
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

  

  

  

  

  

  

  

  

  

1 Improved  forest  canopy  evaporation  leads  to  better  predictions  of  ecohydrological  processes  

Henrique  Haas,  Latif  Kalin,  Haw  Yen  

 

ABSTRACT  

Canopy  evaporation  (Ei)  is  a  vital  process  in  forest  ecosystems  impacting  hydrology  and  biogeochemistry  through  the  
redistribution  of  gross  rainfall  and  gradual  infiltration  of  water  into  the  soil  profile.  Inaccurate  representation  of  Ei  in  
models  may  lead  to  flawed  predictions  of  ecohydrological  processes  such  as  water  availability,  soil  erosion,  nutrient  
transport,  and  ecosystem  productivity,  thus  compromising  the  reliability  of  model  outputs.  The  Soil  and  Water  
Assessment  Tool  (SWAT)  ecohydrological  model  has  been  widely  used  for  various  purposes  worldwide.  However,  
SWAT  has  shown  limitations  in  forest  ecosystems.  SWAT  employs  a  single  equation  to  calculate  canopy  evaporation  for  
crops  and  trees,  which  may  not  accurately  account  for  the  differences  in  ecophysiology  and  aerodynamic  resistance  
between  short  and  tall  vegetation.  In  SWAT,  canopy  interception  is  calculated  as  a  function  of  canopy  storage  and  is  
normalized  by  the  maximum  plant  leaf  area  index  (LAI).  Here  we  present  an  alternative  approach  to  simulate  forest  
canopy  interception  and  evaporation  with  SWAT.  Under  our  proposed  approach,  the  LAI  normalization  is  eliminated,  
and  canopy  storage  is  computed  as  a  linear  function  of  daily  LAI  and  a  user-defined  parameter.  We  used  remote-sensing  
(R-S)  estimates  of  Ei  to  accurately  parameterize  forest  canopy  evaporation  in  the  modified  and  default  models.  The  
Alabama-Coosa-Tallapoosa,  a  large  (55,000  km2)  and  forested  watershed  system  in  the  Southeast  United  States,  is  
utilized  as  testbed.  Results  showed  that  the  default  SWAT  largely  underestimated  (>  70%)  forest  Ei  across  our  study  
domain.  The  modified  model  better  matched  R-S  estimates  of  Ei,  showing  a  mere  2%  overestimation.  Additionally,  the  
modified  model  yielded  better  agreement  with  R-S  transpiration  and  total  evapotranspiration  compared  to  the  default  
model.  Our  alternative  approach  positively  affected  the  model  simulation  of  daily  streamflow  and  ecologically  relevant  
flow  metrics,  reducing  model  overestimations  and  leading  to  better  agreement  with  observations.  Also,  the  modified  
model  led  to  reduced  sediment,  nitrate,  and  organic  nitrogen  loadings,  with  sediment  and  organic  nitrogen  being  
particularly  affected,  witnessing  reductions  of  13  and  11%,  respectively,  compared  to  the  default  model.  Finally,  our  
proposed  approach  resonated  in  better  agreement  between  simulated  net  primary  productivity  (NPP)  and  R-S  estimates.  
Although  our  study  is  in  the  context  of  SWAT,  our  findings  can  be  useful  to  the  broader  modeling  community  since  
other  popular  process-based  models  are  based  on  similar  modeling  assumptions.  Our  findings  demonstrate  the  benefits  of  
improved  forest  evapotranspiration  partitioning  for  simulating  ecological  processes  with  SWAT.  

KEYWORDS:  Canopy  evaporation,  forest  modelling,  ecosystem  services,  SWAT,  remote  sensing  
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1. Introduction 

Canopy rainfall interception is the process by which vegetation captures and temporarily stores gross 
rainfall (P) before it reaches the ground (Lawrence et al., 2007; Nicholls and Carey, 2021; Paul-
Limoges et al., 2020; Stoy et al., 2019) - being the first of several land surface hydrological processes 
affecting the redistribution of rainwater (Brantley et al., 2019; Miralles et al., 2010). Canopy 
evaporation (Ei) represents a major fraction of the global terrestrial evapotranspiration (ET), making 
it a key, yet understudied, component of the terrestrial water and energy budgets (Hadiwijaya et al., 
2021; Muzylo et al., 2009). This process is particularly relevant in forest ecosystems, where Ei usually 
represents 10 to 40% of the total ET (Brantley et al., 2019; Kofroňová et al., 2021; Miralles et al., 
2010). Canopy interception and evaporation may also influence soil erosion and nutrient exports by 
facilitating the gradual infiltration of water into the soil profile and thereby minimizing the erosive 
power of rapid surface runoff (Zore et al., 2022). In forest ecosystems, the nexus between the soil-
plant-atmosphere is stronger because of higher aerodynamic conductance associated with taller 
vegetation (Miralles et al., 2010; Muzylo et al., 2009). Thus, forest canopy interception is an important 
link between land surface and atmosphere influencing terrestrial biogeochemistry and water balance. 

Different techniques (e.g., lysimeters, eddy covariance, leaf gas exchange, models) have been 
used to measure and estimate forest canopy interception and evaporation. Field studies are usually 
costly, labor-intensive, time-consuming, and not feasible for performing continuous measurements 
over large areas (Muzylo et al., 2009; Yu et al., 2022). Process-based numerical models have been 
increasingly used in environmental sciences and applied to estimate canopy interception and 
evaporation (Kofroňová et al., 2021; Wang et al., 2007; M. Yang et al., 2018). Examples are land 
surface models (LSM) (e.g., Community Land Model (CLM)), watershed models (e.g., Soil and Water 
Assessment Tool (SWAT)), and stand-scale models (e.g., Physiological Processes Predicting Growth 
(3-PG)). 

The SWAT model (Arnold et al., 1998) has been widely used to predict ecological processes 
like water availability (Angela et al., 2015; Bekele et al., 2013; Venkatesh et al., 2020), soil erosion 
(dos Santos et al., 2023; Karakoyun and Kaya, 2022; Luo et al., 2023), nutrient transport (Grizzetti et 
al., 2003; Isik et al., 2023; Jiang et al., 2023), carbon sequestration (Bekele et al., 2013; Liang et al., 
2022; Q. Yang et al., 2018), and plant growth (Nair et al., 2011; Strauch and Volk, 2013; Yang and 
Zhang, 2016). As of December 2023, there were over 5,300 peer-reviewed journal articles employing 
SWAT around the globe (https://www.card.iastate.edu/swat_articles/). Despite its popularity, previous 
studies have identified certain limitations of SWAT in forest ecosystems (Alemayehu et al., 2017; 
Haas et al., 2022a, 2022b; Strauch and Volk, 2013; Yang and Zhang, 2016). The default model 
parameters controlling tree growth and dynamics have primarily been derived from personal 
communication and generalized forest studies (Neitsch et al., 2011). Additionally, SWAT employs a 
single equation to calculate canopy evaporation for crops and trees, which may not accurately account 
for the differences in ecophysiology and aerodynamic resistance between short and tall vegetation. 

Past studies have addressed SWAT’s limitations in forest ecosystems by either improving its 
parameterization of forest processes and dynamics (Haas et al., 2021; Yang and Zhang, 2016) or by 
modifying the model’s structure to enhance the representation of forest attributes such as leaf area 
index (LAI) (Alemayehu et al., 2017; Guo et al., 2018; Strauch and Volk, 2013). Other studies have 
modified the model’s vegetation growth module (Karki et al., 2023; Lai et al., 2020) or assimilated 
remote-sensing information (e.g., ET, LAI) into the model (Rajib et al., 2018b, 2020). However, to the 
best of the author’s knowledge, no study to date has assessed SWAT’s skills in capturing canopy 
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85 evaporation  or  presented  alternatives  to  enhance  this  process.  Additionally,  studies  involving  severe  
modification  of  the  model’s  source  code  may  increase  modeling  complexity  and  require  additional  
files  and  parameters,  hindering  their  applicability  to  regular  users.   

Accurately  representing  forest  Ei  in  SWAT  can  have  important  implications  for  modeling  
ecosystem  services  such  as  water  availability,  ecological  flows,  soil  erosion  control,  nutrient  transport,  
and  plant  growth.  For  instance,  Ei  directly  impacts  total  ET  in  SWAT.  In  highly  forested  regions  such  
as  the  southeast  united  states  (SE-US),  ET  can  be  as  high  as  90%  of  the  incoming  rainfall  (McLaughlin  
et  al.,  2013).  Thus,  Ei  can  have  substantial  impacts  on  ecosystem  water  balance.  Furthermore,  Ei  
impacts  the  amount  of  P  reaching  the  ground  in  SWAT,  which  may  influence  the  timing  and  rate  of  
simulated  streamflow  (Neitsch  et  al.,  2011).  Indirectly,  plant  biomass  in  SWAT  is  influenced  by  Ei  
through  the  partitioning  of  transpiration,  canopy  evaporation,  and  soil  evaporation.  This,  in  turn,  can  
impact  soil  erosion,  given  that  the  Universal  Soil  Loss  Equation  (USLE)  (Williams,  1975)  cover  and  
management  factor  is  calculated  as  a  function  of  plant  biomass  in  SWAT  (Neitsch  et  al.,  2011).  Plant  
biomass  and  residue  also  play  a  role  in  nutrient  uptake  and  residue  mineralization  in  SWAT.  Thus,  
improving  the  mechanistic  representation  of  forest  Ei  might  positively  influence  the  modeling  of  
ecohydrological  processes  (e.g.,  energy,  water,  nutrient  cycling)  and  strengthen  model  results.  Water  
is  a  key  driver  of  ecological  processes  (Sun  et  al.,  2017)  and  combining  accurate  ecohydrological  
predictions  with  ecosystem  services  (e.g.,  water  quality  purification,  carbon  sequestration,  flood  and  
drought  attenuation)  can  be  valuable  in  providing  science-based  outputs  for  policy  and  decision-
making.  

With  the  rise  of  open-access  datasets  (e.g.,  remote-sensing  information)  and  open-source  
simulation  tools,  modelers  are  met  with  the  possibility  of  enhancing  the  representation  of  
ecohydrological  processes  once  overlooked  or  ignored  in  numerical  models.  However,  studies  such  as  
Komatsu  and  Kume  (2020)  highlight  the  necessity  of  using  more  practical  models  with  simplified  
structures  in  forest  hydrology  to  facilitate  communications  among  stakeholders.  The  increased  
availability  of  remote-sensing  (R-S)  information  may  contribute  to  the  simplification  of  ecological  
processes  in  numerical  models  through  the  development  of  empirical  relationships.  In  recent  years,  
several  high-resolution  and  freely  available  products  describing  processes  like  net  primary  
productivity  (NPP),  transpiration  (Et),  canopy  evaporation,  and  soil  evaporation  (Es)  have  been  
developed  (Robinson  et  al.,  2018;  Running  and  Zhao,  2019;  Zhang  et  al.,  2019).  Additionally,  the  
advent  of  cloud-based  geospatial  platforms  such  as  Google  Earth  Engine  (GEE)  (Gorelick  et  al.,  2017)  
has  facilitated  the  acquisition  and  processing  of  large-scale  remote  sensing  data  and  their  application  
in  Earth  system  sciences.  Despite  the  availability  of  global  estimates  of  ecological  processes  such  as  
Ei  and  NPP,  this  information  has  not  been  sufficiently  explored  in  ecohydrological  modeling  yet.  

Considering  SWAT’s  limitations  in  forest  ecosystems  and  the  lack  of  studies  assessing  its  skills  
in  predicting  canopy  evaporation,  we  modified  the  source  code  to  introduce  a  new  canopy  interception  
equation  specifically  designed  for  forests.  More  specifically,  we  set  out  to  answer  the  following  
research  questions:  (i)  how  accurately  is  Ei  represented  in  SWAT?  (ii)  what  is  the  significance  of  forest  
Ei  for  simulating  ecohydrological  processes  such  as  water  availability,  ecological  flows,  sediment  
yield,  nutrient  transport,  and  ecosystem  productivity?  (iii)  can  improved  Ei  representation  enhance  
streamflow  simulation  in  SWAT?  We  test  our  methodology  in  the  Alabama-Coosa-Tallapoosa  (ACT)  
river  basin,  a  large  and  forested  watershed  in  Alabama-USA.  Here  we  compare  the  results  obtained  
with  the  modified  model  against  those  of  the  default  SWAT.  We  hope  to  open  new  avenues  in  
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128 leveraging  freely  available  datasets  to  enhance  model  predictability  and  ensure  the  robust  application  
of  ecohydrological  models  in  forest  ecosystems.  

 

2.  Methods  and  Data  
 

2.1.The  SWAT  Model  

The  Soil  and  Water  Assessment  Tool  (SWAT)  (Arnold  et  al.,  1998)  is  an  ecohydrological  model  that  
can  simulate  several  horizontal  (e.g.,  surface  runoff,  lateral  flow,  groundwater  contribution),  and  
vertical  (e.g.,  ET,  Et,  Ei,  Es,  percolation)  water  fluxes,  as  well  as  sediment  loss,  nutrient  loadings,  and  
plant  growth.  SWAT  is  equipped  with  plant  growth  and  management  modules  that  allow  for  the  
representation  of  different  plant  physiologies  (e.g.,  evergreen,  deciduous,  and  mixed  forests)  and  
silvicultural  practices  (planting,  biomass  harvesting,  fertilization)  in  the  model  (Neitsch  et  al.,  2011).  
The  integrative  nature  of  SWAT  comprising  water,  climate,  vegetation,  soil,  and  management  
components  provides  a  comprehensive  framework  for  estimating  outputs  that  can  be  interpreted  as  
ecosystem  services.  

SWAT  discretizes  a  watershed  into  subwatersheds,  which  are  further  discretized  into  unique  
combinations  of  land  use,  soils,  and  slope  called  hydrological  response  units  (HRU’s)  (Neitsch  et  al.,  
2011).  The  water  balance  at  the  HRU  level  is  calculated  as:   

∆𝑆 =  ∑௧
௧ୀଵ(𝑃 − 𝑄௧௢௧௔௟ − 𝐸𝑇 − 𝑤௦௘௘௣)  (1)  

where,  ∆𝑆  is  the  change  in  water  storage  in  the  soil  profile,  P,  Qtotal,  ET,  and  𝑤௦௘௘௣  are  the  daily  amount  
of  precipitation,  total  water  yield,  evapotranspiration,  and  the  total  amount  of  water  exiting  the  bottom  
of  the  soil  profile  on  a  given  day,  respectively.  The  total  water  yield  (Qtotal)  is  the  sum  of  surface  runoff,  
lateral  flow,  and  base  flow  contributions  to  streamflow.   

In  the  current  study,  surface  runoff  was  computed  using  the  NRCS-CN  method  based  on  daily  
rainfall  observations,  and  the  Muskingum  method  (Cunge,  1969)  was  used  to  route  runoff  volume  
from  the  subbasins  to  the  main  channel.  The  Penman-Monteith  (P-M)  (Monteith,  1965)  method  was  
selected  for  estimating  potential  evapotranspiration  (PET).   

 The  vegetation  growth  module  of  the  SWAT  model  is  based  on  a  simplified  version  of  the  
EPIC  cropping  system  model  (Williams,  1990)  and  uses  the  same  set  of  equations  to  model  canopy  
interception  and  evaporation  from  all  types  of  plants.  Total  actual  evapotranspiration  (AET)  is  the  sum  
of  transpiration,  canopy  evaporation,  and  soil  evaporation.  Canopy  evaporation  is  calculated  from  the  
amount  of  water  intercepted  by  the  vegetation  canopy  as  a  function  of  user-defined  maximum  canopy  
storage  and  maximum  LAI:  

௅஺ூ 
𝑐𝑎𝑛ௗ௔௬ = 𝑐𝑎𝑛௠௫.  (2)  

௅஺ூ೘ೣ 

where  𝑐𝑎𝑛ௗ௔௬  is  the  maximum  amount  of  water  that  can  be  held  in  the  canopy  on  a  given  day  (mm),  
𝑐𝑎𝑛௠௫  is  a  user-defined  maximum  amount  of  water  that  can  be  trapped  in  the  canopy  when  the  canopy  
is  fully  developed  (mm),  𝐿𝐴𝐼  is  the  leaf  area  index  on  a  given  day  and  𝐿𝐴𝐼௠௫  is  a  user-defined  
maximum  leaf  area  index  for  the  plant.   
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166 If  P  is  smaller  than  canday  minus  the  initial  amount  of  water  held  in  the  canopy  (Ii)  on  a  given  
day:  

𝐼௙ = 𝐼௜ + 𝑃  (3)  

𝑃௡௘௧ = 0  (4)  

where  𝐼௙  is  the  final  amount  of  water  held  in  the  canopy  (mm),  and  𝑃௡௘௧  is  the  amount  of  rainfall  
reaching  the  ground  (mm).  

If  P  ≥  canday  - Ii  

𝐼௙ = 𝑐𝑎𝑛ௗ௔௬  (5)  

𝑃௡௘௧ = 𝑃 − (𝑐𝑎𝑛ௗ௔௬ − 𝐼௜)  (6)  

When  calculating  AET,  SWAT  first  evaporates  any  rainfall  intercepted  by  the  plant  canopy  
according  to  equations  7-10.  If  PET  is  smaller  than  the  total  amount  of  water  held  in  the  canopy  (I)  
(mm):  

𝐴𝐸𝑇 = 𝐸௜ = 𝑃𝐸𝑇  (7)  

𝐼௙ = 𝐼௜ − 𝐸௜  (8)  

On  the  other  hand,  if  PET  >  I:  

𝐸௜ = 𝐼  (9)  

𝐼௙ = 0  (10)  

The  remaining  evaporative  water  demand  is  partitioned  between  the  vegetation  and  the  soil.  When  
using  the  Penman-Monteith  (P-M)  PET  method  in  SWAT,  transpiration  is  approximated  as  the  plant  
water  uptake  for  the  day  and  determined  as  a  function  of  soil  water  content  and  a  user-defined  plant  
water  uptake  compensation  coefficient.  Soil  evaporation  in  SWAT  is  calculated  as  a  function  of  soil  
water  content,  aboveground  biomass  and  residue,  soil  depth,  and  a  user-defined  soil  evaporation  
compensation  factor  (Neitsch  et  al.,  2011).  Details  regarding  SWAT’s  computation  of  Et  and  Es  are  
provided  in  the  Supplementary  Materials  file.  

2.2.An  alternative  forest  canopy  interception  method  

Here  we  introduce  an  alternative  method  to  model  canopy  interception  for  forests  in  SWAT.  Under  
our  proposed  approach,  forest  canopy  storage  is  modeled  as  a  function  of  LAI  and  a  user-controlled  
parameter,  according  to  equation  11:  

𝑆௖௔௡ = 𝑐  . 𝐿𝐴𝐼  (11)  

where  Scan  is  the  amount  of  water  stored  in  the  canopy  (mm),  c  is  a  user-defined  parameter  (mm),  and  
LAI  is  the  plant  leaf  area  index  for  the  day  (m2/m2).  This  method  was  initially  introduced  by  Leyton  et  
al.  (1967)  and  Rutter  et  al.  (1971)  and  has  since  then  been  used  in  LSM  such  as  the  Canadian  Land  
Surface  Scheme  (Verseghy  et  al.,  1993).  A  similar  approach  is  used  in  the  CLM  4.5  (Oleson  et  al.,  
2013)  LSM  model.  Studies  such  as  Noilhan  and  Planton  (1989)  advocated  for  this  approach  as  a  
simplistic,  yet  robust,  method  for  representing  forest  canopy  interception  in  general  circulation  models  
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(GCMs). Water balance studies at the plot and watershed scales have applied this method to estimate 
forest canopy interception and shown values of c ranging from 0.2 to 0.5 (Amatya et al., 1996; J. 
McCarthy et al., 1991; Spittlehouse and Black, 1981). 

In the current study, the subroutines canint.f, hruaa.f, hruday.f, hrumon.f, hruyr.f, and sumv.f 
in the source code of SWAT 2012 Rev. 664 were modified to represent forest canopy interception 
according to Eq. 11. For other land-use classes not classified as forests in SWAT, canopy interception 
was modeled with the equations described in section 2.1. 

The simulated values of canopy evaporation, transpiration, and soil evaporation are not printed in 
the default versions of SWAT. In the current study, we modified the model’s source code to print these 
variables at the HRU level in the output.hru file. The values of canopy evaporation, transpiration, and 
soil evaporation are printed over the variables 36 (PGRZ), 37 (CFERTN), and 38 (CFERTP), 
respectively, as defined in the .cio file and described in the model’s input/output documentation 
(Arnold et al., 2011). 

2.3.Study area 

The Alabama-Coosa-Tallapoosa (ACT) river basin (Figure 1) was selected to study the importance of 
accurately representing forest canopy evaporation in watershed models. The ACT river basin is a large 
(59,100 km2) and mainly forested (61% forest cover) watershed that contributes over 50% of the water 
discharged to the Mobile Bay - a large estuary along the Gulf of Mexico coast with strategic economic 
and ecological importance for the state of Alabama (Coogan et al., 2019). According to the National 
Forest Types Dataset (Ruefenacht et al., 2008), the main evergreen forest (FRSE) species in the ACT 
river basin is loblolly pine (Pinus taeda L.), whilst white and red oaks are the dominant deciduous 
forest (FRSD) species (Figure S1 in the Supplementary material file). The basin drains large rivers 
such as the Coosa, Tallapoosa, Cahaba, and Alabama, and spans across Alabama, northwest Georgia, 
and southern Tennessee, making it a good testbed for investigating the importance of forest canopy 
evaporation in regional watershed modeling. The ACT river basin is home to a diverse range of flora 
and fauna, including many rare and endangered aquatic species (Deutsch, 2019). The watershed also 
plays an important role in drinking water supply, agriculture, and industry throughout the region 
(Atkins et al., 2004). Average elevation ranges from near sea level to 1,280 meters according to the 
30-meter resolution National Elevation Dataset (NED) (NED, 1999). The annual average precipitation 
and temperature are 1,400 mm and 17 °C, respectively, characterizing the watershed as warm and 
humid. In terms of soil distribution, sandy loam, and silty loam soils are predominant across the 
watershed area (Soil Survey Geographic Database (SSURGO)). 

For this study, five watersheds ranging from 4,572 km2 (Cahaba river watershed) to 55,615 km2 

(Alabama river watershed) within the ACT river basin and with varying physical characteristics (e.g., 
annual rainfall, average temperature, discharge, elevation, and forest cover) (Table 1), were selected 
to assess the effects of forest canopy evaporation on the model predictions of ecological processes at 
different scales and under various environmental conditions. 
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 Drainage 
 area  

 (km2) 

 Annual 
 rainfall 

 (mm) 

 Average  daily air  
 temperature  (°C) 

 Average  annual 
 streamflow 

 (mm) 

 Mean  elevation 
 (m) 

Dominant  
physiographic  

 region 

 %  of 
 FRSE 
 cover 

 Average 
 %  of 

 Forest 
 cover 

 Cahaba  4,572  1448  17.4  520  141  Coastal  Plain  24  61 

 Alabama  55,615  1374  16.9  432  199  Coastal  Plain  21  69 

 Tallapoosa  12,066  1371  17.1  411  221  Piedmont  24  62 

 Coosa  26,175  1368  16.2  504  269 
 Valley  and 

 Ridge 
 17  63 

 Oostanaula  5,481  1334  15.4  562  345 
 Valley  and 

 Ridge 
 13  65 

 Etowah  4,666  1298  14.4  506  335  Piedmont  13  62 

  

 

238 

239 Figure  1  –  The  study  area  showing  the  entire  Alabama-Coosa-Tallapoosa  river  basin,  along  with  five  smaller  watershed  
systems,  and  the  selected  field-scale  sites  where  forest  canopy  evaporation  was  calibrated  to  capture  the  basin’s  

heterogeneities.  

Table  1  –  Physical  characteristics  of  the  study  watersheds.  The  average  values  of  rainfall,  temperature,  and  streamflow  
are  from  the  period  1980-2020.  Average  forest  cover  comprises  the  average  of  evergreen  (FRSE),  deciduous  (FRSD),  

and  mixed  (FRST)  forests  within  each  watershed.  

2.4.Model  setup  and  input  data  
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247 The  ArcSWAT  2012  (version  10.4.19)  ArcMap  interface  was  used  in  this  study  to  delineate  the  ACT  
river  basin,  discretize  it  into  subbasins  and  tributaries,  and  create  the  HRUs.  Watershed  delineation  
was  carried  out  from  a  10-meter  resolution  digital  elevation  model  (DEM)  from  the  National  Elevation  
Dataset  (NED)  and  a  hydrography  network  from  the  National  Hydrography  Dataset  (NHD).  Soil  type  
distribution  and  its  hydrophysical  characteristics  (e.g.,  soil  depth,  soil  hydraulic  conductivity,  available  
water  capacity)  needed  to  parameterize  SWAT’s  soil  database  were  obtained  from  STATSGO.  A  land-
use/cover  map  for  the  year  2016  at  the  30  m  resolution  was  obtained  from  the  National  Land  Cover  
Database  (NLCD)  to  characterize  the  land-use/cover  distribution.  Daily  precipitation,  
maximum/minimum  temperature,  relative  humidity,  wind  speed,  and  short-wave  radiation  for  each  
subbasin  were  derived  from  the  GridMet  daily  gridded  dataset  (Abatzoglou,  2013)  and  utilized  as  
weather  forcings  to  drive  the  hydrological  processes  in  the  model.  Dry  and  wet  atmospheric  deposition  
of  nitrate  (NO -  nd  ammonium  (NH +

3 ) a 4 )  were  obtained  from  the  National  Atmospheric  Deposition  
Program  for  stations  AL03,  AL10,  AL19,  and  AL99,  which  fall  within  the  domains  of  the  ACT  river  
basin.  Point  source  discharge  information  from  90  wastewater  treatment  plants  was  downloaded  from  
EPA’s  ECHO  (Enforcement  and  Compliance  History  Online)  portal  and  added  as  point  sources  to  the  
model.  To  realistically  represent  forest  dynamics  in  SWAT,  we  followed  the  methodology  of  Haas  et  
al.  (2021)  to  parameterize  FRSE  classes.  Considering  that  the  vast  majority  of  FRSE  consists  of  
loblolly  pine  in  the  ACT  river  basin,  we  treated  all  FRSE  lands  as  loblolly  pine  in  SWAT.  We  
initialized  the  model  with  FRSE  growing  in  the  land  from  the  beginning  of  the  simulation  period  
(IGRO  =  1)  and  deleted  all  management  operations  (e.g.,  planting,  fertilization,  harvest)  attributed  to  
forests  by  ArcSWAT  in  the  SWAT  management  file  (.mgt).  We  parameterized  initial  forest  
aboveground  biomass  based  on  gridded  estimates  from  the  United  States  Department  of  Agriculture  
(USDA)  Forest  Service  (Blackard  et  al.,  2008).  In  the  current  study,  mean  annual  net  primary  
productivity  (NPP)  was  calculated  from  simulated  forest  biomass  considering  the  relationship  of  0.45  
kg  Carbon/kg  biomass/m2  (Tang  et  al.,  2010;  Yang  and  Zhang,  2016).   

The  complete  dataset  used  for  constructing  the  SWAT  model  for  the  ACT  river  basin,  as  well  
as  the  respective  sources,  are  summarized  in  Table  2.  Based  on  the  described  data,  SWAT2012  
(revision  664)  through  the  ArcSWAT  interface  with  a  10%-10%-0%  (land-use,  soils,  slope)  threshold  
generated  320  subbasins  and  4,758  HRUs  for  the  ACT  river  basin.  The  model  was  run  from  1979  to  
2020,  using  3  years  (1979-1981)  of  initialization  as  the  model  warm-up  period.  It  is  important  to  note  
that  automated  streamflow  calibration  was  not  performed  in  the  current  study,  as  our  objective  is  not  
to  optimize  streamflow  performance  but  rather  to  evaluate  the  significance  of  forest  canopy  
evaporation  in  model  predictability.  However,  envisioning  to  assure  that  the  simulated  water  budget  
is  reasonable,  we  built  upon  the  concept  of  soft  data  (Yen  et  al.,  2014)  and  manually  adjusted  AET  
rates  using  remote-sensing  estimates  from  PML-V2  and  MOD16A2,  besides  comparing  simulated  
average  annual  streamflow  at  the  watershed’s  most  downstream  location  against  observations  from  
the  USGS  monitoring  station  02428400.   

Table  2  - Description  of  the  input  data  utilized  to  construct  the  watershed  model  and  evaluate  the  model  performance  in  
simulating  streamflow  and  stream  temperature.  

248 
249 

251 
252 
253 
254 

256 
257 
258 
259 

261 
262 
263 
264 

266 
267 
268 
269 

271 

272 
273 
274 

276 
277 
278 
279 

281 
282 
283 

284 

Data Description Source 

8 



 
 

 Model 
 input  data 

 

 

 

 Topography 

 Land  use 

 Soil 

 Climate 

 Atmospheric 
 deposition 

 Point  sources 

 Forest  Types 

 Forest  biomass 

 National  Elevation  Dataset 
 at  10  meters  resolution 

 2016  NLCD 

 State  Soil  Geographic 
(STATSGO)  

 Daily precipitation,  
 maximum/minimum 

 temperature,  solar  radiation, 
 and  wind  speed  from  1979 

to   2020 

 Average  annual  wet and   dry 
 deposition  of nitrate  and  
 ammonia  from  1982  to 

 2020. 

Monthly   discharge  and 
 loading  from  wastewater 
 treatment  plants  from  2007 
to   2020 

 National  Forest  Types  for 
 the  conterminous  U.S. 

 Spatially  distributed  forest 
 aboveground  biomass 

 estimates for   the 
 conterminous  U.S. 

United   States  Department  of  Agriculture  (USDA) 
 Geospatial  Data  Gateway 

 (https://datagateway.nrcs.usda.gov/) 
 

 United  States  Department  of  Agriculture  (USDA) 
 Geospatial  Data  Gateway 

 (https://datagateway.nrcs.usda.gov/) 
 

 United  States  Department  of  Agriculture  (USDA) 
 Geospatial  Data  Gateway 

 (https://datagateway.nrcs.usda.gov/) 
 

 GridMet  (https://www.climatologylab.org/gridmet.html) 
 

 National  Atmospheric  Deposition  Program  (NADP) 
 (http://nadp.slh.wisc.edu/) 

 EPA’s  ECHO  Portal (https://echo.epa.gov/trends/loading-
 tool/get-data/monitoring-data-download) 

https://data.fs.usda.gov/geodata/rastergateway/forest_type/in 
 dex.php 

https://data.fs.usda.gov/geodata/rastergateway/biomass/conu 
 s_forest_biomass.php 

 Model 
 evaluation 

 Streamflow 

 Daily  discharge  from  USGS 
 gage  stations 02388500,  

 02395890,  02411000, 
 02419890,  02425000, 

 02428400 

 USGS  Water  data 
 (https://waterdata.usgs.gov/nwis) 

ET   components 
 

 (Ei,  Et,  Es) 

 8-day  Ei,  Et,  Es,  and ET   data 
 from  the Penman-Monteith-

Leuning  Evapotranspiration  
 V2  (PML-V2)  product 

 Google Earth   Engine  
(https://code.earthengine.google.com/d873ae57434c3a78481 

 da819f3cd7bd6) 

  Annual  NPP 
 Annual  NPP  from  the 
 MODIS Net  Primary  

Production   CONUS  dataset 

 Google Earth   Engine  
(https://code.earthengine.google.com/e8db489c50cabd5db28 

 6a7146dfa2775) 
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287 2.5.  Using  gridded  data  to  improve  the  representation  of  canopy  evaporation  in  SWAT  

In  this  study,  we  derived  spatially  distributed  estimates  of  Ei,  transpiration  (Et),  and  AET  from  the  
Penman-Monteith-Leuning  Evapotranspiration  V2  (PML-V2)  product  (Zhang  et  al.,  2019)  using  
Google  Earth  Engine  (GEE).  The  PML-V2  is  a  gridded  ET  product  that  estimates  ET  and  its  three  
components  (i.e.,  Et,  Ei,  Es)  at  500  m  spatial  and  8-day  temporal  resolutions  from  2003  to  2017,  making  
it  ideal  for  watershed-scale  applications.  The  product  builds  upon  the  previously  developed  
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biophysical model PML-V1 (Zhang et al., 2016) and uses leaf area index (LAI) data from the Moderate 
Resolution Imaging Spectroradiometer (MODIS), GLDAS meteorological forcing data, atmospheric 
CO2 concentrations from the National Oceanic and Atmospheric Administration (NOAA), continuous 
annual land-use/cover distribution from NASA, among other inputs. The PML-V2 has been calibrated 
across 95 flux sites worldwide, out of which 22 were ENF and 6 EBF, outperforming widely used 
products like MOD16A2 (Mu et al., 2013), MOD17A2H (Running et al., 2015) and GLEAM (Global 
Land Evaporation Amsterdam Model) (Miralles et al., 2011a) in estimating ET and gross primary 
productivity (GPP). 

Here we take advantage of this high-resolution gridded dataset and SWAT’s semi-distributed 
capabilities to constrain the watershed model with spatially distributed estimates of forest Ei and (a) 
use a data-driven approach to derive physically meaningful values for the input parameter canmx (Eq. 
2); (b) calibrate the parameter c in the new canopy interception method (Eq. 11) for forests across a 
wide geographic range. Since our goal in the current study is to focus on canopy evaporation from 
forest ecosystems, we selected field-scale sites (Figure 1) covered by FRSE to isolate these ecosystems 
and thus avoid the confounding effects of other land-use classes when extracting Ei data from PML-
V2. To capture a wide geographic range and various environmental conditions, we used the following 
criteria to select the field-scale sites: (i) be classified as FRSE according to NLCD16, (ii) one field-
scale site located within each study watershed, (iii) be entirely located within a single model subbasin, 
(iv) capture as many physiographic regions as possible, (v) be larger than a 500 X 500m ( 0.25 km2) 
resolution pixel of PML-V2, and (vi) spread across varying elevations. 

The rationale utilized to carry out (a) and (b) are explained next. 

a. Field-scale data-driven parameterization: This approach aimed to inform SWAT with 
estimates of canopy evaporation from 2003 to 2017 to realistically represent forest canopy 
storage in the model. To accomplish this, canmx was back-calculated from Eq. 2 by 
approximating canday as the average daily Ei value derived from PML-V2 at each field-scale 
site in the period 2003-2017; LAI as the average daily forest LAI simulated by SWAT during 
the same period; and LAImx as the input value assigned to the BLAI parameter for FRSE in 
SWAT’s plant database. In the current study, an LAImx value of 3.7 m2/m2 was utilized for 
FRSE classes. To determine LAI in Eq. 2, the average daily simulated LAI from all FRSE 
HRUs within the subbasins where the field-scale sites are located was calculated. 

b. Field-scale calibration: Here we used Ei values from PML-V2 as a benchmark to assess the 
plausibility of SWAT in capturing forest canopy evaporation with the newly introduced canopy 
interception method. To minimize the differences between simulations and observations and 
account for landscape heterogeneities (Table 1), annual average forest Ei estimates from PML-
V2 for the period 2003-2017 were used to adjust c in Eq. 11 for FRSE at each field-scale site. 
The model performance in capturing Ei was assessed after each model run based on graphical 
analyses and statistical rating metrics. Once a good match between simulated and observed Ei 

was found and no significant improvement in model performance was observed in subsequent 
model runs, c was considered calibrated for a specific site. 

The physical boundaries of each field-scale site illustrated in Figure 1 were uploaded to GEE as 
shapefiles to extract site-specific estimates of canopy evaporation. 

2.6.Experimental design 
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Modeling experiments were designed and carried out using SWAT to assess the importance of 
accurately representing canopy interception and evaporation in watershed models. The modeling 
experiments were as follows. 

1. Default SWAT (M0): SWAT 2012 Rev 664 was setup and run with the default canopy 
interception and evaporation equations described in section 2.1. Forest canopy storage was 
parameterized as described in section 2.5. 

2. Modified forest canopy interception (MCanInt): SWAT 2012 Rev 664 was setup and run 
with the newly introduced forest canopy interception method explained in section 2.2 and 
calibrated as described in section 2.5. 

M0 and MCanInt were set up under the same conditions and with the same data explained in section 
2.4 - the only difference being how the models handled forest canopy evaporation. Thus, any 
differences in model predictions are due to forest canopy representation in the model and tell us the 
relevance of Ei for simulating water yield, sediment yield, ecological flows, nutrient loading, and 
forest productivity. 

2.7.Model performance assessment and evaluation criteria 

The performance of M0 and MCanInt in simulating annual average forest Ei, Et, and AET from 2003 to 
2017 was assessed by comparing model predictions against PML-V2 estimates. For scaling up the 
model parameterization and calibration of M0 and MCanInt to the watershed level, the calibrated values 
of canmx and c, determined at the field-scale, were applied to all FRSE HRUs within the specific 
watersheds draining each field-scale site (Figure 1). This resulted in six different parameterizations of 
canmx and c across the ACT river basin. 

The effects of forest canopy evaporation on the model's prediction of daily streamflow were examined 
by comparing simulated and observed discharge under M0 and MCanInt at the outlet of each study 
watershed. The analysis covered the period of 1982-2020 for the Oostanaula, Etowah, Coosa, Cahaba, 
and Alabama river watersheds, and 1995-2020 for the Tallapoosa river watershed. Streamflow 
observations were derived from the USGS stations listed in Table 1. Ecologically relevant flow 
parameters such as seasonal flows, maximum flows of various durations (i.e., 1, 3, 7, 30, and 90-day), 
monthly low flows, and timing of maximum and minimum flows were calculated using the Indicators 
of Hydrologic Alteration (IHA) method (Richter et al., 1996). To accomplish this, we used the desktop 
model developed by the Nature Conservancy and fed it with daily time series of simulated and 
observed streamflow. Simulated sediment, nitrate, and organic nitrogen loadings with M0 and MCanInt 

in the period 1982-2020 were compared at the outlet of each study watershed. Similarly, model 
predictions of NPP were compared against the 250 m resolution MODIS Net Primary Production 
CONUS dataset (Robinson et al., 2018) at each field-scale site shown in Figure 1. 

To rate the performances of M0 and MCanInt in capturing Ei, Et, and AET, the statistical rating 
metrics Root Mean Square Error (RMSE), percentage bias (PBIAS), and coefficient of determination 
(R2) were used. These statistical metrics are commonly used to evaluate model performance in 
capturing biophysical variables such as LAI and AET (Alemayehu et al., 2017; Rajib et al., 2018a; 
Strauch and Volk, 2013; Yang and Zhang, 2016). The model accuracy in simulating streamflow under 
M0 and MCanInt was assessed based on PBIAS and the Nash-Sutcliffe Efficiency (NSE) coefficient. For 
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 Canmx  (mm)  c  (mm) 

 Oostanaula  0.44  0.42 

 Etowah  0.55  0.46 

 Coosa  0.30  0.27 

 Tallapoosa  0.45  0.36 

 Cahaba  0.40  0.35 

 Alabama  0.55  0.50 

  

  
 
 

 
 
 
 
 

387 

378 detailed  information  regarding  these  evaluation  criteria,  the  reader  is  referred  to  Althoff  and  Rodrigues  
(2021)  and  Moriasi  et  al.  (2007).  

3.  Results  
 

3.1.Forest  evapotranspiration  partitioning  

The  parameterization  of  M0  and  calibration  of  MCanInt  resulted  in  Canmx  and  c  ranges  of  0.3-0.55  mm  
and  0.27-0.5  mm,  respectively,  across  the  ACT  river  basin  (Table  3).   

 

Table  3  –  Adjusted  values  of  maximum  canopy  storage  (Canmx)  and  c  under  M0  and  MCanInt,  respectively,  at  each  field-scale  study  site.  

379 
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382 
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385 
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388 

389 Figure  2  –  Simulated  versus  observed  annual  average  canopy  evaporation,  transpiration,  and  total  actual  ET  under  M0  and  MCanInt  at  
each  field-scale  study  site  from  2003  to  2017.  

Considerable  differences  in  simulated  average  annual  forest  canopy  evaporation  in  the  period  
2003-2017  were  found  between  M0  and  MCanInt,  with  M0  largely  underestimating  forest  Ei  at  all  study  
sites  (Figure  2A).  MCanInt  substantially  improved  the  agreement  between  simulated  and  PML-V2  
estimates  of  forest  Ei  at  all  sites.  The  average  annual  forest  Ei  from  PML-V2  across  sites  was  115  mm  
for  the  period  2003-2017.  Comparatively,  model  predictions  with  M0  and  MCanInt  were  35  and  117  mm,  

390 

391 
392 
393 
394 
395 

12 



 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
 
 

  Canopy   evaporation  Transpiration  Actual  ET 

   M0 MCanInt   M0 MCanInt   M0 MCanInt  

 Oostanaula 

  R2  0.44  0.45  0.03  0.01  0.06  0.09 

 PBIAS  (%)  71  1.4  -38  -27  0.76  -2.7 

RMSE   (mm)  87  15  218  165  85  95 

 Etowah 

R2   0.38  0.34  0.18  0.10  0.14  0.17 

 PBIAS  (%)  67  -9  -37  -23  1  -3 

RMSE   (mm)  91  24 214   146  81 89  

 Coosa 

R2   0.32  0.34  0.14  0.14  0.18  0.23 

 PBIAS  (%)  71  -1  -22  -17  6 3  

RMSE  (mm)   56  11 178   154 129  128  

 Tallapoosa 

R2   0.09  0.09  0.28  0.30  0.23  0.32 

PBIAS   (%)  70  -1  -18  -12  8 4  

RMSE  (mm)   74  16 157   131 124  118  

 Cahaba R2   0.07  0.11  0.28  0.25  0.27  0.29 

396 respectively,  during  the  same  period.  The  better  performance  of  MCanInt  in  capturing  forest  Ei  is  
corroborated  by  the  statistical  rating  metrics  shown  in  Table  4.  PBIAS  ranged  from  67  to  71%  with  M0  
and  from  -9  to  1.4%  with  MCanInt,  confirming  the  large  underestimation  of  forest  Ei  achieved  with  the  
default  SWAT  model  and  the  slight  overestimation  yielded  by  our  proposed  approach.  A  better  fit  
between  simulations  and  observations  was  found  with  MCanInt,  as  confirmed  by  the  R2  and  RMSE  
ranges  of  0.09-0.45  and  11-24  mm,  respectively,  as  opposed  to  the  0.07-0.44  and  56-103  mm  obtained  
with  M0.  

The  effects  of  forest  Ei  modeling  on  simulated  forest  Et  and  AET  were  modest  but,  overall,  
resonated  in  improved  predictions  under  MCanInt  compared  to  M0  (Figure  2B-C).  SWAT  overestimated  
forest  Et  under  both  model  configurations,  although  MCanInt  led  to  reduced  overestimations  compared  
to  M0.  While  the  average  annual  forest  Et  from  PML-V2  was  637  mm  during  the  2003-2017  period,  
M0  and  MCanInt  estimates  were  777  and  724  mm,  respectively.  The  average  PBIAS  was  reduced  from  -
23%  (M0)  to  -15%  (MCanInt),  whilst  mean  R2  and  RMSE  changed  from  0.17  (M0)  to  0.15  (MCanInt),  and  
from  179  (M0)  to  140  (MCanInt)  mm.   

Conversely,  forest  AET  was  underestimated  under  M0  and  MCanInt,  with  average  annual  values  
of  813  and  842  mm,  respectively,  compared  to  the  857  mm  of  PML-V2  estimates.  MCanInt  significantly  
reduced  the  underestimation  of  average  annual  forest  AET  and  better  matched  the  PML-V2  values.  
PBIAS  ranged  from  0.76  to  9%  with  M0  and  from  -3  to  6%  with  MCanInt,  with  mean  values  across  sites  
of  5  and  2%,  respectively.  The  mean  R2  values  across  sites  increased  from  0.18  to  0.22  with  MCanInt,  
whilst  the  mean  RMSE  across  sites  was  118  mm  for  both  model  configurations  in  simulating  forest  
AET.   

Time-series  of  annual  average  simulated  versus  observed  forest  Ei,  Et,  and  AET  for  the  period  
2003-2017  are  shown  for  each  field-scale  site  in  the  Supplementary  Materials  file  (Figures  S2-S7).  

Table  4  –  Statistical  rating  metrics  of  simulated  annual  average  canopy  evaporation,  transpiration,  and  total  actual  ET  at  each  field-
scale  study  site  from  2003  to  2017.  Positive  PBIAS  values  indicate  model  underestimation,  while  negative  PBIAS  values  indicate  

model  overestimation.  
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 PBIAS  (%)  69  -5  -12  -6 5  2  

RMSE   (mm)  72  17  160  137  139  138 

 Alabama 

R2   0.09  0.10  0.22  0.24  0.10  0.07 

 PBIAS  (%)  70 1   9 6   -13  -4 

RMSE   (mm)  103  22  151  140  148  110 
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424 3.2.  Water  availability  

Beyond  improving  Et  and  AET  predictions,  MCanInt  also  translated  into  differences  in  all  components  
of  water  balance  partitioning  compared  to  M0.  The  changes  in  average  annual  surface  runoff  (SQ),  
lateral  flow  (LQ),  baseflow  (GW),  and  AET  brought  about  by  the  implementation  of  MCanInt  are  
illustrated  in  Figure  3  for  the  period  1982-2020.  In  forested  areas,  an  average  decrease  of  36%  in  SQ  
was  found  across  the  ACT  river  basin,  with  the  Etowah  (48%)  and  Coosa  (30%)  river  watersheds  
witnessing  the  biggest  and  smallest  changes,  respectively.  Differences  in  annual  LQ  and  GW  between  
M0  and  MCanInt  were  small,  with  average  decreases  of  4%.  On  average,  forest  AET  increased  by  4%  
with  the  implementation  of  M .  
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434 Figure  3  –  Water  balance  partitioning  from  1982  to  2020  under  M0  and  MCanInt  across  all  study  watersheds  considering  forest  HRUs  
only.  Water  balance  is  partitioned  into  surface  runoff  (A),  baseflow  (B),  lateral  flow  (C),  and  AET  (D).  

Furthermore,  the  modified  model  led  to  enhanced  daily  streamflow  predictions  at  all  study  
watersheds  compared  to  the  default  version  of  SWAT  (Figure  4).  The  temporal  agreement  between  
simulated  and  observed  streamflow  improved  with  MCanInt,  as  indicated  by  the  NSE  values  illustrated  
in  Figure  4A-B,  which  jumped  from  a  range  of  -1.25  to  0.64  under  M0  to  a  range  of  -1.13  to  0.68  under  
MCanInt.  Overall,  streamflow  performance  increased  from  lower  to  higher  stream  orders  under  both  
model  configurations  across  the  ACT  river  basin,  and  negative  NSE  values  were  only  found  at  the  
upstream  Oostanaula  and  Etowah  river  watersheds.  Individual  flow  duration  curves  (FDCs)  for  each  
study  watershed  are  provided  in  the  Supplementary  Materials  file  (Figure  S15-S20)  and  may  help  to  
illustrate  the  changes  in  simulated  daily  streamflow  brought  about  MCanInt.  SWAT  overestimated  
medium  flows  (flows  equaled  or  exceeded  20-70%  of  the  time)  and  high  flows  (flows  equaled  or  
exceeded  0-20%  of  the  time),  but  the  implementation  of  MCanInt  reduced  this  overestimation  and  
improved  the  agreement  with  observations  across  all  tested  watersheds.   

The  reduced  model  overestimation  of  daily  streamflow  achieved  by  MCanInt  is  supported  by  the  
PBIAS  values  shown  in  Figure  4C-D.  Overall,  SWAT  largely  overestimated  streamflow  across  the  
ACT  river  basin,  with  PBIAS  ranges  of  -38%  to  -1%  and  -31%  to  -4%  under  M0  and  MCanInt,  
respectively,  and  mean  values  of  -25%  and  -19%.  Notably,  MCanInt  outperformed  M0  in  capturing  
streamflow  at  all  watersheds,  with  marked  differences  found  in  the  upstream  Oostanaula  and  Etowah  
River  watersheds.  In  these  areas,  PBIAS  changed  from  -38  to  -31%,  and  from  -37  to  -31%,  
respectively.  The  Cahaba  River  watershed  also  witnessed  a  significant  reduction  in  PBIAS  for  
streamflow  simulation  from  the  M0  (-36%)  to  the  MCanInt  (-29%)  modeling  condition.  
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Figure 4 – Model performance in simulating daily streamflow under M0 and MCanInt across all study watersheds. 

3.3. Ecological flows 

Figures 5-8 summarize the hydrological alteration induced by forest canopy representation in SWAT. 
Each figure shows the percentage difference between simulations and observations considering 
different ecologically relevant flow metrics. Monthly low flows were substantially overestimated by 
M0, with overestimations ranging from 18 to 99% (Figure 5). Simulated monthly low flows with 
MCanInt had better agreement with observations across all sites, with model overestimation reduced to 
the range of 12-84%. 
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Figure 5 – Percent difference between observed and simulated monthly low flows with the default (M0) and modified (MCanInt) SWAT 
models at the outlet of the Oostanaula (A), Etowah (B), Coosa (C), Tallapoosa (D), Cahaba (E), and Alabama (F) watersheds. 

Figure 6 illustrates maximum flows of daily (1-day), weekly (3-day, 7-day), monthly (30-
day), and seasonal (90-day) durations simulated under M0 and MCanInt. Overall, SWAT overestimated 
maximum flows under M0 and MCanInt. Exceptions were found at the Tallapoosa and Cahaba 
watersheds, where the model slightly underestimated maximum flows of 1 to 30-day duration. 
However, with MCanInt the model overestimation was alleviated at most sites and resonated in better 
agreement with observations. Mean model overestimation of maximum flows was in the ranges of 3-
78% and 1-75% with M0 and MCanInt, respectively. 
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Figure 6 - Percent difference between observed and simulated maximum flows of various durations with the default (M0) and modified 
(MCanInt) SWAT models at the outlet of the Oostanaula (A), Etowah (B), Coosa (C), Tallapoosa (D), Cahaba (E), and Alabama (F) 

watersheds. 

Simulated seasonal flows showed significant variations across sites (Figure 7). At the 
Etowah, Coosa, and Alabama watersheds, SWAT largely underestimated spring and summer flows, 
whilst slightly overestimating streamflow in the winter and fall. At these sites, MCanInt had poorer 
performance compared to M0. At the Oostanaula, Tallapoosa, and Cahaba watersheds, SWAT 
overestimated seasonal flows, with model overestimations in the range of 17-70% and 8-59% with 
M0 and MCanInt, respectively. 
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Figure 7 - Percent difference between observed and simulated seasonal flows with the default (M0) and modified (MCanInt) SWAT 
models at the outlet of the Oostanaula (A), Etowah (B), Coosa (C), Tallapoosa (D), Cahaba (E), and Alabama (F) watersheds. 

The Julian dates of maximum and minimum flows were also impacted by forest canopy 
evaporation across our study sites (Figure 8). No changes in the timing of minimum flows were 
found in the Tallapoosa and Alabama watersheds. In the Oostanaula, Etowah, Coosa, and Cahaba 
watersheds, the date of minimum flows was slightly different between M0 and MCanInt, with M0 better 
matching the observations. Overall, the date of minimum flow predicted by M0 and MCanInt were 16-
22 days and 19-25 days earlier, respectively, compared to the observed flow. The date of maximum 
flow was only changed in the Cahaba and Alabama watersheds, where MCanInt had significantly better 
agreement with observations. At these watersheds, the date of maximum flow predicted by M0 and 
MCanInt were 21-46 days and 18-22 days later, respectively, compared to the observations. 
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Figure 8 - Percent difference between observed and simulated Julian date of maximum and minimum flows with the default (M0) and 
modified (MCanInt) SWAT models at the outlet of the Oostanaula (A), Etowah (B), Coosa (C), Tallapoosa (D), Cahaba (E), and 

Alabama (F) watersheds. 

3.4. Sediment yield and nutrient loading 

The representation of canopy evaporation had important implications for soil erosion and nutrient 
retention across the ACT river basin in the period 1982-2020 (Figure 9). Overall, MCanInt led to 
reduced average annual loadings of sediment, nitrate (NO3

-), and organic nitrogen at all study 
watersheds compared to M0. Notably, sediment and organic nitrogen loadings experienced the most 
substantial changes, with average reductions of 13 and 11%, respectively. Nitrate loadings were 
reduced by 5% with MCanInt in relation to M0. For all water quality variables shown in Figure 9, the 
biggest and smallest changes were observed in the Tallapoosa and Etowah river watersheds. 
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Figure 9 – Effects of forest canopy evaporation on simulated sediments (A), nitrate (B), organic nitrogen (C), phosphate (D), and total 
organic carbon (E) loadings at the watershed outlet. 

3.5. Ecosystem productivity 

Forest NPP was largely overestimated by M0 and MCanInt across all study sites (Figure 10). NPP 
estimates derived from MODIS CONUS in the period 2001-2020 ranged from 7,692 to 8,415 
kgC/m2/year, with the highest and lowest values found at the Oostanaula and Cahaba watersheds, 
respectively. Simulated NPP with M0 and MCanInt was in the range of 12,354-15,096 kgC/m2/year and 
12,143-14,312 kgC/m2/year, respectively. The highest and lowest simulated NPP was found at the 
Tallapoosa and Cahaba watersheds, respectively. Although both M0 and MCanInt substantially 
overestimated MODIS CONUS NPP, model predictions under MCanInt had slightly better agreement 
with benchmark data. Under M0, model overestimation of forest NPP ranged from 50-87%, whilst it 
was mitigated to 48-86% with MCanInt. 
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Figure  10  –  Comparison  of  default  and  modified  SWAT  simulations  of  forest  net  primary  productivity  against  remote-sensing  
estimates  at  six  study  sites  in  the  period  2001-2020.  

4.  Discussion  

In  the  face  of  climate  and  land-use  changes,  it  is  imperative  to  improve  the  mechanistic  understanding  
of  the  ecosystem  functions  in  ecohydrological  models  for  developing  sustainable  adaptation  and  
mitigation  scenarios.  Models  can  be  used  to  inform  environmental  policy  decisions  by  presenting  
different  courses  of  action.  However,  accurate  model  parameterization,  assumptions,  and  input  data  
are  key  for  achieving  reliable  results.   

4.1.Improved  forest  evapotranspiration  partitioning  

Our  findings  reveal  that  data-driven  parameterization  was  not  effective  in  capturing  forest  canopy  
evaporation  (Ei)  with  the  SWAT  model  across  all  study  sites.  This  indicates  that  the  internal  model  
structure  in  representing  canopy  rainfall  interception  and  evaporation  in  forest  ecosystems  might  be  
imprecise  in  SWAT.  Studies  such  as  Yang  et  al.  (2018)  and  Haas  et  al.  (2022)  have  shown  that  SWAT  
underestimates  actual  evapotranspiration  (AET)  in  forest  ecosystems  and  attributed  this  to  unrealistic  
model  parameterization  of  processes  such  as  stomatal  conductance,  and  minimum  and  maximum  LAI.  
Our  results  demonstrate  that  the  default  representation  of  Ei  in  SWAT  (M0)  led  to  large  
underestimations  of  canopy  evaporation  at  forested  sites  compared  to  gridded  remote-sensing  data.  
After  implementing  minor  changes  to  the  model's  source  code,  model  estimates  of  forest  canopy  
evaporation  showed  much  better  agreement  with  benchmark  data,  leading  to  an  overall  slight  
overestimation.  This  agrees  with  Kofroňová  et  al.  (2021),  which  demonstrated  that  even  simple  
interception  models,  under  the  right  assumptions,  can  improve  the  performance  of  hydrologic  models  
in  forest  ecosystems.  The  main  reason  why  SWAT  misrepresented  forest  Ei  with  its  default  formulation  
is  most  likely  because  the  model  uses  the  same  equation  to  compute  Ei  for  all  types  of  plants  (Eq.  2).  
In  SWAT,  canopy  interception  is  calculated  as  a  function  of  canopy  storage  and  plant  LAI  and  is  
normalized  by  the  maximum  attainable  plant  LAI.  Since  the  plant  growth  module  of  SWAT  is  based  
on  the  EPIC  crop  growth  model,  it  may  not  be  ideal  for  forests  and  some  processes  such  as  canopy  
evaporation,  which  vary  from  short  to  tall  vegetation,  may  not  be  realistically  represented.  Under  our  
proposed  approach  (MCanInt),  we  eliminated  the  maximum  LAI  normalization  and  calculated  canopy  
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rainfall interception for forests as a linear function of LAI and a user-defined parameter c. The same 
approach has been used in land surface models such as the Canadian Land Surface Scheme and the 
Community Land Model (CLM); as well as in field studies (Amatya et al., 1996; J. McCarthy et al., 
1991; Spittlehouse and Black, 1981). Although widely used, this method is very simplistic, and c needs 
to be adjusted to accurately capture forest Ei across the landscape. The value of c has been commonly 
assumed as 0.2 based on the studies of Rutter (1975) and Dickinson (1987). However, as highlighted 
by Hadiwijaya et al. (2021), further research is needed on the relationship between canopy storage and 
c. In the current study, we used gridded estimates of forest Ei to calibrate c for evergreen forests across 
the ACT river basin and found a range of 0.27-0.50. Improved forest Ei led to cross-benefits in terms 
of forest transpiration (Et) and AET across all study sites. Under M0, Et and AET were over and 
underestimated, respectively, because of underestimated Ei. Under MCanInt, as a result of increased Ei, 
Et and AET were reduced and increased, respectively, leading to both having better agreements with 
benchmark data. Simulated AET with MCanInt concurred well with AET ranges across the southeast 
United States (SE-US). For instance, McLaughlin et al. (2013) reported annual AET varying from 838 
to 1,087 mm for loblolly pine stands in the SE-US, agreeing well with the 842 mm of mean AET 
achieved with MCanInt and diverging from the 813 mm yielded by M0. Our results suggest that the 
underestimation of AET in forest ecosystems found by past SWAT studies might be related to a large 
underestimation of canopy evaporation. 

The Ei/P ratios simulated by MCanInt across FRSE HRUs varied from 0.07 to 0.11, showing 
reasonable agreement with other studies. For instance, Gu et al. (2018) found an average global Ei/P 
ratio of 0.12 for evergreen needleleaf forests (ENF). Miralles et al. (2011) found a much larger global 
Ei/P value of 0.22. Crockford and Richardson (2000) reported Ei/P ratios of 0.16 for ENF in Australia. 
Under M0, Ei/P ratios varied from 0.02 to 0.04, showing a substantial underestimation of watershed-
averaged forest Ei compared to the published literature. The small increase in AET, despite large 
increases in canopy evaporation, may be explained by how the evapotranspiration demand is handled 
in SWAT. The AET demand is sequentially met by canopy evaporation, transpiration, and soil 
evaporation, where increasing evaporation from one of these pools resonates with decreased 
evaporation from the others. In our case, by increasing canopy evaporation, transpiration was reduced. 
The overall consequence was a modest increase in AET across the study sites. 

4.2.Implications for water quantity modeling 

The increased evapotranspiration yielded by MCanInt translated into small decreases in annual water 
yield compared to M0. This was expected since more water was lost to the atmosphere as vapor in 
MCanInt, which resulted in less water eventually becoming surface runoff, lateral flow, and baseflow. 
In forested areas, mean annual surface runoff was impacted the most and witnessed decreases in the 
range of 6-33 mm with MCanInt across our study watersheds. Reduced water yield simulated by MCanInt 

resonated in less in-stream fluxes compared to M0, as shown by the reduced PBIAS values when 
comparing simulated and observed daily streamflow across the study watersheds. Results showed that 
the model performance in capturing streamflow improved with MCanInt, indicating that there is a cross-
benefit of our improved forest Ei method for simulating streamflow in watershed models. The 
improved streamflow performance was more evident in the Cahaba and Tallapoosa River watersheds. 
This is not surprising considering that these watersheds have the highest FRSE coverage among all 
study watersheds (Table 1). Our findings are in line with other studies showing the benefits of 
constraining ecohydrological models with biophysical variables such as LAI (Alemayehu et al., 2017; 
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597 Rajib  et  al.,  2020,  2018a;  Strauch  and  Volk,  2013),  AET  (Parajuli  et  al.,  2018;  Tobin  and  Bennett,  
2017),  soil  moisture  (Rajib  et  al.,  2016),  and  transpiration  (Li  Zejun  et  al.,  2020).   

MCanInt  outperformed  M0  in  capturing  ecological  flows.  Ecologically  relevant  flow  metrics  such  
as  maximum  flows,  monthly  low  flows,  seasonal  flows,  and  the  timing  of  extreme  flows  can  
significantly  impact  the  aquatic  biota.  For  instance,  fish  species  of  ecological  relevance  for  Alabama  
such  as  largemouth  bass  (Micropterus  salmoides)  thrive  in  slow-flowing  waters,  while  species  like  
darters  (Etheostoma  ranseyi)  prefer  swift-flowing  waters  (Atkins  et  al.,  2004).  Additionally,  these  flow  
metrics  can  influence  channel  morphology  and  physical  habitat  conditions.  For  instance,  maximum  
flows  can  affect  the  volume  of  nutrient  exchanges  between  the  channel  and  floodplains  and  the  
distribution  of  plant  communities  in  lakes,  ponds,  and  floodplain  areas.  Similarly,  monthly  low  flows  
sustain  aquatic  life  in  dry  spells  by  ensuring  a  minimum  water  level  in  the  channel  and  floodplains.  
Seasonal  flows  align  with  species'  reproductive  and  feeding  cycles,  preserving  and  maintaining  aquatic  
biodiversity,  besides  influencing  water  temperature  and  oxygen  levels  (Richter  et  al.,  1996).  Also,  
better  predicting  the  timing  of  maximum  and  minimum  flow  events  can  aid  in  infrastructure  planning,  
flood/drought  mitigation,  and  sustainable  water  allocation.  Thus,  accurately  simulating  these  
ecological  flow  metrics  might  be  essential  for  supporting  biodiversity  and  the  overall  health  of  water-
dependent  ecosystems.  

Had  the  Green-Ampt  method  had  been  used  to  calculate  surface  runoff  in  SWAT,  the  impacts  on  
water  availability  and  ecological  flows  would  most  likely  have  been  greater  since  the  redistribution  of  
gross  rainfall  would  be  directly  affected  by  canopy  interception  (Eq.  6).  However,  running  the  model  
with  the  Green-Ampt  formulation  requires  sub-daily  climate  data,  which  may  be  difficult  to  obtain,  
and  is  thus  beyond  the  scope  of  the  current  study  and  must  be  explored  in  a  future  effort.  Under  the  
utilized  NRCS-CN  method  to  compute  surface  runoff,  canopy  evaporation  is  lumped  together  with  the  
initial  abstractions  term  in  SWAT  (Neitsch  et  al.,  2011).  In  other  words,  surface  runoff  is  solely  
affected  by  rainfall  and  the  CN  value,  with  canopy  evaporation  not  directly  impacting  surface  runoff  
generation  in  SWAT.  Thus,  the  changes  in  water  yield  observed  between  M0  and  MCanInt  are  a  
byproduct  of  increased  initial  abstractions  and  consequent  reduced  surface  runoff.  

4.3.   Implications  for  water  quality  and  ecosystem  productivity  modeling   

The  implementation  of  MCanInt  led  to  reduced  loadings  of  sediment,  nitrate,  and  organic  nitrogen,  
compared  to  M0.  The  most  substantial  changes  were  observed  for  sediment  and  organic  nitrogen  
predictions,  where  a  reduction  of  approximately  8,900  and  1,300  tons/year  was  found,  respectively.  
This  is  most  likely  related  to  the  amounts  of  residue  on  the  ground  produced  by  M0  and  MCanInt.  In  
SWAT,  a  fraction  of  the  total  forest  biomass  is  assigned  to  the  ground  as  residue  during  dormancy.  
This  plant  residue  contributes  to  the  fresh  organic  nitrogen  pool  and  is  eventually  mineralized  into  
NO -

3 .  Due  to  the  decreased  forest  transpiration  rates  predicted  under  MCanInt,  forest  biomass  was  
slightly  smaller  compared  to  M0  (Figure  S21).  As  a  result,  less  fresh  residue  was  assigned  to  the  soil  
with  MCanInt,  which  can  explain  the  decreases  in  organic  nitrogen  and  NO -

3 loadings.  Similarly,  
sediment  yield  is  affected  by  the  amount  of  residue  on  the  soil  surface  in  SWAT  since  the  cover  and  
management  factor  of  the  Universal  Soil  Loss  Equation  (USLE)  (Williams,  1975)  is  computed  as  a  
function  of  plant  residue  (Neitsch  et  al.,  2011).  Therefore,  inaccurate  representation  of  Ei  could  have  
implications  for  studies  aimed  at  simulating  nutrient  cycling  or  assessing  the  impacts  of  management  
practices  (e.g.,  forest  thinning)  on  water  quality  with  SWAT.  These  findings  are  relevant  since  studies  
such  as  Atkins  et  al.  (2004)  and  Johnson  et  al.  (2002)  highlight  the  large  nitrogen,  phosphorous,  and  
carbon  loads  being  transported  to  the  Mobile  Bay  estuary  from  agricultural  lands  and  animal  wastes.  
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641 Similarly,  according  to  Deutsch  (2019),  soil  erosion  is  the  main  source  of  water  impairment  across  the  
Mobile  Bay  watershed.  Additionally,  the  modified  model  positively  affected  ecosystem  productivity  
through  the  simulation  of  NPP,  where  MCanInt  had  better  agreement  with  remote-sensing  NPP  
compared  to  M0.  NPP  is  an  important  metric  in  understanding  the  flow  of  energy  through  ecosystems  
and  is  essential  for  assessing  ecosystem  health  and  functioning  (Zhang  et  al.,  2023).  

4.4.Caveats  and  broader  implications   

Our  study  has  limitations,  and  our  results  should  be  interpreted  with  caution.  Although  our  proposed  
approach  is  tailored  to  forest  ecosystems  and  was  applied  to  all  types  of  forests  across  the  study  
domain,  we  focused  our  model  calibration  efforts  on  evergreen  forests.  Other  important  forest  species  
(e.g.,  white/red  oaks)  like  deciduous  forests  were  not  parameterized  with  the  same  level  of  detail  and  
that  should  be  addressed  in  a  future  study.  Additionally,  model  simulated  zero  canopy  evaporation  
from  non-forested  lands,  which  is  a  consequence  of  unrealistic  parameterization  of  canopy  storage  
(canmx.hru)  in  SWAT.  This  should  serve  as  an  alert  for  future  model  applications  aimed  at  estimating  
evapotranspiration  partitioning  of  non-forested  lands  with  SWAT.  Despite  these  shortcomings,  our  
study  demonstrates  the  usefulness  of  remote-sensing  data  for  informing  ecohydrological  models  in  
better  capturing  ecohydrological  processes  such  as  forest  canopy  evaporation.  This  is  relevant  given  
that  canopy  evaporation  represents  a  big  portion  of  the  AET  in  forest  ecosystems.  AET,  in  turn,  usually  
dominates  the  water  budget  with  a  mean  global  AET/P  ratio  of  0.6  (Alton  et  al.,  2009;  Oki  and  Kanae,  
2006).  Additionally,  as  demonstrated  here,  the  representation  of  canopy  evaporation  may  have  
consequences  for  simulating  ecosystem  functions  and  management,  such  as  soil  erosion  control,  
nutrient  retention,  flood  and  drought  management,  and  forest  productivity  with  SWAT.  Thus,  
adequately  representing  canopy  evaporation  in  ecohydrological  models  can  be  important  for  
strengthening  their  reliability  and  in  estimating  ecological  processes  of  underlying  consequences  for  
aquatic  species  and  ecosystem  biodiversity.  Under  our  proposed  approach,  the  model  can  uniquely  
simulate  canopy  evaporation  for  short  and  tall  vegetation,  better  reflecting  real-world  conditions.  The  
newly  introduced  parameter  c  was  calibrated  across  a  wide  geographic  range  of  land-use  distributions,  
soil  types,  elevation  profiles,  and  hydrological  conditions  (Table  1).  Therefore,  our  findings  can  also  
be  useful  to  ecosystem  modelers  since  land  surface  models  such  as  CLM  rely  on  approaches  similar  
to  MCanInt  to  estimate  canopy  evaporation.  Our  model  modifications  are  simple,  and  the  compiled  
source  code  is  readily  available,  making  our  findings  broadly  useful  to  the  modeling  community.   

 

Conclusions  

In  the  current  study,  we  modified  the  canopy  interception  and  evaporation  method  used  in  the  SWAT  
model  to  better  represent  forest  ecosystems.  The  following  summarizes  the  main  findings  of  our  study:  

  The  default  representation  of  canopy  evaporation  in  SWAT  may  be  conceptually  flawed  for  
forest  ecosystems.  

  SWAT,  under  its  default  formulation,  underestimated  forest  canopy  evaporation  across  all  
study  sites.  

  Forest  transpiration  and  actual  evapotranspiration  (AET)  were  over  and  underestimated,  
respectively,  by  the  default  SWAT  model.  

  The  modified  model  showed  better  agreement  with  benchmark  data  in  capturing  canopy  
evaporation.  
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 Model performance for forest transpiration and AET slightly improved because of improved 
canopy evaporation. 

 Average annual water yield decreased due to increased AET. 
 The proposed approach led to reductions in sediment, organic nitrogen, and nitrate loadings 

compared to the default SWAT. 
 Forest net primary productivity was impacted, with the proposed approach reducing model 

overestimation of benchmark data. 

Remote-sensing estimates of canopy evaporation were vital in improving the model. Although 
our study is in the context of SWAT, our findings can be broadly useful to the modeling community 
since other popular process-based models like EPIC, APEX, and ALMANAC are based on very 
similar modeling assumptions. Thus, our methodology can be easily applied to other watershed models 
and be explored across a wide range of environmental conditions. Due to the divergent simulation of 
canopy evaporation and ecological processes between the two model configurations, the conclusions 
drawn from each model could vary considerably. As a result, such discrepancies could potentially 
influence management decisions if these models were utilized to inform decision-making. Amid 
ongoing climate and land-use changes, modeling tools capable of accurately capturing ecological 
processes become invaluable to assess potential mitigation scenarios (e.g., forest thinning, 
reforestation). Our findings demonstrate the benefits of the modified model not only in predicting 
forest canopy evaporation but also in cross-benefiting multiple ecological processes, thereby holding 
implications for aquatic species and ecosystem biodiversity. 
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