvey
et al. 2022), wherein 3-hourly output may not be sufficient.
Figure 2e shows the same intensity change versus tilt distribu-
tion but for only those cases that are TS (34–63 kt) or tropical
depression (TD; ,34 kt) strength. A more apparent relation-
ship between tilt and future TC intensity change emerges in
which those TCs with a small tilt tend to have greater intensi-
fication rates; however, a large distribution of intensity change
outcomes still exists for all vortex tilt magnitudes.

In addition to the relationship between vortex tilt and future
TC intensity change, other previous studies have demonstrated
that TCs often transition from a misaligned configuration to
vertical alignment prior to (Munsell et al. 2017; Leighton et al.
2018; Alvey et al. 2020; Rios-Berrios et al. 2018) or during the
early stages of rapid intensification (Chen and Gopalakrishnan
2015; Alvey and Hazelton 2022; Rios-Berrios et al. 2016b).
Figure 2c shows the relationship between 12-h tilt changes
(0 to112 h) and future 24-h intensity changes. Overall, a distri-
bution emerges wherein those TCs with larger increases in tilt
magnitude tend to weaken more (defined by maximum sus-
tained winds), and storms with larger tilt magnitude reductions
tend to intensify. Despite this pattern, though, many storms
also do not follow this general trend, since tilt change is also a
function of the initial tilt (i.e., TCs with an already small tilt can
only reduce their tilt by that amount). If the sample in Fig. 2c is
restricted to only those cases with an initial tilt above the up-
per quartile (75th percentile, 77 km, not shown), then a pat-
tern emerges with many rapidly intensifying cases having tilt

reductions (280 to 230 km). While there are some cases that
still intensify despite tilt increases, the large majority undergo
a decrease in intensity. Figure 2f shows a similar relationship
isolating only those TCs at TS or TD strength but features a
slightly weaker correlation (20.18 Spearman rank correlation
coefficient rs as opposed to20.24 for the full sample) between
tilt change and future TC intensity change.

Figure 2g (bottom left) shows a histogram of 2-km RMW
and 2–6.5-km tilt for all TCs less than hurricane strength; al-
though a positive correlation between tilt and RMW (greater
tilt correlates with greater RMW) is apparent, a large distribu-
tion of tilts exists for a given RMW. The relationship between
24-h intensity change and the ratio of tilt/RMW (Fig. 2h,
20.23 rs) shows a weaker relationship than 24-h intensity
change and 2–6.5-km tilt (as in Fig. 2e, 20.29 rs). This indi-
cates limited potential value at least for this particular size
metric when considering tilt relationships. Figure 2i also has a
weaker correlation between tilt/RMW (20.15 rs) and 24-h in-
tensity change than just using tilt magnitude (20.24, Fig. 2c).
Although slightly less robust than the relationships in Fig. 2i,
previous 12-h tilt/RMW changes do offer predictive value for
future 24-h intensity change (20.15 rs, not shown).

b. Forecast errors stratified by environmental parameters

Despite previous quantifications of the relationships be-
tween forecast errors (track and intensity) and environmental
conditions for other modeling systems (Bhatia and Nolan
2013) and NHC forecasts (Trabing and Bell 2020), Fig. 3 is
the first such demonstration for the HAFS-A and HAFS-B
model configurations. HAFS-B has similar distributions to
HAFS-A, and no material differences in the distributions ex-
ist when examining difference plots between the two model-
ing configurations for all results shown in Fig. 3. Figure 3a
shows the histogram distribution of 36-h intensity error and
850–200-hPa VWS magnitude. Similar to Bhatia and Nolan
(2013), large intensity errors (15–25 kt) tend to occur within
the moderate-shear regime (8–20 kt; Rios-Berrios and Torn
2017). It is notable, however, that .40% of the largest inten-
sity forecast errors (.25 kt) are within the favorable low-
shear regime (,8 kt), which also corroborates Trabing and
Bell (2020) who demonstrated that the largest NHC intensity

FIG. 3. As in Fig. 2, but showing the relationship between (a) VWS at 6 h (850–200 hPa 200–800-km average, SHRD) and 36-h intensity
errors, (b) intensity bias, and (c) track error, for all HAFS-A and HAFS-B cases shown in percent distribution (color fill) with sample sizes
(white text,310). The black boxes with bolded sample size numbers in (b) and (c) indicate all the bins with RI cases.
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errors tend to occur within favorable environments (largely
due to poor prediction of storms that undergo RI).

Figure 3b shows the same distribution but for 36-h intensity
bias to help determine whether the large absolute intensity er-
rors are a result of overprediction or underprediction of inten-
sity by HAFS. Although there are some cases with large
negative intensity biases (,220 kt 36 h), they follow no spe-
cific pattern with respect to the VWS other than the fact that
all cases with an intensity bias ,220 kt have a VWS magni-
tude less than 25 kt. Those cases with high VWS (.25 kt)
tend to have a higher predictability with small intensity errors.
Cases with the largest positive intensity biases (.30 kt at
36 h) tend to be located within favorable VWS environments
(,20 kt). Most RI cases (Fig. 3b, black boxes) fall within a
low–moderate-shear environment (6–20 kt) with negative in-
tensity biases. The relationships between VWS and intensity
bias indicate that those storms with high VWS (.25 kt) may
have more predictable short-range intensity forecasts (36 h or
less) as the environmental forcing dominates any internal
storm dynamical feedbacks that can be more difficult to pre-
dict in lower- or moderate-shear environments (wherein
alignment and RI may occur). On the other hand, the rela-
tionship between 36-h track error and VWS in Fig. 3c shows a
much weaker correlation. Interestingly, however, a majority
of the largest 36-h track errors (.125 km) fall within favor-
able (,8 kt) or moderate shear (8–20 kt) regimes.

To further demonstrate the effects that VWS can have on
forecast errors, Fig. 4 shows violin plots of the error distribu-
tions for HAFS-A (left violins) and HAFS-B (right violins)
stratified by forecast hour (x axis) in high-shear (highest 75th
percentile, blue shadings) and low-shear (lowest 25th percen-
tile, red shadings) environments. The cases that initialize in
high VWS in both HAFS-A (.22.7 kt, dark blue shading)
and HAFS-B (.23.4 kt, light blue shading) have larger track
errors than those in lower VWS (,10.5 kt, dark red shading
for HAFS-A; 10.3 kt, light red shading for HAFS-B) on aver-
age only for forecast periods 12–24 and 96–120 h (Fig. 4a).
Track error differences between the high-shear and low-shear
subsets are not statistically significant5 at any time period in
both HAFS-A and HAFS-B. It is important to note that sam-
ple sizes are smaller (32–103 samples per stratification) for
medium-range forecast hours (96–120 h), wherein the magni-
tudes of median and mean track errors greatly diverge between
high-shear and low-shear cases for both model configurations.
On average, HAFS-B forecasts also tend to have larger track
errors than HAFS-A at medium ranges for both the high- and
low-shear quartiles; however, the track error differences be-
tween HAFS-A and HAFS-B are only significant at 96 h (red
plus sign) for the low-shear stratification. Although not in-
cluded in Fig. 4, the distributions of moderate VWS cases gen-
erally fall between the high-shear and low-shear distributions.
The poor track predictability of higher VWS cases at medium

ranges suggests that the interplay between shear and other
internal storm dynamic parameters may also play a critical
role in these cases, particularly given the effects that VWS
can have on precipitation distributions and vortex structure
(like vertical tilt).

Figure 4b shows the intensity error (bias) distributions for
high-shear and low-shear subsamples. Although relatively lit-
tle mean bias is observed in the high-shear and low-shear sam-
ples for both models in the first 72 forecast hours, the means
of low-shear cases in HAFS-A do have slight negative inten-
sity biases compared to slight positive biases for high-shear
cases during the first 24 h, also evidenced by the violin plot
shapes (outward protrusions and thickness). HAFS-B, on the
other hand, does not follow this pattern and has much smaller
mean differences between the high- and low-shear subsam-
ples; however, the differences at 12–24 h are statistically sig-
nificant. Despite the similar 48–72-h means in both shear
subsamples for HAFS-A (left violins) and HAFS-B (right vio-
lins), the low-shear cases (red shading) appear to have much
larger variability in intensity errors (particularly negative inten-
sity biases from missed RI cases) evidenced by the increased
outward protrusion of the violin plot shapes at intensity errors
farther away from the mean. At the 72–120 forecast hours, a sig-
nal emerges in which both HAFS configurations tend to over in-
tensify TCs in low-shear environments. The high-shear cases
tend to have slightly more negative intensity biases for 72–120 h,
though these differences are not statistically significant. The
larger amounts of both positive and negative bias outliers for the
low-shear cases in HAFS-A and HAFS-B indicate a potential
lower predictability of intensity (likely attributed to the potential
for RI in more favorable conditions).

The amount of midtropospheric dry air surrounding the TC
core can affect the impacts of VWS on TC intensity (Tang
and Emanuel 2010, 2012). Dry midtropospheric air can be un-
favorably transported into a TC inner core by VWS through
downdraft ventilation or radial transport (Alland et al.
2021a,b; Fischer et al. 2023b). This can detrimentally weaken
convection and/or cause lower-entropy air to “flush” into the
boundary layer. Therefore, given the linkages between VWS
and forecast errors shown in Figs. 3 and 4, Fig. 5 also relates
the midtropospheric (700–500 hPa) relative humidity (RH) to
the deep-layer VWS and 36-h intensity biases. Cases with low
VWS (,10 kt) tend to have comparatively high midlevel RH
(.60%) on average, and cases with high VWS (.20 kt) tend
to have lower midlevel RH (,60%) on average. Nearly all
cases with large negative intensity biases (with periods of RI)
have favorable RH, a result similar to Trabing and Bell (2020)
who found that the majority of cases with large, negative in-
tensity biases tend to have favorable environmental conditions
prior to undergoing RI. TCs in 10–20-kt (moderate) VWS
with large positive intensity biases also have high midlevel RH
(.65%) on average. A small subset of storms with 20–25-kt
shear and large negative intensity biases (,230 kt) have
somewhat drier midtropospheric RH (,55%), wherein inten-
sification occurred despite forecasted weakening in HAFS.

This section demonstrates that TCs within generally favor-
able environments characterized by low-to-moderate VWS
(,15–20 kt) and midtropospheric humidity . 50%–60% tend

5 The differences between distributions (of track errors for the
high shear and low shear subsets in this example) are statistically
significant (denoted by an asterisk) if a Mann–Whitney U test
yielded a p value less than 0.05.
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FIG. 4. Full sample violin plots of (a) forecast track error and (b) intensity bias by forecast
hours (x axis) stratified by the lowest 25th percentile of 6-h VWS magnitude (red shadings;
,10.3 kt, HAFS-B; ,10.5 kt HAFS-A) and highest 25th percentile (blue shadings; .22.7 kt,
HAFS-A; .23.4 kt, HAFS-B) for HAFS-A (darker shading, left violin) and HAFS-B (lighter
shading, right violin). The width of the violins is determined by the approximate frequency of
data at a given location with a greater thickness corresponding to the greater frequency. Dashed
lines in the middle of violin plots indicate the mean, and diamonds indicate the median. Top
numbers and bottom numbers correspond to sample sizes with colors matching the given model
and threshold. Asterisks correspond to statistically significant differences (Mann–Whitney
U test, 95% confidence interval) between the errors of the lowest and highest 25th percentiles of
VWS for HAFS-A (top samples) and HAFS-B (bottom samples). Plus symbols correspond to
significant differences between HAFS-A and HAFS-B errors for low VWS (red) and high VWS
(blue).
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to have larger intensity errors than systems in drier or higher
VWS environments. The ambiguities in Fig. 5 also provide
motivation for section 3d, wherein environmental parameter-
based forecast error stratification will be expanded upon by
introducing internal storm dynamic parameters like vortex tilt
and convective coverage.

c. Forecast errors stratified by internal storm
dynamical parameters

No previous study to our knowledge has examined the sys-
tematic relationships between TC internal and TC dynamical
parameters like vortex structure and forecast errors. Trabing
and Bell (2020) hypothesized that the large forecast errors as-
sociated with TCs that undergo RI in favorable environments
are likely the result of internal storm dynamics; however, they
were unable to examine this hypothesis in more detail within
their study due to limited observations of such variables. The
HAFS retrospective simulations examined in this study pre-
sent a unique opportunity to not only test hypotheses focusing
on internal processes from recent observational and modeling
studies (as in Fig. 2) but also quantify the potential impacts on
the forecast errors. These include relationships with variables
and metrics identified as potentially important indicators for
future intensity change in other recent studies like vortex tilt
(Munsell et al. 2017; Rios-Berrios et al. 2018; Alvey et al.
2020; Alvey and Hazelton 2022; Fischer et al. 2023b), precipi-
tation coverage and symmetry (Jiang 2012; Tao and Jiang
2015; Alvey et al. 2015; Zawislak et al. 2016), and convective
intensity (Nguyen and Molinari 2015; Guimond et al. 2016;
Alvey et al. 2020; Stone et al. 2023).

The relationship between vortex tilt and forecast track error
is demonstrated with violin plots for HAFS-A and HAFS-B in
Fig. 6a. The tilt magnitudes for all 6-h forecasts (used as initial
condition) without land interaction are delineated into a large
tilt (above the 75th percentile) and small tilt (below the 25th
percentile) category for both HAFS-A and HAFS-B. These
values are 62.6 km (64.9 km) and 8.6 km (9.6 km) for HAFS-A
and HAFS-B, respectively (full distributions are shown in
Fig. 1c). For both HAFS-A (left violins) and HAFS-B (right
violins), the cases with initially large tilt (blue shading) have

larger track errors than small tilt cases (red shading) for all time
periods. These track error differences are statistically significant
for all times in HAFS-A and in HAFS-B except for 96–120 h.
Some of these track error differences can be attributed to the
larger initial position errors in large tilt cases seen at 0 h. How-
ever, a subsample of storms with small initial track errors was
stratified into large tilt and small tilt (not shown) and found sim-
ilar results in the short (6–72 h) and medium (72–120 h) ranges.
Furthermore, the track error differences in Fig. 6a may also be
related to differences in the TC intensity. TCs in the large tilt
subset have a mean initial intensity of 44 kt in HAFS-A (42 kt,
HAFS-B), and TCs in the small tilt subset have a 72-kt (77 kt,
HAFS-B) mean initial intensity, which also reflects the distribu-
tion shown in Fig. 2a. The shapes of the violin plots for forecast
hours 24–36 h indicate that the track error differences between
large tilt (larger track errors in large tilt cases) and small tilt
cases are not primarily caused by outliers, also evidenced by the
smaller displacement between means and medians than seen at
later forecast periods. Interestingly, the gap between median
forecast errors of large tilt and small tilt is larger for HAFS-A
than for HAFS-B at most forecast times. Storms with larger tilt
magnitudes also have slightly greater mean errors (dashed lines)
in HAFS-A than in HAFS-B through 36 h; however, at 120 h,
HAFS-B has larger mean errors with both large and small tilt
samples. It is important to note that due to the smaller sample
sizes at 96–120 h (;200 total cases or less), the impacts on these
medium-range time periods should be tested further in future
studies with a larger sample size.

Because large mean initial intensity differences exist be-
tween the tilt subsets in Fig. 6a and the largest variability of
tilt occurs in weaker TCs (Fig. 2a), Fig. 6b stratifies to only in-
clude those TCs with maximum sustained winds less than
64 kt. The 0-h track errors for this subsample, overall, are
larger than the full sample in Fig. 6a, though the differences
between large tilt and small tilt for HAFS-A and HAFS-B are
now negligible. The results are similar to Fig. 6a, wherein
large tilt cases have larger track errors on average than small
tilt cases for most time periods; however, these differences are
much smaller than the full sample and are only statistically sig-
nificant at the 95% confidence interval at 12 h (in HAFS-A).

In addition to the relationship of vortex tilt with forecast
track errors (as demonstrated by Fig. 6), intensity errors are
shown in Fig. 7. Figure 7a shows a similarly configured violin
plot for absolute intensity errors (kt) separated into the same
large tilt and small tilt stratifications as Fig. 6a. For both
modeling configurations, small tilt cases have larger average
absolute intensity errors than large tilt cases (0–36 h) that are
statistically significant at 0–12 h in HAFS-A (0 h in HAFS-B);
the opposite pattern was seen from the stratifications with
track forecast errors (Fig. 6). This is likely at least partly
attributed to most RI periods occurring in small tilt cases
(Figs. 2b,e). It is interesting to note, however, that at medium
ranges (72–120 h) the average absolute error becomes larger
(statistically significant at 72–120 h in HAFS-A and 96–120 h
in HAFS-B) for cases with large initial tilt in both modeling
configurations. One possible explanation is cases that transi-
tion from large tilt to small tilt and rapidly intensify. This is
more readily apparent in the intensity bias (Fig. 7b), wherein

FIG. 5. The relationship between VWS at 6 h (850–200 hPa
200–800 km average, SHRD) and 36-h intensity biases (y axis) as a
function of the corresponding color-shaded midlevel RH (700–500 hPa
200–800-km average, RHMD) averaged in 5-kt bins for all HAFS-A
and HAFS-B cases. Sample sizes for each bin are denoted by the
numbers.

WEATHER AND FORECAS T ING VOLUME 40138

Brought to you by NOAA Library | Unauthenticated | Downloaded 02/07/25 10:00 PM UTC



the large tilt cases for HAFS-B have negative intensity biases
(;26-kt mean at 96–120 h). The shapes of the violin plots
also indicate that there are more samples with intensity biases
, 220 kt at 96 and 120 h for the initially large tilt subset.

Although no previous study has documented forecast track
biases with respect to shear direction or tilt, NHC forecasters
have anecdotally noticed possible directionally oriented biases

(P. Papin 2023, personal communication). Figure 8 shows the
36-h track forecast positions for HAFS-A (blue) and HAFS-B
(red) relative to the best track and rotated with respect to the
midlevel shear vector (850–500 hPa; Figs. 8a–c), deep-layer shear
vector (850–200 hPa; Figs. 8d–f), and tilt vector (Figs. 8g–i). For
those cases with a small initial tilt magnitude (,10 km), there is
very little directional bias with respect to the midlevel shear

FIG. 6. As in Fig. 4, but for (a) full sample and (b) only storms less than 64-kt violin plots of
track error (km) by forecast hours stratified by the lowest 25th percentile of 6-h 2–6.5-km tilt
(red shadings; ,8.6 km, full sample HAFS-A; ,11.9 km, 64-kt sample HAFS-A; ,9.6 km, full
sample HAFS-B; ,16.4 km, 64-kt sample HAFS-B) and highest 25th percentile (blue shadings;
.62.6 km, full sample HAFS-A; .85.7 km, 64-kt sample HAFS-A; .64.9 km, full sample
HAFS-B; .102.3 km, 64-kt sample HAFS-B) for HAFS-A (darker shading, left violin) and
HAFS-B (lighter shading, right violin).
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vector (Fig. 8a; confidence ellipses); however, more model fore-
cast track errors (albeit small) are biased upshear (evidenced by
the larger shaded quadrants) than downshear. Although there is
slightly more directional bias [oriented downshear left (DSL) to
upshear right (USR)] when using the deep-layer shear vector
(Fig. 8d), most of the errors are still clustered within 200 km.
The tilt-relative perspective (Fig. 8g) for the small tilt cluster
has the least amount of directional bias. HAFS-B cases also
tend to have a slightly farther uptilt bias when compared to
their HAFS-A counterparts.

For the interquartile range of 2–6.5-km tilt magnitudes
(10–75 km; Figs. 8b,e,h), both models show an increase in the
distribution of track errors oriented directionally compared to
the small tilt subsamples. As tilt magnitude increases, both
track errors (also shown in Fig. 6a) and the positional correla-
tion of those errors with shear and tilt direction increase.
With respect to the midlevel shear vector (Fig. 8b), the major
axes of the confidence ellipses are oriented more left of shear
to right of shear than downshear (to upshear). The greater
left-of-shear HAFS biases are also reflected in the much

larger percent occurrence of cases in those quadrants (larger
quadrant shadings) than right-of-shear HAFS biases. With re-
spect to the deep-layer shear vector, the track errors for this
tilt magnitude subset more closely straddle a DSL to upshear
left (USL) orientation (Fig. 8e); however, there is still a large
left-of-shear component, which means these model forecasts
are more left of shear than reality. Finally, with respect to the
tilt vector, the model forecasts still tend to be clustered more
left of tilt than reality (Fig. 8h), a result that is slightly more
magnified in HAFS-A than in HAFS-B.

The upper quartile of tilt magnitudes (.75 km) exhibits
the largest track errors and most noticeable directional cor-
relation with the shear vector (Figs. 8c,f). The largest model
forecast errors with respect to the midlevel (Fig. 8c) and
deep-layer (Fig. 8f) shear vectors dominate the DSL quad-
rant. One possible cause of this DSL bias explored later in
the section is that the model may produce too much convec-
tion downshear in misaligned TCs. This convective bias can
lead to new center formation or migration toward that quad-
rant and a corresponding positive bias in intensity forecasts.
The positional relationship of track errors is weaker and less ap-
parent when quantifying with respect to the tilt vector (Fig. 8i),
as evidenced by the smaller long-axis (north–south) and short-
axis (west–east) confidence ellipse differences.

In addition to quantifying the positional biases with respect
to tilt and shear vectors, Fig. 9 adds another dimension by
color coding each 36-h forecast with its corresponding inten-
sity bias (kt). Figures 9a and 9b show that negative intensity
biases dominate the upshear quadrants (with respect to the
deep layer shear vector) with upshear left (USL) median in-
tensity biases of 0 and21 kt and USR median intensity biases
of 24 and 22 kt for track errors , 100 km. DSL and down-
shear right (DSR) positional biases, on the other hand, tend
to skew toward positive intensity biases (17- and 19-kt me-
dian, Fig. 9a). The large initial tilt cases (Fig. 9c) maintain this
pattern, and many negative biases also exist in USL, particu-
larly for those with track errors , 100 km (23-kt median in-
tensity bias); overall, a majority of the larger negative intensity
biases (,210 kt) have track errors less than 100 km. In sum-
mary, Fig. 9 reveals the relationship between the larger down-
shear track errors associated with positive intensity biases and
smaller track errors (upshear) associated with negative inten-
sity biases. One hypothesis that will be explored in the next fig-
ure is as follows: The TC simulations with DSL track errors
and positive intensity biases also have more convection on av-
erage (in those quadrants), which results in more center refor-
mation and alignments than observed.

Figure 10 shows shear-relative track errors like Figs. 8 and
9 but with the color-shaded bins indicating the average
convective coverage (%) within the inner and outer cores
(averages within 0.753 RMW–23 RMW for each 3-h output
throughout the 0–33 h period preceding the 36-h forecast).
The precipitation is partitioned into convection based on a
modified algorithm of Steiner et al. (1995) using model reflectivity
(Rogers 2010). Figure 10a combines all HAFS-A and HAFS-B
cases and shows that those cases with larger downshear track er-
rors tend to have a greater (%) coverage of convection. On
the other hand, those with larger upshear (left) track errors

FIG. 7. As in Fig. 4, but for (a) full sample violin plots of intensity
error and (b) intensity bias by forecast hour stratified by the lowest
25th percentile of 6-h 2–6.5-km tilt (,8.6 km, HAFS-A; ,9.6 km,
HAFS-B) and highest 25th percentile (.62.6 km, HAFS-A;.64.9 km,
HAFS-B) for HAFS-A (darker shading, left violin) and HAFS-B
(lighter shading, right violin).
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tend to have smaller (%) coverages of convection, though
there are a few “outlier” pixels (with small sample sizes) that
do not follow these trends. The results in Fig. 10a validate the
hypothesis that TC simulations with downshear left track
biases also have more convection (and speculate that it is over-
active) on average than TCs with upshear track biases. Be-
cause the model also has upshear (left) track biases (with
larger tilt magnitudes, not shown) with less convection

(possibly insufficient and less than reality), this signifies a
potential deficiency in the model to properly reduce large
vortex tilt magnitudes or sustain an alignment of the TC
vortex. To more directly link the convective coverages and
spatial track errors to intensity biases, Fig. 10b plots only
those cases with intensity biases . 10 kt. While the greater
(%) convective coverage dominates downshear track errors,
upshear track errors less than 50 km also have large convective

FIG. 8. (a)–(c) The midlevel shear-relative (shear vector pointing up), (d)–(f) deep-layer shear-relative, and (g)–(i) tilt-relative 36-h
track errors (km) for all HAFS-A (blue) and HAFS-B (red) cases with (a),(d),(g) tilt , 10 km, (b),(e),(h) 10–75-km tilt, and (e),(f),(i) tilt
. 75 km. Confidence ellipses (unshaded, within three standard deviations) are depicted for HAFS-A (blue) and HAFS-B (red). Points
are the forecasted position relative to the official track position rotated with respect to the shear or tilt direction (pointing up). Color shad-
ings (blue, HAFS-A; red, HAFS-B) covering each shear or tilt-relative quadrant represent the fraction or percent of all cases that fall
within that quadrant with the 200-km dashed circles corresponding to approximately 25%.
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coverages. This may potentially be attributed to excessively
strong or large eyewalls in TCs with larger positive intensity
biases. The higher mid-RH for TCs with positive intensity
biases shown previously in Fig. 5 may also be related to the
larger convective coverages seen in these cases. Figure 10c
stratifies by intensity biases ,210 kt (underforecasted intensi-
fication by the model), and most of the larger convective cover-
ages (with larger sample sizes) are cases with smaller track errors
(,100 km). Most of the smaller convective coverages occur in
cases where the model track error is too far USL. We speculate
that HAFS simulations with less convection are more likely to
under intensify the TC and have a position error too far USL.
Although not demonstrated in this study, the potential effects of
tilt changes can also affect spatial biases and intensity errors.

d. Geographical stratifications of forecast errors and
internal storm dynamical parameters

Different models have specific biases that may result from
incorrect initial conditions due to insufficient data assimilated,
inadequate representation of atmospheric processes (caused

by parameterizations and resolution), or other unknown sour-
ces. Interestingly, forecasters have anecdotally noted that dif-
ferent intrabasin geographical locations can have specific
model forecast biases that may vary for different models and
versions. One example of this is provided by the NHC forecast
discussion from Hurricane Delta in 2020 (Blake 2020): “Model
guidance has again shifted westward, like the last cycle, and
the official forecast is trended in that direction. However, it re-
mains slightly east of the model consensus, due to a notable
westward bias (in the Gulf of Mexico) in some of the guidance
during this hurricane season.” The goal is to better understand
model spatial bias so that forecasters are aware of biases prior
to the start of each hurricane season and build upon these
analyses to develop objective guidance in the future for fore-
casters throughout the season.

Figure 11 shows the HAFS-A (Fig. 11a) and HAFS-B
(Fig. 11b) 72-h track errors (km) binned by geographical po-
sition at the initialization (0 h). Both models have large
track errors (.225 km) in the far eastern Atlantic that also
stretch into parts of the main development region (MDR;

FIG. 9. The deep-layer shear-relative (shear vector pointing up) 36-h track errors (km) for all HAFS-A and HAFS-B cases with (a) vor-
text tilt , 10 km, (b) 10–75-km tilt, and (c) tilt . 75 km. Points are the forecasted position relative to the official track position rotated
with respect to the shear direction (pointing up). Color-shaded circles represent the 36-h intensity errors corresponding to each 36-h
spatial track error. The numbers in each shear-relative quadrant indicate that quadrant’s median intensity bias (kt) for all track errors
, 100 km (first number) and all track errors. 100 km (second number).

FIG. 10. HAFS-A and HAFS-B deep-layer shear-relative (arrow point up) track errors (km) with color shading indicating the mean
convective coverage (% within 0.753 RMW–2 3 RMW for all 3-h outputs throughout the 0–33-h period preceding the 36-h forecast) for
each 50-km bin. (a) All cases, (b) stratified by only those cases that have 36-h intensity biases . 10 kt, and (c) those cases with ,210 kt
36-h intensity biases. The numbers denote sample sizes for each bin, and bins without numbers have less than five samples.
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;108–208N, Goldenberg and Shapiro 1996). On the other
hand, some of the smallest track forecast errors are found
within the central North Atlantic (358–458N and 308–608W)
extending southward into the subtropical Atlantic and
northwest Caribbean Sea (158–358N and 508–708W). Track
errors in the southwest Gulf of Mexico, W Caribbean Sea,
and W Atlantic are near or above the median (153 km,
HAFS-A; 164 km, HAFS-B) in both HAFS-A and HAFS-B.

Figures 11c and 11d show similar types of geographical plots
but for intensity bias (kt; color shading). Both HAFS-A and
HAFS-B again have the largest 72-h positive intensity biases
(on average) in the southeastern North Atlantic (and eastern
MDR). This can be partly attributed to poor initialization
caused by a lack of aircraft reconnaissance and observational
data in that part of the Atlantic basin; a similar result has also
been observed with HWRF and SHIPS (not shown). In addi-
tion, Dunion and Velden (2004) showed an overintensification
in SHIPS of systems encountering the Saharan air layer (SAL)
in the eastern MDR. Finally, HAFS-A (Fig. 11c) and HAFS-B
(Fig. 11d) have positive intensity biases in the northwest–central
Caribbean Sea extending northward into the Bahamas, largely
the result of overforecasted intensification in moderately
sheared TCs like Marco (2020). It is important to note that while
some of these spatial biases have also been noted persistently in
other operational models like HWRF (not shown), biases can
vary significantly among different models due to the dynamical
core, physical parameterization (Chen et al. 2023), or initializa-
tion differences (Ditchek and Sippel 2023). Furthermore, even
the same model over different years can have varying bias distri-
butions, which can also be attributed to storm characteristics
that vary from year to year.

In addition to forecast errors, these datasets present a
unique opportunity to investigate any potential geographical
distributions of vortex tilt in the Atlantic basin for the
first time. Figure 12 shows bin-averaged vortex tilt for all
HAFS-A and HAFS-B forecast hours. An interesting pattern
emerges in which western Atlantic, Gulf of Mexico, and

FIG. 11. Atlantic basin retrospective median (a),(b) 72-h forecasted track error (km) and (c),(d) intensity bias (kt)
from (a),(c) HAFS-A and (b),(d) HAFS-B averaged across 108 longitude 3 108 latitude bins. Each bin represents
the 0-h forecast position, and the sample size for each bin is in the lower-left corners. All cases with a 72-h or less
forecast over land or verification position over land were removed from the sample, and all bins with less than five
samples are shaded in gray. The domain median track errors and intensity biases are displayed for each panel in the
upper left.

FIG. 12. The median of Atlantic basin retrospective 2–6.5 vortex
tilt (km) from HAFS-A and HAFS-B for all forecast hours across
108 longitude 3 108 latitude bins. Each bin represents the TC posi-
tion at the time, and the sample size for each bin is in the lower-left
corners. All cases over land were removed from the sample, and all
bins with 50 samples or less are shaded in gray. The domain me-
dian tilt is displayed in the upper left.
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Caribbean regions all have a median tilt magnitude of 20–30 km
(with a large variability; many storms are aligned, and many
are also misaligned), which is slightly above the domain me-
dian tilt of 16.1 km. The central Atlantic has the lowest me-
dian tilt magnitudes (,10 km), which is the same region
that features some of the smallest track errors and intensity
biases (as shown in Fig. 11). The eastern Atlantic, on the
other hand, has some of the largest mean tilt magnitudes
(.50 km), which also coincides with weaker TCs on average
in this part of the basin and large track and intensity errors
seen in Fig. 11. The eastern Atlantic cases also account for
many of the large tilt subset TCs with large track errors
shown in Fig. 6.

4. Summary

This study uses a 3-yr retrospective sample from the recent
operational implementation of HAFS versions A and B to
stratify forecast errors by environmental conditions, inter-
nal storm dynamic characteristics, and the relationships
with intensity (change). Overall, the samples of both HAFS
configurations contain a median intensity of tropical storm
strength, a reflection of many cases in 2020–22 being char-
acterized by TCs that remained weak until undergoing RI
near land (with a relative lack of long track major hurri-
canes compared to climatology). The sample distributions
of HAFS-A and HAFS-B are relatively similar and per-
formed comparably to the average NHC forecast errors for
both track and intensity.

Because recent studies have demonstrated the importance
of vortex alignment for RI (Frank and Ritchie 2001; Zhang
and Tao 2013; Rios-Berrios et al. 2016b, 2018; Chen et al.
2019; Alvey et al. 2020, 2022; Alvey and Hazelton 2022; Stone
et al. 2023), these relationships are also explored using a large
sample of real case model simulations for the first time to the
authors’ knowledge. Although very little relationship is ob-
served between vortex tilt and intensity for weak TCs (,64 kt),
a more apparent relationship emerges between tilt and future
TC intensity change with smaller tilt TCs tending to have
greater intensification rates; a large spread in intensity changes
still exists for all vortex tilt magnitudes. Nearly all RI cases have
initial tilt magnitudes , 40 km, which indicates the importance
of a nearly aligned vortex for RI (Alvey et al. 2020, 2022).
These results also align with a recent observational analysis
of vortex tilt and intensity (change) using a large database
of tail Doppler radar data, TC–Radar (Fischer et al. 2023b).
Additionally, we find that TCs with larger increases in tilt
magnitude tend to coincide with decreases in maximum sus-
tained winds, and TCs with larger decreases in tilt magni-
tude tend to have larger intensity increases. Finally, the
limited potential value of also considering size metrics when
evaluating tilt relationships is found, wherein similar rela-
tionships to future intensity change are found when investi-
gating tilt/RMW versus the tilt alone. We speculate this
could potentially be the result of the RMW definition used
(azimuthally averaged 2-km wind with respect to the surface
center) or the model’s inability to accurately depict the
RMW.

TCs within low or moderate VWS (,15–20 kt) and favor-
able midtropospheric humidity (.50%–60%) regimes tend to
have larger intensity errors (negative bias for moderate VWS
cases) than systems in high shear. Although Trabing and Bell
(2020) were only able to speculate that this was due to RI
cases in favorable environments being more directly driven by
internal storm dynamics, this study is able to show that HAFS
(and likely other high resolution dynamical models) tends to
struggle with the critical convective scale and vortex structural
processes as evidenced by larger forecast errors associated
with larger vortex misalignment. TCs with larger tilt magni-
tudes tend to have larger forecast track errors and nega-
tive intensity biases (at medium range forecasts). Smaller
tilt magnitudes, on the other hand, have larger absolute errors
for short-range forecasts, which is at least partly attributed to
underforecasted intensification in RI cases. The larger tilt
cases tend to dominate the far eastern Atlantic, though many
still occur within the western Atlantic, wherein the climato-
logical environment is also more conducive for alignment
and RI. TCs with a tilted vortex are shown to have both left-
of-shear (maximizing DSL) and left-of-tilt-oriented positional
track biases. Whereas those cases with larger downshear biases
tend to have more convection and larger positive intensity
biases, upshear positional biases tend to correspond to less con-
vection and larger negative intensity biases. These relationships
highlight the importance of better understanding the interplay
of forecast errors and tilt, precipitation, and convection. In ad-
dition, because of the larger average errors in tilted TCs and a
data assimilation system that primarily leverages a surface posi-
tion estimate from the NHC to relocate a TC vortex from the
previous model 6-h forecast (when inner core data are unavail-
able), we recommend that future data assimilation model im-
provements also focus on better capturing the vertical structure
of the vortex.

It is important to note that the temporal frequency of vari-
able output (3 h) may not be sufficient to capture all fluctua-
tions in not only traditional metrics like 10-m maximum wind
speed (Zhang et al. 2021) but also other internal storm dynamic
metrics like vortex tilt and precipitation coverage. While it is
certainly plausible that the biases and errors identified in this
study may only be attributable to this modeling system, given
similar analyses of HWRF (not shown in this study) performed
by the authors, it is likely that many of these biases extend
across many modeling systems and at least those with similar
configurations to HAFS. Future work should aim to incorporate
additional modeling systems (including global) and expanded
samples across other basins including the east Pacific.

Finally, we summarize a few key recommendations to fore-
casters, developers, and users of HAFS:

• Internal storm dynamic metrics like vortex tilt may have
greater predictive value for future TC intensity and track
than traditionally used environmental parameters like ver-
tical wind shear.

• Larger track forecast errors are associated with larger ini-
tial vortex misalignment, and larger (short-range) intensity
forecast errors are associated with an initially more aligned
vortex.
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• TCs with a tilted vortex are shown to have directionally ori-
ented positional track biases with respect to both the shear
and tilt vectors. On average, the model position forecasts
are too far left of shear (and maximize DSL).

• If a HAFS simulation is producing more convection (than
the model average), it is more likely to over intensify the
TC and has a position error too far downshear.

• Future model improvements should focus on better captur-
ing the (vertical) structure of the vortex through data assim-
ilation improvements and the addition of high-resolution
(physics) ensembles.
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