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Improved forest canopy evaporation leads to better predictions of ecohydrological processes

Henrique Haas, Latif Kalin, Haw Yen

ABSTRACT

Canopy evaporation (E;) is a vital process in forest ecosystems impacting hydrology and biogeochemistry through the
redistribution of gross rainfall and gradual infiltration of water into the soil profile. Inaccurate representation of E; in
models may lead to flawed predictions of ecohydrological processes such as water availability, soil erosion, nutrient
transport, and ecosystem productivity, thus compromising the reliability of model outputs. The Soil and Water
Assessment Tool (SWAT) ecohydrological model has been widely used for various purposes worldwide. However,
SWAT has shown limitations in forest ecosystems. SWAT employs a single equation to calculate canopy evaporation for
crops and trees, which may not accurately account for the differences in ecophysiology and aerodynamic resistance
between short and tall vegetation. In SWAT, canopy interception is calculated as a function of canopy storage and is
normalized by the maximum plant leaf area index (LAI). Here we present an alternative approach to simulate forest
canopy interception and evaporation with SWAT. Under our proposed approach, the LAI normalization is eliminated,
and canopy storage is computed as a linear function of daily LAI and a user-defined parameter. We used remote-sensing
(R-S) estimates of E; to accurately parameterize forest canopy evaporation in the modified and default models. The
Alabama-Coosa-Tallapoosa, a large (55,000 km?) and forested watershed system in the Southeast United States, is
utilized as testbed. Results showed that the default SWAT largely underestimated (> 70%) forest E; across our study
domain. The modified model better matched R-S estimates of E;, showing a mere 2% overestimation. Additionally, the
modified model yielded better agreement with R-S transpiration and total evapotranspiration compared to the default
model. Our alternative approach positively affected the model simulation of daily streamflow and ecologically relevant
flow metrics, reducing model overestimations and leading to better agreement with observations. Also, the modified
model led to reduced sediment, nitrate, and organic nitrogen loadings, with sediment and organic nitrogen being
particularly affected, witnessing reductions of 13 and 11%, respectively, compared to the default model. Finally, our
proposed approach resonated in better agreement between simulated net primary productivity (NPP) and R-S estimates.
Although our study is in the context of SWAT, our findings can be useful to the broader modeling community since
other popular process-based models are based on similar modeling assumptions. Our findings demonstrate the benefits of
improved forest evapotranspiration partitioning for simulating ecological processes with SWAT.

KEYWORDS: Canopy evaporation, forest modelling, ecosystem services, SWAT, remote sensing
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1. Introduction

Canopy rainfall interception is the process by which vegetation captures and temporarily stores gross
rainfall (P) before it reaches the ground (Lawrence et al., 2007; Nicholls and Carey, 2021; Paul-
Limoges et al., 2020; Stoy et al., 2019) - being the first of several land surface hydrological processes
affecting the redistribution of rainwater (Brantley et al., 2019; Miralles et al., 2010). Canopy
evaporation (E;) represents a major fraction of the global terrestrial evapotranspiration (ET), making
it a key, yet understudied, component of the terrestrial water and energy budgets (Hadiwijaya et al.,
2021; Muzylo et al., 2009). This process is particularly relevant in forest ecosystems, where E; usually
represents 10 to 40% of the total ET (Brantley et al., 2019; Kofroniova et al., 2021; Miralles et al.,
2010). Canopy interception and evaporation may also influence soil erosion and nutrient exports by
facilitating the gradual infiltration of water into the soil profile and thereby minimizing the erosive
power of rapid surface runoff (Zore et al., 2022). In forest ecosystems, the nexus between the soil-
plant-atmosphere is stronger because of higher aerodynamic conductance associated with taller
vegetation (Miralles et al., 2010; Muzylo et al., 2009). Thus, forest canopy interception is an important
link between land surface and atmosphere influencing terrestrial biogeochemistry and water balance.

Different techniques (e.g., lysimeters, eddy covariance, leaf gas exchange, models) have been
used to measure and estimate forest canopy interception and evaporation. Field studies are usually
costly, labor-intensive, time-consuming, and not feasible for performing continuous measurements
over large areas (Muzylo et al., 2009; Yu et al., 2022). Process-based numerical models have been
increasingly used in environmental sciences and applied to estimate canopy interception and
evaporation (Kofroniova et al., 2021; Wang et al., 2007; M. Yang et al., 2018). Examples are land
surface models (LSM) (e.g., Community Land Model (CLM)), watershed models (e.g., Soil and Water
Assessment Tool (SWAT)), and stand-scale models (e.g., Physiological Processes Predicting Growth
(3-PG)).

The SWAT model (Arnold et al., 1998) has been widely used to predict ecological processes
like water availability (Angela et al., 2015; Bekele et al., 2013; Venkatesh et al., 2020), soil erosion
(dos Santos et al., 2023; Karakoyun and Kaya, 2022; Luo et al., 2023), nutrient transport (Grizzetti et
al., 2003; Isik et al., 2023; Jiang et al., 2023), carbon sequestration (Bekele et al., 2013; Liang et al.,
2022; Q. Yang et al., 2018), and plant growth (Nair et al., 2011; Strauch and Volk, 2013; Yang and
Zhang, 2016). As of December 2023, there were over 5,300 peer-reviewed journal articles employing
SWAT around the globe (https://www.card.iastate.edu/swat _articles/). Despite its popularity, previous
studies have identified certain limitations of SWAT in forest ecosystems (Alemayehu et al., 2017,
Haas et al., 2022a, 2022b; Strauch and Volk, 2013; Yang and Zhang, 2016). The default model
parameters controlling tree growth and dynamics have primarily been derived from personal
communication and generalized forest studies (Neitsch et al., 2011). Additionally, SWAT employs a
single equation to calculate canopy evaporation for crops and trees, which may not accurately account
for the differences in ecophysiology and aerodynamic resistance between short and tall vegetation.

Past studies have addressed SWAT’s limitations in forest ecosystems by either improving its
parameterization of forest processes and dynamics (Haas et al., 2021; Yang and Zhang, 2016) or by
modifying the model’s structure to enhance the representation of forest attributes such as leaf area
index (LAI) (Alemayehu et al., 2017; Guo et al., 2018; Strauch and Volk, 2013). Other studies have
modified the model’s vegetation growth module (Karki et al., 2023; Lai et al., 2020) or assimilated
remote-sensing information (e.g., ET, LAI) into the model (Rajib et al., 2018b, 2020). However, to the
best of the author’s knowledge, no study to date has assessed SWAT’s skills in capturing canopy
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evaporation or presented alternatives to enhance this process. Additionally, studies involving severe
modification of the model’s source code may increase modeling complexity and require additional
files and parameters, hindering their applicability to regular users.

Accurately representing forest E; in SWAT can have important implications for modeling
ecosystem services such as water availability, ecological flows, soil erosion control, nutrient transport,
and plant growth. For instance, E; directly impacts total ET in SWAT. In highly forested regions such
as the southeast united states (SE-US), ET can be as high as 90% of the incoming rainfall (McLaughlin
et al., 2013). Thus, E; can have substantial impacts on ecosystem water balance. Furthermore, E;
impacts the amount of P reaching the ground in SWAT, which may influence the timing and rate of
simulated streamflow (Neitsch et al., 2011). Indirectly, plant biomass in SWAT is influenced by E;
through the partitioning of transpiration, canopy evaporation, and soil evaporation. This, in turn, can
impact soil erosion, given that the Universal Soil Loss Equation (USLE) (Williams, 1975) cover and
management factor is calculated as a function of plant biomass in SWAT (Neitsch et al., 2011). Plant
biomass and residue also play a role in nutrient uptake and residue mineralization in SWAT. Thus,
improving the mechanistic representation of forest E; might positively influence the modeling of
ecohydrological processes (e.g., energy, water, nutrient cycling) and strengthen model results. Water
is a key driver of ecological processes (Sun et al., 2017) and combining accurate ecohydrological
predictions with ecosystem services (e.g., water quality purification, carbon sequestration, flood and
drought attenuation) can be valuable in providing science-based outputs for policy and decision-
making.

With the rise of open-access datasets (e.g., remote-sensing information) and open-source
simulation tools, modelers are met with the possibility of enhancing the representation of
ecohydrological processes once overlooked or ignored in numerical models. However, studies such as
Komatsu and Kume (2020) highlight the necessity of using more practical models with simplified
structures in forest hydrology to facilitate communications among stakeholders. The increased
availability of remote-sensing (R-S) information may contribute to the simplification of ecological
processes in numerical models through the development of empirical relationships. In recent years,
several high-resolution and freely available products describing processes like net primary
productivity (NPP), transpiration (E:), canopy evaporation, and soil evaporation (Es) have been
developed (Robinson et al., 2018; Running and Zhao, 2019; Zhang et al., 2019). Additionally, the
advent of cloud-based geospatial platforms such as Google Earth Engine (GEE) (Gorelick et al., 2017)
has facilitated the acquisition and processing of large-scale remote sensing data and their application
in Earth system sciences. Despite the availability of global estimates of ecological processes such as
Eiand NPP, this information has not been sufficiently explored in ecohydrological modeling yet.

Considering SWAT’s limitations in forest ecosystems and the lack of studies assessing its skills
in predicting canopy evaporation, we modified the source code to introduce a new canopy interception
equation specifically designed for forests. More specifically, we set out to answer the following
research questions: (1) how accurately is E; represented in SWAT? (i1) what is the significance of forest
E; for simulating ecohydrological processes such as water availability, ecological flows, sediment
yield, nutrient transport, and ecosystem productivity? (iii) can improved E; representation enhance
streamflow simulation in SWAT? We test our methodology in the Alabama-Coosa-Tallapoosa (ACT)
river basin, a large and forested watershed in Alabama-USA. Here we compare the results obtained
with the modified model against those of the default SWAT. We hope to open new avenues in



128
129

130

131
132
133

134
135
136
137
138
139
140
141
142

143
144
145

146

147
148
149
150

151
152
153
154

155
156
157
158
159
160

161

162
163
164
165

leveraging freely available datasets to enhance model predictability and ensure the robust application
of ecohydrological models in forest ecosystems.

2. Methods and Data

2.1.The SWAT Model

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) is an ecohydrological model that
can simulate several horizontal (e.g., surface runoff, lateral flow, groundwater contribution), and
vertical (e.g., ET, Ey, Ei, Es, percolation) water fluxes, as well as sediment loss, nutrient loadings, and
plant growth. SWAT is equipped with plant growth and management modules that allow for the
representation of different plant physiologies (e.g., evergreen, deciduous, and mixed forests) and
silvicultural practices (planting, biomass harvesting, fertilization) in the model (Neitsch et al., 2011).
The integrative nature of SWAT comprising water, climate, vegetation, soil, and management
components provides a comprehensive framework for estimating outputs that can be interpreted as
ecosystem services.

SWAT discretizes a watershed into subwatersheds, which are further discretized into unique
combinations of land use, soils, and slope called hydrological response units (HRU’s) (Neitsch et al.,
2011). The water balance at the HRU level is calculated as:

AS = Z%:l(P - Qtotal —ET — Wseep) (1)

where, AS is the change in water storage in the soil profile, P, Quwal, ET, and Wy, are the daily amount
of precipitation, total water yield, evapotranspiration, and the total amount of water exiting the bottom
of the soil profile on a given day, respectively. The total water yield ( Qi) is the sum of surface runoff,
lateral flow, and base flow contributions to streamflow.

In the current study, surface runoff was computed using the NRCS-CN method based on daily
rainfall observations, and the Muskingum method (Cunge, 1969) was used to route runoff volume
from the subbasins to the main channel. The Penman-Monteith (P-M) (Monteith, 1965) method was
selected for estimating potential evapotranspiration (PET).

The vegetation growth module of the SWAT model is based on a simplified version of the
EPIC cropping system model (Williams, 1990) and uses the same set of equations to model canopy
interception and evaporation from all types of plants. Total actual evapotranspiration (AET) is the sum
of transpiration, canopy evaporation, and soil evaporation. Canopy evaporation is calculated from the
amount of water intercepted by the vegetation canopy as a function of user-defined maximum canopy
storage and maximum LAI:

_ LAI
CaNgay = CaNmy. 77— 2)

where cangg,, is the maximum amount of water that can be held in the canopy on a given day (mm),
can,,, is a user-defined maximum amount of water that can be trapped in the canopy when the canopy
is fully developed (mm), LAI is the leaf area index on a given day and LAIL,, is a user-defined
maximum leaf area index for the plant.
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If P is smaller than cangq, minus the initial amount of water held in the canopy (/;) on a given
day:

Ppet =0 “4)

where I is the final amount of water held in the canopy (mm), and Py, is the amount of rainfall
reaching the ground (mm).

IfP> Canday - I
Iy = canggy, (5)
Ppet = P — (Canday —1I;) (6)

When calculating AET, SWAT first evaporates any rainfall intercepted by the plant canopy
according to equations 7-10. If PET is smaller than the total amount of water held in the canopy (/)
(mm):

AET = E; = PET (7)
I =1;—E (8)
On the other hand, if PET > I.
Ei=1(9)
Ir =0 (10)

The remaining evaporative water demand is partitioned between the vegetation and the soil. When
using the Penman-Monteith (P-M) PET method in SWAT, transpiration is approximated as the plant
water uptake for the day and determined as a function of soil water content and a user-defined plant
water uptake compensation coefficient. Soil evaporation in SWAT is calculated as a function of soil
water content, aboveground biomass and residue, soil depth, and a user-defined soil evaporation
compensation factor (Neitsch et al., 2011). Details regarding SWAT’s computation of E; and Es are
provided in the Supplementary Materials file.

2.2.An alternative forest canopy interception method

Here we introduce an alternative method to model canopy interception for forests in SWAT. Under
our proposed approach, forest canopy storage is modeled as a function of LAI and a user-controlled
parameter, according to equation 11:

S.an=c.LAI (11

where Scq, 1s the amount of water stored in the canopy (mm), ¢ is a user-defined parameter (mm), and
LAI is the plant leaf area index for the day (m?/m?). This method was initially introduced by Leyton et
al. (1967) and Rutter et al. (1971) and has since then been used in LSM such as the Canadian Land
Surface Scheme (Verseghy et al., 1993). A similar approach is used in the CLM 4.5 (Oleson et al.,
2013) LSM model. Studies such as Noilhan and Planton (1989) advocated for this approach as a
simplistic, yet robust, method for representing forest canopy interception in general circulation models

5
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(GCMs). Water balance studies at the plot and watershed scales have applied this method to estimate
forest canopy interception and shown values of ¢ ranging from 0.2 to 0.5 (Amatya et al., 1996; J.
McCarthy et al., 1991; Spittlehouse and Black, 1981).

In the current study, the subroutines canint.f, hruaa.f, hruday.f, hrumon.f, hruyr.f, and sumv.f
in the source code of SWAT 2012 Rev. 664 were modified to represent forest canopy interception
according to Eq. 11. For other land-use classes not classified as forests in SWAT, canopy interception
was modeled with the equations described in section 2.1.

The simulated values of canopy evaporation, transpiration, and soil evaporation are not printed in
the default versions of SWAT. In the current study, we modified the model’s source code to print these
variables at the HRU level in the output.hru file. The values of canopy evaporation, transpiration, and
soil evaporation are printed over the variables 36 (PGRZ), 37 (CFERTN), and 38 (CFERTP),
respectively, as defined in the .cio file and described in the model’s input/output documentation
(Arnold et al., 2011).

2.3.Study area

The Alabama-Coosa-Tallapoosa (ACT) river basin (Figure 1) was selected to study the importance of
accurately representing forest canopy evaporation in watershed models. The ACT river basin is a large
(59,100 km?) and mainly forested (61% forest cover) watershed that contributes over 50% of the water
discharged to the Mobile Bay - a large estuary along the Gulf of Mexico coast with strategic economic
and ecological importance for the state of Alabama (Coogan et al., 2019). According to the National
Forest Types Dataset (Ruefenacht et al., 2008), the main evergreen forest (FRSE) species in the ACT
river basin is loblolly pine (Pinus taeda L.), whilst white and red oaks are the dominant deciduous
forest (FRSD) species (Figure S1 in the Supplementary material file). The basin drains large rivers
such as the Coosa, Tallapoosa, Cahaba, and Alabama, and spans across Alabama, northwest Georgia,
and southern Tennessee, making it a good testbed for investigating the importance of forest canopy
evaporation in regional watershed modeling. The ACT river basin is home to a diverse range of flora
and fauna, including many rare and endangered aquatic species (Deutsch, 2019). The watershed also
plays an important role in drinking water supply, agriculture, and industry throughout the region
(Atkins et al., 2004). Average elevation ranges from near sea level to 1,280 meters according to the
30-meter resolution National Elevation Dataset (NED) (NED, 1999). The annual average precipitation
and temperature are 1,400 mm and 17 °C, respectively, characterizing the watershed as warm and
humid. In terms of soil distribution, sandy loam, and silty loam soils are predominant across the
watershed area (Soil Survey Geographic Database (SSURGO)).

For this study, five watersheds ranging from 4,572 km? (Cahaba river watershed) to 55,615 km?
(Alabama river watershed) within the ACT river basin and with varying physical characteristics (e.g.,
annual rainfall, average temperature, discharge, elevation, and forest cover) (Table 1), were selected
to assess the effects of forest canopy evaporation on the model predictions of ecological processes at
different scales and under various environmental conditions.
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239 Figure 1 — The study area showing the entire Alabama-Coosa-Tallapoosa river basin, along with five smaller watershed
240 systems, and the selected field-scale sites where forest canopy evaporation was calibrated to capture the basin’s
241 heterogeneities.
242 Table 1 — Physical characteristics of the study watersheds. The average values of rainfall, temperature, and streamflow
243 are from the period 1980-2020. Average forest cover comprises the average of evergreen (FRSE), deciduous (FRSD),
244 and mixed (FRST) forests within each watershed.
Drainage Annual g s Average annual . Dominant % of Average
. Average daily air Mean elevation . . % of
area rainfall o streamflow physiographic FRSE
2 temperature (°C) (m) 2 Forest
(km*) (mm) (mm) region cover
cover
Cahaba 4,572 1448 17.4 520 141 Coastal Plain 24 61
Alabama 55,615 1374 16.9 432 199 Coastal Plain 21 69
Tallapoosa 12,066 1371 17.1 411 221 Piedmont 24 62
Coosa 26,175 1368 16.2 504 269 Valley and 17 63
Ridge
Valley and
QOostanaula 5,481 1334 154 562 345 . 13 65
Ridge
Etowah 4,666 1298 14.4 506 335 Piedmont 13 62
245
246 2.4.Model setup and input data
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The ArcSWAT 2012 (version 10.4.19) ArcMap interface was used in this study to delineate the ACT
river basin, discretize it into subbasins and tributaries, and create the HRUs. Watershed delineation
was carried out from a 10-meter resolution digital elevation model (DEM) from the National Elevation
Dataset (NED) and a hydrography network from the National Hydrography Dataset (NHD). Soil type
distribution and its hydrophysical characteristics (e.g., soil depth, soil hydraulic conductivity, available
water capacity) needed to parameterize SWAT s soil database were obtained from STATSGO. A land-
use/cover map for the year 2016 at the 30 m resolution was obtained from the National Land Cover
Database (NLCD) to characterize the land-use/cover distribution. Daily precipitation,
maximum/minimum temperature, relative humidity, wind speed, and short-wave radiation for each
subbasin were derived from the GridMet daily gridded dataset (Abatzoglou, 2013) and utilized as
weather forcings to drive the hydrological processes in the model. Dry and wet atmospheric deposition
of nitrate (NO3") and ammonium (NH4") were obtained from the National Atmospheric Deposition
Program for stations AL03, AL10, AL19, and AL99, which fall within the domains of the ACT river
basin. Point source discharge information from 90 wastewater treatment plants was downloaded from
EPA’s ECHO (Enforcement and Compliance History Online) portal and added as point sources to the
model. To realistically represent forest dynamics in SWAT, we followed the methodology of Haas et
al. (2021) to parameterize FRSE classes. Considering that the vast majority of FRSE consists of
loblolly pine in the ACT river basin, we treated all FRSE lands as loblolly pine in SWAT. We
initialized the model with FRSE growing in the land from the beginning of the simulation period
(IGRO = 1) and deleted all management operations (e.g., planting, fertilization, harvest) attributed to
forests by ArcSWAT in the SWAT management file (.mgt). We parameterized initial forest
aboveground biomass based on gridded estimates from the United States Department of Agriculture
(USDA) Forest Service (Blackard et al., 2008). In the current study, mean annual net primary
productivity (NPP) was calculated from simulated forest biomass considering the relationship of 0.45
kg Carbon/kg biomass/m? (Tang et al., 2010; Yang and Zhang, 2016).

The complete dataset used for constructing the SWAT model for the ACT river basin, as well
as the respective sources, are summarized in Table 2. Based on the described data, SWAT2012
(revision 664) through the ArcSWAT interface with a 10%-10%-0% (land-use, soils, slope) threshold
generated 320 subbasins and 4,758 HRUs for the ACT river basin. The model was run from 1979 to
2020, using 3 years (1979-1981) of initialization as the model warm-up period. It is important to note
that automated streamflow calibration was not performed in the current study, as our objective is not
to optimize streamflow performance but rather to evaluate the significance of forest canopy
evaporation in model predictability. However, envisioning to assure that the simulated water budget
is reasonable, we built upon the concept of soft data (Yen et al., 2014) and manually adjusted AET
rates using remote-sensing estimates from PML-V2 and MODI16A2, besides comparing simulated
average annual streamflow at the watershed’s most downstream location against observations from
the USGS monitoring station 02428400.

Table 2 - Description of the input data utilized to construct the watershed model and evaluate the model performance in
simulating streamflow and stream temperature.

Data Description Source
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National Elevation Dataset

United States Department of Agriculture (USDA)
Geospatial Data Gateway

Topography at 10 meters resolution (https://datagateway.nrcs.usda.gov/)
United States Department of Agriculture (USDA)
Geospatial Data Gateway
Land use 2016 NLCD (https://datagateway.nrcs.usda.gov/)
United States Department of Agriculture (USDA)
Model Soil State Soil Geographic Geospatial Data Gateway
input data (STATSGO) (https://datagateway.nrcs.usda.gov/)
Daily precipitation,
maximum/minimum . . . .
Climate temperature, solar radiation, GridMet (https://www.climatologylab.org/gridmet.html)
and wind speed from 1979
t0 2020
Average annual wet and dry
Atmospheric deposition of nitrate and National Atmospheric Deposition Program (NADP)
deposition ammonia from 1982 to (http://nadp.slh.wisc.edu/)
2020.
Monthly discharge and
Point sources loading from wastewater EPA’s ECHO Portal (https://echo.epa.gov/trends/loading-
u treatment plants from 2007 tool/get-data/monitoring-data-download)
t0 2020
Forest Types National Foregt Types for https://data.fs.usda.gov/geodata/rastergateway/forest_type/in
the conterminous U.S. dex.php
Spatially distributed forest
. aboveground biomass https://data.fs.usda.gov/geodata/rastergateway/biomass/conu
Forest biomass . .
estimates for the s forest biomass.php
conterminous U.S.
Daily discharge from USGS
gage stations 02388500,
Model g\ camflow 02395890, 02411000, USGS Water data
evaluation (https://waterdata.usgs.gov/nwis)

02419890, 02425000,
02428400

8-day E;, Et, Es, and ET data

. Google Earth Engine
ET comp onents  from the Penman-Monteith- (https://code.earthengineg.google.com%d873aeS7434c3a7848l
(Ei, Et, Es) Leuning Evapotranspiration da819f3cd7bd6)
V2 (PML-V2) product
Annual NPP from the Google Earth Engine
Annual NPP MODIS Net Primary (https://code.earthengine.google.com/e8db489¢c50cabd5db28
Production CONUS dataset 6a7146dfa2775)

2.5. Using gridded data to improve the representation of canopy evaporation in SWAT

In this study, we derived spatially distributed estimates of E;, transpiration (E;), and AET from the
Penman-Monteith-Leuning Evapotranspiration V2 (PML-V2) product (Zhang et al., 2019) using
Google Earth Engine (GEE). The PML-V2 is a gridded ET product that estimates ET and its three
components (i.e., Et, Ei, Es) at 500 m spatial and 8-day temporal resolutions from 2003 to 2017, making
it ideal for watershed-scale applications. The product builds upon the previously developed
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biophysical model PML-V1 (Zhang et al., 2016) and uses leaf area index (LAI) data from the Moderate
Resolution Imaging Spectroradiometer (MODIS), GLDAS meteorological forcing data, atmospheric
CO; concentrations from the National Oceanic and Atmospheric Administration (NOAA), continuous
annual land-use/cover distribution from NASA, among other inputs. The PML-V2 has been calibrated
across 95 flux sites worldwide, out of which 22 were ENF and 6 EBF, outperforming widely used
products like MOD16A2 (Mu et al., 2013), MOD17A2H (Running et al., 2015) and GLEAM (Global
Land Evaporation Amsterdam Model) (Miralles et al., 2011a) in estimating ET and gross primary
productivity (GPP).

Here we take advantage of this high-resolution gridded dataset and SWAT’s semi-distributed
capabilities to constrain the watershed model with spatially distributed estimates of forest E; and (a)
use a data-driven approach to derive physically meaningful values for the input parameter canm.. (Eq.
2); (b) calibrate the parameter ¢ in the new canopy interception method (Eq. 11) for forests across a
wide geographic range. Since our goal in the current study is to focus on canopy evaporation from
forest ecosystems, we selected field-scale sites (Figure 1) covered by FRSE to isolate these ecosystems
and thus avoid the confounding effects of other land-use classes when extracting E; data from PML-
V2. To capture a wide geographic range and various environmental conditions, we used the following
criteria to select the field-scale sites: (i) be classified as FRSE according to NLCD16, (ii) one field-
scale site located within each study watershed, (iii) be entirely located within a single model subbasin,
(iv) capture as many physiographic regions as possible, (v) be larger than a 500 X 500m ( 0.25 km?)
resolution pixel of PML-V2, and (vi) spread across varying elevations.

The rationale utilized to carry out (a) and (b) are explained next.

a. Field-scale data-driven parameterization: This approach aimed to inform SWAT with
estimates of canopy evaporation from 2003 to 2017 to realistically represent forest canopy
storage in the model. To accomplish this, can.. was back-calculated from Eq. 2 by
approximating candqy as the average daily E; value derived from PML-V2 at each field-scale
site in the period 2003-2017; LAI as the average daily forest LAI simulated by SWAT during
the same period; and LAl as the input value assigned to the BLAI parameter for FRSE in
SWAT’s plant database. In the current study, an LAl value of 3.7 m?>/m? was utilized for
FRSE classes. To determine LA/ in Eq. 2, the average daily simulated LAI from all FRSE
HRUs within the subbasins where the field-scale sites are located was calculated.

b. Field-scale calibration: Here we used E; values from PML-V2 as a benchmark to assess the
plausibility of SWAT in capturing forest canopy evaporation with the newly introduced canopy
interception method. To minimize the differences between simulations and observations and
account for landscape heterogeneities (Table 1), annual average forest E; estimates from PML-
V2 for the period 2003-2017 were used to adjust ¢ in Eq. 11 for FRSE at each field-scale site.
The model performance in capturing E; was assessed after each model run based on graphical
analyses and statistical rating metrics. Once a good match between simulated and observed E;
was found and no significant improvement in model performance was observed in subsequent
model runs, ¢ was considered calibrated for a specific site.

The physical boundaries of each field-scale site illustrated in Figure 1 were uploaded to GEE as
shapefiles to extract site-specific estimates of canopy evaporation.

2.6.Experimental design
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Modeling experiments were designed and carried out using SWAT to assess the importance of
accurately representing canopy interception and evaporation in watershed models. The modeling
experiments were as follows.

1. Default SWAT (Mo): SWAT 2012 Rev 664 was setup and run with the default canopy
interception and evaporation equations described in section 2.1. Forest canopy storage was
parameterized as described in section 2.5.

2. Modified forest canopy interception (Mcanint): SWAT 2012 Rev 664 was setup and run
with the newly introduced forest canopy interception method explained in section 2.2 and
calibrated as described in section 2.5.

Moy and Mcanint Were set up under the same conditions and with the same data explained in section
2.4 - the only difference being how the models handled forest canopy evaporation. Thus, any
differences in model predictions are due to forest canopy representation in the model and tell us the
relevance of E; for simulating water yield, sediment yield, ecological flows, nutrient loading, and
forest productivity.

2.7.Model performance assessment and evaluation criteria

The performance of Mo and Mcanin in simulating annual average forest E; E:, and AET from 2003 to
2017 was assessed by comparing model predictions against PML-V2 estimates. For scaling up the
model parameterization and calibration of Mo and Mcanint to the watershed level, the calibrated values
of canmx and c, determined at the field-scale, were applied to all FRSE HRUs within the specific
watersheds draining each field-scale site (Figure 1). This resulted in six different parameterizations of
canmx and c across the ACT river basin.

The effects of forest canopy evaporation on the model's prediction of daily streamflow were examined
by comparing simulated and observed discharge under Mo and Mcannt at the outlet of each study
watershed. The analysis covered the period of 1982-2020 for the Oostanaula, Etowah, Coosa, Cahaba,
and Alabama river watersheds, and 1995-2020 for the Tallapoosa river watershed. Streamflow
observations were derived from the USGS stations listed in Table 1. Ecologically relevant flow
parameters such as seasonal flows, maximum flows of various durations (i.e., 1, 3, 7, 30, and 90-day),
monthly low flows, and timing of maximum and minimum flows were calculated using the Indicators
of Hydrologic Alteration (IHA) method (Richter et al., 1996). To accomplish this, we used the desktop
model developed by the Nature Conservancy and fed it with daily time series of simulated and
observed streamflow. Simulated sediment, nitrate, and organic nitrogen loadings with Mo and Mcanint
in the period 1982-2020 were compared at the outlet of each study watershed. Similarly, model
predictions of NPP were compared against the 250 m resolution MODIS Net Primary Production
CONUS dataset (Robinson et al., 2018) at each field-scale site shown in Figure 1.

To rate the performances of Mo and Mcanmnt in capturing Ei, E;, and AET, the statistical rating
metrics Root Mean Square Error (RMSE), percentage bias (PBIAS), and coefficient of determination
(R?) were used. These statistical metrics are commonly used to evaluate model performance in
capturing biophysical variables such as LAl and AET (Alemayehu et al., 2017; Rajib et al., 2018a;
Strauch and Volk, 2013; Yang and Zhang, 2016). The model accuracy in simulating streamflow under
My and Mcanint Was assessed based on PBIAS and the Nash-Sutcliffe Efficiency (NSE) coefficient. For
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detailed information regarding these evaluation criteria, the reader is referred to Althoff and Rodrigues
(2021) and Moriasi et al. (2007).

3. Results

3.1.Forest evapotranspiration partitioning

The parameterization of My and calibration of Mcaunm resulted in Canmx and ¢ ranges of 0.3-0.55 mm
and 0.27-0.5 mm, respectively, across the ACT river basin (Table 3).

Table 3 — Adjusted values of maximum canopy storage (Canmy) and ¢ under Mo and Mcanmt, respectively, at each field-scale study site.

Canmx (mm) ¢ (mm)
Oostanaula 0.44 0.42
Etowah 0.55 0.46
Coosa 0.30 0.27
Tallapoosa 0.45 0.36
Cahaba 0.40 0.35
Alabama 0.55 0.50
160 900
- A B
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Figure 2 — Simulated versus observed annual average canopy evaporation, transpiration, and total actual ET under Mo and Mcanint at
each field-scale study site from 2003 to 2017.

Considerable differences in simulated average annual forest canopy evaporation in the period
2003-2017 were found between My and Mcanm, With My largely underestimating forest E; at all study
sites (Figure 2A). Mcanin: substantially improved the agreement between simulated and PML-V2
estimates of forest E; at all sites. The average annual forest E; from PML-V2 across sites was 115 mm
for the period 2003-2017. Comparatively, model predictions with My and Mcanins were 35 and 117 mm,
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respectively, during the same period. The better performance of Mcunm: in capturing forest E; is
corroborated by the statistical rating metrics shown in Table 4. PBIAS ranged from 67 to 71% with My
and from -9 to 1.4% with Mcunim, confirming the large underestimation of forest E; achieved with the
default SWAT model and the slight overestimation yielded by our proposed approach. A better fit
between simulations and observations was found with Mcaum, as confirmed by the R?> and RMSE
ranges of 0.09-0.45 and 11-24 mm, respectively, as opposed to the 0.07-0.44 and 56-103 mm obtained
with M.

The effects of forest E; modeling on simulated forest E; and AET were modest but, overall,
resonated in improved predictions under Mcanin: compared to My (Figure 2B-C). SWAT overestimated
forest E; under both model configurations, although Mcani led to reduced overestimations compared
to My. While the average annual forest E; from PML-V2 was 637 mm during the 2003-2017 period,
Moy and Mcanm estimates were 777 and 724 mm, respectively. The average PBIAS was reduced from -
23% (M) to -15% (Mcanine), whilst mean R? and RMSE changed from 0.17 (Mj) to 0.15 (Mcanin:), and
from 179 (Mo) to 140 (Mcanin) mm.

Conversely, forest AET was underestimated under My and Mcanimi, With average annual values
of 813 and 842 mm, respectively, compared to the 857 mm of PML-V2 estimates. Mcanm: significantly
reduced the underestimation of average annual forest AET and better matched the PML-V2 values.
PBIAS ranged from 0.76 to 9% with My and from -3 to 6% with Mcanm:, with mean values across sites
of 5 and 2%, respectively. The mean R? values across sites increased from 0.18 to 0.22 with Mcanin,
whilst the mean RMSE across sites was 118 mm for both model configurations in simulating forest
AET.

Time-series of annual average simulated versus observed forest Ei, E¢, and AET for the period
2003-2017 are shown for each field-scale site in the Supplementary Materials file (Figures S2-S7).
Table 4 — Statistical rating metrics of simulated annual average canopy evaporation, transpiration, and total actual ET at each field-

scale study site from 2003 to 2017. Positive PBIAS values indicate model underestimation, while negative PBIAS values indicate
model overestimation.

Canopy evaporation Transpiration Actual ET
Mo Mcanint Mo Mcanint Mo Manint
R? 0.44 0.45 0.03 0.01 0.06 0.09
Oostanaula PBIAS (%) 71 1.4 -38 -27 0.76 -2.7
RMSE (mm) 87 15 218 165 85 95
R2 0.38 0.34 0.18 0.10 0.14 0.17
Etowah PBIAS (%) 67 -9 -37 -23 1 -3
RMSE (mm) 91 24 214 146 81 89
R2 0.32 0.34 0.14 0.14 0.18 0.23
Coosa PBIAS (%) 71 -1 -22 -17 6 3
RMSE (mm) 56 11 178 154 129 128
R2 0.09 0.09 0.28 0.30 0.23 0.32
Tallapoosa PBIAS (%) 70 -1 -18 -12 8 4
RMSE (mm) 74 16 157 131 124 118
Cahaba R2 0.07 0.11 0.28 0.25 0.27 0.29
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PBIAS (%) 69 -5 -12 -6 5 2
RMSE (mm) 72 17 160 137 139 138
R2 0.09 0.10 0.22 0.24 0.10 0.07
Alabama PBIAS (%) 70 1 9 6 -13 -4
RMSE (mm) 103 2 151 140 148 110

3.2. Water availability

Beyond improving E: and AET predictions, Mcanm also translated into differences in all components
of water balance partitioning compared to My. The changes in average annual surface runoff (SQ),
lateral flow (LQ), baseflow (GW), and AET brought about by the implementation of Mcuum: are
illustrated in Figure 3 for the period 1982-2020. In forested areas, an average decrease of 36% in SQ
was found across the ACT river basin, with the Etowah (48%) and Coosa (30%) river watersheds
witnessing the biggest and smallest changes, respectively. Differences in annual LQ and GW between
Moy and Mcanm were small, with average decreases of 4%. On average, forest AET increased by 4%
with the implementation of Mcanin:.
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Figure 3 — Water balance partitioning from 1982 to 2020 under Mo and Mcanmt across all study watersheds considering forest HRUs
only. Water balance is partitioned into surface runoff (A), baseflow (B), lateral flow (C), and AET (D).

Furthermore, the modified model led to enhanced daily streamflow predictions at all study
watersheds compared to the default version of SWAT (Figure 4). The temporal agreement between
simulated and observed streamflow improved with Mcunns, as indicated by the NSE values illustrated
in Figure 4A-B, which jumped from a range of -1.25 to 0.64 under M) to a range of -1.13 to 0.68 under
Mcanine. Overall, streamflow performance increased from lower to higher stream orders under both
model configurations across the ACT river basin, and negative NSE values were only found at the
upstream Oostanaula and Etowah river watersheds. Individual flow duration curves (FDCs) for each
study watershed are provided in the Supplementary Materials file (Figure S15-S20) and may help to
illustrate the changes in simulated daily streamflow brought about Mcanm. SWAT overestimated
medium flows (flows equaled or exceeded 20-70% of the time) and high flows (flows equaled or
exceeded 0-20% of the time), but the implementation of Mcuum reduced this overestimation and
improved the agreement with observations across all tested watersheds.

The reduced model overestimation of daily streamflow achieved by Mcann is supported by the
PBIAS values shown in Figure 4C-D. Overall, SWAT largely overestimated streamflow across the
ACT river basin, with PBIAS ranges of -38% to -1% and -31% to -4% under My and Mcanin,
respectively, and mean values of -25% and -19%. Notably, Mcanm: outperformed My in capturing
streamflow at all watersheds, with marked differences found in the upstream Oostanaula and Etowah
River watersheds. In these areas, PBIAS changed from -38 to -31%, and from -37 to -31%,
respectively. The Cahaba River watershed also witnessed a significant reduction in PBIAS for
streamflow simulation from the My (-36%) to the Mcanin: (-29%) modeling condition.
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Figure 4 — Model performance in simulating daily streamflow under Mo and Mcanit across all study watersheds.

3.3. Ecological flows

Figures 5-8 summarize the hydrological alteration induced by forest canopy representation in SWAT.
Each figure shows the percentage difference between simulations and observations considering
different ecologically relevant flow metrics. Monthly low flows were substantially overestimated by
Mo, with overestimations ranging from 18 to 99% (Figure 5). Simulated monthly low flows with
Mcanint had better agreement with observations across all sites, with model overestimation reduced to
the range of 12-84%.
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Figure 5 — Percent difference between observed and simulated monthly low flows with the default (Mo) and modified (Mcanint) SWAT
models at the outlet of the Oostanaula (A), Etowah (B), Coosa (C), Tallapoosa (D), Cahaba (E), and Alabama (F) watersheds.

Figure 6 illustrates maximum flows of daily (1-day), weekly (3-day, 7-day), monthly (30-
day), and seasonal (90-day) durations simulated under Mo and Mcanmt. Overall, SWAT overestimated
maximum flows under Mo and Mcanint. Exceptions were found at the Tallapoosa and Cahaba
watersheds, where the model slightly underestimated maximum flows of 1 to 30-day duration.
However, with Mcanim: the model overestimation was alleviated at most sites and resonated in better
agreement with observations. Mean model overestimation of maximum flows was in the ranges of 3-
78% and 1-75% with Mo and Mcanmnt, respectively.
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Figure 6 - Percent difference between observed and simulated maximum flows of various durations with the default (Mo) and modified
(Mcanint) SWAT models at the outlet of the Oostanaula (A), Etowah (B), Coosa (C), Tallapoosa (D), Cahaba (E), and Alabama (F)
watersheds.

Simulated seasonal flows showed significant variations across sites (Figure 7). At the
Etowah, Coosa, and Alabama watersheds, SWAT largely underestimated spring and summer flows,
whilst slightly overestimating streamflow in the winter and fall. At these sites, M canint had poorer
performance compared to Mo. At the Oostanaula, Tallapoosa, and Cahaba watersheds, SWAT
overestimated seasonal flows, with model overestimations in the range of 17-70% and 8-59% with
My and Mcanint, respectively.
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Figure 7 - Percent difference between observed and simulated seasonal flows with the default (Mo) and modified (Mcanint) SWAT
models at the outlet of the Oostanaula (A), Etowah (B), Coosa (C), Tallapoosa (D), Cahaba (E), and Alabama (F) watersheds.

The Julian dates of maximum and minimum flows were also impacted by forest canopy
evaporation across our study sites (Figure 8). No changes in the timing of minimum flows were
found in the Tallapoosa and Alabama watersheds. In the Oostanaula, Etowah, Coosa, and Cahaba
watersheds, the date of minimum flows was slightly different between Mo and Mcanmt, with Mo better
matching the observations. Overall, the date of minimum flow predicted by Mo and Mcanint were 16-
22 days and 19-25 days earlier, respectively, compared to the observed flow. The date of maximum
flow was only changed in the Cahaba and Alabama watersheds, where M canmt had significantly better
agreement with observations. At these watersheds, the date of maximum flow predicted by Mo and
Mcanint were 21-46 days and 18-22 days later, respectively, compared to the observations.
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Figure 8 - Percent difference between observed and simulated Julian date of maximum and minimum flows with the default (Mo) and
modified (Mcanint) SWAT models at the outlet of the Oostanaula (A), Etowah (B), Coosa (C), Tallapoosa (D), Cahaba (E), and
Alabama (F) watersheds.

3.4. Sediment yield and nutrient loading

The representation of canopy evaporation had important implications for soil erosion and nutrient
retention across the ACT river basin in the period 1982-2020 (Figure 9). Overall, Mcanin:led to
reduced average annual loadings of sediment, nitrate (NO3"), and organic nitrogen at all study
watersheds compared to Mo. Notably, sediment and organic nitrogen loadings experienced the most
substantial changes, with average reductions of 13 and 11%, respectively. Nitrate loadings were
reduced by 5% with Mcanm: in relation to Mo. For all water quality variables shown in Figure 9, the
biggest and smallest changes were observed in the Tallapoosa and Etowah river watersheds.
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Figure 9 — Effects of forest canopy evaporation on simulated sediments (A), nitrate (B), organic nitrogen (C), phosphate (D), and total
organic carbon (E) loadings at the watershed outlet.

3.5. Ecosystem productivity

Forest NPP was largely overestimated by Mo and Mcanmt across all study sites (Figure 10). NPP
estimates derived from MODIS CONUS in the period 2001-2020 ranged from 7,692 to 8,415
kgC/m?/year, with the highest and lowest values found at the Oostanaula and Cahaba watersheds,
respectively. Simulated NPP with Mo and Mcanint Was in the range of 12,354-15,096 kgC/m?/year and
12,143-14,312 kgC/m?/year, respectively. The highest and lowest simulated NPP was found at the
Tallapoosa and Cahaba watersheds, respectively. Although both Mo and Mcanm: substantially
overestimated MODIS CONUS NPP, model predictions under Mcanmne had slightly better agreement
with benchmark data. Under Mo, model overestimation of forest NPP ranged from 50-87%, whilst it
was mitigated to 48-86% with Mcanint.
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Figure 10 — Comparison of default and modified SWAT simulations of forest net primary productivity against remote-sensing
estimates at six study sites in the period 2001-2020.

4. Discussion

In the face of climate and land-use changes, it is imperative to improve the mechanistic understanding
of the ecosystem functions in ecohydrological models for developing sustainable adaptation and
mitigation scenarios. Models can be used to inform environmental policy decisions by presenting
different courses of action. However, accurate model parameterization, assumptions, and input data
are key for achieving reliable results.

4.1.Improved forest evapotranspiration partitioning

Our findings reveal that data-driven parameterization was not effective in capturing forest canopy
evaporation (E;) with the SWAT model across all study sites. This indicates that the internal model
structure in representing canopy rainfall interception and evaporation in forest ecosystems might be
imprecise in SWAT. Studies such as Yang et al. (2018) and Haas et al. (2022) have shown that SWAT
underestimates actual evapotranspiration (AET) in forest ecosystems and attributed this to unrealistic
model parameterization of processes such as stomatal conductance, and minimum and maximum LAL
Our results demonstrate that the default representation of E; in SWAT (Mp) led to large
underestimations of canopy evaporation at forested sites compared to gridded remote-sensing data.
After implementing minor changes to the model's source code, model estimates of forest canopy
evaporation showed much better agreement with benchmark data, leading to an overall slight
overestimation. This agrees with Kofronova et al. (2021), which demonstrated that even simple
interception models, under the right assumptions, can improve the performance of hydrologic models
in forest ecosystems. The main reason why SWAT misrepresented forest E; with its default formulation
is most likely because the model uses the same equation to compute E; for all types of plants (Eq. 2).
In SWAT, canopy interception is calculated as a function of canopy storage and plant LAI and is
normalized by the maximum attainable plant LAI. Since the plant growth module of SWAT is based
on the EPIC crop growth model, it may not be ideal for forests and some processes such as canopy
evaporation, which vary from short to tall vegetation, may not be realistically represented. Under our
proposed approach (Mcanini), we eliminated the maximum LAI normalization and calculated canopy
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rainfall interception for forests as a linear function of LAI and a user-defined parameter c. The same
approach has been used in land surface models such as the Canadian Land Surface Scheme and the
Community Land Model (CLM); as well as in field studies (Amatya et al., 1996; J. McCarthy et al.,
1991; Spittlehouse and Black, 1981). Although widely used, this method is very simplistic, and ¢ needs
to be adjusted to accurately capture forest E; across the landscape. The value of ¢ has been commonly
assumed as 0.2 based on the studies of Rutter (1975) and Dickinson (1987). However, as highlighted
by Hadiwijaya et al. (2021), further research is needed on the relationship between canopy storage and
c. In the current study, we used gridded estimates of forest E; to calibrate ¢ for evergreen forests across
the ACT river basin and found a range of 0.27-0.50. Improved forest E;led to cross-benefits in terms
of forest transpiration (E;) and AET across all study sites. Under My, E: and AET were over and
underestimated, respectively, because of underestimated Ei. Under Mcanms, as a result of increased E;,
E: and AET were reduced and increased, respectively, leading to both having better agreements with
benchmark data. Simulated AET with Mcanm: concurred well with AET ranges across the southeast
United States (SE-US). For instance, McLaughlin et al. (2013) reported annual AET varying from 838
to 1,087 mm for loblolly pine stands in the SE-US, agreeing well with the 842 mm of mean AET
achieved with Mcuum and diverging from the 813 mm yielded by My. Our results suggest that the
underestimation of AET in forest ecosystems found by past SWAT studies might be related to a large
underestimation of canopy evaporation.

The Ei/P ratios simulated by Mcaunm: across FRSE HRUs varied from 0.07 to 0.11, showing
reasonable agreement with other studies. For instance, Gu et al. (2018) found an average global Ei/P
ratio of 0.12 for evergreen needleleaf forests (ENF). Miralles et al. (2011) found a much larger global
Ei/P value of 0.22. Crockford and Richardson (2000) reported Ei/P ratios of 0.16 for ENF in Australia.
Under My, Ei/P ratios varied from 0.02 to 0.04, showing a substantial underestimation of watershed-
averaged forest E; compared to the published literature. The small increase in AET, despite large
increases in canopy evaporation, may be explained by how the evapotranspiration demand is handled
in SWAT. The AET demand is sequentially met by canopy evaporation, transpiration, and soil
evaporation, where increasing evaporation from one of these pools resonates with decreased
evaporation from the others. In our case, by increasing canopy evaporation, transpiration was reduced.
The overall consequence was a modest increase in AET across the study sites.

4.2.Implications for water quantity modeling

The increased evapotranspiration yielded by Mcuunm: translated into small decreases in annual water
yield compared to My. This was expected since more water was lost to the atmosphere as vapor in
M canini, which resulted in less water eventually becoming surface runoff, lateral flow, and baseflow.
In forested areas, mean annual surface runoff was impacted the most and witnessed decreases in the
range of 6-33 mm with Mcanm¢ across our study watersheds. Reduced water yield simulated by Mcanin:
resonated in less in-stream fluxes compared to My, as shown by the reduced PBIAS values when
comparing simulated and observed daily streamflow across the study watersheds. Results showed that
the model performance in capturing streamflow improved with Mcanms, indicating that there is a cross-
benefit of our improved forest E; method for simulating streamflow in watershed models. The
improved streamflow performance was more evident in the Cahaba and Tallapoosa River watersheds.
This is not surprising considering that these watersheds have the highest FRSE coverage among all
study watersheds (Table 1). Our findings are in line with other studies showing the benefits of
constraining ecohydrological models with biophysical variables such as LAI (Alemayehu et al., 2017;
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Rajib et al., 2020, 2018a; Strauch and Volk, 2013), AET (Parajuli et al., 2018; Tobin and Bennett,
2017), soil moisture (Rajib et al., 2016), and transpiration (Li Zejun et al., 2020).

M canin: outperformed My in capturing ecological flows. Ecologically relevant flow metrics such
as maximum flows, monthly low flows, seasonal flows, and the timing of extreme flows can
significantly impact the aquatic biota. For instance, fish species of ecological relevance for Alabama
such as largemouth bass (Micropterus salmoides) thrive in slow-flowing waters, while species like
darters (Etheostoma ranseyi) prefer swift-flowing waters (Atkins et al., 2004). Additionally, these flow
metrics can influence channel morphology and physical habitat conditions. For instance, maximum
flows can affect the volume of nutrient exchanges between the channel and floodplains and the
distribution of plant communities in lakes, ponds, and floodplain areas. Similarly, monthly low flows
sustain aquatic life in dry spells by ensuring a minimum water level in the channel and floodplains.
Seasonal flows align with species' reproductive and feeding cycles, preserving and maintaining aquatic
biodiversity, besides influencing water temperature and oxygen levels (Richter et al., 1996). Also,
better predicting the timing of maximum and minimum flow events can aid in infrastructure planning,
flood/drought mitigation, and sustainable water allocation. Thus, accurately simulating these
ecological flow metrics might be essential for supporting biodiversity and the overall health of water-
dependent ecosystems.

Had the Green-Ampt method had been used to calculate surface runoff in SWAT, the impacts on
water availability and ecological flows would most likely have been greater since the redistribution of
gross rainfall would be directly affected by canopy interception (Eq. 6). However, running the model
with the Green-Ampt formulation requires sub-daily climate data, which may be difficult to obtain,
and is thus beyond the scope of the current study and must be explored in a future effort. Under the
utilized NRCS-CN method to compute surface runoff, canopy evaporation is lumped together with the
initial abstractions term in SWAT (Neitsch et al., 2011). In other words, surface runoff is solely
affected by rainfall and the CN value, with canopy evaporation not directly impacting surface runoff
generation in SWAT. Thus, the changes in water yield observed between My and Mcunm: are a
byproduct of increased initial abstractions and consequent reduced surface runoff.

4.3. Implications for water quality and ecosystem productivity modeling

The implementation of Mcauum: led to reduced loadings of sediment, nitrate, and organic nitrogen,
compared to Mo. The most substantial changes were observed for sediment and organic nitrogen
predictions, where a reduction of approximately 8,900 and 1,300 tons/year was found, respectively.
This is most likely related to the amounts of residue on the ground produced by Mo and Mcanin:. In
SWAT, a fraction of the total forest biomass is assigned to the ground as residue during dormancy.
This plant residue contributes to the fresh organic nitrogen pool and is eventually mineralized into
NOs". Due to the decreased forest transpiration rates predicted under Mcanin, forest biomass was
slightly smaller compared to Mo (Figure S21). As a result, less fresh residue was assigned to the soil
with Mcanmi, which can explain the decreases in organic nitrogen and NOjsloadings. Similarly,
sediment yield is affected by the amount of residue on the soil surface in SWAT since the cover and
management factor of the Universal Soil Loss Equation (USLE) (Williams, 1975) is computed as a
function of plant residue (Neitsch et al., 2011). Therefore, inaccurate representation of E; could have
implications for studies aimed at simulating nutrient cycling or assessing the impacts of management
practices (e.g., forest thinning) on water quality with SWAT. These findings are relevant since studies
such as Atkins et al. (2004) and Johnson et al. (2002) highlight the large nitrogen, phosphorous, and
carbon loads being transported to the Mobile Bay estuary from agricultural lands and animal wastes.
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Similarly, according to Deutsch (2019), soil erosion is the main source of water impairment across the
Mobile Bay watershed. Additionally, the modified model positively affected ecosystem productivity
through the simulation of NPP, where Mcauum had better agreement with remote-sensing NPP
compared to My. NPP is an important metric in understanding the flow of energy through ecosystems
and is essential for assessing ecosystem health and functioning (Zhang et al., 2023).

4.4.Caveats and broader implications

Our study has limitations, and our results should be interpreted with caution. Although our proposed
approach is tailored to forest ecosystems and was applied to all types of forests across the study
domain, we focused our model calibration efforts on evergreen forests. Other important forest species
(e.g., white/red oaks) like deciduous forests were not parameterized with the same level of detail and
that should be addressed in a future study. Additionally, model simulated zero canopy evaporation
from non-forested lands, which is a consequence of unrealistic parameterization of canopy storage
(canmx.hru) in SWAT. This should serve as an alert for future model applications aimed at estimating
evapotranspiration partitioning of non-forested lands with SWAT. Despite these shortcomings, our
study demonstrates the usefulness of remote-sensing data for informing ecohydrological models in
better capturing ecohydrological processes such as forest canopy evaporation. This is relevant given
that canopy evaporation represents a big portion of the AET in forest ecosystems. AET, in turn, usually
dominates the water budget with a mean global AET/P ratio of 0.6 (Alton et al., 2009; Oki and Kanae,
2006). Additionally, as demonstrated here, the representation of canopy evaporation may have
consequences for simulating ecosystem functions and management, such as soil erosion control,
nutrient retention, flood and drought management, and forest productivity with SWAT. Thus,
adequately representing canopy evaporation in ecohydrological models can be important for
strengthening their reliability and in estimating ecological processes of underlying consequences for
aquatic species and ecosystem biodiversity. Under our proposed approach, the model can uniquely
simulate canopy evaporation for short and tall vegetation, better reflecting real-world conditions. The
newly introduced parameter ¢ was calibrated across a wide geographic range of land-use distributions,
soil types, elevation profiles, and hydrological conditions (Table 1). Therefore, our findings can also
be useful to ecosystem modelers since land surface models such as CLM rely on approaches similar
to Mcanin: to estimate canopy evaporation. Our model modifications are simple, and the compiled
source code is readily available, making our findings broadly useful to the modeling community.

Conclusions

In the current study, we modified the canopy interception and evaporation method used in the SWAT
model to better represent forest ecosystems. The following summarizes the main findings of our study:

e The default representation of canopy evaporation in SWAT may be conceptually flawed for
forest ecosystems.

e SWAT, under its default formulation, underestimated forest canopy evaporation across all
study sites.

e Forest transpiration and actual evapotranspiration (AET) were over and underestimated,
respectively, by the default SWAT model.

e The modified model showed better agreement with benchmark data in capturing canopy
evaporation.
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e Model performance for forest transpiration and AET slightly improved because of improved
canopy evaporation.
e Average annual water yield decreased due to increased AET.

e The proposed approach led to reductions in sediment, organic nitrogen, and nitrate loadings
compared to the default SWAT.

e Forest net primary productivity was impacted, with the proposed approach reducing model
overestimation of benchmark data.

Remote-sensing estimates of canopy evaporation were vital in improving the model. Although
our study is in the context of SWAT, our findings can be broadly useful to the modeling community
since other popular process-based models like EPIC, APEX, and ALMANAC are based on very
similar modeling assumptions. Thus, our methodology can be easily applied to other watershed models
and be explored across a wide range of environmental conditions. Due to the divergent simulation of
canopy evaporation and ecological processes between the two model configurations, the conclusions
drawn from each model could vary considerably. As a result, such discrepancies could potentially
influence management decisions if these models were utilized to inform decision-making. Amid
ongoing climate and land-use changes, modeling tools capable of accurately capturing ecological
processes become invaluable to assess potential mitigation scenarios (e.g., forest thinning,
reforestation). Our findings demonstrate the benefits of the modified model not only in predicting
forest canopy evaporation but also in cross-benefiting multiple ecological processes, thereby holding
implications for aquatic species and ecosystem biodiversity.
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