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27 Summary Paragraph 

28 The El Niño-Southern Oscillation (ENSO) provides most of the global seasonal climate 

29 forecast skill1–3 , yet, quantifying the sources of skilful predictions is a long-standing 

30 challenge4–7 . Different sources of predictability affect ENSO evolution, leading to distinct 

31 global impacts. Artificial Intelligence (AI) forecasts offer promising advancements but 

32 linking their skill to specific physical processes is not yet possible8–10 , limiting our 

33 understanding of the dynamics underpinning the advancements. Here we show that an 

34 extended nonlinear recharge oscillator (XRO) model exhibits skilful ENSO forecasts at lead-

35 times up to 16-18 months, better than global climate models and comparable to the most 

36 skilful AI forecasts. The XRO parsimoniously incorporates the core ENSO dynamics and 

37 ENSO’s seasonally modulated interactions with other modes of variability in the global 

38 oceans. The intrinsic enhancement of ENSO’s long-range forecast skill is traceable to the 

39 initial conditions of other climate modes via their memory and interactions with ENSO and 

40 is quantifiable in terms of these modes’ contributions to ENSO amplitude. Reforecasts using 

41 the XRO trained on climate model output show that reduced biases in both model ENSO 

42 dynamics and in climate mode interactions can lead to more skilful ENSO forecasts. The 

43 XRO framework's holistic treatment of ENSO's global multi-timescale interactions 

44 highlights promising targets for improving ENSO simulations and forecasts. 

45 Main 

46 The El Niño-Southern Oscillation (ENSO) exerts global environmental and socioeconomic 

47 impacts via teleconnections1–3. Since the first successful prediction of El Niño in 1986 (ref4), 

48 decades of progress on the understanding and modelling of ENSO has improved prediction skill5– 

49 
7. However, skilful prediction of ENSO at a lead-time longer than a year remains a challenge. 
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50 While ENSO originates from coupled ocean-atmosphere interactions in the tropical Pacific, 

51 recent studies highlight that interactions with other ocean basins could potentially improve ENSO 

52 prediction11. For instance, many other climate modes have been shown to interact with ENSO (Fig. 

53 1a), including the North and South Pacific Meridional Modes (NPMM and SPMM)12,13; the Indian 

54 Ocean Basin (IOB) mode14, the Indian Ocean Dipole (IOD) mode15, and the Southern Indian 

55 Ocean Dipole (SIOD) mode16 in the Indian Ocean; as well as Tropical North Atlantic (TNA) 

56 variability17, the Atlantic Niño (ATL3)18, and the South Atlantic Subtropical Dipole (SASD) 

57 mode19 in the Atlantic Ocean. Although multiple previous studies designed forecast experiments 

58 to illustrate the roles of other ocean basins in ENSO predictability, using simple coupled 

models20,21,14 
59 , atmosphere-ocean coupled general circulation models (CGCMs)22–26 or linear 

60 inverse models27,28, it remains a challenge quantifying the relative contributions of other ocean 

61 basins to ENSO predictability. The employed CGCMs typically exhibit pronounced biases in 

62 simulating both the climate mean state and ENSO dynamics, thus hindering skill in predicting 

63 ENSO and complicating quantification of the other ocean basins impact on ENSO predictability. 

64 Current linear inverse models are by construction not able to fully capture ENSO’s nonlinear 

65 dynamics and seasonality27,28. Quantifying the sources of skilful predictions from these specific 

66 physical processes has been elusive11,15,17,29,30. 

67 Different sources of ENSO predictability can lead to substantial event-to-event differences in 

68 ENSO evolution and associated global impacts. For example, while both the 1997/98 and 2015/16 

69 extreme El Niño events had similar amplitudes of Niño3.4 SST anomalies (SSTAs), they had 

70 distinct precursor patterns (Fig. 1b). The 1997/98 event exhibited strong preconditioning via 

71 recharged warm water volume (WWV) in the equatorial Pacific, large SST anomaly precursors in 

72 the Indian Ocean (including a negative IOD during 1996 September-November (SON)), but only 

73 weak SST anomalies in the extratropical Pacific. In contrast, the 2015/16 event was characterized 
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74 by a weaker build-up of WWV, less pronounced precursor SST anomalies in the Indian Ocean, and 

75 instead large amplitude NPMM warming in 2015 March-April-May (MAM). The Atlantic Ocean 

76 SST signals are largely similar for the two events, except that the MAM TNA was anomalously 

77 warm in 1997 but cold in 2015. In turn, these two events evolved differently in the various basins 

78 (Supplementary Fig. 1), which lead to distinct global impacts (Fig. 1c,d, Supplementary Fig. 2, 

ref31,32). These79 two different evolutions and impacts, affected by varied precursor patterns, 

80 underscore the need to quantify the sources of prediction skill and their role in the manifestation 

81 of different SST patterns more accurately. 

82 Recent advances have demonstrated the value of AI in predicting ENSO with skilful forecasts 

83 at long lead-time of 18-24 months8–10. Despite emerging explainable AI methodologies10, linking 

84 the forecast skill of the AI model to specific physical processes is not yet possible, limiting our 

85 understanding of the dynamics and physical robustness underpinning the enhanced AI skill. Here 

86 we develop a low-order extended nonlinear Recharge Oscillator (XRO) model – which couples 

87 the ENSO recharge oscillator with autoregressive model representations for the other modes (see 

88 “Extended Nonlinear Recharge-Oscillator Model (XRO)” in Methods) – to both predict ENSO 

89 events and quantify the various sources of ENSO predictability from climate mode interactions. 

90 We find that our model provides skilful and, most importantly, explainable forecasts at lead-times 

91 up to 16-18 months, better than global climate models and comparable to the most skilful AI ENSO 

92 forecast model. 

93 Efficacy boosted by climate interactions 

94 We evaluate the XRO in simulating ENSO through a 43,000 yearlong stochastically forced 

95 simulation (See “Stochastically forced XRO simulations” in Methods) with parameter estimates 

96 derived from 1979-2022 observations (black curves in Extended Data Fig. 1). The XRO accurately 

97 simulates the fundamental observed characteristics of ENSO including its seasonal 
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98 synchronization, Niño3.4 positive skewness, its interannual spectral peak, the 6-9 months lead of 

99 WWV over ENSO SST, its irregular interannual oscillations, and the spring persistence barrier 

100 (Fig. 2a-d, Supplementary Text 1 and Figs. 3-4). The XRO also accurately reproduces the observed 

101 seasonal characteristics of the other climate modes including their seasonal synchronizations and 

102 autocorrelations (Supplementary Figs. 5-6). In addition, the XRO realistically simulates the 

103 observed lead-lag relationships between ENSO and all the other climate modes with the range of 

104 XRO realization cross-correlations encompassing the observations (Fig. 2e-l). Simulating these 

105 observed relationships is a major challenge for climate models (Supplementary Fig. 7). 

106 Next, we perform out-of-sample XRO reforecasts by fitting the model for 1950-1999 (50 

107 years) and verifying it independently for the 2002-2022 period (See “Out-of-sample reforecasts” 

108 in Methods). The correlation skills of the Niño3.4 reforecasts are compared with a nonlinear RO 

109 model (nRO), the real-time International Research Institute for Climate and Society (IRI) 

110 operational models, and the most skilful AI ENSO forecast model8,9 (Fig. 2m). Interestingly, the 

111 skill of the simple nRO is comparable with the ensemble mean of the IRI statistical models. With 

112 mode interactions considered, the XRO outperforms the ensemble mean of the IRI dynamical 

113 models at long lead-time (>9 months) with skill scores comparable to the AI model. We also test 

114 the model by verifying the early period (1950-1970) and the middle period (1972-1992) 

115 independently. The XRO outperforms the nRO regardless which of the verification periods is used 

116 to assess the skill (Extended Data Fig. 2), suggesting the importance of mode interactions for 

117 ENSO forecast skill regardless of the intrinsic decadal changes in ENSO predictability33,34. 

118 To get sufficient sample sizes of ENSO events, we next focus on the satellite era (1979-2022) 

119 and perform in-sample control reforecasts using the XRO and nRO (denoted as XRO and nRO in 

120 the figures, respectively, see “Control XRO and nRO reforecasts” in Methods). The nRO ranks in 

121 the middle of the skill range for the existing state-of-the-art dynamical prediction systems (Fig. 
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122 2n). The XRO systematically outperforms the individual dynamical models and multi-model 

123 ensemble mean. The correlation skill of XRO is still above 0.5 at a lead-time of 18 months, which 

124 is again comparable to the most skilful AI model (Fig. 2n). We also employ two additional 

125 approaches to confirm the robustness of the XRO parameter fitting and reforecasting performance 

126 during 1979-2022 (See “Cross-validated reforecasts” and “Large ensemble simulations and 

127 perfect model reforecasting experiments” in Methods, Supplementary Fig. 8). First, the XRO 

128 cross-validated by sequentially leaving n-year data out still provides skilful prediction of Niño3.4 

129 SSTA up to 17 months in advance and is insensitive to the exclusion of a range between 2 to 7 

130 years of data (Supplementary Fig. 8a). Second, the XRO was repeatedly trained using each 

131 member of large ensemble CGCM simulations (LENS) and forecasted on the same member 

132 (“Same-Member” experiment) and an independent realization (“Cross-Member” experiment), 

133 respectively. All four LENS models’ perfect experiments using the same observational record 

134 length (43-year) demonstrate the uncertainty in parameter estimation leads to XRO reforecasting 

135 correlation skill error of less than 0.1 within 21 lead months (Supplementary Fig. 8b-d). 

136 We further assess the seasonality of the Niño3.4 forecast correlation skill during 1979-2022 

137 in Fig. 2o-p and Supplementary Fig. 9. Like most of the dynamical models, the nRO exhibits a 

138 pronounced spring predictability barrier (SPB) in May-June-July, when the forecast skill decreases 

139 rapidly (vertical blue lines in Fig. 2o). The SPB is much less pronounced in the XRO model, which 

140 maintains a 0.5 correlation skill up to 16 months for all different initial times (Fig. 2p). The superior 

141 efficacy of XRO in ENSO forecasting is further illustrated by the root mean square error metric 

142 (Supplementary Fig. 10). 

143 Sources outside the tropical Pacific 

144 The XRO formulation allows us to explicitly isolate and quantify the roles of different mode 

145 interactions in ENSO’s dynamical behaviour and predictability. Three previous approaches have 
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146 been employed to assess the impact of climate variability in various ocean basins on ENSO 

147 predictability, using CGCMs, intermediate complexity models, and/or conceptual models. They 

148 include: (i) partial initialization experiments, which set the ocean initial conditions for a specific 

149 basin to the model climatology, while using the observed initial conditions everywhere else21,28; 

150 (ii) partially coupled experiments, which apply strong SST restoring toward the model climatology 

151 in a specific region during the model integration, while keeping the atmosphere and ocean fully 

152 coupled elsewhere22,24,28; (iii) relaxing towards observations experiments, in which model SSTAs 

153 are strongly nudged towards observations in a specific region, while elsewhere the model is fully 

154 coupled23,26. We apply these strategies to our XRO model in corresponding sets of ENSO 

155 reforecasting sensitivity experiments: (i) uninitialized experiments (referred to as 𝑈𝑗 ), (ii) 

156 decoupled experiments (𝐷𝑗 ), and (iii) relaxation towards observations experiments (𝑅𝑗 ), (see 

157 “Quantitative reforecasting experiments” in Methods and Extended Data Table 1). We further 

158 investigate the total contribution of all the modes in each ocean basin to ENSO’s predictability by 

159 grouping modes together: the extratropical Pacific Ocean (ExPO) includes NPMM and SPMM; 

160 the Indian Ocean (IO) IOB, IOD, and SIOD; and the Atlantic Ocean (AO) TNA, ATL3, and SASD. 

161 The ExPO+IO+AO experiments demonstrate the combined effects of all the non-ENSO modes. 

162 All the sensitivity experiments qualitatively indicate that coupling information from the ExPO, 

163 IO, and AO basins enhances ENSO forecast skill (Fig. 3a), consistent with previous 

findings23,24,26,28,35 
164 . However, only the uninitialized experiment framework is a suitable approach 

165 to quantify the nearly additive relative contributions of each basin to ENSO forecast skill 

166 (Extended Data Fig. 3a,d,e) without artificially overestimating the contribution of climate 

167 variability in other basins to ENSO predictability (Extended Data Fig. 3b,c,d,e). Therefore, 

168 hereafter we use the uninitialized experiment framework to quantify the impact of each individual 

169 basin’s or mode’s initial condition on subsequent ENSO forecast skill. 

7 



 

        

     

    

      

        

          

     

    

      

     

         

    

    

     

    

   

    

    

      

    

     

        

  

       

170 Allowing for climate mode interactions enhances ENSO forecast skill, and significantly 

171 weakens the SPB with an improvement of correlation skill up to 0.2 (P<0.08, Fig. 3b). The 

172 enhancement of ENSO forecast skill from climate mode interactions is primarily through the initial 

173 condition memory of the different climate modes, demonstrated by the large difference between 

174 control and the uninitialized ExPO+IO+AO experiment (Fig. 3c, Supplementary Fig. 11a). The 

175 initial states of the other modes can persist for a few months and effectively impact ENSO in 

176 specific seasons. In contrast, as evidenced by the minor differences between uninitialized 

177 ExPO+IO+AO experiment and decoupled ExPO+IO+AO experiment, the coupled feedbacks with 

178 these modes induced by ENSO’s initial state only slightly reinforce and accelerate phase-transition 

179 of ENSO events (Supplementary Fig. 11b). This results in an increase in forecast skill during the 

180 ENSO transition phase (Jun+1-Sep+1 targets, Fig. 3d) but a decrease in forecast skill during the 

181 ENSO peak phases (Nov+1-Mar+1 targets, Fig. 3d). Additional reforecasting experiments (See 

182 “Losing memory experiments” in Methods, Extended Data Fig. 4) confirm that gradually 

183 preserving the initial condition memory of climate modes outside the equatorial Pacific 

184 incrementally improves ENSO forecast skill from that of the nRO to that of the XRO. 

185 We further illuminate the roles of individual basins in ENSO predictability by comparing the 

186 difference between the control and uninitialized experiments for the ExPO, IO, and AO basin 

187 experiments (Figs. 3e-g). The contributions of each basin have strong seasonality. For instance, 

188 the effect of ExPO initialization is most pronounced when forecasts start from November-June, 

189 and target December-March when the ENSO signal is large (Fig. 3e). This effect is dominated by 

190 the NPMM initialization, whereas the SPMM initialization is less impactful (Extended Data Fig. 

191 5a-b). In contrast, the effect of IO initialization is most pronounced when forecasts start from July-

192 November, the time of the year when the IOD develops and peaks (Fig. 3f). The IO effect is 

193 dominated by the IOD, with a secondary contribution from the IOB, and the SIOD playing only a 
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194 minor role (Extended Data Fig. 5c-e). This result is in contrast with the previous finding based on 

195 the decoupled linear inverse model experiments14 which suggested that the IOB plays a more 

196 significant role than the IOD in weakening the ENSO SPB. The discrepancy may stem from the 

197 lack of seasonality and nonlinearity in their model, along with potential overestimations arising 

198 from their decoupled model experiment strategy. The AO also results in a weakening of the ENSO 

199 SPB when forecasts are initialized from December-April (Fig. 3g), with major contributions from 

200 the TNA and SASD, while Atlantic Niño initialization has a negligible effect (Extended Data Fig. 

201 5f-h). These contributions of mode interactions to ENSO forecast skill are further supported by the 

202 root mean square error metric (Supplementary Fig. 12). 

203 ENSO intensification from remote sources 

204 Next, we quantify the roles of mode interactions on the individual ENSO event reforecasts, 

205 illustrated by the time series of predicted Niño3.4 SSTAs for the XRO, decoupled ExPO+IO+AO 

206 (𝐷ExPO+IO+AO), and uninitialized ExPO+IO+AO (𝑈ExPO+IO+AO) experiments at lead-time of 0-21 

207 months (Fig. 4a-c). The zero lead-time refers to the observed values. The Niño3.4 forecasts in the 

208 𝑈ExPO+IO+AO experiment closely resemble those of the 𝐷ExPO+IO+AO experiment, again indicating 

209 that the skill improvement in the control XRO arises from the memory of the other climate mode 

210 initializations. These two sensitivity reforecasts can predict the El Niño and La Niña event 

211 occurrences at lead-time of 3-9 months and usually underestimate the amplitude of Niño3.4 SSTAs. 

212 The XRO systematically outperforms the uninitialized/decoupled ExPO+IO+AO experiments 

213 with more accurate amplitude prediction of Niño3.4 SSTAs and extended skilful prediction of El 

214 Niño and La Niña event occurrences at longer lead-time of 6-18 months (Fig. 4a). For instance, 

215 the 1986/1987 El Niño event could be predicted 18 months in advance with XRO in our hindcast, 

216 as opposed to only 6 months in advance with uninitialized/decoupled ExPO+IO+AO experiments. 
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217 To better understand the influence of a specific climate mode on individual ENSO events, we 

218 examined the differences in ENSO SSTAs and WWV anomalies between control and uninitialized 

219 experiments for the 1997/98 El Niño and 1998/99/00 triple La Niña episodes (Fig. 4d-k) as well 

220 as for the full period (Extended Data Fig. 6). The ENSO forecast differences due to the 

221 initialization of other modes are pronounced when those SSTAs have sufficiently large amplitudes 

222 and during the season in which their interaction with ENSO is relatively strong. These effects of 

223 the non-ENSO modes usually last longer than their own SSTA persistence, indicating the activation 

224 of ENSO coupled recharge-discharge feedbacks as shown by the ENSO SSTA and WWV 

225 anomalies alternating with a few months lag. 

226 In the extratropical Pacific, positive SSTAs for both the NPMM and SPMM in boreal spring 

227 can enhance ENSO SST warming 6-9 months later (Fig. 4d,h). However, the underlying 

228 mechanisms differ for the two different hemispheres. The NPMM warming leads to recharged 

229 WWV anomalies and subsequent ENSO SST warming, highlighting the important role of the trade 

230 wind charging mechanism36. In contrast, the SPMM warming directly generates SST warming on 

231 the equator, followed by sequential WWV discharge, which aligns with the finding that ENSO is 

232 thermally driven by the SPMM37(Extended Data Fig. 6a-b). 

233 We also find that coupling with the NPMM tends to favour multi-year ENSO events, such as 

234 the 1998/99/00 La Niña. The first year La Niña in 1998/99 set the stage for a strong spring NPMM 

235 cooling in 1999 (consistent with the strong nearly-instantaneous feedback mechanism38), which in 

236 turn reinforced WWV discharge and colder SSTAs (by ~0.3 °C) in the second year. This strong 

237 WWV discharged state persisted and re-intensified into the third year, causing SSTA to decrease 

238 (~0.4 °C) in the winter of the third year (Fig. 4d). Similar patterns are evident in multi-year La 

239 Niña events in 2007/08, 2010/11, and 2020/21/22 (blue shadings in Extended Data Fig. 6a). We 

240 emphasize that this contribution is also evident for the opposite ENSO phase, as seen in multi-year 
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241 El Niño events in 1986/87, 2014/15, and 2018/19 (Extended Data Fig. 6a). These results support 

242 the hypothesis that the coupling between NPMM and ENSO favours the existence of multi-year 

243 ENSO events39–41. 

244 In the Indian Ocean, the 1996 boreal autumn negative IOD event was found to induce a 

245 ~0.4 °C Niño3.4 SSTA increase ~15 months later, thus contributing to the 1997/98 super El Niño 

246 (Fig. 4f). Conversely, the 1997 boreal autumn positive IOD event led to a ~0.5 °C Niño3.4 SSTA 

247 decrease ~15 months later, thus playing a role in the 1998/99 La Niña (Fig. 4f). This aligns with 

248 previous finding15 that negative IOD event favours the build-up of WWV (i.e., recharge) and 

249 contributes to the development of El Niño in the following year via the Bjerknes feedback. The 

250 SIOD mode, characterized by an SST east-west dipole over the southern IO, tends to induce 

251 ~0.2 °C Niño3.4 SSTA increase/decrease ~12-16 months later, often offsetting the IOD’s effect 

252 (Fig. 4g). The IOB, although largely forced by ENSO, helps to accelerate the phase-transition of 

253 ENSO events42. For example, the IOB warming in 1998 contributed to a ~0.2 °C Niño3.4 SSTA 

254 decrease during the 1998/99 La Niña, about half the magnitude of the IOD-induced change (Fig. 

255 4e). These results corroborate the findings in Fig. 3e that the Indian Ocean’s influence on ENSO 

256 predictability is predominantly governed by the IOD. 

257 In the Atlantic Ocean, the TNA warming favours Niño3.4 SSTA decrease 6-12 months later 

258 by about ~0.3 °C (Fig. 4i), consistent with a previous finding17. The 1997 boreal summer Atlantic 

259 Niña (ATL3 cold anomalies) was found to weakly favour Niño3.4 SSTA increase 6-12 months 

260 later by about ~0.15 °C (Fig. 4j). The positive phase of the SASD in 1997 contributed to a ~0.3 °C 

261 Niño3.4 SSTA increase 9-12 months later (Fig. 4k), in line with previous findings19. The Atlantic 

262 Ocean’s influence is predominantly governed by the TNA and secondly by the SASD and ATL3. 

263 For the 20/21/22 triple La Niña events, the strong positive IOD in 2019 autumn is among the 

264 most important contributors to the first year SSTA cooling (Extended Data Fig. 6d), and the 
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265 NPMM cooling is among the most important sources in amplifying the second year SSTA decrease 

266 (Extended Data Fig. 6a), consistent with previous findings43,44. The ongoing 2023/2024 El Niño 

267 occurrence can be predicted up to 18 months in advance in the decoupled ExPO+IO+AO 

268 experiment (Fig. 4b), largely due to the highly recharged WWV state caused by the preceding 

269 “triple-dip” La Niña events. The XRO refines the amplitude prediction for the 2023/2024 El Niño 

270 at longer lead-time of 9-18 months (Fig. 4a), with positive contributions from the preceding IOD 

271 and IOB conditions (Extended Data Fig. 6c,d). 

272 Composites of the uninitialized experiments for the peak phase of El Niño/La Niña years (Fig. 

273 4l) support that climate mode interactions contribute to the observed Niño3.4 SSTA anomalies, in 

274 addition to the generally stronger contribution from the equatorial Pacific recharge/discharge 

275 dynamics intrinsic to ENSO. The additional contributions are mainly from the NPMM, IOD, and 

276 TNA with large inter-event spread, with other modes playing secondary roles. The impacts are 

277 asymmetric (i.e., different impacts for El Niño and La Niña events) from some modes such as the 

278 IOB, SPMM, and SASD. The impact from the IOB on La Niña SSTA is much more pronounced 

279 than on El Niño SSTA, consistent with previous findings14. 

280 Predictability reduced by model biases 

281 Next, we turn to the impacts of biases in comprehensive climate models on ENSO forecast 

282 skill. We conducted additional XRO model forecast experiments by using the operator parameters 

283 trained using the 91 historical simulation outputs from the Coupled Model Intercomparison Project 

284 (CMIP) phase 5 and 6 (see “The XRO reforecasting experiments based on CMIP model outputs” 

285 in Methods, Extended Data Table 2, red curves in Extended Data Fig. 1). Figure 5a reveals that the 

286 forecast skill of XROm, when trained solely on each CMIP CGCM, shows a wide inter-CGCM 

287 spread at lead-time from 7 to 17 months. Importantly, the forecast skill when the model is trained 

288 on CMIP output is consistently lower than for the model trained on observational data (Extended 
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289 Data Fig. 7a). This suggests that biases in all climate models reduce the ability of these CGCMs 

290 to forecast ENSO correctly. 

291 We modified each XROm to remove these dynamical biases, by individually substituting the 

292 parameters obtained from the observations into three key components of the model: ENSO’s 

293 internal dynamics (𝑳ENSO), the remote climate mode feedbacks onto ENSO (𝑪1), and the ENSO 

294 teleconnections to the remote modes (𝑪2). Correcting the ENSO dynamics (𝑳ENSO) generally 

295 enhances forecast skill at all lead-times (red curve in Fig. 5b, Extended Data Fig. 7b). This 

296 indicates that the way ENSO’s core dynamics are biased in climate models is a major factor in 

297 lower ENSO forecast skill. Correcting the remote climate mode feedbacks onto ENSO (𝑪1) also 

298 improves the ENSO forecasts for lead-time up to 16 months (magenta curve in Fig. 5b, Extended 

299 Data Fig. 7c). Thus, mode coupling is critical for ENSO development, as another source of bias. 

300 Correcting the ENSO teleconnections (𝑪2) yields reduced ENSO skill (blue curve in Fig. 5b, 

301 Extended Data Fig. 7d), but greatly improves the forecast skill for other modes, such as the IOD 

302 (Extended Data Fig. 8). These results suggest that reduced biases in model ENSO dynamics and 

303 in climate mode interactions lead to more skilful ENSO forecasts. 

304 Pantropical SST predictability 

305 Lastly, we demonstrate that ENSO-climate mode interactions also enhance the SST 

306 predictability of other climate modes. For instance, the lead-time of skilful IOB forecast extends 

307 from 5 months in the uninitialized ENSO experiment to 19 months in the XRO control experiment 

308 (Supplementary Fig. 13c,j). The all-month IOD forecast skill extends to 5 months (the SON 

309 forecast to 8 months), supporting earlier findings that long lead IOD predictability arises from 

310 ENSO and is impacted by the signal-to-noise ratio45. The improvement is also evident for SSTA 

311 modes in the Atlantic Ocean (about 1 month, Supplementary Fig. 13f,g,h). Interestingly, there is 
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312 no skill improvement to NPMM and SPMM, possibly because their initial state already includes 

313 ENSO information given the strong nearly-instantaneous feedback with ENSO (Fig. 2e,f, ref 38). 

314 In addition to ENSO amplitude, our XRO model can be expanded to also consider ENSO 

315 spatiotemporal diversity by using two ENSO SST indices (e.g. the Niño3 and Niño4 indices, as in 

316 the model XRO2, see “The XRO2 ENSO types and pantropical SSTA forecasts” in Methods). The 

317 XRO2 is able successfully predict the EP-type characteristic of the 1997/98 El Niño, and the 

318 mixed-type characteristic of the 2015/16 El Niño, up to 9 months in advance (Supplementary Table 

319 3). In contrast, the NMME dynamical models fail to predict the correct type for the 1997/98 event, 

320 possibly due to long-standing model biases of westward-displaced ENSO SST anomalies46. The 

321 successful prediction of ENSO spatial diversity in the XRO has important implications for 

322 predicting global climate impacts that differ strongly for contrasting ENSO SSTA patterns. 

323 Furthermore, the skill of forecasted pantropical SSTA at 9-month lead using the regression model 

324 of ten forecasted SST indices outperforms the operational dynamical models in most regions 

325 except the Caribbean Sea (Supplementary Fig. 14). The successful forecasts of ENSO types and 

326 pantropical SSTA within the XRO framework highlight the essential importance of accurately 

327 representing ENSO-climate mode interactions in climate models for effective seasonal forecasting. 

328 Discussion 

329 The XRO model constitutes a parsimonious representation of the climate system in a reduced 

330 variable and parameter space that still captures the essential dynamics of interconnected global 

331 climate variability. We emphasize that the improvement of ENSO predictability in the XRO 

332 relative to that in the nRO ultimately all resides in the initial condition memory of the other climate 

333 modes, which is propagated forward by the unbiased operator. Thus, to improve ENSO predictions, 

334 climate models must correctly capture the recharge oscillator dynamics of ENSO and additionally, 

335 three compounding aspects of other climate modes: (i) the initial conditions of each mode, (ii) the 
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336 seasonally modulated damping rate (i.e., the memory) of each mode, and (iii) the seasonally 

337 modulated teleconnection to ENSO from each mode. Tracing biases from the SSTA budget at the 

338 process level with the XRO framework can be used to inform climate model development. 

339 Moreover, the explainable predictability of pantropical climate variability as encapsulated by the 

340 XRO may be further enhanced by including multi-timescale interactions associated with the 

341 Madden-Julian Oscillation and westerly wind bursts at higher frequencies. The XRO framework 

342 can also provide a pathway for better understanding observed decadal and long-term changes in 

343 ENSO variability33,34 and ENSO predictability47–50. 
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452 Figure Legends 

453 Figure 1. Different sources of ENSO predictability and associated different global impacts. 

454 a, Observed SSTA standard deviation pattern calculated from the detrended ORAS5 reanalysis 

455 during 1979-2022. The different coloured boxes represent area-averaged SSTA index regions for 

456 ENSO and other selected climate modes (Supplementary Table 1). b, Observed standardized 

457 Niño3.4 index and various potential precursor indices for the 1997/98 and 2015/16 El Niño events, 

458 with the numbers in the parentheses indicating the preceding (-1), current (0), and subsequent (1) 

459 years. The error bars show the spread (one standard deviation) among different observational 

460 products (Supplementary Table 2). The lead correlation of various indices with regard to the NDJ 

461 Niño3.4 index is indicated near the bottom of the plot. c-d, Observed precipitation anomalies 

462 (percentage) relative to climatology (shading) during (c) 1997/98 December-March (DJFM) and 

463 (d) 2015/16 DJFM. Contours denote the significant positive (green) and negative (brown) 

464 correlations between DJFM precipitation anomalies and the DJFM Niño3.4 SSTA index that 

465 exceed the 95% confidence level, based on Student’s t-test. The observed 1997/98 and 2015/16 El 

466 Niño events were associated with different precursor patterns and global climate impacts, despite 

467 similar Niño3.4 index amplitude. 

468 Figure 2. Superior Efficacy of the XRO in simulating and reforecasting ENSO. a-c, 

469 Seasonally varying standard deviation (a), skewness (b), and power spectrum (c), respectively, of 

470 Niño3.4 using ORAS5 (black) and the XRO stochastic simulation (red). d-l, monthly cross-

471 correlations between Niño3.4 and different indices indicated in the titles; Dashed grey curves show 

472 the auto-correlation of Niño3.4 and vertical blue dashed lines denote a lead-time of 6(WWV), 

473 6(NPMM), 4(SPMM), 12(IOB), 14(IOD), 10(SIOD), 9(TNA), 6(ATL3), and 9(SASD) months 

474 respectively; Abscissas indicate lead-time in months (negative values representing Niño3.4 lag). 

475 Red shading indicates the 10%-90% ensemble spread of simulated 43-year segments, obtained 

476 from splitting a 43,000-year XRO simulation into 1000 non-overlapping parts. m, All-months 
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477 correlation skill of 3-month running-mean Niño3.4 as a function of forecast lead for forecasts 

478 verified on 2002-2022 for the out-of-sample nRO (magenta) and XRO (red) fitted on 1950-1999, 

479 the AI model (blue), the XRO control fitted on 1979-2022 (black) and IRI operational models, the 

480 ensemble mean of dynamical models (dark purple curve), and ensemble-mean of statistical models 

481 (dark cyan curve). n, Same as m, but for Niño3.4 forecast skills for nRO (magenta) and XRO (red) 

482 control forecasts, AI model forecasts (blue), and NMME dynamical model forecasts (multi-model 

483 ensemble mean in black, ensemble-means from individual models in other colours). Validation 

484 period is 1979-2022 except for the AI and NMME models (period indicated in the legend). o-p, 

485 Correlation skill of nRO and XRO Niño3.4 forecasts as a function of initialization month (ordinate) 

486 and target month (abscissa; superscripts 0, 1, and 2 denote the current and subsequent years, 

487 respectively). Hatching highlights forecasts with a correlation <0.5. Dashed vertical blue lines 

488 denote the spring predictability barrier. The XRO accurately simulates the fundamental observed 

489 ENSO characteristics, its lead-lag relationships with other climate modes, and provides skilful 

490 forecasts at lead-times up to 16-18 months. 

491 Figure 3. Quantifying the increased ENSO forecast skills from the coupled influences outside 

492 equatorial Pacific during 1979-2022. a, the all-months correlation skill of the 3-month running 

493 mean Niño3.4 index as a function of the forecast lead month in the control experiment (XRO, 

494 black line), the uninitialized ExPO+IO+AO experiment (UExPO+IO+AO, removing initial conditions 

495 of other basins; red line), the decoupling ExPO+IO+AO experiment (DExPO+IO+AO, removing the 

496 coupling of ENSO with other basins; blue line), and the relaxing ExPO+IO+AO to observations 

497 experiment (RExPO+IO+AO, adding perfect “future” information of other basins in a hindcast case; 

498 magenta line). b-d, the skill difference of the Niño3.4 index as a function of initial time and target 

499 month between XRO and DExPO+IO+AO (b), between XRO and UExPO+IO+AO (c), and between 

500 UExPO+IO+AO and DExPO+IO+AO (d). e-g, Same as d, but for difference between control and the 

501 uninitialized ExPO, IO, and AO experiments, respectively. Hatching indicates that the correlation 

502 difference is significant at 90% confidence level using the two-tailed Fisher z‐transformation test. 

503 The sensitivity experiments demonstrate the importance of the extratropical Pacific, Indian Ocean, 

504 and Atlantic Ocean in enhancing ENSO forecast skill, with distinct seasonal dependence. The 

505 interbasin memory sustains ENSO forecast skill beyond the spring predictability barrier with the 

506 IO and AO contributing skill in boreal summer and the ExPO in boreal winter. 

507 Figure 4. Delineating contributions to ENSO amplitudes from other climate modes. a, b, c, 

508 Time series of Niño3.4 forecasts for the (a) XRO model, (b) decoupled ExPO+IO+AO experiment, 
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509 and (c) uninitialized ExPO+IO+AO experiment, as function of target time and forecast lead. d-k, 

510 the difference of Niño3.4 SSTAs (shading) and WWV anomalies (contours with interval of 0.6 m, 

511 positive in red and negative in black dashed, zero omitted), as a function of forecast start month 

512 and target month, between the control and uninitialized climate mode experiments for NPMM, 

513 IOB, IOD, SIOD, SPMM, TNA, ATL3, and SASD, respectively. Vertical reference dashed lines 

514 denote December of El Niño (red) and La Niña (blue) years, respectively. In d-k, the normalized 

515 observed time series of each climate-mode SSTA index is indicated on the bottom axis; the black 

516 arrows indicate the flow of forecast integration started from the selected time in the bottom. l, 

517 Composite difference of Nov-Dec-Jan Niño3.4 SSTA forecasts during El Niño events (red) and 

518 La Niña events (blue) between control and uninitialized Um experiments started from months in a 

519 specific preceding season (-1 and 0 in parentheses denote preceding and current year, x axis from 

520 left to right is 𝑈Nino34 , 𝑈WWV , 𝑈NPMM , 𝑈SPMM , 𝑈IOB , 𝑈IOD , 𝑈SIOD , 𝑈TNA , 𝑈ATL3 , and 𝑈SASD , 

521 respectively); the events are selected when Nov-Dec-Jan Niño3.4 indices are greater than their 

522 standard deviation, which includes 7 El Niño events (1982, 1986, 1991, 1997, 2002, 2009, 2015) 

523 and 5 La Niña events (1988, 1998, 1999, 2007, 2010). The error bars show one standard deviation 

524 spread among the 7 El Niño/5 La Niña events. The XRO sensitivity experiments quantify the 

525 pathways via which the other climate modes influence El Niño and La Niña events. 

526 Figure 5. Linking biases in the dynamics captured by the XRO to climate model deficiencies 

527 in forecasting ENSO during 1979-2022. (a) The all-months correlation skill of the 3-month 

528 running mean Niño3.4 index in XROm trained solely on 91 individual CMIP model outputs (grey 

529 curves), and in XRO trained on observations (red) and multi-model ensemble mean NMME 

530 models (black). (b) The ensemble mean and 10%-90% spread band of the changes in correlation 

531 skill of the Niño3.4 index, obtained by either correcting ENSO’s internal linear dynamics 
𝑚 𝑚 

532 - XROm, red), or correcting the remote climate mode feedbacks onto ENSO (XRO𝑪1 
-(XRO𝑳ENSO 

𝑚 
533 XROm, magenta), or correcting ENSO’s teleconnections to the remote climate modes (XRO𝑪2 

-

534 XROm, blue). Reforecasts using the XRO trained on climate model output, show that reduced 

535 biases in model ENSO dynamics and in climate mode interactions lead to more skilful ENSO 

536 forecasts. 

537 

20 



 

  

    

         

     

   

  

  

     

      

      

     

  

    

       

       

    

       

     

     

    

538 Methods 

539 Extended Nonlinear Recharge-Oscillator model (XRO) 

540 The XRO model consists of a nonlinear recharge oscillator model for ENSO51,52 coupled to 

541 stochastic‐deterministic models (i.e., seasonally modulated first order autoregressive models) for 

542 the other climate modes53–55: 

𝑑 𝑿ENSO 𝑿ENSO 𝑵ENSO
543 ( ) = 𝑳 ( ) + ( ) + 𝜎𝝃𝝃, (1)

𝑑𝑡 𝑿𝑀 𝑿𝑀 𝑵𝑀 

𝑑𝝃 
544 = −𝑟𝛏𝝃 + 𝒘(𝑡), (2)

𝑑𝑡 

545 where 𝑿ENSO = [𝑇ENSO, ℎ] and 𝑿𝑀 = [𝑇NPMM, 𝑇SPMM, 𝑇IOB, 𝑇IOD, 𝑇SIOD, 𝑇TNA, 𝑇ATL3, 𝑇SASD] are 

546 state vectors of ENSO and other climate modes, respectively. This model allows for two-way 

547 interactions between ENSO and the other modes. Two indices are used to describe the oscillatory 

548 behaviour of ENSO52,56. They consist of SSTAs averaged over the Niño3.4 region 170°–120°W, 

549 5°S–5°N (𝑇ENSO) and thermocline depth anomalies averaged over the equatorial Pacific 120°E– 

550 80°W, 5°S–5°N (ℎ), i.e., the WWV index (with a constant factor of the area it covers). For other 

551 climate modes, we consider the SST indices of multiple climate modes (Supplementary Table 1) 

552 that have been shown to interact with ENSO, including the NPMM12,38,57 and SPMM13 in the 

553 extratropical Pacific, the IOB14,58,59, IOD60,61,15,43, and SIOD16 in the Indian Ocean, and TNA17,62, 

554 ATL363,18,43,64 and SASD65,19 in the Atlantic Ocean. We recognise the possibility of enhancing 

555 ENSO forecast skill by incorporating additional modes of variability, provided they directly 

556 interact with ENSO, exhibit substantial memory extending beyond months, and offer additional 

557 sources of variability beyond the chosen eight. 

21 



 

       

     

  

  

      

     

           

       

      

   

     

   

     

      

        

      

     

    

        

       

        

      

       

558 The dynamics governing the state matrix 𝑿 (consisting of 10 variables) contains linear (𝑳), 

559 nonlinear (𝑵), and stochastic (𝝃) terms. The linear dynamics contains four key submatrices, 

560 organized as follows: 

𝑳ENSO 𝑪𝟏 
561 𝑳 = ( ) , (3)

𝑪𝟐 𝑳𝑀 

562 where the linear operator submatrix 𝑳ENSO describes the ENSO internal recharge-discharge 

563 dynamics52,66, 𝑳𝑀 represent the internal processes and interactions among the other climate modes; 

564 𝑪 are coupling submatrices, with 𝑪𝟐 describing the impact of ENSO on other climate modes29 and 

565 𝑪𝟏 describing the feedback of other modes on ENSO. To implement nonlinear dynamics 

2 
566 associated with ENSO asymmetry, quadratic nonlinearities 𝑏1𝑇ENSO + 𝑏2𝑇ENSOℎ are incorporated 

567 into the SSTA equation of ENSO following Jin et al.51 and An et al.67, specifically, 𝑵ENSO = 

2 
568 [𝑏1𝑇ENSO + 𝑏2𝑇ENSOℎ, 0]. These nonlinearities can be related to deterministic nonlinear ocean 

569 advection68,67, as well as to atmospheric nonlinearity implicitly through the nonlinear SST-wind 

2 
570 stress feedback69–71. A local quadratic nonlinearity 𝑏3𝑇IOD is also incorporated in the SSTA 

571 equation for the IOD following the recent insights from An et al.72 that IOD asymmetry is 

572 dominated by local nonlinear processes. The nonlinear terms for modes other that the IOD are set 

573 to zero given their observed smaller asymmetry and skewness (Supplementary Fig. 5i-j,m-p, ref73), 

2 
574 specifically, 𝑵𝑀 = [0,0,0, 𝑏3𝑇IOD, 0,0,0,0]. Lastly, 𝝃 is stochastic forcing due to weather and other 

575 high-frequency noise such as the Madden-Julian Oscillation and westerly wind bursts, which is 

576 approximated as red noise with decorrelation time scales of 𝑟𝝃 and amplitudes of 𝜎𝝃, respectively. 

577 Specifically, 𝒘(𝑡) in Eq. (2) denotes white noise with a Gaussian distribution N(0, 2𝑟𝝃) ensuring 

578 that the variance of 𝝃 is maintained at the unit level. We acknowledge the importance of the 

579 multiplicative (state-dependent) noise forcing on ENSO74,75, however, accurately estimating the 

580 magnitude of the state-dependence remains a challenge with the observational data length. 
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581 Due to the strong seasonal dependence of ENSO and other climate modes, we incorporate 

582 seasonality by estimating the operator matrix and nonlinear parameters as 

2 

𝒄 
583 𝑳 = 𝑳𝟎 + ∑(𝑳𝑗 cos 𝑗𝜔𝑡 + 𝑳𝒔𝒋 sin 𝑗𝜔𝑡) , (4) 

𝑗=1 

2 

𝒄 
584 𝑵 = 𝑵𝟎 + ∑(𝑵𝑗 cos 𝑗𝜔𝑡 + 𝑵𝑗

𝒔 sin 𝑗𝜔𝑡) , (5) 
𝑗=1 

585 where 𝜔 = 2𝜋/(12 𝑚𝑜𝑛𝑡ℎ𝑠), and the subscripts 0, 1 and 2 indicate the mean, annual cycle, and 

586 the semi-annual components, respectively. The linear operator and nonlinear coefficients for the 

587 observations and CMIP simulations are estimated simultaneously by using multivariate linear 

588 regression and expressing the state vector tendency in Eq. (1) through a forward-differencing 

589 scheme following ref76,77. Compared to the conventional method, which estimates the annual cycle 

590 of operators by splitting the monthly data on each calendar month, our approach enables us to 

591 obtain the seasonal modulated operators without reducing sample size by a factor of 12. We 

592 emphasize that our approach constitutes the minimum number of degrees of freedom necessary to 

593 represent the seasonality. There are 50 parameters for each tendency equation of the 10 variables 

594 in the system (except 60 for 𝑇ENSO and 55 for 𝑇IOD). To meet the rule of thumb for regression 

595 sample size (at least 10 subjects per predictor)78, 40–50 years of data is required to achieve a robust 

596 fit. The total number of parameters is 515, which are orders of magnitude fewer degrees of freedom 

597 than the AI models in comparison have, the latter which have substantially more than 100,000 free 

598 parameters8. 

599 The noise parameters are determined from the residuals of the XRO fit. There are 20 total 

600 noise parameters, i.e., a noise amplitude and decorrelation time scale for each of the 10 variables 

601 in the system. The noise amplitude 𝜎𝜎 is estimated from the standard deviations of the residuals 
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602 of the XRO fit. The decorrelation time scales are estimated as 𝑟𝝃 = −𝑙𝑛(𝒂𝟏)/𝛿𝑡, where 𝒂𝟏 is the 

603 lag-1 autocorrelation of the residual of the XRO fit. The order of observed noise time scale 𝑟𝝃−1 is 

604 about 0.25 ~ 0.70 months. 

605 The XRO builds on the legacies of the Hasselmann stochastic climate model capturing upper 

606 ocean memory in SST variability, and the recharge oscillator model for the oscillatory core 

607 dynamics of ENSO. As a multivariate dynamical system, comparing with previous linear inverse 

608 models79,28,27,80,35, the XRO offers an enhanced capability in representing the dynamics of ENSO 

609 (including recharge/discharge dynamics) and climate mode interactions, encompassing their 

610 seasonality and nonlinearity, which are of crucial importance in improving ENSO forecast skill. 

611 Moreover, the state vectors for linear inverse models are typically derived from the leading 

612 principal components truncated within the Empirical Orthogonal Function space, which, however, 

613 may not always represent physical processes. 

614 Nonlinear RO model (nRO) 

615 To highlight the climate mode interactions, we compared the XRO model with a nRO, which 

616 is described as: 

𝑑 
617 

𝑑𝑡 
𝑿ENSO = 𝑳ENSO𝑿ENSO + 𝑵ENSO + 𝜎𝝃ENSO 

𝝃ENSO. (5) 

618 This model includes only processes internal to the tropical Pacific. The parameters for the nRO 

619 model are fitted separately. 
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620 Observational data 

621 We use eight observational SST and 3-dimensional ocean temperature datasets to account the 

622 uncertainties in estimating the SST in global oceans and subsurface state in the equatorial Pacific 

623 (Supplementary Table 2). They include three observational SST reconstructions: HadISST (Hadley 

624 Centre Sea Ice and Sea Surface Temperature dataset version 1.1)81, ERSST v5 (Extended 

625 Reconstructed Sea Surface Temperature version 5)82 and COBE-SST 2 (Centennial in situ 

626 Observation-Based Estimates of Sea Surface Temperature version 2)83 for 1871-2023; and five 

627 reanalysed SST and ocean temperature datasets: GECCO3 for 1950-2018 (the German 

628 contribution to Estimating the Circulation and Climate of the Ocean version 3)84, GODAS for 

629 1980-2023 (Global Ocean Data Assimilation System)85, ORAS5 for 1958-2023 (the ECMWF 

630 Ocean Reanalysis System 5)86, ORA20C for 1900-2009 (ensemble of 10-member ECMWF Ocean 

631 Reanalysis of the 20th Century)87, PEODAS for 1960-2014 (the Predictive Ocean Atmosphere 

632 Model for Australia Ensemble Ocean Data Assimilation System)88, and SODA224 for 1871-2010 

633 (Simple Ocean Data Assimilation Phase 2.2.4)89. The thermocline depth is defined as the depth of 

634 the 20°C isotherm. We also use surface air temperature from the ERA5 reanalysis90, and gridded 

635 precipitation from the Climate Prediction Center Merged Analysis of Precipitation (CMAP)91 for 

636 1979-2022. The monthly anomaly fields were calculated by removing the monthly climatology for 

637 the period of 1979-2022 and the quadratic trend over the whole period. We have focused on the 

638 satellite era from 1979 onwards because SST observations are sparse in the pre-satellite period. 

639 Climate forecast and hindcast data 

640 We use the 3-month averaged Niño3.4 index forecasts from the operational International 

641 Research Institute for Climate and Society (IRI) ENSO Forecast product5. We also use SST 

642 hindcasts and real-time forecasts from ten models participating in the North American Multi-
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643 Model Ensemble (NMME) project92. The ensemble sizes range from 10 to 24 for each model 

644 (Supplementary Table 4). The monthly forecast anomalies were calculated with respect to the 

645 monthly climatology from January 1982 to December 2010 for each member and forecast lead. 

646 For CCSM4 and CFSv2, we eliminate the discontinuous forecast biases by calculating the forecast 

647 anomalies using two different climatological periods of 1982–98 and 1999–2010, respectively, 

648 following ref45. 

649 In addition, we use the Niño3.4, Niño3, and Niño4 indices forecasts from an AI model (the 

650 3D-Geoformer ENSO neural network model9) covering the period of 1983-2021. This model 

651 demonstrated ENSO forecast skills comparable with the convolutional neural networks (CNN) 

652 model developed by Ham et al.8, which is among the most skilful AI ENSO forecasts93,94. 

653 Stochastically forced XRO simulations 

654 To assess the XRO’s performance in simulating ENSO and mode interactions, we conducted 

655 stochastically forced simulations using the operators and stochastic forcing matrices estimated 

656 from the ORAS5 reanalysis for 1979-2022 (black curves in Extended Data Fig. 1). We numerically 

657 integrate Eqs. 1-2 with a time step of 0.01 month for 45,000 years and archive monthly-averaged 

658 states for the analysis. The last 43,000 years were analysed and split into 1000 non-overlapping 

659 epochs of 43-year each, aligning with the observational record length. An example of simulated 

660 Niño3.4 SSTA index for the 10 consecutive centuries is shown in Supplementary Fig. 3. 

661 Out-of-sample reforecasts 

662 To perform robust out-of-sample testing of the XRO performance, we next use observational 

663 data including the pre-satellite period since at least 40-50 years of data are required to get a robust 
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664 XRO fit. We choose to discard data before 1950 since there are large uncertainties in the SSTA and 

665 equatorial thermocline depth indices (Supplementary Fig. 15). Therefore, we fitted the XRO and 

666 nRO models on 1950-1999 (50 years) data, conducted deterministic retrospective 21-month 

667 forecasts by integrating the XRO (Eq. 1) and nRO (Eq. 5) initialized from observed state values 

668 for the period of 2002-2022, and verified the model against observations in the 2002-2022 period, 

669 To access the impact of the decadal change in the performance of the XRO in forecasting ENSO, 

670 we also verified the model on two other 21-year no-overlapping periods: the previous period 1950-

671 1970 (in which period of 1973-2022 data was used for training) and the middle period 1972-1992 

672 (in which the periods of 1950-1970 and 1994-2022 data was used for training). The multi-data-

673 products ensemble mean SSTA and WWV anomaly indices were used for fitting and verification. 

674 Control XRO and nRO reforecasts 

675 Using the operator and stochastic forcing parameters estimated from the ORAS5 reanalysis 

676 for 1979-2022, we conducted a control experiment by integrating the XRO (Eq. 1) initialized from 

677 observed state values of [𝑇ENSO, ℎ, 𝑇NPMM, 𝑇SPMM, 𝑇IOB, 𝑇IOD, 𝑇SIOD, 𝑇TNA, 𝑇ATL3, 𝑇SASD] with 

678 retrospective 21-month forecasts for the period of January 1979–October 2023 (referred to XRO). 

679 The ensemble mean forecast of 100-members is almost identical to the deterministic forecast in 

680 which the stochastic forcing terms are neglected during the integration (Supplementary Fig. 16a,b). 

681 Although the 100-member stochastic XRO forecasts provide an opportunity for probabilistic 

682 ENSO forecasts (Supplementary Fig. 16c-f), here we focus on the deterministic skill and neglect 

683 the stochastic forcing terms in all the remaining forecast experiments. Similarly, we conducted a 

684 nRO deterministic experiment by integrating Eq. (5) initialized from observed state values of 

685 [𝑇ENSO, ℎ]. 
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686 Cross-validated reforecasts. 

687 We carried out cross-validated forecasts using both the XRO and nRO models from the 

688 ORAS5 reanalysis for 1979-2022, employing a jackknife subsampling approach. We sequentially 

689 excluded 3-year segments of data (1979-81, 1982-85, 1986-89, 1990-93, 1994-97, 1998-2001, 

690 2002-05, 2006-09, 2010-13, 2014-17, 2018-21, and 2022), then trained the model operator 

691 parameters based on the remaining data. Subsequently, we generated forecasts for each month 

692 during the years not included in the model fitting. The uncertainty in the fitted parameters is 

693 illustrated as black shading in Extended Data Fig. 1. The skill of cross-validated forecast is not 

694 sensitive to the choice of excluding from 2 to 7 years (Supplementary Fig. 8a). 

695 Large ensemble simulations and perfect model reforecasting experiments 

696 To assess of the robustness of the XRO fitting and forecasting performance, we use large 

697 ensemble (LENS) historical simulations for four climate models: Community Earth System Model 

698 version 1 (CESM1)95, version 2 (CESM2)96, Model for Interdisciplinary Research on Climate 

699 version 6 (MIROC6)97, and Max Planck Institute for Meteorology Earth System Model version 

700 1.1 (MPI-ESM)98. Each LENS was generated by repeatedly running the same model simulation 

701 with identical external forcing but with small initial condition differences. The number of members 

702 for each LENS used in this study are as follows: 39 for CESM1, 100 for CESM2, 50 for MIROC6, 

703 and 99 for MPI-ESM. We use the historical period of 1959-2002, aligning it with the observational 

704 record length (43 years). 

705 We performed the “perfect model” reforecast, where the XRO model was trained by the 

706 LENS output and tasked to reforecast itself instead of the observations. We carried out twin 

707 experiments for each LENS (Supplementary Fig. 8b-e). The “Same-Member” reforecast 
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708 experiment, in which the XRO model is repeatedly fitted for a member, forecasted, and verified 

709 against the same member. This aligns with the XRO control experiment for the observations. In 

710 the “Cross-Member” reforecast experiment, the XRO model is fitted for a specific member but 

711 forecasted and verified against a different member (an independent realization in the LENS). 

712 Specifically, we forecast ensemble member j using the two versions of XRO models, which were 

713 fitted on member j-1 and j-2 data, respectively, and repeat the process for all members within the 

714 LENS. The skill difference between the Cross-Member experiment and the Same-Member 

715 experiment isolates the uncertainty of XRO parameter fitting and its impact on reforecasting skill. 

716 All four LENS results using the same observational record length (43-year) confirm that the 

717 uncertainty in parameter estimation leads to XRO reforecasting correlation skill error of less than 

718 0.1 within 21 lead months (Supplementary Fig. 8b-e). 

719 Quantitative reforecasting experiments 

720 To rigorously dissect the interplay between ENSO and the different climate modes in the 

721 different ocean basins, we designed three sets of sensitivity experiments to mimic the experiment 

722 protocol of previous CGCM studies: 

723 a) Uninitialized experiments: We performed uninitialized mode-𝜎 experiments (𝑈𝑗) by setting 

724 the initial condition of 𝜎𝜎 to zero, while keeping everything else the same as in the control 

725 experiment. The effect of the mode-𝜎 initial condition can be assessed as the difference between 

726 the control and 𝑈𝑗 (XRO-𝑈𝑗). To disentangle the role of a specific ocean basin’s initial conditions, 

727 we also conducted uninitialized experiments by setting the initial conditions of all modes to zero 

728 in the corresponding ocean basins. For example, the uninitialized extratropical Pacific Ocean 

729 experiment (referred to as 𝑈ExPO ) is the same as the control experiment but with the initial 

730 conditions of the NPMM and SPMM set to zero. Similarly, 𝑈IO, 𝑈AOand 𝑈ExPO+IO+AO denote the 
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731 uninitialized Indian Ocean, uninitialized Atlantic Ocean, and uninitialized “all other basins” 

732 experiments, respectively. In addition, the uninitialized ENSO SSTA ( 𝑈Nino34 ) and WWV 

733 anomaly (𝑈WWV) experiments are same as XRO, except that the initial conditions of 𝑇ENSO and ℎ 

734 are set to zero, respectively. The uninitialized ENSO (𝑈ENSO) experiment is same as XRO, but the 

735 initial conditions of both 𝑇ENSO and ℎ are set to zero. The difference in the climate system response 

736 between the control experiment and 𝑈𝑗 isolates the effect of mode-j/basin-j’s initialization. 

737 b) Decoupled experiments: We performed decoupled mode-𝑗 experiments (referred to 𝐷𝑗) – in 

738 which specific mode(s) are suppressed – by strongly increasing the diagonal damping rate of 

739 mode-𝑗 in the 𝑳 operator to an e-folding time scale of 5 days. This mimics the partially coupled 

740 experiments in fully coupled climate models that restore the ocean surface temperature toward 

741 prescribed conditions. The differences between the control experiment and 𝐷𝑗 isolate the role of 

742 mode- 𝑗 in the system. To disentangle the role of the different ocean basins, we conducted 

743 decoupled ocean basin experiments. For example, the decoupled extratropical Pacific Ocean 

744 experiment (referred to 𝐷ExPO) removes both the NPMM and SPMM from the system. Similarly, 

745 the decoupled Indian Ocean experiment (𝐷IO) removes the IOB, IOD and SIOD together from the 

746 system; the decoupled Atlantic Ocean experiment (𝐷AO) removes the TNA, ALT3, and SASD 

747 together from the system; and the decoupled all other modes experiment (𝐷ExPO+IO+AO) removes 

748 all other modes except ENSO. We note that the 𝐷ExPO+IO+AO experiment is very close to the nRO 

749 in which the parameters were fitted separately. The difference between the control experiment and 

750 𝐷𝑗 isolates the effect of mode-j/basin-j’s coupling. The sum of individual basin decoupled 

751 experiments exceeds the effect of decoupling all at once (Extended Data Fig. 3b,d,e), suggesting 

752 the presence of indirect pathways due to interactions among basins. 
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753 c) Relaxation towards observations experiments: We performed relaxation ocean basin- 𝑗 

754 experiments (referred to 𝑅𝑗 ) by relaxing the SSTA indices towards the observations in the 

755 corresponding ocean basins with a time scale of 5 days. For example, the relaxation extratropical 

756 Pacific Ocean experiment (referred to as 𝑅ExPO) is the same as the control but with the NPMM 

757 and SPMM being relaxed to the observations. Similarly, 𝑅IO, 𝑅AO, and 𝑅ExPO+IO+AO denote the 

758 relaxation Indian Ocean, relaxation Atlantic Ocean, and relaxation all other basins except the 

759 equatorial Pacific experiments. The difference between the control experiment and 𝑅𝑗 highlights 

760 the effect from perfect “future” knowledge of basin-j. The relaxation towards observations 

761 experiments greatly overestimate ENSO forecast skill because of built in presumed perfect 

762 predictions for the stochastic excitations and ENSO’s impacts on the modes in these basins 

763 (magenta curves in Extended Data Fig. 3d,e). 

764 Losing memory experiments 

765 We carried out “losing memory” experiments by artificially adding additional damping to the 

766 original diagonal damping rates of all other non-ENSO modes in the 𝜎𝜎 operator (Extended Data 

767 Fig. 4). The prescribed damping rates are (5 day)-1, (30 day)-1, (90 day)-1, (180 day)-1, and (360 

768 day)-1, in the different experiments, ranging from strong damping (no memory) to less damping 

769 (long memory). 

770 Deseasonalizing experiments. 

771 We carried out deseasonalizing experiments to illustrate the role of the operator parameters’ 

772 annual and semi-annual cycles in ENSO forecast skill (Supplementary Fig. 17). In the XROac=0 

773 model, we considered only the annual mean component (𝑳𝟎 and 𝑵𝟎 in Eqs. 3-4, each tendency 
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774 equation has ~10 parameters, a total number of parameters of 103 = 10 × 10 + 3). 10–15 years 

775 of data is required to meet the rule of thumb for regression sample size (at least 10 subjects per 

776 predictor) 78. In the XROac=1 model, we considered both the annual mean and annual cycle 

𝒄 𝒔 
777 components in the operator (𝑳𝟎, 𝑳𝟏, 𝑳𝟏, 𝑵𝟎, 𝑵𝟏𝒄 and 𝑵𝒔𝟏 in Eqs. 3-4, each tendency equation has 

778 ~30 parameters, the total number of parameters is 309 = 3 × 100 + 3 × 3). At least 25 years of 

779 data is required 78. The difference between XRO and XROac=0 isolates the combined impacts of 

780 the annual and semi-annual cycles in the operator parameters, whereas the difference between 

781 XRO and XROac=1 isolates the impact of just the semi-annual cycle in the operator parameters. The 

782 parameters for the XROac=0, and XROac=1 experiments can be either refitted separately 

783 (Supplementary Fig. 17a-d) or taken from the XRO control experiment (Supplementary Fig. 17e-

784 h). Regardless which parameter estimation method is used, we find that the seasonal cycle is 

785 critically important in suppressing SPB for ENSO, while the semi-annual cycle is less important. 

786 Removing nonlinearity experiments 

787 We carried out “removing nonlinearity” experiments to illustrate the role of the XRO 

788 nonlinear operators in ENSO forecast skill (Supplementary Fig. 18). In the XROlinear experiment, 

789 we consider only linear operators and set 𝑵ENSO and 𝑵𝑴 to zero. In the XROlinearENSO experiment, 

790 we only consider linear operators and 𝑵𝑀, but set 𝑵ENSO to zero. In the XROlinearIOD experiment, 

791 we only consider linear operators and 𝑵ENSO, but set 𝑵𝑴 to zero. The difference between XRO 

792 and XROlinear isolates the impact of the nonlinear operator parameters, whereas the difference 

793 between XRO and XROlinearENSO isolates the impact of the ENSO nonlinear operator parameters. 

794 The parameters for the XROlinear, the XROlinearENSO, and XROlinearIOD experiments can be either 

795 refitted separately (Supplementary Fig. 18a-d) or taken from the XRO control experiment 

796 (Supplementary Fig. 18e-h). Regardless which of method we use to obtain the parameters, we find 
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797  that  the ENSO  nonlinear dynamics  are  critically important for ENSO  forecast skill, especially for 

798  forecasting the amplitude of the peak  phase and the fast transition from  El Niño to La  Niña. Further, 

799  we find that the impact of IOD’s nonlinearity on ENSO  forecast skill  is neglectable.  

800  Prediction skill metrics  and significance tests  

801  The forecast skill is quantified using the anomaly correlation coefficient (ACC) and root mean 

802  square error (RMSE)  metrics99. The ACC is computed as the Pearson correlation coefficient  

803  between the deterministic forecast (𝑓) and the observations  (𝑜):  

𝑐𝑜𝑣(𝑓, 𝑜) 
804  𝐴𝐶𝐶 = , (6) 

𝜎𝑓 ⋅ 𝜎𝑜 

805  and the RMSE is defined as  

806    √(̅̅  ̅̅̅̅  ̅̅̅ )̅𝑅𝑀𝑆𝐸 2̅= 𝑓 − 𝑜 , (7)  

807  where 𝜎𝑓  and 𝜎𝑜  are  the standard deviations  of the observations  and forecast, respectively.  

808  The  Fisher z‐transformation was used to test statistical  significance of the ACC differences  

809  as follows:  

1
 
+𝑟

( 1) − ln ( 
𝑟

ln  1+ 2)
𝑍  1
= 0.5 

1−𝑟1 −𝑟2 , (8)810   
1 1 

 
√ + 
𝑛1−3 𝑛2−3 

811  where 𝑟1  and 𝑟2  are  the correlation coefficients,  𝑛1  and 𝑛2  are  the sample sizes of the first  and 

812  second  group  samples.  The  absolute value  |𝑍|  is then compared against a critical value  from  the t-

813  distribution for a two-tailed test. We rejected  the null  hypothesis  that the two correlations are  not 

814  significantly  different  at 90% confidence level  if |𝑍|  exceeds the critical value.  
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815 The XRO reforecasting experiments based on CMIP model output 

816 We analyse monthly mean SST and 3-dimensional ocean temperature fields from 91 CMIP5 

817 and CMIP6 historical simulations (Supplementary Table 5). All model outputs were re-gridded to 

818 a common 1° × 1° horizontal resolution using bilinear interpolation. The monthly anomaly fields 

819 were calculated by removing the monthly climatology for the period of 1900-1999 and the 

820 quadratically detrended over the full 100-year period. 

821 Using the linear and nonlinear operators trained solely on CMIP model m output for 1900-

822 1999, we conducted retrospective 21 months forecasts with initial conditions from the observations 

823 for the period of January 1982– October 2023 (referred to XRO𝑚). To understand the impacts of 

824 model biases on ENSO dynamics and its coupling with other modes, we also conducted sensitivity 

825 experiments by correcting the different components of the linear and nonlinear operators with the 

826 observed parameters (See Extended Data Table 2). For example, the experiment XRO𝑳𝑚 is the same 

827 as XRO𝑚, but with the linear operator 𝑳 being replaced by the observed 𝑳 operator. The difference 

828 XRO𝑳
𝑚 − XRO𝑚 is used to isolate the effect of correcting model m’s linear dynamics biases. 

𝑚 𝑚 𝑚 
829 Similarly, the experiments XRO𝑳ENSO 

, XRO𝑪1 
, and XRO𝑪2 

were conducted to isolate the impacts 

830 of model m’s biases on the internal linear ENSO dynamics, the coupling feedback to ENSO 

831 parameters, and ENSO teleconnection dynamics, respectively. 

832 The XRO2 ENSO types and pantropical SSTA forecasts 

833 The additional XRO model (referred to XRO2) was set up to predict different types of El 

834 Niño (i.e., ENSO diversity). We introduced two SSTA indices in the state vectors of ENSO, i.e., 

835 Niño3 index (SSTAs averaged over 150°–90°W, 5°S–5°N) and Niño4 index (SSTAs averaged over 

836 160°E–150°W, 5°S–5°N): 𝑿ENSO = [𝑇Nino3, 𝑇Nino4, ℎ] instead of using Niño3.4. The quadratic 

34 



 

nonli 2
 ne  

837 arities 𝑏1𝑇Nino3 + 𝑏2𝑇Nino3ℎ  are  only incorporated  into  the SSTA  equation  of 𝑇Nino3, in  

838  presence of the strong asymmetry of Niño3 index whereas  the less pronounced asymmetry of 

[  
839  Niño4 index: 𝑵ENSO = 𝑏 2

1𝑇Nino3 + 𝑏2𝑇Nino3ℎ, 0, 0]. All other  terms are  the same as the standard 

840  XRO  model. Using the operator parameters  estimated from  the ORAS5 reanalysis for 1979-2022, 

841  we conducted similar retrospective 21-month forecasts for the period  of January 1979–October 

842  2023. The hindcast skills of Niño3 and Niño4 indices are better than those  from  the NMME  

843  dynamical models  and comparable  to the AI model. The forecasts of Niño3 and Niño4 indices 

844  were used to  define the El Niño types  in terms of the EP-type, CP-type,  and mixed-type, following 

100,8 
845  . The unified complex ENSO index (UCEI) is defined as  

846  𝑈𝐶𝐸𝐼 = (𝑁3 + 𝑁4) + (𝑁3 − 𝑁4)𝑖 = 𝑟𝑒𝜃𝑖, (9)  

847  where  

𝑟 = √(𝑁 + 𝑁 )2 + (𝑁 − 𝑁 )2848  3 4 3 4 , (10)  

849  and  

𝑁3 − 𝑁4 
 arctan 𝑤ℎ𝑒𝑛  𝑁3 + 𝑁 > 0 

𝑁 +  𝑁 4

  3 4 
850  𝜃 = (11) 

 𝑁3 − 𝑁4 
arctan − 𝜋 𝑤ℎ𝑒𝑛  𝑁3 + 𝑁4 < 0 

{ 𝑁3 + 𝑁4 

851  where 𝑁3   and 𝑁4   denote the Niño3 and Niño4 indices, respectively;  The  El Niño type is 

852  determined from  𝜃  as follows:  

15° ≤ 𝜃 < 90° 𝐸𝑃  𝐸𝑙  𝑁𝑖𝑛𝑜 
853  { −15° ≤ 𝜃 < 15° 𝑀𝑖𝑥𝑒𝑑  𝐸𝑙  𝑁𝑖𝑛𝑜} . (12)  

−90° ≤ 𝜃 < −15° 𝐶𝑃  𝐸𝑙  𝑁𝑖𝑛𝑜 

854  We also conducted out-of-sample XRO2 ENSO type reforecasts by fitting on 1950-1990 with the 

855  multi-products ensemble mean indices and verifying on 1991-2022 (Supplementary Table  3).  
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856 With the forecasted ten SSTA indices, the pantropical SSTA (30°S-30°N) at each grid point 

857 (SSTAj) can be predicted using the seasonal regression model: 

858 SSTAj = 𝑐0𝑿 + 𝐴𝑐𝑿 cos𝜔𝑡 + 𝐴𝑠𝑿 sin𝜔𝑡 + 𝐵𝑐𝑿 cos 2𝜔𝑡 + 𝐵𝑠𝑿 sin 2𝜔𝑡 , (13) 

859 where 𝑐0, 𝐴𝑐, 𝐴𝑠, 𝐵𝑐, and 𝐵𝑠 have ten coefficients associated with each SSTA index, respectively. 

860 We also conducted the cross-validated XRO2 forecasts and pantropical SSTA forecast by 

861 excluding 3-year data out and trained XRO2 operators and SSTA regression coefficients, then 

862 forecasts for each month during the years not included in the model fitting. 

863 Further details are provided in the Supplementary Information, relying on references101-113. 

864 Data availability 

865 Datasets used in this paper are freely available. Observational data: links in Supplementary Table 

866 2. NMME: https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/; 3D-Geoformer ENSO 

867 AI model forecast: http://msdc.qdio.ac.cn/data/metadata-special-

868 detail?id=1602252663859298305; CESM1 LENS: https://www.cesm.ucar.edu/community-

869 projects/lens/data-sets; CESM2 LENS: https://www.cesm.ucar.edu/community-

870 projects/lens2/data-sets; MPI-ESM LENS: https://esgf-data.dkrz.de/projects/mpi-ge/; CMIP5 

871 outputs: https://esgf-node.llnl.gov/projects/cmip5/; and MIROC6 LENS and CMIP6 outputs: 

872 https://esgf-node.llnl.gov/projects/cmip6/. All the map figures (Fig. 1a,c,d, and Supplementary 

873 Figs. 1, 2, 14) were generated using python Cartopy version 0.22.0 

874 (https://zenodo.org/records/8216315). The source data for figures in the main text is available at 

875 https://doi.org/10.5281/zenodo.10951443. 

876 Code availability 

877 The XRO model code is deposited at https://doi.org/10.5281/zenodo.10681114. The code to 

878 calculate the predictive skill is available at https://github.com/pangeo-data/climpred. 
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1045 

1046 Extended Data Legends 

1047 Extended Data Fig. 1| Seasonally-modulated strength of mode interactions in observations 

1048 and CMIP5/6 models, as diagnosed from the linear part of the XRO model. (a) ENSO 

1049 recharge-oscillator coefficients, (b) Coupling processes denoted by the contribution of other modes 

1050 to the tendencies of ENSO SSTA and WWV anomalies, (c) ENSO-forced processes denoted by 

1051 the contribution of ENSO SSTA and WWV anomalies to the SSTA tendency of other modes, (d) 

1052 Interactions among NPMM, SPMM, IOB, IOD, SIOD, TNA, ATL3, and SASD. The coefficient 

1053 𝐿𝑖𝑗 has been normalized by a factor of 𝜎𝑗/𝜎𝑖, where 𝜎𝑖 and 𝜎𝑗 are the monthly standard deviations 

1054 of the indices in row 𝑖 and column 𝑗, respectively, so that all coefficients are comparable, and the 
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1055 units are year -1. The diagonal panels (blue frames) show the damping rate for each index. The 

1056 black curves with shading show the XRO fit to the ORAS5 reanalysis (with 10%-90% spread band 

1057 from the cross-validated fitting excluding 3-year data, see “Cross-validated reforecasts” in 

1058 Methods), and the red curves with shading show the ensemble mean with 10%-90% spread band 

1059 of the 91 CMIP5/6 historical simulations. ENSO can be strongly driven by climate modes in 

1060 extratropical Pacific, Indian Ocean, and Atlantic Ocean, which in some seasons are as important 

1061 as the dynamics internal to the equatorial Pacific. Most of the non-ENSO modes are more strongly 

1062 driven by ENSO (and their own damping) than by any of the other non-ENSO modes in other 

1063 basins. The climate models underestimate the strength of most of the mode interactions and miss 

1064 the seasonality. 

1065 Extended Data Fig. 2| Decadal change in the ENSO forecast correlation skill. a, The all-

1066 months correlation skill of the 3-month running mean Niño3.4 index verified on 1950-1970 for 

1067 the out-of-sample XRO fitted on 1973-2022 (red curve), out-of-sample nRO fitted on 1973-2022 

1068 (magenta curve), in-sample XRO fitted on 1950-1970 (black dashed curve) and in-sample XRO 

1069 fitted on the full-period 1950-2022 (blue dashed curve). The bottom inset shows the time series of 

1070 Niño3.4 index for out-of-sample training (blue) and verifying (orange) periods, respectively. b-c, 

1071 same as a, but verifying on 1972-1992 and 2002-2022, respectively. The XRO is superior to the 

1072 nRO regardless the verifying periods and decadal changes of ENSO forecast skill. 

1073 Extended Data Fig. 3| Test of additivity (i.e., linearity) of the sensitivity experiments. a, 

1074 Regression slope and linear correlation coefficients for the Niño3.4 SSTA forecasts between the 

1075 effects of the uninitialized ExPO+IO+AO experiment (XRO − 𝑈ExPO+IO+AO) and the sum of the 

1076 effects of the individual uninitialized ExPO, IO, and AO experiments (3 ∗ XRO − 𝑈ExPO − 𝑈IO − 

1077 𝑈AO). b and c, same as a, but for decoupling experiments (XRO − 𝐷ExPO+IO+AO vs. 3 ∗ XRO − 

1078 𝐷ExPO − 𝐷IO − 𝐷AO) and relaxing towards observation experiments (XRO − 𝑅ExPO+IO+AO vs. 3 ∗ 

1079 XRO − 𝑅ExPO − 𝑅IO − 𝑅AO), respectively. d, e the all-months correlation skill (d) and RMSE (e) 

1080 of the 3-month running mean Niño3.4 index, as a function of the forecast lead month in the control 

1081 experiment (black line) and sensitivity experiments: the uninitialized ExPO+IO+AO experiment 

1082 (solid red line) and sum of uninitialized ExPO, IO, and AO individually (dashed red line), the 

1083 decoupling ExPO+IO+AO experiment (solid blue line) and sum of decoupling ExPO, IO, and AO 

1084 individually (dashed blue line), and the relaxing ExPO+IO+AO to observation experiment (solid 

1085 magenta line) and sum of relaxing ExPO, IO, and AO to observation individually (dashed magenta 

1086 line). The individual basin uninitialized experiments are additive with the slopes and correlations 
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1087 at all lead months being very close to 1. But the individual basin decoupling experiments and the 

1088 individual relaxation towards observations experiments are not additive, owing to a nonlinear 

1089 dependence on the operator parameters. The sum of the effects of decoupling ExPO, IO, and AO 

1090 individually is much larger than the effect of decoupling ExPO+IO+AO, suggesting that the 

1091 decoupling experiment framework overestimates the contribution of each basin, given the presence 

1092 of indirect pathways due to interactions among basins. 

1093 Extended Data Fig. 4| Influence of the memory effect outside the equatorial Pacific on ENSO 

1094 forecast skill. Shown are the all-months correlation skill (a) and RMSE (b) of the 3-month running 

1095 mean Niño3.4 index, as a function of the forecast lead month in the XRO forecast (black), the nRO 

1096 forecast (grey triangle), and the “Losing memory” sensitivity experiments (colour curves) by 

1097 adding different damping rates (ranging from a strong damping rate of –(5 day)-1 implying no 

1098 memory to a weak damping rate of –(360 day)-1 implying longer memory) to the non-ENSO modes 

1099 (See “Losing memory experiments” in Methods). The initial condition memory effect of the 

1100 climate modes outside equatorial Pacific extends the skill of ENSO forecasts. 

1101 Extended Data Fig. 5| Contribution of each climate mode’s initialization to ENSO correlation 

1102 skill. Shown is the forecast skill difference of the Niño3.4 SSTA index, as a function of initial time 

1103 and target month, between the control and uninitialized climate mode sensitivity experiments for 

1104 the NPMM, SPMM, IOB, IOD, SIOD, TNA, ATL3, and SASD, respectively. The contributions 

1105 of the IOD, NPMM, and TNA dominate the ENSO forecast skill improvement. 

1106 Extended Data Fig. 6| Impacts of climate-mode initialization to ENSO forecasts. Shown is the 

1107 difference of Niño3.4 SSTA (shading) and WWV anomalies (contours with interval of 0.6 m, 

1108 positive in red and negative in black dashed, zero omitted), as a function of forecast lead and target 

1109 time, between control and uninitialized climate mode experiments for NPMM, SPMM, IOB, IOD, 

1110 SIOD, TNA, ATL3, and SASD, respectively. Vertical reference dashed lines denote December of 

1111 El Niño (red) and La Niña (blue) years, respectively. The normalized time series of each climate 

1112 mode SSTA index is indicated in the bottom axis; the black arrows indicate the flow of forecast 

1113 integration started from the selected time in the bottom. The XRO sensitivity experiments quantify 

1114 how the initial states of key climate modes affect subsequent ENSO events. 

1115 Extended Data Fig. 7| Impacts on ENSO forecast skill of correcting biases in the XRO 

1116 parameters fitted to individual CMIP simulations. Shown is the difference of the all-months 

1117 correlation skill for the Niño3.4 SSTA index, between the corrected-parameter forecast experiment 
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1118 and the XROm experiment trained solely on CMIP model outputs. (a) Effect of correcting linear 
𝑚 𝑚 

1119 operators (XRO𝑳 - XROm), (b) effect of correcting ENSO internal linear dynamics (XRO𝑳ENSO 
-

𝑚 
1120 XROm), (c) effect of correcting remote climate mode feedbacks onto ENSO (XRO𝑪1 

- XROm), and 

𝑚 
1121 (d) effect of correcting ENSO teleconnections to remote climate modes (XRO𝑪2 

- XROm). The 

1122 model is sorted by the averaged correlation skill of the XROm forecast at 6-15 lead months. 

1123 Reforecasts using the XRO trained on global climate model output show that correcting CGCMs’ 

1124 dynamical biases in ENSO and climate mode interactions lead to more skilful ENSO forecasts. 

1125 Most important is correcting ENSO biases (which improves skill at longest lead-times), followed 

1126 by correcting the remote climate mode impact on ENSO (which improves skill at intermediate 

1127 leads). Less skill is gained by improving ENSO’s teleconnection to the remote modes. 

1128 Extended Data Fig. 8| Correlation forecast skill for the Indian Ocean Dipole, using the XRO 

1129 trained with climate model outputs. (a) The correlation skill of the IOD index in Sep-Oct-Nov 

1130 (SON) as a function of forecast lead, in the XROm trained solely on 91 individual CMIP model 

1131 outputs (grey curves), the XRO trained on observations (red curve), and the original (not XRO) 

1132 multi-model mean of the ensemble means of the forecasts from the NMME models (black). (b) the 

1133 ensemble mean and 10%-90% spread band of the changes in correlation skill for the IOD index, 
𝑚 

1134 obtained by correcting the ENSO internal linear dynamics (XRO𝑳ENSO 
- XROm, red), or the remote-

𝑚 
1135 mode feedbacks onto ENSO (XRO𝑪1 

- XROm, magenta), or the ENSO teleconnections to remote 

𝑚 
1136 modes (XRO𝑪2 

- XROm, blue). Reforecasts using the XRO trained on climate model output show 

1137 that reducing CGCM biases in the dynamics of ENSO’s climate mode interactions improves IOD 

1138 forecasts. 

1139 Extended Data Table 1| Details of the XRO forecasting experiments based on observations 

1140 (1979-2022). 

1141 Extended Data Table 2| Details of the XRO forecasting experiments using global climate model 

1142 output as training data. 

1143 

44 



0°E

0°E

(0)J(1
) N

iño3.4

MAM(0) W
WV

MAM(0) N
PMM

MAM(0) S
PMM

D(-1)JF
(0) IO

B

SON(-1) IO
D

D(-1)JF
(0) S

IOD

MAM(0) TNA

JJA
(0) A

TL3

MAM(0) S
ASD

 

a cObserved SSTA standard deviation 1997/98 DJFM precipitation anomalies
60°N30°N 

45°N1.420°N 

30°N1.210°N 

1.0 15°N0° 

0.8 0°10°S 
0.6 

20°S 15°S 
0.4 

30°S 30°S0.2 

0°E 60°E 120°E 180° 120°W 60°W60°E 120°E 180° 120°W 60°W 0°W 

b Comparison of potential precursor values in 1997/98 and 2015/16 El Niño events d 2015/16 DJFM precipitation anomaliesEquatorial Pacific Extratropical Pacific Indian Ocean Atlantic Ocean 60°N3 
45°N1997/98

2 2015/16 30°N 

1 15°N 

0 0° 

1 
15°S 

2 30°S 

0.52 0.45 0.09 -0.23 -0.30 0.27 -0.38 -0.41 0.413 0°E 60°E 120°E 180° 120°W 60°W 

300 200 100 80 60 40 40 60 80 100 200 300 
% 

Va
lue

s (
s.d

.) 

ND



1.2 

0.9 

0.6 

0.3 

0.6 

0.4 

0.2 

0.0 

0.2 

0.4 

0.6 

0.6 

0.4 

0.2 

0.0 

0.2 

0.4 

0.6 

a b 1.0m Out-of-sample Niño3.4 forecast skill (2002-2022)c nRO fitted on 1950-99 
XRO fitted on 1950-99 

 

 

DYN AVG0.80.3 

0.4 AI(2002-2021)0.9 XRO fitted on 1979-2022 

1.5 

1.0 STAT AVG 
AUS POAMA0.7 ECMWF 
JMA0.20.5 0.6 KMA SNU 

Cr
os

s-
co

rre
lat

ion
 w

ith
 N

iño
3.

4 
Cr

os
s-

co
rre

lat
ion

 w
ith

 N
iño

3.
4 

Cr
os

s-
co

rre
lat

ion
 w

ith
 N

iño
3.

4 
Ni

ño
3.

4 
sta

nd
ar

d 
de

via
tio

n 
(°C

) 

Cr
os

s-
co

rre
lat

ion
 w

ith
 N

iño
3.

4 
Cr

os
s-

co
rre

lat
ion

 w
ith

 N
iño

3.
4 

Cr
os

s-
co

rre
lat

ion
 w

ith
 N

iño
3.

4 
Ni

ño
3.

4 
sp

ec
tra

l v
ar

ian
ce

 (°
C2 ) 

Cr
os

s-
co

rre
lat

ion
 w

ith
 N

iño
3.

4 
Cr

os
s-

co
rre

lat
ion

 w
ith

 N
iño

3.
4 

Cr
os

s-
co

rre
lat

ion
 w

ith
 N

iño
3.

4 
Ni

ño
3.

4 
sk

ew
ne

ss
 

Co
rre

lat
ion

 sk
ill 

Co
rre

lat
ion

 sk
ill

LDEO0.5 MetFRANCE 
NASA GMAO0.1 

0.0 

ORAS5 0.0 0.4 SCRIPPS 
UKMO 
CDC LIM 
CPC CA 

XRO 0.3 
0.0 0.5 CPC CCA 

CPC MRKOV0 2 4 6 8 10 0.2 

Period (year) CSU CLIPR 
FSU REGR 
UBC NNET 

0.1

Ap
r

M
ay Ju
n Ju
l

Au
g

Se
p

Oc
t

No
v

De
c

Ja
n

Fe
b

M
ar Ap
r

M
ay Ju
n Ju
l

Au
g

Se
p

Oc
t

No
v

De
c

Ja
n

Fe
b

M
ar

 

Calendar month Calendar month 
0.0 2 3 4 5 6 7 8 9 10 11 12 13 14 15WWV e NPMM f SPMM UCLA-TCDd Forecast lead (months)0.8 0.8 0.8 

ENSO onset | ENSO decay 

24 18 12 6 0 6 12 18 24 

ENSO onset | ENSO decay 

24 18 12 6 0 6 12 18 24 

ENSO onset | ENSO decay 

24 18 12 6 0 6 12 18 24 

1.0n In-sample Niño3.4 forecast skill (1979-2022)0.6 

0.4 

0.2 

0.0 

0.2 

0.4 

0.6 

0.6 

0.4 0.9 
0.2 

0.8 
nRO 
XRO 
AI(1983-2021)
NMME(1981-2021)
CanCM3(1981-2019)
CanCM4(1981-2019)
CCSM4(1982-2017)
CFSv2(1982-2021)
GEM-NEMO(1981-2020)
GFDL(1982-2021)
GFDL-FLOR(1981-2021)
GFDL-SPEAR(1991-2020)
NASA-GEOSS2S(1981-2020)

0.0 

0.2 

0.4 

0.6 

0.7 

0.6 

0.5 

Lag (month) Lag (month) Lag (month) 0.4 

0.3 
g IOB h IOD i SIOD 

0.8 0.80.8 0.21 3 5 7 9 11 13 15 17 19 21 

ENSO onset | ENSO decay 

24 18 12 6 0 6 12 18 24 

ENSO onset | ENSO decay 

24 18 12 6 0 6 12 18 24 

ENSO onset | ENSO decay 

24 18 12 6 0 6 12 18 24 

0.6 

0.4 

0.2 

0.0 

0.2 

0.4 

0.6 

0.6 Forecast lead (months) 
o Seasonality of in-sample Niño3.4 correlation skill in nRO (1979-2022) 

Mar 

Seasonality of in-sample Niño3.4 correlation skill in XRO (1979-2022) 

May⁰ Aug⁰ Nov⁰ Feb¹ May¹ Aug¹ Nov¹ Feb² May² Aug² Nov² 

May⁰ Aug⁰ Nov⁰ Feb¹ May¹ Aug¹ Nov¹ Feb² May² Aug² Nov² 
Target month 

0.4 

0.2 Feb 
Jan0.0 Dec 
Nov 

In
itia

l ti
m

e 
In

itia
l ti

m
e

0.2 

0.4 

0.6 

Oct 0.9 
Sep
Aug
Jul 0.8 

Jun 
Lag (month) Lag (month) Lag (month) May

Apr 

Co
rre

lat
ion

 sk
ill

0.7 

0.6
j TNA k ATL3 l SASD 

0.8 0.8 

ENSO onset | ENSO decay 

0.8 

ENSO onset | ENSO decay 

24 18 12 6 0 6 12 18 24 

ENSO onset | ENSO decay 

24 18 12 6 0 6 12 18 24 

p
Mar0.6 0.6 
Feb 0.50.4 0.4 Jan 
Dec 

0.2 0.2 Nov 
Oct 0.4 

0.0 0.0 

0.2 0.2 

Sep
Aug
Jul 0.3 

0.4 0.4 
Jun 

0.6 0.6 24 18 12 6 0 6 12 18 24 

May
Apr 

Lag (month) Lag (month) Lag (month) Target month 

0.6 

0.4 

0.2 

0.0 

0.2 

0.4 

0.6 

 



a Niño3.4 correlation forecast skill
1.0 

0.8 

0.6 

0.4

co
rre

lat
ion

 sk
ill 

0.2 

0.0 

control experiment (XRO) 
uninitialized ExPO+IO+AO (UExPO + IO + AO) 
decoupled ExPO+IO+AO (DExPO + IO + AO) 
relaxing ExPO+IO+AO towards observation (RExPO + IO + AO) 

1 3 5 7 9 11 13 15 17 19 21 
Forecast lead (months) 

  
      

      

        

Effect of ExPO+IO+AO's couplings Effect of ExPO+IO+AO initial conditions Effect of ENSO induced couplingsb (XRO − DExPO + IO + AO) c (XRO − UExPO+ IO + AO) d (UExPO+ IO + AO − DExPO + IO + AO) 
Mar Mar Mar 
Feb Feb Feb 
Jan Jan Jan 
Dec Dec Dec 
Nov 

In
itia

l ti
m

e 
In

itia
l ti

m
e Nov 

In
itia

l ti
m

e 
In

itia
l ti

m
e Nov 

Oct Oct Oct 
Sep Sep Sep 
Aug Aug Aug 
Jul Jul Jul 

Jun Jun Jun 
May May May 
Apr Apr Apr 

May0 Aug0 Nov0 Feb1 May1 Aug1 Nov1 Feb2 May2 Aug2 Nov2 May0 Aug0 Nov0 Feb1 May1 Aug1 Nov1 Feb2 May2 Aug2 Nov2 May0 Aug0 Nov0 Feb1 May1 Aug1 Nov1 Feb2 May2 Aug2 Nov2 

Target month Target month Target month 

Effect of ExPO initial conditions Effect of IO initial conditions Effect of AO initial conditions e (XRO − UExPO) f (XRO − UIO) g (XRO − UAO) 
Mar Mar Mar 
Feb Feb Feb 
Jan Jan Jan 
Dec Dec Dec 
Nov Nov Nov 
Oct Oct Oct 
Sep Sep Sep 
Aug Aug AugIn

itia
l ti

m
e 

In
itia

l ti
m

e 

Jul Jul Jul 
Jun Jun Jun 
May May May 
Apr Apr Apr 

May0 Aug0 Nov0 Feb1 May1 Aug1 Nov1 Feb2 May2 Aug2 Nov2 May0 Aug0 Nov0 Feb1 May1 Aug1 Nov1 Feb2 May2 Aug2 Nov2 May0 Aug0 Nov0 Feb1 May1 Aug1 Nov1 Feb2 May2 Aug2 Nov2 

Target month Target month Target month 

     

      

     

      

     

          

     

  

     

  

     

  

0.25 0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20 0.25 
 correlation skill difference



 

Composites of contribution of various initializationl in El Niño and La Niña events

El Niño 

La Niña
MAM(0) Niño34 

MAM(0) WWV 

A
tla

nt
ic

 O
ce

an
 

In
di

an
 O

ce
an

 
Ex

tr
at

ro
pi

ca
l P

ac
ifi

c 
Eq

ua
to

ria
l P

ac
ifi

c 

MAM(0) NPMM

MAM(0) SPMM 

D(-1)JF(0) IOB

SON(-1) IOD

D(-1)JF(0) SIOD 

MAM(0) TNA 

5 JJA(0) ATL3

MAM(0) SASD

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 
Niño3.4 SST anomaly (°C) 

Effect of NPMM's initial condition Effect of IOB's initial condition Effect of IOD's initial condition Effect of SIOD's initial conditiond e f g(XRO − UNPMM ) (XRO − UIOB) (XRO − UIOD) (XRO − USIOD)
21 21 21 21 

18 

15 

12 

9 

6 

3 

0 

18 

15 

12 

9 

6 

3 

0 

18 

15 

12 

9 

6 

3 

0 

18 

Fo
re

ca
st 

lea
d 

(m
on

th
s)

 
Fo

re
ca

st 
lea

d 
(m

on
th

s)
 

Fo
re

ca
st 

lea
d 

(m
on

th
s)

 
Fo

re
ca

st 
lea

d 
(m

on
th

s)
 

Fo
re

ca
st 

lea
d 

(m
on

th
s)

 
Fo

re
ca

st 
lea

d 
(m

on
th

s)

15 

12 

9 
0.4 

Ni
ño

3.
4 

SS
T 

an
om

aly
 d

iffe
re

nc
e 

(°C
)6 

3 

0.20 

97/98 98/99/00 97/98 98/99/00 97/98 98/99/00 97/98 98/99/00 

Effect of SPMM's initial condition Effect of TNA's initial condition Effect of ATL3's initial condition Effect of SASD's initial condition 0.0h i j k(XRO − USPMM ) (XRO − UTNA ) (XRO − UATL3) (XRO − USASD)
21 21 21 21 

18 18 18 

15 15 15 

12 12 12 

9 9 9 

6 6 6 

3 3 3 

0 0 0 

97/98 98/99/00 97/98 98/99/00 97/98 98/99/00 97/98 98/99/00 

1996 1997 1998 1999 2000 2001 1996 1997 1998 1999 2000 2001 1996 1997 1998 1999 2000 2001 1996 1997 1998 1999 2000 2001 

0.6 

18 0.2 

15 

12 0.4 
9 

6 
0.6 

3 

0 

0.5 

0.
5

 
0.5 

0.
5

 0.
5

 0.
5

0.
5

 0.
5

 0.
5

 0.
5

15 0.5 0.5 0.5 0.
5

 0.
5

 

0.
5

 0.
5

0.
5

 0.50.
5

0.
5

 

0.
5

 

0.5
 

0.
5

 0.
5

0.
5

 0.
5

0.
50.5

 

0.5 0.
5 0.5

0.
5

0.5 0.
5 0.
5

 0.5 0.5 

0.
5

 3 
0 

0.5 0.5 0.5 

0.
5

 0.
5

 

0.5 0.
5

 

0.5 0.
5

 0.
5

 0.
5

 0.
5

0.5 0.5 0.5 0.5 0.5 0.
5

 0.
5

 0.5 0.5 0.5 0.
5

0.5 0.
5

 0.5 0.
5

0.
5

0.
5

0.
5

 

0.
5

 

0.5 0.5 

0.50.5 

0.5 0.
5

0.
5

 

0.5
 

0.5 

0.
5

 

0.50.
5

 

0.5
 

0.
5

 0.5 0.5

0.
5 0.5 0.5

0.
5 0.50.5 0.

50.
5

0.5 0.
5 0.5 0.5 

0.
5

 0.5 0.
5

 0.
5

 

0.
5

 

Fo
re

ca
st 

lea
d 

(m
on

th
s)

 
Fo

re
ca

st 
lea

d 
(m

on
th

s)
 

Fo
re

ca
st 

lea
d 

(m
on

th
s)

 
Fo

re
ca

st 
lea

d 
(m

on
th

s)
 

Fo
re

ca
st 

lea
d 

(m
on

th
s)

 

a XRO Niño3.4 SSTA forecasts 
21 
18 

12 
9 
6 

83/84 86/87 88/89 91/92 94/95 95/96 97/98 98/99/00 02/03 07/08 09/10 10/11 15/16 18/19 20/21/22 23/24 

b DExPO + IO + AO Niño3.4 SSTA forecasts 
21 
18 
15 
12 

9 
6 
3 
0 83/84 86/87 88/89 91/92 94/95 95/96 97/98 98/99/00 02/03 07/08 09/10 10/11 15/16 18/19 20/21/22 23/24 

c UExPO + IO + AO Niño3.4 SSTA forecasts 
21 
18 
15 
12 

9 
6 
3 

07/080 83/84 86/87 88/89 91/92 94/95 95/96 97/98 98/99/00 02/03 09/10 10/11 15/16 18/19 20/21/22 23/24 

1985 1990 1995 2000 2005 2010 2015 2020 202
Target time 

-3 -2 -1 0 1 2 3 
Niño3.4 SST anomaly (°C) 



1.0 

co
rre

lat
ion

 sk
ill 

a Niño3.4 correlation forecast skill 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

XROm trained on observation 

XROm trained on 91 CMIP models 

NMME 

1 3 5 7 9 11 13 15 17 19 
Forecast lead (months) 

0.0 

b Niño3.4 correlation forecast skill difference 

−0.2 

−0.1 

0.0 

0.1 

0.2 

co
rre

lat
ion

 sk
ill 

dif
fe

re
nc

e 

Effect of correcting LENSO 

Effect of correcting C1 

Effect of correcting C2 

1 3 5 7 9 11 13 15 17 19 
Forecast lead (months) 

21 

21 



 

Supplementary  Information for 
“Explainable El  Niño predictability  from  climate  mode  interactions”  
Sen Zhao1, Fei-Fei Jin1,2, Malte F. Stuecker3,2, Philip R. Thompson3, Jong-Seong Kug4, Michael J. 
McPhaden5, Mark A. Cane6, Andrew T. Wittenberg7, Wenju Cai8,9,10,11  

1  Department  of  Atmospheric  Sciences,  School  of  Ocean  and  Earth  Science  and  Technology  (SOEST),  University  
of  Hawai’i  at  Mānoa,  HI,  USA  

2  International Pacific Research Center, SOEST, University of Hawaiʻi at Mānoa, Honolulu, HI, USA  
3  Department  of Oc eanography,  SOEST,  University  of  Hawaiʻi  at  Mānoa,  Honolulu,  HI,  USA  
4  School  of  Earth and Environmental  Sciences,  Seoul  National  University,  Seoul,  South Korea  
5  National  Oceanic  and  Atmospheric  Administration  (NOAA)/Pacific  Marine  Environmental  Laboratory,  Seattle,  
WA,  USA  

6  Lamont  Doherty Earth Observatory of  Columbia University,  Palisades,  NY,  USA  
7  NOAA/OAR/Geophysical  Fluid  Dynamics  Laboratory,  Princeton,  NJ,  USA  
8 Frontiers  Science  Center  for  Deep  Ocean  Multispheres  and  Earth  System,  Physical  Oceanography  Laboratory,  
and Sanya Oceanographic Institution,  Ocean University of  China,  Qingdao,  China   

9  Laoshan Laboratory,  Qingdao,  China 
10  State Key Laboratory of  Loess  and Quaternary Geology,  Institute of  Earth Environment,  Chinese Academy of  
Sciences,  Xi’an,  China  

11  State Key Laboratory of  Marine Environmental  Science & C ollege of  Ocean and Earth Sciences,  Xiamen 
University,  Xiamen,  China  

 

Correspondence and requests for materials should be addressed to Fei-Fei Jin (jff@hawaii.edu) 

 
 
Contents: 

•  Supplementary Text 1 
•  Supplementary Tables 1-5 
•  Supplementary Figures 1-18 
•  References in Supplementary Information 

 
 
 
  

1 

mailto:jff@hawaii.edu


 

 

 

 
   

  
   

 

 
 

  
 

    
  

  

 

 
 

  

 

 

Supplementary Text 

Supplementary Text 1. Efficacy of the XRO in simulating ENSO and other climate modes 

First, the XRO captures the observed seasonal synchronization of ENSO, with the Niño3.4 SSTA 
standard deviation peaking in November-December-January (Fig. 2a). This seasonal synchronization is 
primarily governed by the seasonal modulation of the SSTA growth rate due to the tropical Pacific 
background seasonal cycle (Stein et al. 2014; Chen and Jin 2021; Levine and McPhaden 2015). Second, 
the XRO successfully replicates El Niño-La Niña asymmetry, manifesting as positively skewed Niño3.4 
SSTAs (Fig. 2b). This asymmetry arises from multiple nonlinear physical processes, such as oceanic 
nonlinear dynamical heating (An and Jin 2004; An et al. 2020) and nonlinear SST-wind stress coupling 
due to the nonlinear dependence of deep convection on SST (Kang and Kug 2002; Choi et al. 2013; Geng 
et al. 2020). Third, the observed ENSO periodicity is reasonably captured, with a Niño3.4 spectral peak 
at periods of 2-6 years (Fig. 2c).The XRO also captures the lead-time of warm water volume (WWV) 
anomaly ahead of ENSO SSTA by approximately 6-9 months (Fig. 2d), which is largely controlled by 
ENSO periodicity (Zhao et al. 2021). Fourth, the XRO generates the observed irregular interannual 
oscillations between El Niño and La Niña, including occurrences of single- and multi-year ENSO events 
(Supplementary Fig. 3). Various mechanisms governing multi-year ENSO occurrences have been well-
documented, including nonlinearity (Okumura et al. 2011; DiNezio and Deser 2014), ENSO-combination 
mode and anomalous Ekman transport (Iwakiri and Watanabe 2021, 2022), the NPMM and North Pacific 
Oscillation (Ding et al. 2022; Geng et al. 2023; Park et al. 2021; Kim et al. 2023), as well as inter-basin 
interactions with tropical Indian and/or Atlantic Oceans (Kim and Yu 2022). Notably, the XRO model 
incorporates all these elements either explicitly or implicitly (See “Extended Nonlinear Recharge-
Oscillator model (XRO)” in Methods). Fifth, the XRO accurately reproduces the rapid decline in ENSO 
SSTA autocorrelation across boreal spring, commonly referred to as the spring persistence barrier 
(Supplementary Fig. 4). 

The XRO reproduces the seasonal synchronization of the other climate modes that is seen in 
observations (Supplementary Fig. 5a-h), which in this model is largely caused by the seasonally varying 
damping rates of the individual modes, together with their coupled interactions (see diagonal axis in 
Extended Data Fig. 1). Notably, ENSO-driven processes play a pronounced role in the seasonal 
synchronization of some of the modes. For instance, the IOB warming, forced by El Niño, reaches its 
mature phase during boreal spring and summer, following the mature phase of El Niño (Supplementary 
Fig. 5c). The variance of the TNA peaks in boreal spring, due to both the seasonal modulation of its 
damping rate and the remote forcing from ENSO (Chen et al. 2021; Jiang et al. 2023). Moreover, the 
XRO reasonably reproduces the observed asymmetries of both the IOB and IOD, manifesting as positively 
skewed SSTAs in the central and western tropical Indian Ocean, and negatively skewed SSTAs in the 
eastern Indian Ocean near Java and Sumatra (Supplementary Fig. 5k-l). The positive skewness of the IOB 
primarily arises as a response to the skewed remote forcing from ENSO, while the IOD asymmetry is 
dominated by local nonlinear processes (An et al. 2023). Furthermore, the XRO accurately reproduces the 
observed seasonal autocorrelation of the other modes (Supplementary Fig. 6). 
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Supplementary Tables 

Supplementary Table 1. Definition of SST indices for climate modes used in the study. 

Climate Mode Acronym Description References 

El Niño-Southern Oscillation ENSO SSTAs averaged over Niño3.4 region 170°–120°W, 5°S–5°N (Trenberth 1997) 

North Pacific Meridional Mode NPMM SSTAs averaged over 160°-120°W, 10°-25°N (Richter et al. 2022) 

South Pacific Meridional Mode SPMM SSTAs averaged over 110°-90°W, 25°-15°S (Zhang et al. 2014) 

Indian Ocean Basin mode IOB SSTAs averaged over 40°–100°E, 20°S–20°N (Xie et al. 2009) 

Indian Ocean Dipole mode IOD SSTAs averaged over 50°–70°E, 10°S–10°N minus those (Saji et al. 1999) 

averaged over 90°–110°E, 10°S–0°N 

Southern Indian Ocean Dipole mode SIOD SSTAs averaged over 65°–85°E, 25°–10°S minus those (Jo et al. 2022) 

averaged over 90°–120°E, 30°–10°S 

Tropical North Atlantic variability TNA SSTAs averaged over 55°–15°W, 5°–25°N (Enfield et al. 1999) 

Atlantic Niño ALT3 SSTAs averaged over 20°W–0°E, 3°S–3°N (Nnamchi et al. 2015) 

South Atlantic Subtropical Dipole SASD SSTAs averaged over 60°–0°W, 45°–35°S minus those (Rodrigues et al. 2015) 

averaged over 40°W–20°E, 30°–20°S 
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Supplementary Table 2. Observational data used in the study. 

Dataset 
(Period) 

Variables Description and Reference Source 

HadISST 
(1871-2023) SST 

Hadley Centre Sea Ice and Sea Surface Temperature dataset 
version 1.1 (Rayner et al. 2003) 

https://www.metoffice.gov.uk/hadobs/hadisst/ 

ERSSTv5 
(1871-2023) SST 

Extended Reconstructed Sea Surface Temperature version 5 
(Huang et al. 2017) 

https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html 

COBE-SST2 
(1871-2023) SST 

Centennial in situ Observation-Based Estimates of Sea Surface 
Temperature version 2 (Hirahara et al. 2014) 

https://ds.data.jma.go.jp/tcc/tcc/products/elnino/cobesst_doc.html 

GECCO3 
(1950-2018) SST, Temp* 

German contribution to Estimating the Circulation and Climate 
of the Ocean version 3 (Köhl 2020) 

https://icdc.cen.uni-
hamburg.de/thredds/catalog/ftpthredds/EASYInit/GECCO3/regula 
r_1x1_grid/catalog.html 

GODAS 
(1950-2023) 

SST, Temp Global Ocean Data Assimilation System (Behringer and Xue 
2004) 

https://psl.noaa.gov/data/gridded/data.godas.html 

ORAS5 
(1958-2023) SST, Temp 

ECMWF Ocean Reanalysis System 5 (Zuo et al. 2019) https://doi.org/10.24381/cds.67e8eeb7 

ORA20C 
(1900-2009) 

SST, Temp 
ECMWF Ocean Reanalysis of the 20th Century (de Boisséson 
et al. 2018) 

https://www.cen.uni-hamburg.de/en/icdc/data/ocean/easy-init-
ocean/ecmwf-ensemble-of-ocean-reanalyses-of-the-20th-century-
ora-20c.html 

PEODAS 
(1960-2014) 

SST, Temp Predictive Ocean Atmosphere Model for Australia Ensemble 
Ocean Data Assimilation System (Yin et al. 2011) 

http://opendap.bom.gov.au:8080/thredds/catalogs/bmrc-poama-
catalog.html 

SODA224 
(1871-2010) 

SST, Temp Simple Ocean Data Assimilation Phase 2.2.4 (Carton and 
Giese 2008) 

https://apdrc.soest.hawaii.edu/dods/public_data/SODA 

ERA5 Surface air ECMWF Atmospheric Reanalysis v5 (Hersbach et al. 2020) https://doi.org/10.24381/cds.f17050d7 
(1979-2022) temperature 

CMAP 
(1979-2022) Precipitation 

Gridded precipitation from the Climate Prediction Center 
Merged Analysis of Precipitation (Xie and Arkin 1997) 

https://psl.noaa.gov/data/gridded/data.cmap.html 

*Temp is 3-dimensional ocean temperature 
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  Supplementary Table 3. El Niño type forecasts for the Nov-Dec-Jan target season, based on Niño3 and Niño4 indices at a 9-month lead-time. 

 Year  ORAS5 
  XRO2 fitted on 1979-2022 

 (lead=9) 

    XRO2 fitted on 1950-1990 

 (lead=9) 
  AI (lead=9)  NMME (lead=9) 

 1982  EP  EP  -  -  MIX 

 1986  MIX  MIX  -  MIX  MIX 

 1991  MIX  MIX  MIX  MIX  MIX 

 1997  EP  EP  EP  MIX  MIX 

 2002  MIX  MIX  MIX   Neutral state  MIX 

 2009  MIX  EP   Neutral state  MIX  MIX 

 2015  MIX  MIX  MIX  MIX  MIX 

 

Supplementary Table 4. Details of the NMME models used in this study. 

 Model    Name used here  Period   Ensemble size 
   Maximum lead time 

 (months) 

 CMC1-CanCM3  CanCM3   January 1981–December 2019  10  11 

 CMC2-CanCM4  CanCM4   January 1981–December 2019  10  11 

 COLA-RSMAS-CCSM4  CCSM4   January 1982–December 2017  10  11 

 NCEP-CFSv2  CFSv2 January 1982–July 2022   24  9 

 GEM-NEMO  GEM-NEMO   January 1981–December 2020  10  11 

 GFDL-CM2p1-aer04  GFDL   January 1982–December 2021  10  11 

 GFDL-CM2p5-FLOR-A06  GFDL-FLOR    March 1980–December 2021  12  11 

 GFDL-CM2p5-FLOR-B01  GFDL-FLOR    March 1980–December 2021  12  11 

 GFDL-SPEAR  GFDL-SPEAR   January 1991–December 2020  15  11 

 NASA-GEOSS2S  NASA-GEOSS2S   January 1981–December 2020  10  8 
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Supplementary Table 5. Lists of the 91 CMIP5/6 climate models used in this study. 

CMIP5 No. CMIP5 Models Member CMIP6 No. CMIP6 Models Member 
1 ACCESS1-0 r1i1p1 ACCESS-CM2 r1i1p1f1 
2 ACCESS1-3 r1i1p1 ACCESS-ESM1-5 r1i1p1f1 
3 bcc-csm1-1 r1i1p1 AWI-CM-1-1-MR r1i1p1f1 
4 bcc-csm1-1-m r1i1p1 BCC-CSM2-MR r1i1p1f1 
5 BNU-ESM r1i1p1 BCC-ESM1 r1i1p1f1 
6 CanESM2 r1i1p1 CAMS-CSM1-0 r1i1p1f1 
7 CCSM4 r1i1p1 CAS-ESM2-0 r1i1p1f1 
8 CESM1-BGC r1i1p1 CESM2 r4i1p1f1 
9 CESM1-CAM5 r1i1p1 CESM2-FV2 r1i1p1f1 
10 CESM1-FASTCHEM r1i1p1 CESM2-WACCM r1i1p1f1 
11 CESM1-WACCM r1i1p1 CESM2-WACCM-FV2 r1i1p1f1 
12 CMCC-CESM r1i1p1 CIESM r1i1p1f1 
13 CMCC-CM r1i1p1 CMCC-CM2-HR4 r1i1p1f1 
14 CMCC-CMS r1i1p1 CMCC-CM2-SR5 r1i1p1f1 
15 CNRM-CM5 r1i1p1 CMCC-ESM2 r1i1p1f1 
16 CSIRO-Mk3-6-0 r1i1p1 CNRM-CM6-1 r1i1p1f2 
17 FGOALS-g2 r1i1p1 CNRM-ESM2-1 r1i1p1f2 
18 FGOALS-s2 r1i1p1 CanESM5 r1i1p1f1 
19 FIO-ESM r1i1p1 E3SM-1-0 r1i1p1f1 
20 GFDL-CM3 r1i1p1 E3SM-1-1 r1i1p1f1 
21 GFDL-ESM2G r1i1p1 E3SM-1-1-ECA r1i1p1f1 
22 GFDL-ESM2M r1i1p1 EC-Earth3 r1i1p1f1 
23 GISS-E2-H-CC r1i1p1 EC-Earth3-Veg r1i1p1f1 
24 GISS-E2-H r1i1p1 FGOALS-f3-L r1i1p1f1 
25 GISS-E2-R-CC r1i1p1 FGOALS-g3 r1i1p1f1 
26 GISS-E2-R r1i1p1 FIO-ESM-2-0 r1i1p1f1 
27 HadCM3 r1i1p1 GFDL-CM4 r1i1p1f1 
28 HadGEM2-AO r1i1p1 GFDL-ESM4 r1i1p1f1 
29 HadGEM2-CC r1i1p1 GISS-E2-1-G r1i1p1f1 
30 HadGEM2-ES r1i1p1 GISS-E2-1-G-CC r1i1p1f1 
31 IPSL-CM5A-LR r1i1p1 GISS-E2-1-H r1i1p1f1 
32 IPSL-CM5A-MR r1i1p1 HadGEM3-GC31-LL r1i1p1f3 
33 IPSL-CM5B-LR r1i1p1 INM-CM4-8 r1i1p1f1 
34 MIROC5 r1i1p1 INM-CM5-0 r10i1p1f1 
35 MIROC-ESM-CHEM r1i1p1 IPSL-CM6A-LR r1i1p1f1 
36 MIROC-ESM r1i1p1 MIROC6 r1i1p1f1 
37 MPI-ESM-LR r1i1p1 MIROC-ES2L r1i1p1f2 
38 MPI-ESM-MR r1i1p1 MPI-ESM-1-2-HAM r1i1p1f1 
39 MPI-ESM-P r1i1p1 MPI-ESM1-2-HR r1i1p1f1 
40 MRI-CGCM3 r1i1p1 MPI-ESM1-2-LR r10i1p1f1 
41 MRI-ESM1 r1i1p1 MRI-ESM2-0 r1i2p1f1 
42 NorESM1-ME r1i1p1 NESM3 r1i1p1f1 
43 NorESM1-M r1i1p1 NorESM2-LM 

NorESM2-MM 
SAM0-UNICON 

TaiESM1 
UKESM1-0-LL 

NorCPM1 

r1i1p1f1 
r1i1p1f1 
r1i1p1f1 
r1i1p1f1 
r1i1p1f2 
r1i1p1f1 
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Supplementary Figures 

Supplementary Fig. 1| Observed differences in tropical SSTA pattern and evolution between the 
1997/98 and 2015/16 El Niño events derived from ORAS5 reanalysis. The SSTAs during (a) 1997 
MAM, (b) 2015 MAM, (c) 1997 JJA, (d) 2015 JJA, (e) 1997 SON, (f) 2015 SON, (g) 1997/98 DJF and 
(h) 2015/16 DJF. In each panel, the values of Niño3, Niño4, IOD, and NPMM SSTAs are indicated in the 
corresponding boxes, and the value of Niño3.4 is indicated in the title. The 1997/98 and 2015/16 El Niño 
events have different SSTA patterns in the central and far eastern equatorial Pacific, as well as different 
associated IOD and NPMM intensities. The 1997 event exhibits eastern Pacific El Niño characteristics 
with the warmest SSTAs in the far eastern equatorial Pacific and a strong concurrent IOD, partly due to 
stronger WWV preconditioning. In 2015, the SSTA peak is located closer to the central Pacific, possibly 
due to the strong coupling of the NPMM and central equatorial Pacific SST. 
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Supplementary Fig. 2| Observed surface air temperature (SAT) anomalies for the 1997/98 and 
2015/16 El Niño events during December-March (DJFM). The (a) 1997/98 and (b) 2015/16 El Niño 
events were associated with different pan-Arctic SAT, consistent with Jeong et al. (2022). 
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Supplementary Fig. 3| ENSO time series in the observation and XRO stochastic simulation. The 3-
month running mean of Niño3.4 SSTA for (a) the ensemble mean of multiple observational SST datasets 
for 1923-2022 (Supplementary Table 2), and (b) the 10 consecutive centuries (numbered) from the XRO 
stochastic simulation. The red/blue shading denote the SSTA above 0.5 / below -0.5℃, respectively. The 
XRO stochastic simulation reproduces the irregular interannual oscillations between El Niño and La Niña. 
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Supplementary Fig. 4| Seasonal autocorrelation of Niño3.4 SST index. Correlations of Niño3.4 index 
with itself, as a function of initialization month (ordinate) and target month (abscissa) for the ORAS5 
reanalysis (1979-2022) (a) and for the XRO stochastic simulations (b, ensemble mean). Hatching 
highlights correlation skills less than 0.5. The dashed vertical blue lines denote the spring predictability 
barrier season. The XRO accurately reproduces the rapid decline in ENSO SSTA autocorrelation across 
boreal spring. 
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Supplementary Fig. 5| Seasonal statistics of SSTA indices for the other climate modes. a-h, 
Seasonally varying standard deviation of the SSTA indices for the NPMM, SPMM, IOB, IOD, SIOD, 
TNA, ATL3, and SASD, respectively, in the ORAS5 observations (1979-2022) (bars) and the XRO 
stochastic simulations (red curves). Red shading indicates the 10%-90% spread bands of simulated 43-
year epochs, obtained from splitting a 43,000-year XRO simulation into 1000 non-overlapping blocks. 
The month of peak standard deviation for each observed mode is indicated in green. i-p, Same as a-h, but 
for seasonally varying skewness. The XRO accurately simulates the observed seasonal synchronization of 
specific climate modes, and reasonably reproduces the observed warm/cold asymmetries of both the IOB 
and IOD. 
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Supplementary Fig. 6| Seasonal autocorrelation of SSTA indices for other climate modes. 
Correlations of each index with itself, as a function of initialization month (ordinate) and target month 
(abscissa) for the ORAS5 reanalysis (1979-2022) (upper row) and for the XRO stochastic simulations 
(bottom row, ensemble mean). Hatching highlights correlation skills less than 0.5. The XRO accurately 
reproduces the seasonal autocorrelation structures of the other climate modes. 
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Supplementary Fig. 7| ENSO’s lead-lag relationship with equatorial Pacific warm water volume 
(WWV) index and SSTA indices of other climate modes in CMIP historical simulations. Shown as 
monthly cross-correlations of each index with the lagged Niño3.4 index in ORAS5 reanalysis (1979-2022) 
(black) and CMIP5/6 historical simulations (1900-1999) (ensemble mean in red curves; red shading 
indicates the 10%-90% spread bands of 91 individual models). The dashed curves show the ensemble 
mean autocorrelation of Niño3.4 index in CMIP5/6 historical simulations (shading indicates the 10%-90% 
spread bands of 91 individual models). Abscissas are the lead-time, with negative values representing 
months for which the Niño3.4 index lags, and positive values representing months for which the Niño3.4 
index leads. It is challenging for climate models to realistically simulates the observed ENSO SSTA lead-
lag relationship with WWV anomalies and the SSTA indices for the other climate modes, especially for 
WWV index and Atlantic Ocean SST indices. 
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Supplementary Fig. 8| Robustness of the XRO parameter fitting and reforecasting ENSO. a, the all-
months correlation skill of the 3-month running mean Niño3.4 index during 1979-2022 as a function of 
forecast lead for the XRO control forecast (black curve) and cross-validated XRO forecast that excluded 
from 2 to 7 years data (coloured curves), the mean skill difference between cross-validated XRO forecast 
and control forecast (bars). The dashed lines indicate 0.5, 0.1, and zero correlation skills. b-d, Same as a, 
but for skill for LENS perfect model “Same-Member” and “Cross-Member” experiments for CESM1, 
CESM2, MIROC6, and MPI-ESM during 1959-2002, respectively (See “Large ensemble simulations and 
perfect model reforecasting experiments” in Methods). The shadings denote the 10%-90% spread among 
the ensemble members within each LENS. The bottom bars denote the mean difference between “Same-
Member” and “Cross-Member” experiments with error bars denote the 10%-90% spread among the 
ensemble members within each LENS. The XRO fitting and reforested ENSO is robust with uncertainty 
in Niño3.4 correlation skill less than 0.1 within 21 lead months. 
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Supplementary Fig. 9| Seasonality of correlation forecast skill for ENSO. The correlation skills 
verified during 1979-2022 of various model forecasts of the Niño3.4 SSTA index, as a function of the 
start month (ordinate) and target month (abscissa; superscripts 0, 1, 2 denote the current and subsequent 
years, respectively), for the nRO (a), Cross-validated nRO (b), XRO (c), Cross-validated XRO (d), AI 
model (e), multi-model mean of NMME ensemble means (f), and ensemble means from individual 
dynamical models in the North American Multi-Model Ensemble (NMME)(g-o). Hatching highlights the 
forecasts with correlation skill less than 0.5. The dashed vertical blue lines denote the spring predictability 
barrier season. The nRO and most of the dynamical models exhibit a pronounced spring predictability 
barrier in May-June-July. The SPB is much less pronounced in the XRO, which is comparable in skill 
with the AI model in all seasons. 
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Supplementary Fig. 10| Root Mean Square Error (RMSE) forecast metric for ENSO. a, The all-
months RMSE forecasts verified on 2002-2022 of the 3-month running mean Niño3.4 SSTA index, as a 
function of the forecast lead month in the out-of-sample nRO fitted on 1950-1999 (magenta), out-of-
sample XRO fitted on 1950-1999 (red), the AI model, the XRO control fitted on 1979-2022 (black curve) 
and operational models aggregated by the International Research Institute for Climate and Society (IRI), 
ensemble mean of dynamical models (DYN AVG, dark purple curve), ensemble mean of statistical 
models (STAT AVG, dark cyan curve). b, same as a, but for RMSE skill of Niño3.4 forecasts verified  
1979-2022 in the in-sample nRO (magenta), in-sample XRO model (red), AI model (blue), dynamical 
models from the North American Multi-Model Ensemble (NMME) project (multi-model ensemble of 
NMME in black, ensemble mean from individual models in other colours); c-q, The relative RMSE of 
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Niño3.4 SSTA forecasts, normalized by the seasonally-varying standard deviation of the observations, as 
a function of the forecast start month (ordinate) and target month (abscissa; superscripts 0, 1, 2 denote the 
current and subsequent years, respectively), for the nRO, cross-validated nRO, XRO, cross-validated XRO, 
AI model, dynamical models from the North American Multi-Model Ensemble (NMME) project (multi-
model ensemble of NMME, ensemble mean from individual models). The dashed vertical blue lines 
denote the spring predictability barrier season. The superior efficacy of the XRO in ENSO forecasting is 
supported by the RMSE metric. 
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Supplementary Fig. 11| Comparison role of climate-mode interactions on Niño3.4 forecast between 
the component due to other climate modes’ initial state and the component due to the ENSO initial 
state. Shown are the differences of Niño3.4 SSTA (shading) as a function of forecast lead and target time 
between the control and uninitialized ExPO+IO+AO experiment (a), and between the uninitialized 
ExPO+IO+AO and decoupled ExPO+IO+AO experiment forecasts (b). Vertical reference dashed lines 
denote December of El Niño (red) and La Niña (blue) years, respectively. The observed normalized time 
series of Niño3.4 SSTA index is indicated in the bottom axis. In b, the arrows indicate the flow of forecast 
integration started from the selected time. The other climate modes mainly affect ENSO via their initial 
condition memory. 
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Supplementary Fig. 12| Quantifying the reduced ENSO forecast Root Mean Square Error (RMSE) 
from the coupled influences outside equatorial Pacific during 1979-2022. Shown is the relative RMSE 
difference of the Niño3.4 SSTA forecasts, normalized by the seasonally-varying standard deviation of the 
observations, as a function of the forecast start month (ordinate) and target month (abscissa; superscripts 
0, 1, 2 denote the current and subsequent years, respectively). a-d, the skill difference between XRO and 
DExPO+IO+AO (a), between XRO and UExPO+IO+AO (b), and between UExPO+IO+AO and DExPO+IO+AO (c); e-n, 
the skill difference between control and the uninitialized ExPO, IO, AO, NPMM, SPMM, IOB, IOD, 
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SIOD, TNA, ATL3, and SASD experiments, respectively. The importance of climate mode interactions 
in ENSO forecasting is supported by the RMSE metric. 
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Supplementary Fig. 13| Impact of ENSO’s initialization to other climate mode forecasts. Left panels 
(a-h) show the all-months correlation skill of the 3-month running mean each climate mode index during 
1979-2022 as a function of forecast lead for the XRO control forecast (red curve) and uninitialized ENSO 
experiment (�!"#$) forecast (blue curve). Right panels (h-o) show the difference of other climate mode 
SSTA (shading) as a function of forecast lead and target time, between control and uninitialized ENSO 
experiment (�!"#$). The normalized time series of each climate mode SSTA index is indicated in the 
bottom axis. The XRO sensitivity experiments quantify how the initial states of ENSO affect the 
predictability of the other climate modes. 
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Supplementary Fig. 14| Pantropical SSTA forecast skill at 9-month lead time verified on 1982-2022. 
Correlation skill (a-m) and RMSE (n-z) for the SST forecasts include XRO2, cross-validated XRO2, XRO, 
cross-validated XRO, and the available nine NMME models. The XRO2 provide more skilful SSTA 
forecast than the operatorial climate models in most of the pantropical regions.  
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Supplementary Fig. 15| Time series of various SSTA indices and WWV anomaly index in multiple 
observation/reanalysis datasets. SST datasets include (HadISST: 1871-2023, ERSSTv5: 1871-2023, 
COBE-SST2: 1871-2023, ORAS5: 1958-2023, SODA224: 1871-2010, ORA20C: 1900-2009, PEODAS: 
1960-2014, GECOO3: 1948-2018, GODAS: 1980-2023), WWV datasets include (ORAS5: 1958-2023, 
SODA224: 1871-2010, ORA20C: 1900-2009, PEODAS: 1960-2014, GECOO3: 1948-2018, GODAS: 
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1980-2023). The monthly anomalies were calculated by removing the monthly climatology for 1980-2010 
and the quadratic trend over the whole period. The black curve is mean of all datasets, the red shading 
denotes the 10%-90% inter-dataset spread, the grey shading indicates the number of datasets calculated 
for each month, the blue vertical reference lines denote January of 1950 and 1979. There are large 
uncertainties in the data before 1950, especially for equatorial Pacific WWV and SSTA in other basins 
(large inter-dataset spread shown by red shadings), and during time of World War II (1936-1949). There 
are also periods that are not physically consistent with current theory or understanding of ENSO, for 
instance, the multiple El Niño events occurred when a long period of discharged WWV state during 1895-
1908 (blue shading period, compare with the Nino34 SSTA and WWV anomaly). 
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Supplementary Fig. 16| 100-member stochastic forecasts of ENSO by the XRO. a-b, Time series of 
XRO-forecasted Niño3.4 SSTA, at lead-times of (a) 6 months and (b) 12 months. Black curves correspond 
to a deterministic forecast, in which the stochastic forcing term is neglected during the integration. 
Forecasts from a 100-member stochastic XRO ensemble are shown in red (dark red for the ensemble mean, 
red shadings indicate the central 68% range of the ensemble members). The correlation and regression 
slope between the deterministic forecast and the stochastic ensemble mean are indicated in the 
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corresponding legends. c-f, Niño3.4 SSTA forecasts initialized in (a) 1997 April, (b) 1997 November, (c) 
2015 April, and (d) 2023 August. Red curves show the ensemble-mean XRO forecast; dark red envelope 
is the central 68% range of the ensemble members; lighter red is the central 95% range; black curves show 
the observations. The ensemble mean of the XRO stochastic forecasts is almost identical to the 
deterministic XRO forecast. The XRO stochastic forecasts provide an opportunity for probabilistic ENSO 
forecasts. The seasonality of the ENSO growth rate leads to a substantial spread in forecast outcomes from 
November to February. This inherent spread reflects a higher degree of uncertainty in predicting the peak 
amplitude of ENSO during this period. Conversely, from April to June, the forecast spread is narrower. 
However, this does not necessarily imply a better forecast skill, as the actual signal during this period is 
quite weak, resulting in a low signal-to-noise ratio. 
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Supplementary Fig. 17| Effects of the XRO operator’s annual and semiannual cycles on its ENSO 
forecast skill during 1979-2022. a-b, The all-months (a) correlation skill and (b) RMSE of the forecasted 
3-month running mean Niño3.4 SSTA index, as a function of forecast lead, for the XRO in which the 
annual mean, annual cycle, and semiannual components are all considered in the linear and nonlinear 
parameters (red), XROac=0 in which only the annual mean component is considered (blue), and XROac=1 
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in which both the annual mean and annual cycle components are considered (orange). c-d, the skill 
difference of the Niño3.4 index, as a function of start month (ordinate) and target month (abscissa), 
between XRO and the deseasonalized experiments: (c) XROac=0 and (d) XROac=1. Hatching indicates that 
the correlation difference is significant at 90% confidence level using the two-tailed Fisher z‐
transformation test. The dashed vertical blue lines denote the spring predictability barrier (SPB) season. 
a-d, the parameters for XROac=0 and XROac=1 are refitted separately; e-h, same as a-d, but for XROac=0 and 
XROac=1 in which the parameters are taken from the XRO control experiment. The seasonal cycle is 
critically important for suppressing the SPB for ENSO, while the semi-annual cycle is less important. 
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Supplementary Fig. 18| Effects of the XRO nonlinear operators on its ENSO forecast skill during 
1979-2022. a, The all-months (a) correlation skill of the forecasted 3-month running mean Niño3.4 SSTA 
index, as a function of forecast lead for the XRO control (red), XROlinear (blue), XROlinearENSO (purple 
square), and XROlinearIOD (green stars). b, the skill difference of the Niño3.4 index, as a function of start 
month (ordinate) and target month (abscissa), between XRO and XROlinearENSO. The dashed vertical blue 
lines denote the spring predictability barrier season. c-d, monthly Niño3.4 SSTA forecasts initialized in 
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(a) 1997 April and (b) 2015 April for the XRO control (red), XROlinear (blue), XROlinearENSO (purple 
square), and XROlinearIOD (green stars); black curves show the observations. a-d, the parameters for 
XROlinear, XROlinearENSO, and XROlinearIOD are refitted separately; e-h, same as a-d, but for XROlinear, 
XROlinearENSO, and XROlinearIOD in which the parameters are taken from the XRO control experiment. The 
ENSO nonlinear dynamics are critically important for ENSO forecast skill, especially for forecasting the 
amplitude of the peak phase and fast transition from El Niño to La Niña. The impact of the IOD’s 
nonlinearity on ENSO forecast skill is neglectable. 
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