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ABSTRACT

Biologists have long sought to understand the impacts of deleterious genetic variation on fitness
and population viability. However, our understanding of these effects in the wild is incomplete,
in part due to the rarity of sufficient genetic and demographic data needed to measure their
impact. The genomics revolution is promising a potential solution by predicting the fitness
effects of deleterious genetic variants (genetic load) bioinformatically from genome sequences
alone, bypassing the need for costly demographic data. After a historical perspective on the
theoretical and empirical basis of our understanding of the dynamics and fitness effects of
deleterious genetic variation, we evaluate the potential for these new genomic measures of
genetic load to predict population viability. We argue that current genomic analyses alone cannot
reliably predict the effects of deleterious genetic variation on population growth, because these
depend on demographic, ecological, and genetic parameters that need more than just genome
sequence data to be measured. Thus, while purely genomic analyses of genetic load promise to
improve our understanding of the composition of the genetic load, they are currently of little use
for evaluating population viability. Demographic data and ecological context remain crucial to
our understanding of the consequences of deleterious genetic variation for population fitness.
However, when combined with such demographic and ecological data, genomic information can
offer important insights into genetic variation and inbreeding that are crucial for conservation

decision making.

1 | INTRODUCTION

The fitness effects of deleterious mutations have long been a central theme in evolutionary
(Haldane, 1937; Wright, 1922; Wright, 1931) and conservation biology (Frankel & Soulé, 1981;
Ralls & Ballou, 1982; Shaffer, 1981), and remain key to our growing understanding of the
drivers of variation in individual fitness and population viability (Armstrong et al., 2021;
Bozzuto, Biebach, Muff, Ives, & Keller, 2019; Huisman, Kruuk, Ellis, Clutton-Brock, &
Pemberton, 2016; Kardos et al., 2023; Stoffel, Johnston, Pilkington, & Pemberton, 2021;
Whiteley, Fitzpatrick, Funk, & Tallmon, 2015). Until recently, this body of work focused mainly
on model organisms, captive populations, and a few intensively monitored wild populations
where fitness can be measured directly (Bonnet et al., 2022). Therefore, predicted effects of

deleterious mutations on the viability of natural populations are largely based on theory (Awad,
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Gallina, Bonamy, & Billiard, 2014; Lande, 1994, 1998; Lynch, Conery, & Burger, 1995; Tanaka,
2000; Theodorou & Couvet, 2006; Wright, 1931), extrapolation from laboratory experiments
(Bijlsma, Bundgaard, & Boerema, 2000; Frankham, 1995; Wright, 1922) and intensively-studied
wild populations (Armstrong et al., 2021; Bozzuto et al., 2019; Dileo, Nair, Kardos, Husby, &
Saastamoinen, 2024; Hedrick, Robinson, Peterson, & Vucetich, 2019; Kardos et al., 2023;
Saccheri et al., 1998). The genomics revolution has inspired researchers to explore how genome
sequence data can add to our understanding of the effects of deleterious genetic variation on the
viability of wild populations where detailed demographic data are difficult to collect and rarely
available (Bertorelle et al., 2022; van Oosterhout, 2020).

Here, we evaluate whether purely genomic analyses of deleterious genetic variation are
likely to substantively advance our understanding of the effects of this genetic variation on
population viability. Because current progress builds on past developments, we begin with an
historical perspective on the theoretical and empirical basis of our understanding of the dynamics
and fitness effects of deleterious genetic variation. We then discuss what genome sequence data
alone, and genomics-informed simulation models, can reveal about the dynamics and fitness
impact of deleterious genetic variation. We finish by arguing that, while intuitively appealing,
purely genomic measures of genetic load combined with simulation models are currently
insufficient to reliably predict population fitness. Field-based demographic studies remain key to

our understanding of the influence of deleterious genetic variation on population viability.

2 | HISTORICAL PERSPECTIVE ON DELETERIOUS GENETIC VARIATION

Early studies of Drosophila (Morgan, 1915; Muller, 1930) revealed that most mutations were
deleterious, and that the more detrimental mutations tended to be more recessive (Nei, 2013;
Wright, 1922). These deleterious mutations generally reduced the fitness of individuals and the
viability of populations in controlled experiments with inbred strains of maize (East & Jones,
1919; Shull, 1908), rats (King, 1918), guinea pigs (Wright, 1922), and livestock (McPhee,
Russel, & Zeller, 1931). Strong concomitant selection could, however, counteract some of these
detrimental effects (Castle, Carpenter, Clark, Mast, & Barrows, 1906; King, 1918), highlighting

that both mutation and selection determine the dynamics of deleterious genetic variation.
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Thus, by the late 1920s, there was ample evidence that all populations experienced a
constant influx of deleterious mutations and ongoing selection against them. This motivated
Fisher (1930) and Wright (1931) to explore theoretically how recurring mutations and selection
would affect allele frequencies. While Fisher (1930) envisioned populations of ‘many millions or
thousands of millions’ (p. 84), S. Wright (1931) had small livestock populations in mind and thus
explored the effects of small population size. He concluded (p. 142) that deleterious mutations
would cause two ‘distinct degeneration processes’ in small and isolated populations: a rapid one
involving inbreeding and a slow one involving the ‘accumulation of injurious genes’. Thus,
Wright had already realized by 1931 that recurrent mutations would reduce fitness in different
ways and that population size mediated these effects via genetic drift.

Predicting the magnitude of mutation-induced fitness reduction, however, remained
elusive, in part because some of the crucial parameters — the strength of selection against a
homozygous mutation (the selection coefficient, 5) and the degree of dominance (4, the
dominance coefficient reflecting the fitness of heterozygotes) — were difficult to measure
empirically except in rare circumstances. Haldane (1937), and later Crow (1948) and Muller
(1950) provided a partial breakthrough. Haldane (1937) showed that expected mean fitness was
W =1-2q(1 — q)hs — ¢*%s, where g is the deleterious allele frequency and 1,1 — hs, and 1 —
s are the fitness of wildtype homozygotes, heterozygotes, and mutant homozygotes, respectively.
This simplifies to W = 1 — 2qhs when we assume that g is <<1, which in turn assumes that
genetic drift is sufficiently weak to allow selection to keep deleterious alleles at a low frequency.
This further simplifies to W = 1 — 2u (where u is the deleterious mutation rate per locus per
generation) when deleterious alleles are removed by selection at the same rate as mutations
produce them (i.e., under mutation-selection equilibrium). Muller (1950) derived similar
formulae, which he applied to actual situations in Drosophila and humans, and he coined the
term 'genetic load' for the reduction in average fitness at mutation-selection equilibrium. Thus,
Haldane (1937) and Muller (1950) showed that, under restrictive assumptions, we only need to
know the mutation rate to predict the effects of deleterious mutations on average fitness, whether
the effects of an individual mutation (the size of s) are large or small (Crow, 1970).

Unfortunately, few real populations satisfy the assumptions of the models of Haldane
(1937) and Muller (1950). First, the assumption that deleterious allele frequencies are always

small (g << 1)) does not apply to small populations where genetic drift is too strong for selection
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to consistently prevent deleterious alleles from rising to high frequency. Secondly, the
assumption of mutation-selection balance is violated in where population size changes through
time. Such populations are often far from equilibrium, where predictions based on equilibrium
assumptions no longer hold (Gravel, 2016; Spigler, Theodorou, & Chang, 2017). Finally, the
deleterious mutation rate is difficult to estimate accurately except in rare circumstances. These
limitations effectively restrict reliable application of the Haldane (1937) and Muller (1950)
models to a small number of model organisms. As a consequence, there still aren’t enough
empirical data to test how well Haldane’s and Muller’s equations predict fitness (Agrawal &

Whitlock, 2012).

Fortunately, Morton et al. (1956) discovered a way around some of these limitations by
showing that the effects of deleterious mutations on mean fitness could be estimated via analysis
of the reduction in fitness associated with increasing inbreeding. With data on individual fitness
and inbreeding coefficients (F, the homozygous and identical-by-descent proportion of an
individual’s genome) (Wright, 1951) in hand, the cumulative effects of mutations could be
estimated with a weighted linear regression relating the logarithm of fitness (e.g., survival
probability, S) to the inbreeding coefficient F: —log(S) = A + BF (Morton et al., 1956;
Nietlisbach, Muff, Reid, Whitlock, & Keller, 2019). In this model 4 =Y, x + Y. q%s +

2Y.q(1 — q)sh, where x is the reduction in fitness due to an environmental factor, and B =

Y qs —Y q?s — 2Y q(1 — q)sh. The summations are over all x’s and all loci carrying
deleterious alleles. Note that A, the y-intercept in the linear regression, is the expected reduction
in fitness due to the summed effects of all environmental and genetic factors affecting fitness in
the absence of inbreeding. The genetic part of 4 (the second and third terms) is equivalent to
Haldane’s model for genetic load. B, the slope in the regression model, is the expected reduction
in fitness associated with complete inbreeding (/' = 1), and is therefore commonly known as the

inbreeding load (Charlesworth & Charlesworth, 1987).

The great advancement of the Morton et al. (1956) model was that the 4 and B
parameters could be estimated empirically without identifying the underlying mutations or
knowing the associated values of y, s, or 4. Morton et al. (1956) proposed Y. gs as a useful
measure of the total mutational damage per gamete. It is measured in units of lethal equivalents
and corresponds to the reduction in fitness of a zygote formed by doubling the chromosomes of

the gamete (thus F=1), and equals B plus the genetic part of 4, with B representing the lower and
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B + A the upper bound of this quantity. Gravel (2016) showed that variants of ), gs are also
useful measures of deleterious genetic effects in non-equilibrium situations. Because it is
difficult to separate the genetic from the environmental component of 4, it has become common
practice to use B as a lower bound estimate of the total effects of mutations on fitness
(Charlesworth & Charlesworth, 1987).

In the decades that followed, the Morton et al. (1956) approach has allowed estimation of
the impact of deleterious mutations on fitness in numerous species and the exploration of many
fundamental questions in evolutionary (Crow, 1993; Keller & Waller, 2002; Lewontin, 1974)
and conservation biology (Ralls, Ballou, & Templeton, 1988; Ralls, Brugger, & Ballou, 1979).
The main findings of these studies have been comprehensively summarized (Agrawal &
Whitlock, 2012; Charlesworth & Charlesworth, 1987; Crnokrak & Roff, 1999; Crow, 1958,
1970; Crow, 1993; Hedrick & Kalinowski, 2000; Keller & Waller, 2002; Lewontin, 1974;
Plough, 2016; Wallace, 1970, 1987). A central result that emerged was that the pattern of
deleterious genetic variation was very different in large and small populations (Hedrick &
Garcia-Dorado, 2016; Kimura, Maruyama, & Crow, 1963; Willi et al., 2022), thus confirming
Wright’s (1931) insight that deleterious mutations affect fitness through different processes
depending on population size. In large populations, there tends to be a large B due to numerous
partially recessive deleterious alleles segregating at low frequencies. In small populations, on the
other hand, B is reduced because inbreeding occurs more often and partially recessive
detrimental alleles are therefore expressed more frequently in homozygous state. This exposes
them to selection and small populations thus tend to be purged of part of the inbreeding load
(Hedrick, 1994; Hedrick & Garcia-Dorado, 2016; Lopez-Cortegano, Moreno, & Garcia-Dorado,
2021). Concurrently, however, mildly deleterious mutations can drift by chance to substantially
higher frequencies or even fixation, enriching another type of genetic load known as ‘drift load’
(reduced fitness associated with the continual fixation of mildly deleterious alleles) (Whitlock,
2000). Because mildly deleterious alleles are far more common than the more severely
deleterious mutations that are most readily purged (Crow, 1993), drift load can be orders of
magnitude higher than inbreeding load in small populations (Kardos et al., 2021; Kimura et al.,
1963). Many theoretical (Bataillon & Kirkpatrick, 2000; Charlesworth, 2018; Glémin, 2003;
Kirkpatrick & Jarne, 2000; Lynch, Conery, & Burger, 1995) and empirical studies (Lohr &
Haag, 2015; Mattila et al., 2012; Puurtinen, Knott, Suonpéé, Ooik, & Kaitala, 2004; Willi,
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Griffin, & van Buskirk, 2013) have since elaborated on these results and have explored the
complex ways that demography impacts inbreeding and drift loads.

The range of species that contributed to these studies, however, was still restricted to
study systems for which fitness data and information about inbreeding could be obtained. This is
in part because data on fitness and F are difficult to collect in free-living organisms. Thus, the
effects of deleterious genetic variation on individual fitness, and especially on population
dynamics, have seldom been measured in wild populations. Additionally, the small size and
difficulty of sampling many populations of conservation concern can severely limit the sample
size available to measure the fitness effects of deleterious genetic variation. Therefore, the
statistical power and precision are often quite low in studies of inbreeding depression in
populations of conservation concern (Chapman, Nakagawa, Coltman, Slate, & Sheldon, 2009;
Ford et al., 2018). The impact of deleterious mutations on population viability has therefore
continued to be debated (Caro & Laurenson, 1994; Caughley, 1994; Creel, 2006; Hedrick, Lacy,
Allendorf, & Soulé, 1996; Jamieson, 2007; Wootton & Pfister, 2015).

One of the major limitations — the difficulty of measuring F in the wild — has been partly
solved by the rapidly increasing availability of genomic data (genotypic information at many

thousands to millions of loci) beginning around 2007 (https://www.genome.gov/about-

genomics/fact-sheets/Sequencing-Human-Genome-cost). Genomic measures of F are more

precise than traditional pedigree- or genetic marker-based approaches (Ceballos, Joshi, Clark,
Ramsay, & Wilson, 2018; Kardos, Luikart, & Allendorf, 2015; Keller, Visscher, & Goddard,
2011; Knief et al., 2015) and enable analyses of inbreeding depression in populations without
extensive pedigrees. Several studies have since used genomic estimates of F along with
demographic data to measure inbreeding depression in wild populations (Armstrong et al., 2021;
Duntsch et al., 2023; Harrisson et al., 2019; Hoelzel et al., 2024; Hoffman et al., 2014; Huisman
et al., 2016; Kardos et al., 2023; Niskanen et al., 2020; Stoffel et al., 2021) and some evaluated
the effects of observed inbreeding depression on population dynamics (Armstrong et al., 2021;
Kardos et al., 2023). Unfortunately, demographic analyses of inbreeding depression in the wild
are still rare due to the high cost of genome sequencing and the difficulty of measuring fitness in

the wild.
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Purely genomic analyses of inbreeding and genetic load, and genomics-informed,
evolutionary-demographic simulation models have been proposed as means to overcome these
limitations (Bertorelle et al., 2022; Kyriazis, Robinson, & Lohmueller, 2023; Robinson, Kyriazis,
Yuan, & Lohmueller, 2023; Robinson, 2023; van Oosterhout, 2020). Genome sequences are
particularly appealing for the estimation of genetic load because they are thought to allow
evaluation of the effects of deleterious genetic variation in a species’ natural environment
(Koufopanou, Lomas, Tsai, & Burt, 2015) without requiring the costly demographic data needed
to directly measure fitness (Bertorelle et al., 2022). The premise of this approach is that we
should be able to predict fitness of an individual or a population, based solely on a sample of
genome sequences, if we can identify deleterious alleles, quantify their frequencies, and know
enough about the associated values of 4 and the distribution of s (distribution of fitness effects,
DFE). Being able to reliably predict fitness without having to directly measure demographic vital
rates would provide a ‘step-change’ in conservation (van Oosterhout, 2020) because it would
enable evaluating the extinction risk of any population where genomic data are accessible.

Inspired by the potential for genomic data to reveal the fitness consequences of
deleterious alleles, numerous studies have already used genome sequences to evaluate the
dynamics and fitness effects of deleterious genetic variation in populations of conservation
concern (Beichman et al., 2022; Bertorelle et al., 2022; Dussex et al., 2021; Grossen, Guillaume,
Keller, & Croll, 2020; Hoffman et al., 2024; Kardos et al., 2023; Khan et al., 2021; Kyriazis,
Wayne, & Lohmueller, 2021; Mathur & DeWoody, 2021; Mathur, Tomecek, Tarango-Arambula,
Perez, & DeWoody, 2023; Robinson, Brown, Kim, Lohmueller, & Wayne, 2018; Robinson et
al., 2022; Smeds & Ellegren, 2023; Smeds, Huson, & Ellegren, 2024; Wilder et al., 2024; Xue et
al., 2015). Additionally, several studies have used genomic estimates of parameters that
determine genetic load (e.g., historical N, DFE, and the deleterious mutation rate) to
parameterize evolutionary-demographic simulation models in order to predict effects of
deleterious genetic variation on population dynamics and viability (Beichman et al., 2022;
Dussex, 2024; Kyriazis, Beichman, et al., 2023; Kyriazis et al., 2021; Nigenda-Morales et al.,
2023; Robinson et al., 2022; Wilder et al., 2024). For example, Robinson et al. (2022) inferred
from simulations and genomic analyses of genetic load that the recovery of the highly
endangered vaquita porpoise is unlikely to be limited by inbreeding depression. Moreover,

genomic analyses of genetic load in ancient DNA from extinct species have been used to test
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whether deleterious genetic variation might have contributed to the demise of populations that
went extinct long ago (Dehasque et al., 2024; Rogers & Slatkin, 2017). Dehasque et al. (2024)
concluded from temporal genomic analyses of genetic load in Wrangel Island wooly mammoths
that deleterious genetic variation was unlikely to have contributed to the extinction of the
population. The central objective of many such studies is to evaluate the impact of deleterious
mutations on population dynamics and viability. It is therefore crucial to critically evaluate
whether purely genomic analyses of genetic load and associated simulations are likely to be
informative of population growth and viability.

How do deleterious mutations impact population viability in the wild? Theoretical
(Lande, 1994; Lynch, Conery, & Burger, 1995; Wright, 1931) and experimental results
(Bowman & Falconer, 1960; East & Jones, 1919; Frankham, 1995; Franklin, 1980; King, 1918;
Lacy, Alaks, & Walsh, 1996; Leberg, 1990; McPhee et al., 1931; Meagher, Penn, & Potts, 2000;
Shull, 1908; Soule, 1980; Wright, 1922) implied that inbreeding and drift load could limit
population growth and increase the risk of extinction for inbred populations. Empirical results
from wild populations have largely been consistent with this prediction. For example, wild
populations with higher heterozygosity (lower inbreeding) have shown higher population growth
(Bozzuto et al., 2019) and lower extinction probability (Saccheri et al., 1998) than those with
lower genetic diversity. Inbreeding depression appears to have limited population growth in
some (Armstrong et al., 2021; Kardos et al., 2023), but not all small natural populations
(Johnson, Mills, Wehausen, Stephenson, & Luikart, 2011) where inbreeding depression has been
measured. Masking the recessive fitness effects of deleterious alleles by outcrossing (i.e.,
‘genetic rescue’, Box 1) nearly always reverses declines of small and isolated populations with
low genetic variation and high inbreeding (Frankham, 2015; Whiteley et al., 2015), suggesting
that some combination of fixed and segregating deleterious alleles had limited recovery of these
populations. Maintenance of genetic variation and population connectivity and avoidance of
inbreeding therefore remain crucial considerations in conservation (DeWoody, Harder, Mathur,

& Willoughby, 2021; Frankham, 2005; Kardos et al., 2021; Soulé, 1987).
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3 | ARE GENOMIC MEASURES OF GENETIC LOAD INFORMATIVE OF POPULATION
VIABILITY?

3.1 | Demography is the crux of extinction

Predicting the impact of any factor on population viability requires understanding how strongly
that factor influences population growth (Crouse, Crowder, & Caswell, 1987; Mills, 2012; Reed
et al., 2002). Extinction is an inherently demographic process that requires demographic
perspective and analyses to understand (Lande, 1988). The effects of deleterious genetic
variation on population dynamics can be measured using demographic data by: (1) evaluating the
relationship between population growth rate or extinction probability and population-based
measures of inbreeding (Bozzuto et al., 2019; Saccheri et al., 1998), (2) measuring changes in
population dynamics upon outcrossing (i.e., genetic rescue; Box 1) (Akesson et al., 2016; Hogg,
Forbes, Steele, & Luikart, 2006; Johnson et al., 2010; Madsen, Shine, Olsson, & Wittzell, 1999;
Westemeier et al., 1998; Whiteley et al., 2015), or (3) estimating the relationship between vital
rates (age- and sex-specific survival and reproduction) and F and then modelling the estimated
effects on population growth using matrix models or individual-based simulations (Armstrong et
al., 2021; Domingue & Teale, 2007; Johnson et al., 2011; Kardos et al., 2023). The fundamental
advantage of these demographic approaches is that the fitness effects of deleterious genetic
variation are measured directly.

Purely genomic studies of the demographic consequences of deleterious genetic variation
essentially bypass the need for demographic data on wild populations (Beichman et al., 2022;
Bertorelle et al., 2022; Kyriazis, Beichman, et al., 2023; Robinson et al., 2022). Predicting the
demographic effects of deleterious genetic variants via genomic analysis is inherently a difficult
task because the fitness effects and their interactions with extrinsic ecological factors cannot be
measured directly from sequence data. A crucial question is whether genomic measures of
genetic load can provide useful measures of population viability when the demographic effects
are not measured. Below, we outline several reasons why current genomic measures of genetic
load are unlikely to be informative of population dynamics and suggest future work to evaluate

the efficacy of and improve these approaches.
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3.2 | Purely genomic methods are unlikely to reliably predict the impact of deleterious genetic
variation on fitness

First, genomic measures of genetic load do not themselves quantify effects of putatively
deleterious alleles on fitness. Instead, methods to identify deleterious genetic variants (Adzhubei,
Jordan, & Sunyaev, 2013; De Baets et al., 2012; McLaren et al., 2016; Wang, Li, & Hakonarson,
2010) usually classify putatively deleterious alleles by effects on protein structure (e.g., loss-of-
function, missense, synonymous, intergenic, etc.) or degree of evolutionary constraint (Cooper et
al., 2005). Mutations that appear to be more strongly conserved or to more substantially disrupt
protein function are assumed to have larger fitness effects. On average, qualitative predictions of
fitness effects of protein variants are likely to have some validity (Ralls, Sunnucks, Lacy, &
Frankham, 2020). For example, putatively deleterious alleles had lower average frequencies than
putatively neutral alleles in some studies e.g., (Grossen et al., 2020; Khan et al., 2021),
suggesting that current methods are at least somewhat successful at identifying loci subjected to
purifying selection. Additionally, 15% of manually curated loss-of-function mutations, for which
none of the sequenced individuals were homozygous, turned out to be embryonic lethals in
Belgian beef and New Zealand dairy cattle (Charlier et al., 2016). However, it remains unclear
just how reliably genomic methods distinguish deleterious mutations from beneficial and neutral
ones. Loss-of-function mutations are expected to be deleterious on average, yet they have shown
a wide range of fitness effects (Karczewski et al., 2020), including beneficial rather than
detrimental effects (Monroe et al., 2018; Xu & Guo, 2020). Additionally, predicted loss-of-
function mutations are enriched for false positives compared to more benign mutations due to
annotation errors and other technical artefacts (Karczewski et al., 2020), a problem that is likely
exacerbated in species of conservation concern that lack high quality genome assemblies and
annotations.

Furthermore, the relative contribution to genetic load of mutations in coding versus non-
coding genomic regions remains unclear. While some genomic analyses of putatively deleterious
genetic variation focus on coding portions of the genome, e.g., (Kardos et al., 2023), non-coding
mutations must also be important because the great majority of trait-associated (Hindorff et al.,
2009; Ibeagha-Awemu, Peters, Akwanji, Imumorin, & Zhao, 2016) and functionally constrained
loci in vertebrates reside in non-coding regions (Lindblad-Toh et al., 2005; Meader, Ponting, &

Lunter, 2010; Mouse Genome Sequencing Consortium, 2002; Rands, Meader, Ponting, &

11
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Lunter, 2014; Rat Genome Sequencing Project Consortium, 2004). Similarly, it has proven
difficult to empirically demonstrate substantial fitness consequences of mutations in ultra-
conserved genomic elements (Snetkova, Pennacchio, Visel, & Dickel, 2022), a part of the
genome that is thought to be under strong selection and of particular relevance for conservation
(van Oosterhout, 2020). Thus, how well genomic approaches succeed at classifying mutations of
different severity, and whether they can be translated into improved predictions of fitness and
better conservation outcomes remains an open question (Speak et al., 2024).

A fundamental limitation of genomic methods that classify putatively deleterious alleles
is that they do not explicitly measure either s or 4, both of which are needed to translate the
detection of putatively deleterious alleles into predictions of fitness. A potential solution is to use
population genetic methods to estimate the DFE for deleterious alleles (Eyre-Walker &
Keightley, 2007; Kim, Huber, & Lohmueller, 2017). This can be done by finding a distribution
of s that is most consistent with observed levels of presumably neutral (synonymous) versus
deleterious (nonsynonymous) genetic variation conditioned on an inferred demographic history
(Kim et al., 2017; Robinson et al., 2022). However, population genetic methods are known to
underestimate the number of strongly deleterious alleles because such alleles tend to have very
low frequencies, resulting in downwardly biased estimates of the average s and proportion of
deleterious alleles that are lethal or nearly so (Eyre-Walker & Keightley, 2007). Therefore,
models parameterized with sequence-based estimates of the DFE are likely to lead to
downwardly biased predictions of the cumulative fitness effects of deleterious alleles.

The utility of population genetic methods to estimate the DFE are also limited by being
purely retrospective. The relevant population genetic patterns are the result of both recent and
deep historical selection which are likely to differ from contemporary and future selection in
rapidly changing environments. The cumulative fitness effects of deleterious genetic variation
depend to varying degrees on environmental and ecological conditions (Dileo et al., 2024;
Keller, 1998; Keller, Grant, Grant, & Petren, 2002; Meagher et al., 2000; Pemberton, Ellis,
Pilkington, & Berenos, 2017) and are therefore expected to fluctuate through time and space.
Genomic analyses of genetic load say nothing about the sensitivity of selection to environmental
conditions. Applying biased measures of s and assuming that average past selection pressures
hold in current and future environments is likely to result in a misleading understanding of the

relevance of deleterious genetic variation to population dynamics.
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An additional challenge of current genomic measures of genetic load is that they assume
that loci affect fitness independently (Bertorelle et al., 2022) and in the same way under different
environmental conditions. Experimental results from model organisms suggest that the fitness
effects of de novo mutations can depend strongly on gene-by-gene-by-environment interactions.
For example, particular mutations tended to confer increased fitness in Plasmodium falciparum
and Saccharomyces cerevisiae genomic backgrounds that had low fitness in a particular
environment, and to confer reduced fitness in environments where the genomic background had
high fitness (Ardell, Martsul, Johnson, & Kryazhimskiy, 2024; Diaz-Colunga, Sanchez, &
Ogbunugafor, 2023). Additionally, there is mounting evidence that the strong associations
among loci that develop in small populations due to genetic drift (Ohta & Kimura, 1970) could
lead to deleterious mutations being linked in repulsion and thus to the expression of pseudo-
overdominance (Abu-Awad & Waller, 2023; Toczydlowski & Waller, 2023; Waller, 2021).
Pseudo-overdominance, like overdominance at a single locus, leads to heterozygotes having
higher fitness than either homozygote, which acts to oppose purging and maintain segregating
deleterious genetic variation and inbreeding depression. For example, two closely linked
deleterious recessive alleles that occur on different haplotypes can result in net heterozygous
advantage and favor the maintenance of deleterious genetic variation at both loci (Waller, 2021).
Empirical evidence from Drosophila (Latter, 1998) and simulations (Abu-Awad & Waller, 2023)
suggests that pseudo-overdominance could partly explain the persistence of inbreeding
depression in persistently small inbred populations (Toczydlowski & Waller, 2023). Genomic
analyses of humans identified 22 genomic regions where pseudo-overdominance seems to
maintain haplotypes with complimentary deleterious alleles (Gilbert, Pouyet, Excoffier, &
Peischl, 2020). Thus, incorporating multi-locus perspective and gene-by-gene-by-environment
effects will be necessary to improve the predictions of fitness effects of deleterious mutations
and of the efficacy of purging.

While relative fitness is often all that matters if one wants to understand changes in allele
frequencies, predicting genetic effects on population dynamics requires an understanding of
effects on absolute fitness. Unfortunately, current genomic measures of genetic load contain no
information about the expected absolute fitness of any individual. Translating genotypes at loci
carrying putatively deleterious alleles into predictions of absolute fitness requires knowing the

expected absolute fitness of either unloaded individuals or of individuals with known genetic
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loads (e.g., level of inbreeding) in the same environment (Agrawal & Whitlock, 2012; Kardos et
al., 2023), in addition to the mutation parameters discussed above. The ubiquity of mutation
means that unloaded individuals do not exist, and demographic data and analyses are required to
measure the relevant parameters (Morton et al., 1956). The unknown realized fitness effects of
putatively deleterious alleles identified in sequence data combined with biases associated with
population genetic methods to estimate the DFE mean that we currently have little understanding
of how genomic measures of genetic load are related to individual fitness and population growth

under contemporary ecological conditions.

3.3 | Genomic measures of genetic load do not differentiate hard versus soft selection

Another reason why genomic measures of genetic load alone are unlikely to be informative about
population dynamics is that they do not reveal whether selection is hard vs. soft (Bell, Kovach,
Robinson, Whiteley, & Reed, 2021; Wallace, 1975). Hard selection occurs when selective deaths
or reproductive failures are additive (i.e., natural selection determines how many individuals
survive or reproduce). Hard selection is therefore expected to affect population growth. On the
other hand, under soft selection, selective deaths and reproductive failures are compensatory and
thus determine which, not how many, individuals survive and reproduce, which has little or no
direct effect on population growth rate. For example, under soft selection, individuals with lower
genetic load are more likely to survive or reproduce than individuals with higher genetic load
(Haldane, 1957) without a direct impact on population dynamics (Wallace, 1970).

Several lines of evidence suggest that hard selection is common in small populations
(Frankham, 2015; Saccheri & Hanski, 2006). First, for evolution by natural selection to work,
selection needs to be hard at least some of the time when populations compete. As (Crow, 1993)
(p. 4) put it: “Evolution by natural selection could hardly work at all if intra- and intergroup
fitnesses were not positively correlated’. Second, classical laboratory experiments of inbreeding
in guinea pigs and mice (Bowman & Falconer, 1960; Wright, 1922) showed that a significant
proportion of inbred lines go extinct. Despite being carried out under benign laboratory
conditions, selection in these experimental populations must have been at least partly hard, since
it affected population size and increased extinction. Additionally, the near universal increase in
population size following outcrossing in highly inbred and declining populations (Frankham,

2015; Whiteley et al., 2015) suggests that selection is often hard in small and declining
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populations (Box 1). However, hard selection does not appear to be ubiquitous. Observations of
strong inbreeding depression in populations that have persisted for a long time at small
population size (Hoffman et al., 2014; Huisman et al., 2016; Stoffel et al., 2021) and of an
uncoupling between individual fitness losses and population growth in response to climate
change (Reed et al. 2013) suggest that soft selection is common in resource-limited natural
populations.

The form of selection can change from hard to soft and vice versa through time with
changing ecological conditions (Bell et al., 2021), and the presence of density dependence does
not necessarily imply that selection is entirely soft (Agrawal & Whitlock, 2012). Thus, over time
and spatial scales relevant for conservation, the hardness of selection may be quite variable
depending on a number of factors, including environmental conditions (Bozzuto et al., 2019;
Dileo et al., 2024). As a result, genetic load need not directly translate into effects on population
size and contemporary extinction risk, as noted repeatedly for over 60 years (Agrawal &
Whitlock, 2012; Brues, 1969; Clarke, 1973; Gravel, 2016; Haldane, 1957; Wallace, 1975, 1987,
1991). And as Kojima (1970) remarked, we should have ecological concepts ringing in our ears

when thinking of genetic load and its consequences.

While it appears that selection must be at least somewhat hard on average, predicting
exactly when selection will be hard and how hard it will be remains challenging (Keller,
Biebach, & Hoeck, 2007). Such a predictive ability is crucial to be able to determine how
strongly genetic load affects population viability. Purely genomic measures of genetic load are
uninformative of the ecological details (Agrawal & Whitlock, 2012; John Burdon Sanderson
Haldane, 1957) that determine the degree to which selection involving deleterious genetic
variation is hard vs. soft. In the meantime, we are well advised to assume that selection will be
partly hard in populations pushed beyond their natural conditions through anthropogenic
environmental change (Saccheri & Hanski, 2006). Consequently, avoiding substantial loss of

genetic variation and increase in inbreeding continues to be a crucial to conservation.
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3.4 | Purely genomic analyses do not reveal which vital rates are affected by deleterious alleles

Genomic metrics of genetic load are unlikely to be informative of population dynamics because
they contain no information on the affected vital rates (age- and sex-specific survival and
reproduction). One of the foundational insights of population ecology is that different vital rates
can have drastically different effects on population growth rate (Caswell, 2000; Cole, 1954;
Crouse et al., 1987; Mills, 2012). For example, a given proportional reduction in adult survival
often has a very different effect on population growth compared to the same reduction in juvenile
survival (Box 2). Therefore, understanding the impact of deleterious genetic variation on
population dynamics requires knowing which and to what extent different vital rates are affected
(Box 2). The vital rates depressed by inbreeding appear to vary substantially across populations
(Nietlisbach et al., 2019). For example, several studies of wild populations have found strong
inbreeding depression for juvenile survival, and decreasing impacts of inbreeding on survival
later in life e.g., (Armstrong et al., 2021; Huisman et al., 2016; Stoffel et al., 2021), while others
have found that inbreeding affects fitness in later life stages (Johnson et al., 2011) or across the
whole lifespan (Kardos et al., 2023). Some populations appear to experience substantial
inbreeding depression for reproductive success in both sexes (Huisman et al., 2016; Niskanen et
al., 2020), but others show sex-specific effects (Keller, 1998) or no detectable effects at all on
breeding success (Kardos et al., 2023). It is likely that the vital rates depressed by deleterious
genetic variation vary among populations and through time due to temporal and spatial variation
in environmental conditions (e.g., intra- and inter-specific competition, climatic variation), and
also depending on the DFE of segregating deleterious genetic variation (Husband & Schemske,
1996). Current genomic measures of genetic load provide little or no information on which vital
rates are affected by deleterious genetic variants; they therefore do not capture the demographic

details that determine the effects of deleterious genetic variation on population dynamics.

3.5 | Purging and long-term persistence do not mean fitness effects of deleterious genetic
variation are unimportant

Evidence for long term small N. and purging of deleterious alleles appears to be common in
genomic studies of small populations e.g., (Dehasque et al., 2024; Grossen et al., 2020; Kardos et
al., 2023; Khan et al., 2021; Kleinman-Ruiz et al., 2022; Mathur & DeWoody, 2021; Nigenda-
Morales et al., 2023; Robinson et al., 2018; Robinson et al., 2022; Xue et al., 2015). Such results

16



492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

have on occasion been interpreted as suggesting that purging has largely eliminated the threat
imposed by deleterious genetic variation on population viability (Dehasque et al., 2024;
Nigenda-Morales et al., 2023; Robinson et al., 2018; Robinson et al., 2022). We argue that this
view is inconsistent with both empirical data and the central insight of population genetics
outlined in the historical perspective above: small population size may lead to purging of
strongly deleterious alleles and reduced inbreeding depression, but simultaneously leads to
reduced fitness via the accumulation of high frequency and fixed mildly deleterious alleles (drift
load) via genetic drift (Frankham, 2015; Hedrick & Garcia-Dorado, 2016; Lande, 1995; Lynch,
Conery, & Burger, 1995; Lynch, Conery, & Biirger, 1995; Whiteley et al., 2015). The frequent
extinction of inbred lines and increase in fitness upon outcrossing in small, isolated populations
further highlight that purging (which is expected in all small populations) does not reliably
prevent fitness decline.

Furthermore, purging is unlikely to completely eliminate threats associated with
inbreeding depression (Charlesworth & Willis, 2009; Toczydlowski & Waller, 2023).
Demographic analyses frequently reveal inbreeding depression in populations with demographic
history and genomic characteristics that are conducive to efficient purging. Substantial
inbreeding depression occurs in haplodiploid species where purging should be especially
efficient due to the expression of recessive, deleterious alleles in haploid males every generation
(Henter, 2003). Additionally, inbreeding depression is commonly detected in populations with
small historical N (i.e., in the tens or hundreds) for hundreds or thousands of generations e.g.,
(Kardos et al., 2023; Stoffel et al., 2021), and following a severe population bottleneck (Hoelzel
et al., 2024). For example, the Southern Resident killer whales showed genomic signatures of
both purging and small N, recently (i.e., N in the tens for ~30 generations) and in deeper history
(N in the 100’s ~30-400 generations ago, and a deep historical N, of ~5,000) (Foote et al., 2021;
Kardos et al., 2023). Despite a history of quite small Ne, Southern Resident killer whales showed
sufficiently strong inbreeding depression in survival to substantially reduce the population
growth rate and viability (Kardos et al., 2023). Likewise, Soay sheep that have been isolated on
small islands for thousands of years displayed substantial inbreeding depression for survival
(Stoffel et al., 2021). We believe that genomic measures of genetic load and purging combined
with analyses of historical N are crucial to our growing understanding of the long-term dynamics

of different components of genetic load. However, current genomic metrics of genetic load are
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by themselves insufficient to predict absolute fitness. Empirical demographic data and analyses
are needed to directly evaluate the effects of deleterious genetic variation on absolute individual

fitness and population viability (Allendorf, Ryman, & Kardos, 2023).

3.6 | Relevance of simulation-based population viability analyses parameterized via genomic
analysis

Demographic simulations have played a crucial role in understanding the factors that affect
population viability since the inception of conservation biology (Beier, Vaughan, Conroy, &
Quigley, 2006; Beissinger & Westphal, 1998; Brook et al., 2000; Crouse et al., 1987; Reed et al.,
2002; Shaffer, 1981, 1983). Stochastic simulations were crucial in showing that levels of
inbreeding depression observed in model systems could influence extinction risk if they occur in
wild populations (Brook, Tonkyn, O'Grady, & Frankham, 2002; Mills & Smouse, 1994; O'Grady
et al., 2006). However, quantitative predictions of extinction risk based on simulation models are
error-prone due to the limited amount and low quality of demographic data available in most
study systems (Beissinger & Westphal, 1998). Recent advancements in genomics and simulation
software are providing new opportunities, as well as substantial challenges.

Increasingly sophisticated and user-friendly simulation software (Guillaume &
Rougemont, 2006; Haller & Messer, 2022) has enabled complex, genetically-explicit, individual-
based, stochastic simulations of the effects of deleterious genetic variation and many other
factors on population dynamics. Simulations can now accommodate nearly limitless
combinations of historical N., deleterious mutation rate, DFE, life history, and genomic
complexity of specific study populations or species (Dussex, 2024; Kardos et al., 2023; Kyriazis,
Robinson, & Lohmueller, 2022; Kyriazis et al., 2021; Robinson, Kyriazis, Yuan, & Lohmueller,
2022; Robinson et al., 2022). Genomic estimates of the DFE, 4, and U (the deleterious mutation
rate per haploid genome) along with sequence-based estimates of historical demography are
often used to parameterize individual-based simulations for population viability analysis
(Beichman et al., 2022; Kyriazis, Beichman, et al., 2023; Kyriazis et al., 2024; Robinson et al.,
2023; Robinson et al., 2022). This approach adds several parameters that are difficult to estimate
to the traditional population viability analysis approaches that were already error-prone due to
poorly parameterized demographic variables (Beissinger & Westphal, 1998). First, the inability

to determine from genomic data which vital rates are affected by deleterious genetic variation
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means that one usually has to assume which vital rates are affected by deleterious genetic
variation. If the assumptions are wrong, wildly inaccurate predictions of population dynamics
can result (Box 2), even if all of the other parameters are estimated accurately. Genomic
estimates of the mutation parameters used to parameterize simulations are also highly error prone
(as described above), which means that the modeled effects of deleterious genetic variation are
likely to be far from the realized effects in real populations. Focusing population viability
analyses on the wrong parts of the parameter space for mutation characteristics (Ralls et al.,
2020), affected vital rates (Box 2), and importance of ecological factors (Beissinger & Westphal,
1998; Crouse et al., 1987; Lacy, 2000; Mills, 2012) can lead to misleading results that hinder
conservation efforts. Without empirical measures of these effects, what may seem like
reasonable assumptions for genetic effects on fitness are likely to result in erroneous predictions

of imminent decline, demographic stability, or growth.

4 | CONCLUSIONS AND FUTURE DIRECTIONS

The limitations described above lead us to conclude that current genomic measures of genetic
load are unlikely to materially improve our ability to measure population viability. This raises
the question of how genomic measures of genetic load might still be useful for advancing
conservation. One way molecular predictions of deleterious alleles could advance conservation is
by improving our ability to predict relative fitness of individuals in a given environment. For
example, translocating genetically variable individuals with relatively few putatively deleterious
alleles into small inbred populations may result in more successful genetic rescue (increased
future population growth) than translocation of individuals carrying more putatively deleterious
alleles (Bertorelle et al., 2022; Khan et al., 2021; Christopher C Kyriazis et al., 2021; Whiteley et
al., 2015). Captive breeding programs might maximize the fitness of offspring by selecting
parents that share the fewest putatively deleterious alleles (Speak et al., 2024). Additionally,
predictions of deleterious alleles might help to identify the loci underlying recessive phenotypes
associated with reduced fitness (Bertorelle et al., 2022; Charlier et al., 2016; Dobrynin et al.,
2015; Marty Kardos, Taylor, Ellegren, Luikart, & Allendorf, 2016), potentially enabling
genomics-assisted selection against deleterious alleles in heavily managed captive (Moen et al.,
2015) and wild populations (Ralls, Ballou, Rideout, & Frankham, 2000). In species of

conservation concern where (semi-)lethal alleles are found to segregate and cause serious fitness
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loss (Laikre, 1999; Ralls et al., 2000; Trask et al., 2016) such genomics-assisted selection may
offer ways to reduce the frequency of the disease-causing alleles without an associated severe
reduction in Ne. The likelihood of success of any of these conservation applications depends on
the extent to which predictions of deleterious genetic variation can be validated empirically and
improved in the future.

To advance conservation, genomic measures of genetic load would need to provide more
information about relative fitness than more traditional metrics such as genomic measures of F
and demographic history which have long been considered as important predictors of individual
fitness (Frankel & Soul¢, 1981; Lukas F. Keller & Waller, 2002; Lynch, Conery, & Burger,
1995). This would require that predictions of deleterious alleles are generally accurate, and that
measures of genetic load based on predicted deleterious alleles are better predictors of fitness
than other genomic metrics (e.g., individual inbreeding). The accuracy of molecular predictions
could be tested by evaluating whether predicted highly deleterious alleles (e.g., mutations that
cause loss of gene function or occur in highly conserved genomic regions) coincide with loci
known to carry strongly deleterious alleles. For example, do molecular methods regularly predict
strongly deleterious alleles in genomic regions known to contain embryonic lethal or semi-lethal
alleles (Ralls et al., 2000; Trask et al., 2016), or in genomic regions where strongly deleterious
recessive fitness effects have been identified via association mapping (Stoffel et al., 2021)?
Additionally, whole-genome sequences combined with fitness data from long term studies of
wild populations (Clutton-Brock & Sheldon, 2010; J. M. Pemberton, Kruuk, & Clutton-Brock,
2022) could be used to test whether fitness is more strongly correlated with genomic measures of
genetic load than with genomic measures of ' (Allendorf et al., 2023). Large sample sizes will
likely be required to obtain sufficient statistical power because genomic metrics of an
individual’s genetic load (e.g., the number of homozygous, putatively deleterious alleles) and F
are expected to be highly correlated (M. Kardos et al., 2023). If this is generally true across
multiple study systems, then it would support to the idea that molecular measures of genetic load
can improve predictions of the relative fitness of individuals in a given population.

Genomic measures of genetic load are likely to benefit from improved genome
annotations and by accounting for potentially strong effects of structural genetic variants. The
quality of genome annotations in non-model species has not kept pace with the rapidly increasing

efficiency of genome-sequencing. For example, genes in non-model species are usually
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identified by homology with known protein coding regions in model species, and by gene-
predicting computational methods (Birney, Clamp, & Durbin, 2004; Kapustin, Souvorov,
Tatusova, & Lipman, 2008; Kent, 2002). More accurate and contiguous reference genomes, and
expanded use of long-read RNA sequencing of many different tissues in several individuals to
identify transcribed genes, will likely improve the annotations of genes and identification of
putatively deleterious alleles in non-model species (Kurylo, Guyomar, Foissac, & Djebali, 2023).
Automated tools to discover putatively deleterious alleles will no doubt improve in the future,
but deep manual curation will likely remain essential for some time to come. Such manual
curation is widespread in livestock and human applications (Charlier et al., 2016; Singer-Berk et
al., 2023) but less common in conservation applications. Most genomic analyses of deleterious
genetic variation in wild populations have so far been limited to considering the effects of single
nucleotide polymorphisms in coding and highly conserved genomic regions. Quantifying the
contribution of structural genetic variants (e.g., inversions and insertion-deletions) might
substantially improve future genomic estimates of genetic load (Fang & Edwards, 2024; Smeds
et al., 2024).

Simulation models remain crucial for identifying the major drivers of population
dynamics in threatened populations. However, these models are only as good as the data used to
parameterize them (Beissinger & Westphal, 1998). The usefulness of purely genomic measures
of genetic load to parameterize simulations is severely limited by their inability to reveal the
strength, form, temporal variability, and environmental dependence of fitness effects, or which
vital rates are involved. Some influential pre-genomics demographic simulation studies of
inbreeding depression suffered from a similar limitation: the magnitude of inbreeding depression
and affected vital rates were often extrapolated from other populations or even different species
(Barry W Brook et al., 2002; L. Scott Mills & Smouse, 1994; O'Grady et al., 2006). Simulation-
based assessments of population viability should be interpreted with extreme care in cases where
demographic measures of these effects are unavailable. Models parameterized with output from
purely genomic analyses of genetic load, or based on demographic data from other study
populations are essentially what-if scenarios, and the results derived from such models should be
interpreted accordingly as being speculative. Additionally, making assumptions about the
strength of inbreeding depression and which vital rates are affected (Dussex, 2024; P. S. Miller,
2024; Williams et al., 2024) should especially be avoided when empirical estimates of these
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effects are available in the same study populations (Akesson et al., 2016; Bensch et al., 2006; M.
Kardos et al., 2023; Liberg et al., 2005).

The issues outlined here highlight the continuing crucial role of field work to collect detailed,
individual-level data on survival and reproduction. Such data, paired with high-quality genomic
information will best advance our understanding of the demographic consequences of deleterious
genetic variation. Unfortunately, such demographic data are rare for populations of conservation
concern, and the availability of detailed demographic data does not ensure that the factors
limiting recovery of threatened populations can be identified. For example, small sample sizes
typical of the studies of threatened populations means that statistical power is often quite low to
identify the environmental and genetic factors that influence fitness and population growth.
Additionally, the factors limiting population growth can change through time, such that a
conclusive finding regarding the demographic effects of deleterious genetic variation over one
period of time may not hold in the future.

We argue that in light of the theoretical and empirical insights on genetic load of the last
hundred years, data on population trend, environmental conditions, and genetic variation (e.g.,
genomic measures of heterozygosity and inbreeding) are the most important pieces of
information regarding whether deleterious genetic variation is likely impacting population
dynamics. Specifically, inbreeding depression and the accumulation of drift load should be
leading hypotheses for the lack of recovery of populations with low genetic variation in
environments that appear to be sufficient to support population growth. This view is supported
by the strong evidence that infusion of genetic variation via translocation nearly universally
increases population growth in such situations (Frankham, 2015; Whiteley et al., 2015) (Box 1).
Interpreting purely genomic estimates of genetic load without considering the ecological and
genetic complexities outlined above is likely to result in spurious inferences about the factors
that drive population dynamics in threatened populations, which can mislead conservation

decision making.
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Box 1: Genetic rescue
Genetic rescue is a reduction in extinction probability of small, inbred populations caused by
gene flow (Bell et al., 2019). It is best quantified as an increase in population growth by more
than can be attributed to the demographic contribution of immigrants (Ingvarsson, 2001). The
primary mechanism of genetic rescue is typically assumed to be a reduction in genetic load due
to the masking of deleterious alleles, but it can also be caused by the introduction of additive
genetic variation on which selection can act, thereby reducing maladaptation in small
populations with strong genetic drift (Bell et al., 2019; Whiteley et al., 2015). Genetic rescue can
be mediated by people, or it can occur naturally, e.g., when an organism disperses from one
population to another of its own accord. Genetic rescue is related to, but distinct from, other
similar terms. Evolutionary rescue is an adaptation-dependent reversal of population decline due
to maladaptation to novel environmental conditions (Carlson, Cunningham, & Westley, 2014;
Gonzalez, Ronce, Ferriere, & Hochberg, 2013). Assisted gene flow is the managed movement of
individuals or gametes between populations within a species’ range to facilitate adaptation to
changing environments (Aitken & Whitlock, 2013).

Increasing evidence demonstrates that genetic rescue works in the vast majority of cases.
Some of the best examples of genetic rescue come from conservation management efforts to
increase population growth rates of small, imperiled populations. The introduction of 20 male
adders (Vipera berus) to an isolated population in Sweden suffering from severe inbreeding
depression resulted in a dramatic demographic recovery (Madsen et al., 1999). Other examples
of favorable population-level fitness responses to human-mediated immigration include Florida
panthers (Puma concolor coryi) (Johnson et al., 2010) and Rocky Mountain bighorn sheep (Ovis
canadensis) (Hogg et al., 2006; J. M. Miller, Poissant, Hogg, & Coltman, 2012). Controlled
experiments in copepods (Tigriopus californicus) (Hwang, Northrup, Alexander, Vo, &
Edmands, 2011), plants (Rutidosis leptorrhynchoides) (Pickup, Field, Rowell, & Young, 2013),
flour beetles (Tribolium castaneum) (Hufbauer et al., 2015), Trinidadian guppies (Poecilia
reticulata) (Fitzpatrick et al., 2020), and many other species also show positive effects of
immigration on absolute fitness. In a literature review of studies that have rigorously tested for
absolute fitness effects (on population size or growth rate) of migration across generations, the
vast majority (14/18; 78%) showed either positive (n = 10) or a mix of positive and no absolute

fitness effects (n = 4) (Whiteley et al., 2015).
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The observation that genetic rescue attempts usually successfully increase population size

or growth rates suggests that many target populations are small due at least in part to deleterious

genetic effects. It also suggests that selection against inbred individuals is not entirely soft, as

discussed in the main text.
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Box 2: Demographic impacts of inbreeding depression involving different vital rates
Selection involving different vital rates can have very different effects on population growth rate
depending on life history strategy. To demonstrate this effect, we measured the effects of
reducing stage-specific annual survival using information from age-specific life tables (Tables
S1-S6) for six species representing a wide range of life histories: great tit (Parus major)
(Bouwhuis, Charmantier, Verhulst, & Sheldon, 2010; Bouwhuis, Choquet, Sheldon, & Verhulst,
2012), Dall sheep (Ovis dalli) (Simmons, Bayer, & Sinkey, 1984), killer whale (Orcinus orca)
(Olesiuk, Bigg, & Ellis, 1990), grizzly bear (Ursus arctos horribilis) (Harris, White, Schwartz, &
Haroldson, 2007; Schwartz, Haroldson, & White, 2006), hoop pine (Araucaria cunninghami),
and the copepod Mesochra lilljeborgi (Waples, Luikart, Faulkner, & Tallmon, 2013). For each
species, we calculated the expected finite rate of population growth (1) (Supplementary
Methods) from the unaltered lifetables. To measure the sensitivity of A to variation in survival at
different life stages, we calculated A after reducing the annual survival rate of either juveniles or
adults by half. Figure 1 shows that A was most strongly impacted by juvenile survival in the great
tit, killer whale, and copepod. However, A for Dall sheep, grizzly bear, and hoop pine was most
strongly impacted by adult survival. These results show that knowing which life stage is most
affected by selection is crucial for determining the effects of selection on population growth

(Crouse et al., 1987).
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Figure 1. Effects of stage-specific survival on population growth rate (1) in great tit, Dall sheep,

killer whale, grizzly bear, hoop pine, and copepod.

What are the implications of these differences in the sensitivity of the population growth
rate to variation in survival at different life stages? And what does it mean for the impact of
inbreeding depression on population viability? To answer this question, we applied the
individual-based simulation model of Kardos et al. (2023) to two species with very different life
histories: the great tit (short lifespan, high fecundity) and Dall sheep (long lifespan, low
fecundity) (Figure 2).
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Figure 2. Age-specific survival, fecundity, and proportion of individuals surviving to age in

great tit and Dall sheep.

For each species we modeled a single closed population with carrying capacity K = 100
and initial population size of 50 individuals sampled from a stable age distribution
(Supplementary Methods) in year 0. We modeled inbreeding depression for annual juvenile
survival, adult survival, or for both juvenile and adult annual survival. We assumed an
inbreeding load of B = 3 for great tit, and B = 1 for Dall sheep given the much lower A for Dall
sheep compared to great tit (Figure 1). Simulation details are in the Supplementary Materials.
We projected each simulated population forward through time for 50 years or until extinction,
and repeated this 300 times for each species and combination of affected vital rates. The results
are shown in Figure 3. Consistent with the sensitivity analysis (Figure 1), great tit population
growth was more strongly reduced by inbreeding depression on juvenile than adult survival.
Populations with inbreeding depression affecting only adult survival grew initially (on average)
while those with inbreeding depression for juvenile survival typically declined rapidly (Figure
3). Also consistent with the sensitivity analysis, Dall sheep populations were most affected by
inbreeding depression for adult survival: those with inbreeding depression for juvenile survival
declined slowly on average over 50 years, but the same strength of inbreeding depression for
adult survival resulted in population decline and more than 50% of simulated population going
extinct by year 35. Additionally, the strongest impact of inbreeding depression on population
growth was observed in both species when it affected both juvenile and adult survival. These

simulation results demonstrate that assuming inbreeding depression acts on a particular vital
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rate(s) without a strong empirical justification can result in wildly misleading predictions of the

relative and absolute impact of deleterious genetic variation on population growth and viability.
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Figure 3. Effects of inbreeding depression for different vital rates on great tit (A) and Dall sheep

(B) population growth. Population size is shown through time for simulations with inbreeding
depression (3 lethal equivalents in great tit and 1 lethal equivalent in Dall sheep) affecting
juvenile (blue), adult (red), and both juvenile and adult annual survival (orange). Results are

shown for 300 replicate simulations for each species and combination of vital rates.
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