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Abstractr

Objective: Early life success of fishes is considered one of the most important
drivers of recruitment to adult populations, and elucidating the governing mech-
anisms is important for management efforts. Many hypotheses over the past cen-
tury have been proposed to explain recruitment fluctuation, with the recently
postulated Trophic Efficiency in Early Life (TEEL) hypothesis arguing that a
shorter food chain length equals greater energy transfer efficiency from primary
producers to larval fishes, thereby reducing early-life mortality and ultimately
leading to stronger recruitment. Under TEEL it would then be assumed that feed-
ing low in the food chain would improve growth and body condition, as these are
often shown to be associated with increased survival in larval fishes. The objec-
tive of this study was to test this aspect of the TEEL hypothesis by quantifying
condition, growth, and trophic level of larval Shortbelly Rockfish Sebastes jordani
collected by the California Cooperative Oceanic Fisheries Investigations program
and archived at the Ichthyoplankton Collection.

Methods: The trophic level on larval Shortbelly Rockfish was assessed with
compound-specific isotopic analysis of amino acids. Their size at age and survival
were estimated with otolith microstructure. Their diet was examined through
stomach content analysis.

Result: Observations indicate that larvae consuming prey at a lower trophic level
have greater body weight and exhibit faster growth rates. However, feeding at a
lower trophic level did not influence body length. The ingested prey responsible
for the lower trophic level within larval rockfish could not be determined.
Conclusion: Larval Shortbelly Rockfish consuming prey at a lower trophic level
garnered greater body weight and exhibited faster growth rates and provides sup-
port for the TEEL hypothesis. However, further research is needed to identify the
preferred prey(s) responsible for the more efficient energy transfer.
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INTRODUCTION

The adult population sizes for highly fecund fishes are
driven by their spawning stock biomass, spawning hab-
itat size, and recruitment (Hare 2014; Robert et al. 2014;
Thompson et al. 2016; Fennie et al. 2023a). Of these, re-
cruitment is highly dynamic in short-lived marine fishes,
which can fluctuate interannually by many orders of mag-
nitude (Peck et al. 2021), inducing major economic and
ecological responses. In the California Current Ecosystem,
fluctuations in the abundance of Pacific Sardine Sardinops
sagax and Northern Anchovy Engraulis mordax have been
linked to variability in the condition of pinniped pups
(McClatchie et al. 2016) and seabirds (Fennie et al. 2023a).
Meanwhile, fisheries targeting rockfish Sebastes spp.
in California have historically exceeded US$1 billion
(Lenarz 1987; Love et al. 1998), but intense commercial
and recreational fishing pressure can dramatically reduce
their numbers. Subsequent implementation of manage-
ment plans and marine protected areas coupled with fa-
vorable recruitment conditions appeared to help rebuild
certain rockfish populations (Thompson et al. 2016). Even
so, identifying the factor(s) influencing early life success
(the life stage generally considered as the main driver of
recruitment and adult population dynamics; Hare 2014)
could improve predictions and management strategies.
Many hypotheses over the past century have exam-
ined hydrodynamics and mortality to explain recruit-
ment variability, and they can largely be distilled into a
single question: are larvae able to feed on prey that bol-
sters growth and survival (Hjort 1914, 1926; Lasker 1978;
Cury and Roy 1989; Cushing 1990)? Past studies focused
on the quantity of prey ingested since greater prey abun-
dance generally leads to a faster growth rate (Pepin 1988).
However, larval fish are not simply generalist feeders
(Pepin et al. 2014), and a recent metadata analysis re-
vealed that a fast growth rate alone does not adequately
explain recruitment variability (Robert et al. 2023), sug-
gesting that other factors, such as size at hatch (Fennie
et al. 2023a, 2023b) and larval body condition, may also
be important. Little is known about the trophic charac-
teristics of fast-growing and fit larvae or their relation-
ship with size at hatch. Recently, the Trophic Efficiency
in Early Life (TEEL) hypothesis postulated that a shorter
food chain length (or a lower trophic level) through an
“optimal” prey results in more efficient energy transfer
from primary producers to young fish, thereby increasing

Impact Statement

Scientists have long sought to explain and predict
the variability in adult fish population size. Here,
we tested a recently proposed hypothesis and
found larval Shortbelly Rockfish that fed on prey
from lower trophic levels grew heavier and faster,
likely as these prey confer more energy from phy-
toplankton to the larvae.

larval survival and ultimately leading to a larger adult
population (Swalethorp et al. 2023). The TEEL hypothesis
appears to have explained most of the variability in the
Northern Anchovy population over a 45-year period, but
would this pattern also apply to a species that is phylo-
genetically distinct from Northern Anchovy, such as the
viviparous Shortbelly Rockfish S. jordani?

Shortbelly Rockfish are capable of explosive popula-
tion growth fueled by extremely high annual recruitment
(Schroeder et al. 2019), and they serve as an important
forage species for fishes, seabirds, and marine mammals
in the California Current Ecosystem (Love et al. 2002;
Field et al. 2007). Shortbelly Rockfish can impact fishery
management despite not being commercially targeted.
For example, Shortbelly Rockfish are sometimes taken as
bycatch in the Pacific Hake Merluccius productus fishery
off Oregon and Washington, but prior to 2018 they were
scarce in this region and the bycatch limit was set at a very
low level. However, record-high recruitment from 2013 to
2016 in California (Schroeder et al. 2019) induced a surge
in population size, and warm water caused a northward
expansion of Shortbelly Rockfish (Stern-Pirlot et al. 2021,
2022). As a result, the Shortbelly Rockfish bycatch limit
of the Pacific Hake fishery was exceeded within the first
week of the fishing season near coastal Oregon and threat-
ened to (but ultimately did not) prematurely close the fish-
ery (Free et al. 2023). As climate change continues to alter
marine ecosystem dynamics, scenarios such as the one de-
scribed above may become more frequently encountered.
This highlights the need to understand the mechanism(s)
driving recruitment dynamics, which has remained a fun-
damental issue in fisheries science despite over a century
of research (Hjort 1914; Hare 2014).

The TEEL hypothesis proposes that trophic efficiency
is a critical component in recruitment dynamics. To test
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this hypothesis, we required the ability to extract feeding
history from archival larval fish samples captured within
relatively close geographical proximity and across mul-
tiple years. Such archival samples often are not accom-
panied by their prey items, which would be needed in
traditional stable isotopic analysis to establish the source
nitrogen (N) level. In contrast, the use of compound-
specific isotope analysis of amino acids (CSIA-AA) allows
for the sampling of both trophic level and source N level
solely from the consumer's tissues. Using a combination
of CSIA-AA, otolith microstructure, and gut content anal-
ysis, this study provides observations on whether trophic
level and size at hatch may be important for the growth
and body condition of larval Shortbelly Rockfish.

METHODS
Sample collection

Larval rockfish (preserved in 95% ethanol) were collected by
the California Cooperative Oceanic Fisheries Investigations
(CalCOFI) program and archived at the Ichthyoplankton
Collection curated by the National Oceanic and
Atmospheric Administration (NOAA) Southwest Fisheries
Science Center (La Jolla, California). Shortbelly Rockfish
were identified via mitochondrial cytochrome b gene se-
quencing (Thompson et al. 2017). To reduce variability,
we selected larval Shortbelly Rockfish of comparable size
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(total length [mean +standard error, SE] =6.56+0.23 mm;
dry weight=0.28+0.03mg) and CalCOFI stations (L80
[line], S51 [station]; L8O, S55; L83.3, S51; and L83.3, S55)
sampled during winter cruises in the years 2004, 2005,
2006, 2008, 2010, 2012, and 2013 (Figure 1). Altogether,
18 of 30 samples were successful in both otolith dissection
and CSIA-AA analysis. Unfortunately, seven samples were
lost during otolith microdissection, and nine samples were
lost during CSIA-AA processing or discarded due to insuf-
ficient mass (four samples had both issues).

Morphometric, otolith, and gut analysis

Shortbelly Rockfish were imaged with a DSLR camera
(Nikon D7000) under a compound microscope (Leica
DMLB) for standard length (SL) measurements. Sagittal
otoliths and digestive organs were dissected for the re-
spective analyses. The remaining portion of each larval
Shortbelly Rockfish was frozen at —80°C for 24 h, freeze-
dried for 24h, weighed on a microscale for dry weight
(without the otolith and gut), and then returned to storage
at —80°C until CSIA-AA processing.

Dissected otoliths were imaged across focal planes
(Z-stack imaging) under a compound microscope (1000x;
Leica DMLB) and then were focus-stacked (Helicon
Focus version 8.0.4). Images were analyzed in R (R Core
Team 2020) using the R package RFishBC (Ogle 2022)
to obtain the otolith core size (from the center to the
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@ Sampled CalCOFI Station
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FIGURE 1 California Cooperative Oceanic Fisheries Investigations (CalCOFI) sampling stations and the sampling site for this
experiment. To reduce variability, we selected larval Shortbelly Rockfish of comparable size collected at comparable CalCOFI sampling
stations during winter cruises in the years 2004, 2005, 2006, 2008, 2010, 2012, and 2013.
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postrostral edge of the extrusion check) and age and in-
crement widths (the number and width, respectively, of
daily rings beginning at the first growth increment) by
two readers (Supplemental Figure 1 available separately
online). Within-reader precision was assessed using the
R package FSA (Ogle et al. 2020) to calculate the average
percent error (2.089%) and the coefficient of variation
(2.954%) between the two readers. Unfortunately, 3 of the
18 aged otoliths were not included in the within-reader
precision due to data loss that occurred during one co-
author's switch to another institution (though the data
were recorded and they were independently read by two
readers).

Digestive tracts were dissected, and stomach contents
were identified, photographed, and measured to the near-
est 0.5pm with an eyepiece micrometer. Recovered prey
were categorized by taxonomic grouping; growth stage;
average length, width, and number found within rockfish
larvae with non-empty guts; percent numerical contribu-
tion to the diet; average carbon (C) weight; and percent C
biomass contribution to the diet. For copepodites, length
was measured as prosome length, while total length was
measured for all other prey groups. Carbon weights (pg)
were estimated using conversion factors from existing lit-
erature (Supplemental Table 1 available separately online).

CSIA-AA

The CSIA-AA protocol follows the procedures detailed
by Swalethorp et al. (2020). Larvae were hydrolyzed in
0.5mL of 6-N HCI for 24h at 90°C, dried under vacuum
in a Labconco centrifugal evaporator at 60°C, redissolved
in 0.5mL of 0.1-N HCI, and filtered through an IC Nillix-
LG 0.2-pm hydrophilic polytetrafluoroethylene filter.
Samples were redried before redissolving in 100 pL of 0.1%
trifluoroacetic acid in Milli-Q water, and they were stored
at —80°C until amino acid separation. We used an Agilent
1200 Series high-performance liquid chromatography
(HPLC) system equipped with a degasser (G1322A), a qua-
ternary pump (G1311A), an autosampler (G1367B), and a
Realtek fixed flow splitter (5:1), which directed the flow to
an analytical fraction collector (G1364C) and an evapora-
tive light-scattering detector (385-ELSD; G4261A), respec-
tively. Amino acids were separated on a reverse-phase
semi-preparative scale column (Primesep A; 10X 250 mm,
100-A pore size, 5-um particle size; SiELC Technologies
Ltd.) using a 120-min ramp solvent program with 0.1%
trifluoroacetic acid in Milli-Q water (aqueous phase) and
HPLC-grade acetonitrile (organic phase). The fraction col-
lector collected glutamic acid (Glu) and phenylalanine
(Phe) in 7-mL glass tubes based on elution time. Collection
quality was assessed by comparing chromatograms with set

collection times, and they were accepted only when at least
99% of the peak areas fit within the collection windows.
Whole larval samples were injected into the column to col-
lect amino acids for N isotope analysis (>1 pgN). Collected
amino acids were dried in the centrifugal evaporator at
60°C, dissolved in 40 pL of 0.1-N HC], and transferred to tin
capsules (Costech; 3.5 x 5.0 mm). Capsules were then dried
overnight in a desiccator under vacuum.

Amino acid N isotopic analyses were performed at the
Stable Isotope Laboratory, University of California Santa
Cruz, on a Nano-EA-IRMS system designed for small
sample sizes (0.8-20.0pgN). The automated system is
composed of a Carlo Erba CHNS-O EA1108 elemental
analyzer connected to a Thermo Finnigan Delta Plus XP
isotope ratio mass spectrometer via a Thermo Finnigan
GasBench II with an N trapping system.

The 5"°N values were corrected for size effects and in-
strument drift by using Indiana University acetanilide,
USGS41 Glu and Phe standards, and protocols (https://
es.ucsc.edu/~silab) based on Fry et al. (1992). The SN
values of Glu and Phe are not significantly affected by
ethanol preservation (Swalethorp et al. 2020). The 18 lar-
val Shortbelly Rockfish with both CSIA-AA and otolith
measurements were divided into two groups based on
their differences in 8"°N between the trophic amino acid
Glu and the source amino acid Phe (8"°Ngj, ppe) values.
The nine larvae with higher 8"°Ng;, pn. Were sorted into
the high 8" Ny, phe group (mean +SE=13.82+0.40%0),
and the remaining nine larvae with lower 8°N;,,_pp Were
sorted into the low group (9.68 + 0.74%o).

Statistical analysis

All analyses were performed using R version 4.0.3. Age and
8" Ngp.phe effects on the SL and mass of larval Shortbelly
Rockfish were analyzed with Bayesian hierarchical models
encoded with the R package “rethinking” (McElreath 2020).
Four Hamiltonian Markov chains with 1000 iterations were
used. Bayesian inference is considered to lend advantages
over frequentist methods when analyzing small sample
sizes due to inclusion of prior information, which increases
robustness by incorporating current knowledge of expected
outcomes into the model (McNeish 2016). Since all variables
were standardized, a mean of 0 and a standard deviation of
1 were included as informative priors for each predictor
variable. Normally distributed posterior distributions were
summarized using central tendencies and variance—in
this case, the mean and 89% compatibility interval of each
predictor variable. The effect of ' °Npy,. on 8Ny, ppe Was
determined by using a hierarchical model, with sample sta-
tion and year as random effects, as fitted to equations 1-8
(Supplemental Table 2). Sample station and year were also
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included as random effects (varying intercept) in SL and
body weight models, which were fitted to equations 9-18
(Supplemental Table 2). Posterior predictive checks were
used to examine the predictive accuracy of the models,
and model convergence was confirmed graphically using
traceplots (Supplemental Figure 2). To test growth in rela-
tion to 8"° Ny, ppe> another Bayesian hierarchical model in
the rethinking package was fitted to the data, with otolith
increment width as the dependent variable and 8N, phe
and increment number as independent variables. The in-
teractive effect of increment number and 8"°Ng;, ppe Was
also included as an independent variable, with individual
larvae included as a random intercept, as denoted in equa-
tions 19-26 (Supplemental Table 2).

RESULTS AND DISCUSSION

We used 8"°N values for the trophic amino acid Glu minus
the source amino acid Phe as an indicator of trophic level.
Published trophic discrimination factors (TDFs) are exclu-
sively based on adult or juvenile fish. Compared to young
larvae, these later life stages of fish exhibit slower growth
and metabolic rates, both of which impact isotopic turno-
ver (Bradley et al. 2014). Using TDF values from Bradley
et al. (2015), we estimated unrealistically low trophic lev-
els, down to 1.3 in some larvae, indicating that adult TDFs
may not be appropriate for use with larvae.

The 8N phe Of larval Shortbelly Rockfish aver-
aged 11.75+0.65%. (mean +SE; N=18) and ranged from
5.31%o to 16.38%0 (Supplemental Table 3). As expected, age
strongly influenced larval length and weight, indicating
that older larval Shortbelly Rockfish were both longer and
heavier than their younger counterparts (Figure 2A,B).
Feeding on prey with lower 8N, ppe did not affect lar-
val length (Figure 2A) but strongly increased larval weight
(Figure 2B). This was not surprising: fish condition corre-
sponds to its weight at given length, forming the premise of
Fulton's condition factor (Froese 2006). Moreover, rationing
experiments in adult fish (Pangle et al. 2004) and larval fish
(Letcher and Bengtson 1993; Martinez et al. 2003) indicate
that weight gain greatly depends on feeding conditions,
whereas length can increase despite suboptimal feeding
conditions. This suggests that the condition of Shortbelly
Rockfish is related to the trophic level of larval prey and, by
extension, the efficiency with which energy is transferred
from the base of the food chain up to the larvae and assim-
ilated by the larvae (Swalethorp et al. 2023).

Since 8'Ng,phe integrates feeding history over
the first days or weeks of life, we next examined the
otolith microstructure of larval Shortbelly Rockfish
(1-25days postextrusion) to assess whether trophic ef-
ficiency affected otolith size at age and growth rate.
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FIGURE 2 Predictors of larval Shortbelly Rockfish condition.
(A) Bayesian hierarchical model output indicates that age is

a strong predictor of length, whereas (B) both age and lower

8" Ng1u.phe are strong predictors of weight. (C) Moreover, age,

8" Ngpu.phe» their interaction, and individual effects are all strong
predictors of otolith increment width. (D) The 8'*Npy,, value shows
an inverse relationship and substantial effects on 8"* N, phe-

Data represent the mean +89% compatibility interval (N=18), ¢
represents the standard deviation (SD) of the normal distribution
estimated by the model, 6, represents the SD of individual random
effects, and o, represents the SD of year random effects.

Otolith increment width strongly varied across individ-
uals (Supplemental Figure 3). Even so, feeding on lower
8" Nguphe Prey strongly increased the increment width,
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and this pattern was amplified with age (Figure 2C). To
visualize this, we divided the larval Shortbelly Rockfish
into a low 8N, ppe group (mean =+ SE=9.68 +0.74%o;
N=9) and a high §"°Ng,, phe group (13.82 +0.40%0; N=9).
We observed that larval Shortbelly Rockfish feeding on
prey with low 8"°Ng,,, ph consistently exhibited faster oto-
lith growth histories (Figure 3A) and larger otolith sizes
at age (Figure 3B). Rapid growth is most often found to
be an important driver of larval survival. The stage dura-
tion hypothesis (Chambers and Leggett 1987) argues that
the mortality rate decreases as fish larvae develop because
the accelerated growth rate decreases the duration spent
in the vulnerable larval stage (Meekan and Fortier 1996;
Garrido et al. 2015). Empirically, slower-growing individ-
uals were found to be selectively preyed upon in a variety
of fish studies, including studies on the Japanese Anchovy
Engraulis japonicus (Takasuka et al. 2017) and Quillback
Rockfish S. maliger (Fennie et al. 2020). Our observations
imply that feeding on lower trophic level prey facilitates
a larger otolith size at age and faster growth in larval
Shortbelly Rockfish.

Larval size at age is postulated to positively impact sur-
vival, as it influences swimming efficiency, prey capture,
and predator evasion (Houde 2008, 2009). Past studies
showed that a larger otolith core size (which reflects lar-
val size at hatch/extrusion) was positively correlated with
survival (Meekan and Fortier 1996; Garrido et al. 2015;
Fennie et al. 2023b), and the effect was magnified with
age (Malca et al. 2022). Here, our results suggest that oto-
lith core size did not affect the length of larval Shortbelly
Rockfish (Figure 2A) but strongly influenced their weight
(Figure 2B). Potential reasons for the lack of effect on lar-
val length may be due to the small sample size. Even so,
any advantages related to a larger core size would be in-
consequential if there were unsuitable and/or insufficient
prey available in the environment.

Next, we sought to identify the low-trophic-level food
source responsible for heavier and faster-growing lar-
val Shortbelly Rockfish, as past studies suggested that
consuming specific prey taxa can boost larval growth
and survival (Murphy et al. 2012; Beaugrand et al. 2013;
Burns et al. 2021; Malca et al. 2022). Gut content analy-
sis revealed that the larval Shortbelly Rockfish diet was
primarily composed of Calanoida copepodites (41.73%),
Calanoida nauplii (17.51%), and unidentified Copepoda
copepodites (14.52%; Table 1). Although larvae in the high
8" Ng1u_phe group tended to consume more C mass than the
larvae in the low 8"°Ng,, pne group (Figure 4), their differ-
ences were not significant across total prey, Calanoida co-
pepodites, and Calanoida nauplii (Figure 4). This suggests
that the trophic level of larval Shortbelly Rockfish may be
determined lower in the food chain, possibly impacting
prey energy content, and not through prey switching by
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FIGURE 3 The relationship between otolith increment width
or otolith size and trophic position. Larval Shortbelly Rockfish
with low 8"*N,.phe (mean + standard error [SE] =9.68 +0.74%o)
had (A) faster otolith growth histories and (B) larger otolith size at
age compared to larvae with high 8"° N, phe (13.82 +0.40%0). Data
represent the mean +SE (N =09 fish/treatment).

the larvae. Moreover, our inability to visually identify prey
items to species hindered our capacity to determine which
prey types optimize energy transfer (Robert et al. 2014).
The observed effects of 8'°Ngj, ppe 0n larval condition
despite similar diet suggest that bottom-up processes
could be responsible. To explore this further, we next ex-
amined whether 8'°Np;,., which is a source amino acid re-
flecting 8'°N at the base of the larval food chain, showed
any relationship with the explored parameters. Although
8" Ny, did not correlate with time or place of larval cap-
ture, length, weight, or otolith growth (not shown), it did
affect 8"°Ng,, phe (Figure 2D). This observation indicates
that when 8Ny, was high, the larvae fed at a lower tro-
phic level. The value of §'°Npy,, is reflective of (1) changes
in inorganic N sources, with deep nitrate characterized
by higher 8"°N compared to N fixation or recycling near
the surface; and (2) changes in primary producers, as
different phytoplankton species can fractionate 5'°N at

85U8017 SUOWILLOD 3A 181D 3|cedldde ayy Aq pausenob ae ssole O 8sh JO Ss|nl 10} ArIq1T 8UIUO AB|IM UO (SUOIIPUOD-PUE-SWLBY WD A8 | 1M ATe1q 1 BU1|UO//SANY) SUORIPUOD PUe SWi | 38U 89S *[5202/T0/20] Uo Ariqiauljuo 8|1 ‘soewiuod JO ewiedsd BeoN Ad 6TE0T Z4OW/Z00T 0T/10p/w0d A8 |m Ake.d jpul|uo'sqnds fe//sdny Wwoy pepeojumod ‘9 ‘vZ0Z ‘0Z1SZy6T



TROPHIC INFLUENCE ON LARVAL ROCKFISH DEVELOPMENT

| 70f10

TABLE 1 Diet metrics for recovered gut contents of Shortbelly Rockfish. Nonpercentage values are presented as mean + standard deviation.

Biomass (%)

Average C weight (1g)

Abundance (%)

Average width (pm) Average number

Average length (pm)

Prey

41.73

2.18+3.94
0.92+1.02
0.76+1.45
0.45+0.55
0.35+1.45
0.33+0.88
0.19+0.26

19.94
28.77

2.92+4.43
4.21+4.20
1.17+2.10
3.63+£3.85
0.46+1.72
0.42+1.10

141.96 £43.71
199.54 +£42.23
107.39 +34.42
164.82+29.20
212.75+53.23
124.88 +£42.47

230.72 +88.23

431.58+155.13
250.76 +68.15

Calanoida copepodites

17.51
14.52

395.11+125.80
201.59+44.97

186.68 +75.13

Calanoida nauplii

7.98
24.79

Copepoda copepodites

8.64
6.63
6.22
3.72
1.02

Cyclopoida nauplii

Eggs

3.13
2.85
11.40

440.3+100.88

192.86 +53.14

Cyclopoida copepodites

1.67+2.10

282.13+243.74

Other nauplii

Others

0.17+0.38 1.14 0.05+0.19

198.88 £177.04

different rates (McMahon and McCarthy 2016; Sigman
and Fripiat 2019). Increased upwelling and/or changes in
phytoplankton communities could have affected the ob-
served larval trophic changes; however, more research is
needed to explore this.

Our results show that Shortbelly Rockfish that fed on
prey at lower trophic levels were heavier and grew faster
and thereby likely increased their survival. As such, this
study lends preliminary support for the TEEL hypothesis
(Swalethorp et al. 2023); moreover, our work suggests that
TEEL may be applicable to species other than the Northern
Anchovy. We cannot rule out prey nutritional quality and
larval food assimilation efficiency as having some impact
on the observed changes in trophic level (Gaye-Siessegger
et al. 2003, 2004; Trueman et al. 2005). Other factors, in-
cluding maternal investment, size at hatch/extrusion, and
species-specific differences in prey, likely also influence
larval recruitment and should be explored in future stud-
ies. However, our observations suggest that larval perfor-
mance may be driven by bottom-up processes wherein
lower trophic level/higher energy transfer efficiency could
be proportional to the amount of energy reaching the lar-
val population. As stated by Lasker (1985), the key to un-
derstanding recruitment dynamics is to determine what
mostly limits recruitment and when in the life cycle this
occurs. Although limited in scope, our study showcases
some of the intricacies between trophic connections and
the early life success of fish and highlights the need for
more extensive research to connect larval trophic position
with prey identity, nutritional quality, and larval perfor-
mance and to determine its relationship to recruitment in
Shortbelly Rockfish and other species that are relevant to
fishery management.
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FIGURE 4 Comparison of carbon (C) weight consumed across larval Shortbelly Rockfish from the low and high 8'*Ny, pp groups.
There was no significant difference in the C weights of (A) total prey (=—1.0402, p=0.3173), (B) Calanoida copepodites (t=—0.4412,
p=0.6729), and (C) Calanoida nauplii (t=—1.9576, p=0.0768) consumed between larvae with low 8'°N,, pp (mean + standard error [SE]
=9.68+0.74%0) and those with high 8"*N;, phe (13.82 +0.40%0). Data represent the mean + SE.
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